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Abstract 
It has been extensively shown in past literature that Bayesian game theory and 
quantum non-locality have strong ties between them. Pure entangled states 
have been used, in both common and conflict interest games, to gain advan-
tageous payoffs, both at the individual and social level. In this paper, we con-
struct a game for a mixed entangled state such that this state gives higher 
payoffs than classically possible, both at the individual level and the social 
level. Also, we use the I-3322 inequality so that states that aren’t useful ad-
vice for the Bell-CHSH1 inequality can also be used. Finally, the measure-
ment setting we use is a restricted social welfare strategy (given this particular 
state). 
 

Keywords 
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1. Introduction 

Quantum theory emerged when most physicists realized that physics at the 
atomic level could not be completely described by classical mechanics. Planck 
was the first to propose the notion of “quanta”, which was further developed by 
Einstein. Though Heisenberg and Bohr, the further luminaries of the theory be-
lieved in the innate uncertainty in the behavior of atoms, Einstein never ac-
cepted it. He fundamentally opposed the Copenhagen interpretation of Quan-
tum Mechanics (QM). Thus Einstein-Podolsky-Rosen (EPR) put forward the 
EPR paradox in their paper in 1935 [1], which claimed QM was incomplete, that 
is, it did not provide a complete picture of our physical reality. 

To resolve this, in their paper, Einstein-Podolsky-Rosen argued for the inclu-
sion of a Hidden Variable Theory which would remove all the indeterminism in 
QM. This led Bohr to publish a paper in the same journal, under the same name, 
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where he stated that the criterion of physical reality given by EPR contains an 
essential ambiguity when applied to quantum phenomenon [2]. Hence there 
continued a debate between Einstein and Bohr regarding the fundamental na-
ture of reality. 

In 1964, Bell formulated an inequality [3] which was satisfied by all local rea-
listic theories. Eventually, the quantum violation of Bell’s inequality proved that 
no local realistic hidden variable Theory can exist from which QM can be de-
rived. The value by which QM violates a particular Bell inequality is called the 
Tsirelson bound for that particular Bell Inequality. The Tsirelson bound for 
Bell-CHSH [4] is 2 2 . 

Quantum states that violate Bell’s inequality are all non-local states (entan-
gled). However, this leads to the question: 

Is Bell’s inequality sufficient to show non-locality (or entanglement)? 
It turns out that Bell’s inequality is not sufficient to prove non-locality. The 

states that violate Bell’s inequality are definitely non-local, but there are other 
states that do not violate a particular Bell inequality but are still non-local. For 
example, the mixed entangled state in Equation (5) that we consider as the 
shared resource, does not violate the Bell-CHSH inequality. However, the state is 
still non-local as can be seen from its violation of the I-3322 inequality. This vi-
olation is due to the fact that the I-3322 inequality [5] is inequivalent to any 
CHSH-like inequality and thus may be used to detect such non-separable states 
that are not witnessed by any CHSH-like inequality. 

By constructing a proof-of-principle non-local game using this inequality and 
this particular mixed entangled state, we demonstrate that non-pure but non- 
separable states are also useful as quantum advice (QSWA, defined in Sec. 3.4). 
By contrast, we know that any two-qubit pure entangled state can be used as 
QSWA in some non-local game. This result has interesting implications for 
quantum game theory in general, and quantum cryptographic protocols in par-
ticular. The utility of arbitrary (undistillable) bound entangled states in this con-
text, however, remains an open problem that requires further study. 

2. Game Theory 

Game theory is mathematical modeling of strategic interaction among rational 
beings, used widely in economics [6], political sciences [7], biological phenome-
na [8], as well as logic, computer science and psychology [9]. It is the study of 
human conflict and cooperation, or in other words the study of optimal decision 
making of different players, each with a set of action having particular payoffs. It 
is the payoff which decides the preference of an action over another. Von Neu-
mann and Morgenstern [10] were the pioneers of game theory. 

Games can be cooperative (common interest) or non-cooperative (conflict interest). 
Cooperative games include competition between groups whereas non-cooperative 
game includes analyzing strategies and payoffs of individual players using the 
concept of Nash equilibrium [11]. In a game, if a player chooses a unique action 
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from a set of available action it is called pure strategy, but if a probability distri-
bution over a set of action is available it is called mixed strategy. Nash proved 
that in any game with finite number of action for each player there is always a 
mixed strategy Nash equilibrium. Later the concept of Bayesian games i.e., games 
of incomplete information was introduced [12] and Aumann proved the existence 
of correlated equilibria [13] in these games, as opposed to Nash equilibria. 

3. Quantum Game Theory 
3.1. Non-Locality and Bayesian Game Theory 

Non-locality is one of the most counterintuitive aspects of QM. The principle of 
locality states that an object can be instantaneously affected only by its imme-
diate surroundings and not remote or distant objects. However, quantum theory 
is not consistent with this and is inherently non-local in nature, unlike the rest of 
classical physics. For example, two entangled particles placed far apart, can dis-
play correlations in simultaneous measurements inexplicable in classical physics. 
These correlations can not be a result of a signal transfer as that would imply 
superluminal communication whereas in 1964 Bell [3] showed that they could 
not arise from predetermined strategies either. 

In 2013, Brunner and Linden [14] demonstrated strong links between quan-
tum non-locality and Bayesian game theory. Specifically, they showed that the 
normal form of a Bayesian game is equivalent to a Bell inequality test scenario. 
They showed that when the two players in the game share non-local resources 
such as an entangled pair of quantum particles, they can outperform players us-
ing any sort of classical resources. This can happen, for example, when the 
payoff function of the players corresponds to a Bell inequality, like the CHSH 
inequality [4], as first discussed by Cheon and Iqbal [15] but also when the 
payoff function doesn’t correspond to any Bell inequality. They showed that 
more generally, for Bayesian games, QM provides a clear and indisputable ad-
vantage over all classical resources. 

3.2. Non-Locality in Conflict Interest Games 

Brunner and Linden showed that QM indeed provides an advantage over clas-
sical resources for all Bayesian games, but the examples they provided were all 
common interest games (games where it is beneficial for both the players to 
cooperate rather than oppose each other). In fact, until 2012, all other known 
non-local games, including the GHZ-Mermin game [16], the Bell-CHSH game 
[4], and the hidden matching game [17] [18] were all examples of common in-
terest games (mostly, because the average payoff functions for both Alice and 
Bob were the same). 

In 2012, Zu et al. [19] proposed a zero-sum (conflict) game where a player 
using proper quantum strategies could always win. However, for zero-sum 
games, all strategies are Pareto optimal, meaning, the sum of payoffs is the same 
for all strategies. In 2015, Anna Pappa et al. [20] demonstrated that quantum 
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advice can offer an advantage compared to classical advice even in conflicting 
interest games. They explicitly constructed an incomplete information game 
with conflicting interests, where quantum strategies yielded fair equilibria with 
average payoffs strictly higher than those achievable by classical means, for both 
the players. Hence, Anna Pappa’s work [ibid] was the first where the sum of 
payoffs was being increased above the classical maximum by using quantum 
strategies. 

3.3. Fair and Unfair Strategies 

Classical equilibria can be of two types: 
• Fair equilibria, where the average payoffs for both the players are equal; 
and 
• Unfair equilibria, where the payoffs for the players are unequal. 

Up until 2016, most of the games (both common interest and conflicting in-
terest) proposed, dealt with fair equilibria—that is, they showed that quantum 
fair payoffs surpass classical fair equilibrium payoffs. In 2016, Roy et al. [21] 
showed that quantum strategies can outperform not only fair classical equili-
brium strategies but unfair strategies too. They analytically characterized some 
non-local correlations, that would yield unfair average payoffs strictly higher 
than the classical ones in Anna Pappa’s game. 

3.4. Social Welfare Solutions and Pure Entangled States 

Until now, we’ve been concerned only with equilibria for individual players— 
states where the players can’t increase their payoffs further by unilaterally 
changing their individual strategies. Such equilibria are called correlated equili-
bria (as opposed to Nash equilibria). Psychological factors indicate that some-
times, instead of focusing solely on their individual payoffs, players may also 
consider additional social goals—one such idea is the Social Welfare Solution 
(SWS). In such a strategy, players aim to maximize the sum of their individual 
payoffs. Out of all the possible quantum strategies, the ones that increase the 
sum of the payoffs (above the classical value) are called Quantum Social Welfare 
Solution (QSWS) and the quantum state producing this strategy is called Quan-
tum Social Welfare Advice (QSWA). 

In 2019, Banik et al. [22] showed that any two-qubit pure entangled state can act 
as QSWA for some Bayesian game. Hence given any pure entangled state between 
two qubits, there exists at least one game where this state provides QSWS. 

4. Mixed Entangled States and the I-3322 Inequality 

A mixed entangled state is a convex combination of pure states that cannot be 
produced by local operations and classical communication. The decomposition 
of a mixed entangled state (with density matrix 1 2

k k k
k nk pρ ρ ρ ρ= ⊗ ⊗ ⊗∑   

where 0 1kp< <  are the probabilities and k
iρ  is the k-th pure state density 

matrix for the i-th party) into the corresponding pure states ( k
iρ ) is not unique 
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however, and there is no direct way to extend Banik’s result [22] to create games 
where a mixed entangled state can provide QSWS. 

The above discussion raises the question: 
Can mixed entangled states be used as QSWA for Bayesian games at all? 
We answer this question in the affirmative, by explicitly constructing a proof- 

of-principle Bayesian game, where a mixed entangled state gives higher unfair 
payoffs and higher social payoffs than classical equilibria. 

4.1. The Premise 

We consider two players Alice (A) and Bob (B) playing a Bayesian game while 
being refereed by Charlie. Both Alice and Bob have 3 possible measurement set-
tings ({A1, A2, A3} and {B1, B2, B3}) which result in one of two outcomes {0, 1} 
each. Charlie asks A and B to implement one of these measurements each (i.e. 
Ai, Bj) and they reply with their respective measurement outcomes (x, y). In this 
scenario, we define ( ), | ,i jP x y A B  to be the probability that when A is asked 
Ai and B is asked Bj, they reply with x and y as their measurement outcomes, re-
spectively, with { }, 0,1x y∈ . 

First, we construct the classical game. Here the measurement settings can be 
thought of as questions asked by Charlie to Alice and Bob, and the measurement 
outcomes as their answers to the questions. 

4.2. The Classical Game 
4.2.1. Classical Strategies 
A classical strategy means A and B both locally decide their answers to the ques-
tions. For each question, A or B can answer either 0 or 1. So for the entire set of 
3 questions, there are 23 = 8 different sets of answers. Each such set of answers is 
called a strategy for that particular player. For example, if A decides to answer 0 
to all questions (that is 0 for A1, 0 for A2 and 0 for A3) then her strategy is 000. 

We label these strategies {gi} by converting the binary answer sequence (for 
A1, A2, A3 or B1, B2, B3, in this order) into its decimal equivalent. For example, 
000 becomes g0 and 010 becomes g2 and so on. The ordered pair of Alice and 
Bob’s individual strategies ( A

ig , B
jg ) called a strategy pair for A and B. 

4.2.2. Probability Boxes 
The probability box (also called local box) is a table which shows how the strat-
egy relates the questions to the answers. It shows for each question, with what 
probability a player chooses a particular answer. There is a one-to-one relation 
between the strategy ordered pair ( A

ig , B
jg ) and the probability box. 

Local boxes respect locality, that is the probability that A gives a particular 
answer to some question is independent of what B is asked and what his re-
sponse is. For the sake of convenience, a general classical probability box is 
usually written in the form shown in Table 1. {Cij, Mi, Nj} are all probabilities 
and hence ∈ {0, 1}. 

Row AiBj and column xy represents probability of answering (x, y) for the 
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Table 1. Form of a general probability box. 

 OO O1 1O 11 

A1B1 C11 M1 − C11 N1 − C11 1 − M1 − N1 + C11 

A1B2 C12 M1 − C12 N2 − C12 1 − M1 − N2 + C12 

A1B3 C13 M1 − C13 N3 − C13 1 − M1 − N3 + C13 

A2B1 C21 M2 − C21 N1 − C21 1 − M2 − N1 + C21 

A2B2 C22 M2 − C22 N2 − C22 1 − M2 − N2 + C22 

A2B3 C23 M2 − C23 N3 − C23 1 − M2 − N3 + C23 

A3B1 C31 M3 − C31 N1 − C31 1 − M3 − N1 + C31 

A3B2 C32 M3 − C32 N2 − C32 1 − M3 − N2 + C32 

A3B3 C33 M3 − C33 N3 − C33 1 − M3 − N3 + C33 

 
question AiBj, that is ( ), | ,i jP x y A B . It is easy to see that this is a local box, 
since, for example, the probability that A answers 0 to A1B1 is  

( ) ( )1 1 1 1 100 | 01|P A B P A B M+ =  which is the same as the probability that A 
answers 0 to A1B2 or A1B3, etc. So the probability that A given question A1 an-
swers 0 is the same independent of what question B is asked. 

4.2.3. Utility Boxes 
For a particular game, each player chooses one out of these 8 strategies available 
to them. While the strategy dictates the move or answers that the player gives 
upon being asked the question, the reward or payoff he gets from that answer is 
described by the utility box. Given the strategy pair ( A

ig , B
jg ), each player’s in-

dividual payoffs can be calculated from the utility boxes. 
A’s answers are listed along the columns and B’s along the rows. For a ques-

tion pair (Ai, Bj), the ordered pair (u1, u2) in the row x and column y of the cor-
responding utility box represents the payoffs A and B get, respectively, on ans-
wering with x and y. We designate A’s reward as ( )1 , | ,A i ju u x y A B=  and B’s 
as ( )2 , | ,B i ju u x y A B= . The utility boxes we use are listed below. 

For questions A1B1, A1B2, A1B3 

0 1
2 10 , 1 , 0
3 3

1 11 0, 0,
3 3

−  

For questions A2B1 and A3B2  

0 1
1 10 , 0 , 0
2 2
1 11 , 1 , 0
2 2

− −

 

For questions A2B3 and A3B2  

0 1
2 1 1 20 , ,
3 3 3 3
1 2 1 21 , ,
3 3 3 3

− −  
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For questions A2B2    

0 1
1 2 1 20 , ,
3 3 3 3
2 1 1 21 , ,
3 3 3 3

−

− −

 

For questions A3B3   

0 1
1 10 0, 0 ,
3 3

1 11 , 0, 0
3 3

−

−

 

4.2.4. Classical Payoffs 
For each strategy pair ( A

ig , B
ig ) that Alice and Bob choose, they get a payoff, 

which can be calculated by using the strategy (probability box) to find the 
players answer and then using the utility box to find the corresponding payoff. 
The expected payoffs (FA, FB) are then calculated by averaging over all possible 
questions as follows: 

( ) ( ) ( ), , , , , | , , , ,A i j A i jx y i jF p i j P x y A B u x y A B=∑  
( ) ( ) ( ), , , , , | , , , ,B i j B i jx y i jF p i j P x y A B u x y A B=∑  

where, ( ),p i j  is the probability that the question pair (Ai, Bj) is asked. In our 
game, Charlie asks Alice and Bob each question pair with equal probability. 

Then, ( ) ( )2

1, ,
N

p i j i j= ∀  where N is the number of questions. Here, there are 

3 questions for each party so ( ) ( )1
9

, ,p i j i j= ∀ . 

The classical payoffs, using the probability box for ( ), | ,i jP x y A B  and the 
utility boxes for uA and uB, are then: 

11 12 13 21 31 23 32 22

3 3
1 1 2

11 12 13 21 31 23 32 22

3 3
1 1 2

1
9

– 2 2
3 3

1
9

– 2 3
3 3

A

B

F C C C C C C C C

M N
M N N

F C C C C C C C C

M N
M N N


= + + + + − − +


− − − + + 



= + + + + − − +


− − + − + 


          (1) 

The Cij, Mi, Nj values (∈{0, 1} for classical strategies) are completely deter-
mined by the strategy pair ( A

ig , B
jg ). Moreover, since the expressions for FA 

and FB are different, the payoffs are in general unfair. 

4.2.5. Classical Equilibria 
Since each of the players has a choice of 8 different strategies ( 0 1 7, , ,g g g ), the 
final payoff box is an 8 × 8 table (see Table 2) of ordered pairs, with the first en-
try being the payoff for Alice and the second one being the payoff for Bob. A  
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Table 2. Payoff table. 

 g0 g1 g2 g3 g4 g5 g6 g7 

g0 6, 9 5, 10 6, 9 5, 10 3, 6 2, 7 3, 6 2, 7 

g1 7, 8 6, 9 4, 5 3, 6 7, 8 6, 9 4, 5 3, 6 

g2 3, 6 −1, 4 6, 9 2, 7 3, 6 −1, 4 6, 9 2, 7 

g3 4, 5 0, 3 4, 5 0, 3 7, 8 3, 6 7, 8 3, 6 

g4 0, 3 2, 7 3, 6 5, 10 0, 3 2, 7 3, 6 5, 10 

g5 1, 2 3, 6 1, 2 3, 6 4, 5 6, 9 4, 5 6, 9 

g6 −3, 0 −4, 1 3, 6 2, 7 0, 3 −1, 4 6, 9 5, 10 

g7 −2, −1 −3, 0 1, 2 0, 3 4, 5 3, 6 7, 8 6, 9 

 

factor of 1
27

 has been ignored in Table 2, to keep things cleaner. 

The equilibria (all are biased/unfair) have been indicated in bold font. These 

are the stable states for this game. Also, social welfare solution payoff is 15
27

. 

Our next task is to check whether a quantum strategy can increase payoffs of the 
individual parties above the classical values. 

4.3. Quantum Game 

Now, we devise the means to play this game using a quantum state. In this 
scenario, the two players share a Mixed Entangled State. They are asked ques-
tions A1, A2, A3 and B1, B2, B3 respectively, and they get their answer by per-
forming suitable measurements on the shared state. The objective is to generate 
a payoff for both players that exceed the classical equilibrium payoffs. 

We do this by implanting a quantum inequality in the payoff function so that 
quantum processes can exceed the upper bound for classical processes and hence 
produce payoffs higher than all classical payoffs. 

4.3.1. The Inequality 
We choose the I-3322 inequality. This inequality was discovered in 2003 by Col-
lins and Gisin [5], but little work was done on it, other than finding it’s maximal 
violation value using infinite dimensional quantum systems in 2010 [23]. 

The important thing about this inequality is that it is inequivalent to the Bell- 
CHSH inequality. This means that there are states that don’t violate Bell-CHSH 
inequality but violate this. 

The inequality is usually represented in the following way: 
1 0 0

2 1 1 1
1 1 1 1

0 1 1 0

−
−
− −

−  
where the numbers correspond to the coefficients of: 
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( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

P A P A P A
P B P A B P A B P A B
P B P A B P A B P A B
P B P A B P A B P A B  

in the expression. Here, for succinctness, we write P (00|AiBj) as P (AiBj) and P 
(0|Ai) as P (Ai). 

Rewriting the inequality in our chosen nomenclature, we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1 2 1 2

1 2 1 3 1 3 2 1

2 1 2 2 2 2 2 3

3 1 3 1 3 2 3 2

1 2 1 101| 10 | 00 | 01|
3 3 3 3
1 2 1 110 | 00 | 01| 00 |
3 3 3 3
2 2 110 | 00 | 10 | 00 |
3 3 3
1 2 4 100 | 10 | 00 | 10 |
3 3 3 3

S P A B P A B P A B P A B

P A B P A B P A B P A B

P A B P A B P A B P A B

P A B P A B P A B P A B

= − − + −

− + − +

− + − −

+ − − −

  (2) 

After plugging in the variables from the probability box, Equation (2) be-
comes 

11 12 13 21 22 23 31 32 1 1 2– 2S C C C C C C C C M N N= + + + + − + − − − .     (3) 

4.3.2. Maximum Violation of the Inequality 
For all classical systems, I-3322 satisfies S ≤ 0. For quantum mechanical systems 
however, a numerical optimization suggests that the maximum value is 0.25 [5]. 
The same is suggested by another approach using infinite dimensional quantum 
systems [23]. 

The state that produces this maximum value is the maximally entangled Bell 
state ψ  

( )1 01 10
2

ψ = −                       (4) 

Choosing appropriate measurements for A and B, gives the value of the in-
equality 

0.25Sψ = . 

Also, since ( )1 2 5
9A BF F S+ = +  and this state gives the maximum possible 

value of S, this state is automatically the SWS for this game. 
However, since this inequality is in-equivalent to the Bell-CHSH inequality, 

there exist states that violate this inequality but not the Bell-CHSH inequality. 
We choose one such mixed entangled state and corresponding measurements, 
with the aim to increase the payoffs beyond classical limits. 

4.3.3. The Quantum State 
The state shared between the A and B is the following mixed entangled state: 

0.85 01 010.15ABρ Φ Φ= +  
where 
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( )1 2 00 11
5

Φ = +                      (5) 

The density matrix for the state ρAB is then: 

0.68 0 0 0.34
0 0.15 0 0
0 0 0 0

0.34 0 0 0.17

ABρ

 
 
 =
 
 
   

4.3.4. The Measurements 
The 6 questions in the classical game have their corresponding measurements 
for the quantum version. These are all projective measurements, specified by 
their polar and azimuthal angles (θ, φ). The probabilities for these measure-
ments are calculated by applying the density matrix of the proper eigenvalue of 
the measurement operator on the density matrix of the quantum state and then 
taking its trace. 

( ) ( )1 2 3,0 , ,0 , ,0
2

A A Aη η π ≡ ≡ ≡ − 
 

−
 

( ) ( )1 2 3,0 , ,0 , ,0
2

B B Bχ χ π ≡ ≡ ≡ − 
 

−
 

Such that cos 7
8

η =  and cos 2
3

χ = . 

Applying the measurements, with the appropriate eigenvalues, we find out all 
the elements of the probability box as follows: 

1 2 30.808687, 0.808687, 0.5M M M= = =  

1 2 30.646969, 0.646969, 0.5N N N= = =  

11 12 13

21 22 23

31 32 33

0.576785, 0.646188, 0.464447,
0.646188, 0.576785, 0.344239,
0.421634, 0.225335, 0.08

C C C
C C C
C C C

= = =

= = =

= = =  

4.3.5. Quantum Payoffs 
The quantum payoffs are then calculated using the same formulae as those for 
classical payoffs. Putting the values in Equation (1), we get: 

6.03858
27AF =  and 9.03858

27BF =                 (6) 

The quantum payoff values from Equation (6), that is ( 6.03858
27

, 9.03858
27

) is 

greater than the classical equilibrium value ( 6
27

, 9
27

). 

Also, the quantum social welfare value 15.0772
27

 exceeds that for all classical 

equilibria ( 15
27

). 
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5. Discussions and Conclusions 

We have, hence, constructed a game where a mixed entangled state provides 
higher individual payoffs than the classical equilibria. The social welfare payoff is 
also increased beyond the upper limit for the classical scenario. Note that the 
quantum strategy that we chose generated higher payoffs than one particular 
classical equilibrium but by modifying the utility boxes, it is possible to domi-
nate any particular classical equilibrium without disrupting the social welfare 
value, thus preserving the QSWA. It is also possible to increase the social welfare  

value to its upper limit (strict inequality still holds) for quantum systems, 16.5
27

  

by modifying the coefficients of the mixed entangled state. Finally, we point out 
that given this particular quantum advice from the referee, the measurement set-
tings chosen maximize the Social Welfare Value and thus is a restricted SWS. 

However it still remains an open question whether similar to pure entangled 
states, every mixed entangled state can be used as QSWA for some Bayesian 
game. 
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Abstract 
In this study, our goal is to obtain the entanglement dynamics of trapped 
three-level ion interaction two laser beams in beyond Lamb-Dicke parame-
ters. Three values of LDP, 0.09η = , 0.2η =  and 0.3η =  are given. We 
used the concurrence and the negativity to measure the amount of quantum 
entanglement created in the system. The interacting trapped ion led to the 
formation of phonons as a result of the coupling. In two quantum systems 
(ion-phonons), analytical formulas describing both these measurements are 
constructed. These formulas and probability coefficients include first order 
terms of final state vector. We report that long survival time of entanglement 
can be provided with two quantum measures. Negativity and concurrence 
maximum values are obtained N = 0.553 and for LDP = 0.3. As a similar, the 
other two values of LDP are determined and taken into account throughout 
this paper. For a more detailed understanding of entanglement measurement 
results, “contour plot” was preferred in Mathematica 8. 
 

Keywords 
Entangled State, Trapped Three-Level Ion, Lamb-Dick Parameter, Rabi  
Frequency, Quantum Measures 

 

1. Introduction 

Quantum states as usual are evident in itself with laws in quantum information 
theory [1]. Entangled states are the proper kind of quantum correlation between 
two quantum system. Entanglement is an attractive physical phenomenon in 
which the overlap of two separable states is can be entangled state with photons. 
The widely read Einstein, Podolsky and Rosen (EPR) paper, contrary to what is 
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known, has actually been published to criticize quantum mechanical laws [2]. In 
the same year, N. Bohr published a paper [3] with alike this EPR paper. The 
prominent article presented the entanglement with conversations on quantum 
theory. For the quantum theory, 1935 was an interesting year. In Erwin Schrödin-
ger’s article in Naturwissenschaften introducing “Verschränkung”, where he 
advocated quantum theory [4]. 

Quantum entanglement has dramatically increased during the last two dec-
ades due to the emerging field of quantum information theory [5]. Entanglement 
is one of important features of quantum theory with no classical analog and 
quantum computing. Quantum measurement is discussed a local physical 
process [6]. Nonclassical nature of quantum entanglement has been long recog-
nized [2] [7]. There has been an extensive research in the field of quantum 
communication which yields a variety of methods to distribute bipartite entan-
glement. It has reported an applying entanglement created the exchange interac-
tion for many quantum information processing [8]. The maximally entangled 
states can be modelled physically by the states trapped atomic ions [9] [10] [11]. 
Trapped ions are between the most attractive implementations of quantum bits 
for applications in quantum information processing, due to their long coherence 
times [12]. Ions confined in a linear radio-frequency (Paul) trap are cooled to 
form a spatial array. Hilbert space of the composite quantum system considered 
in this paper can be written as 

pION dddC C C= ⊗                        (1) 

where 3IONd =  and 4pd =  represent the dimensions at three-level ion and 
photons, respectively. We characterize quantum correlations using concurrence 
(C) [13], negativity (N) [14], and quantum entropy [11] [15] [16] for time de-
pendent interaction of a three-level trapped ion with two laser beams. Trapped 
ions systems are important for the entangled states Works. Quantum entangle-
ment measurements are used to determine any known state is separable or en-
tangled. Therefore, C and N are offered for pure states [17] [18]. N and C are an 
entanglement measure that a useful characterization in quantum information, 
commonly in ionic system. Product base and entangled base are shown genera-
lization of Schmidt coefficients. 

The deep Lamb-Dicke regime (LDR) described with LDP of small, 1η  . LD 
limit is not accordingly established with common experiments [19]. Such a way 
experiments act in named as beyond LDR here 1η < , for example 0.2η =  
[20], such as this work. Entanglement of qutrit states [10] are testified by a 
quantum system for lower order terms of density matrix. 

We report analytical results of quantum entanglement for system via N and C 
for the LDR and 12-Dimensional (D) of Hilbert space. We focus the quantum 
correllations in N and C [10] [11] [16] with respect to the total and the reduced 
density matrix. With respect to Ref. [9], we illustrated these evolutions of N for 
trapped ion-phonons system. 

The rest of the study is coordinated as follows. Section 2 discusses growth for 
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two unentangled qubits and analitical solutions in the quantum system. Section 
3 describes how to obtain highly N and C of two quantum systems by the LDR. 
The results and comments are given in Section 4. 

2. A Quantum Solution of Ion-Phonons System and Its Theory 

For section 2, flow chart is: 
• In this section, the Hamiltonian and its dynamics are given between Equa-

tions (1)-(5). 
• In Λ configuration, U transformation matrix processes evolved in Equations 

(6)-(11). 
• The initial state of the system has written by Equations (12)-(22). 
• Equation (3) is the final state of the ion-phonons system. 
• In Equations (24)-(32), the probability applitudes are given. 

We propose a trapped atomic ion interacting with two laser beams. In this 
system, the Hilbert space dimension is 12. The quantum dynamics of trapped 
ion-phonons system is emerged by previous investigation [9] [21] [22]. The 
Hamiltonian of two quantum systems is 1 2total IonH H H H= + + , and IonH  in-
dicates Hamiltonian of system ( 1= ): 

2
2 21 .

2 2
x

Ion g r e Ion
p

H g g r r e e m x
m

ω ω ω υ= + + + +         (2) 

The e-level energy is 0eω = , r-level is rω , and g-level is gω . The reason for 

eω  to be zero is the following: As can be seen in Equation (12), the excited level 
e  is removed in the first quantum state. Here 1H  and 2H  are Hamilto-

nians of these interactions for excited-ground and excited-raman: 

( )1
1 . .

2
Ioni k x t

e gH H e e g h cω−
−

Ω
= = +                 (3) 

( )2
2 . .

2
Ioni k x t

e rH H e e r h cω− −
−

Ω
= = +                (4) 

where 1= , xp  and Ionx  are momentum and the x-component of position 
of ion center of mass movement. The movement of ion in the system is along the 
x-axis (one-D). Atomic levels are shown: e →  trapped ion excited level, 
r →  raman level, and g →  ground level. Trapped ionmass center is given  

with standard harmonic-oscillator of ionH  in ( )1
2xp i m a aυ += −  and  

( )1
2Ionx a a

mυ
+= + . Here, a is annihilation operator and a+  creation opera-

tor for two laser beams. Laser frequencies are 1ω  and 2ω , and Rabi frequency 
is Ω . Trapped ion-phonons total Hamiltonian is written ( 1= ): 

( ) ( ) . .,
2 2

i a a i a a
H e e g a a e e e e r h c

η η
υ δ

+ ++ − ++Ω Ω = + − + + 
 

    (5) 

here, LDP is 2k mη υ= , υ  is trap frequency of harmonic, and delta function 
is 2δ υη= . We have taken the base vectors as follow: 
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1 0 0
0 , 1 , 0
0 0 1

e r g
     
     = = =     
     
     

                  (6) 

In this study, important transformed Hamiltonian is H U HU+= . Hamilto-
nian in Equation (5) is found after transmission action. Λ  model is given by a 
cascade Ξ  scheme in two phonons. Ion-two phonons system was covered by 
unitary transformation. Matrix of transformation, namely U is performed [21], 

[ ] [ ] [ ]
[ ] [ ] [ ]

0 2 2
1 2 .
2

2

U B B B

B B B

η η η

η η η

 
 
 = − −
 
 − − − − 

               (7) 

Here displacement operators of Glauber, ( ) ( )( )i a a
B e

η
η

++
= , ( ) ( )( )i a a

B e
η

η
+− +

− =  

are achieved. H  is performed 0H H V= +   , here 

( ) 2
0H r r g g a aυ υη υ += − + +                (8) 

( )2 . . .
2

V i a e r a e g h cδη + += − − +               (9) 

In our system, the LDR is performed between the values 0.09 and 0.3 of LDP. 
By using unitary transformation method [21], an initial state ( )0ψ  is written 
in following form 

( ) ( ) ( )0
0 0 ,itHt U Ue K t Uψ ψ−+ +=

                 (10) 

where ( )K t  is typical vector for time-independent Hamiltonian; ( )0itHe − 

 is the 
exponencial function, and ( )0 expU i t e eω= −  is the transformation matrix 
[21]. Trapped ion two phonon states system acts for Λ  scheme. The propaga-
tor is performed 

( )
( )

2 2

2 2

1 1 ,
2

1

Cos t Sa Sa
K t aS aGa aGa

a S a Ga a Ga

ε ε
ε ε ε
ε ε ε

+

+

+ + + +

 Λ − −
 

= + 
 + 

          (11) 

here 2ε υη= , 2 1a aε +Λ = + , 
( )

2

cos t
G

Λ
=

Λ
 and ( )sin t

S
Λ

=
Λ

. We take 

610 Hzυ =  and 145 10 Hzegω = ×  for frequencies. In the system, we take 1a =  

and 0.005b = . Normalization condition of ion is certainly 
2 21 1 1

2 2
   

+ − =   
   

, 

and normalization condition of two phonons is 2 2 2 51 0.005 1a b+ = + ≅ , 
approximately. So, the earliest of trapped ion-phonon states system is given as 

( ) ( )10 0 1 ,
2

g r a bψ =  −  ⊗ +                (12) 

here, the phonon levels are ( )0 1,0= , and ( )1 0,1= . a and b are the proba-
bility amplitudes of the first and the second phonon. New equation for ion-two 
phonons is performed as 
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( ) ( )
0

10 .
2 n

n
g r F b nψ

∞

=

 =  −  ⊗    
∑              (13) 

It is used by 0η  and 1η  are zero and first-order indication of LDP, respec-
tively. Beside, both of them, 2η  and 3η  are ignored. Ion-phonons system is 
evolved to an initial unentangled state, 

( ) ( ) ( ) ( ),
,

0 0 , .m
m

K t U N t mσ
σ

ψ ψ ψ σ+= = = ∑          (14) 

In Equation (12), our system is produced in respect of ( ),
,

,m
m

N t mσ
σ

σ∑ . As a 
result of advanced mathematical transformations between Equation (10)-(14), 
12 of significiant coefficients are 

( ) [ ]0
1 1cos sin exp
2 22e

iscN t t t tiη η
    

= + −            
         (15) 

( ) [ ]1
3cos exp
2escN t b t ti η

 
= −  

 
                (16) 

( ) [ ]2
5sin exp 2
25e

iscN t t tiη η
 

= − −  
 

              (17) 

( ) [ ]0
3sin exp
23r

bscN t t ti η
 

= −  
 

               (18) 

( ) [ ]1
3 2 5cos exp 2
2 5 22r

iscN t t tiη η
  

= + −      
           (19) 

( ) [ ]1
1 1sin cos exp
2 22g

iscN t t t tiη η
    

= − −            
         (20) 

( ) [ ]2
2 3sin exp
3 2gscN t b t ti η

 
= −  

 
              (21) 

( ) [ ]3
3 51 cos exp 2

5 2gscN t i t tiη η
  

= − − −      
           (22) 

and four of significiant coefficients are zero:  
( ) ( ) ( ) ( )3 2 3 0 0e r r gscN t scN t scN t scN t= = = = . For Equations from (15) to (22), 

index σ  is positioned in the states of atomic ( ), ,g r e , index m is positioned 
by vibrational numbers ( )0,1,2,3 . Vibrational phonon states are located by a 
Hilbert 4D-space Hphonons and subsystem of trapped ion-phonons is located in a 
Hilbert 3D-space HIon. Thus, two quantum systems are in Hilbert 12D-space. Here, 
t is dimensionless and scaled with υη . What does υη  dimensionless mean? 
Accordingly in Figure 1, time 1 equals to 5 ms (mikrosecond). The mathematical  

calculation is as follows; for 0.2η = , 60.2 10υη = × , 61 5 10 5 ms
υη

−= × = . The 

state vector is 

( ) ( ) ( ) ( )( )
3

0
, , , .final m m m

m
t A t e m B t r m C t g mψ

=

= + +∑       (23) 
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Figure 1. The time dependence of Schmidt coefficients, 1 2,µ µ  and 3µ  for three LDP. 

Upper, middle and lower curves are for three LDP. The third SC, 3µ  is green and small. 
Therefore, there are 9 functions in the figure. t is dimensionless scaled by υη . The earli-

est state of trapped ion and two phonons system is ( ) ( ) ( )10 0 1
2

g r a bψ = − ⊗ −  

for 1a = , 0.005b = . These coupling parameters are written for 1 MHzυ =  and  
145 10 Hzegω = × . 

 
The coefficients ( ) ( ),m mA t B t  and ( )mC t  are shown by state vector ampli-

tudes of Λ  and Ξ  models. 12 of the probability amplitudes of the vector are 

( ) ( ) ( ) ( )1 , 0,1,2,3 ,
2

i t
m rm gmA t e N t N t mω υη−  = + =          (24) 

( ) ( ) ( ) ( )0 0 0 1
1 1

2 22 e r g
iB t N t N t N tη

= − + −             (25) 

( ) ( ) ( ) ( ) ( )1 0 1 1 1
1 1 1
2 2 22 e r r g

iB t N t N t N t N tη
= − − + −          (26) 

( ) ( ) ( ) ( )2 2 1 2
1 1

22 2e g g
iB t N t N t N tη

= − − −             (27) 

( ) ( )3 3
1
2 gB t N t= −                       (28) 

( ) ( ) ( ) ( )0 0 0 1
1 1

2 22 e r g
iC t N t N t N tη

= + +              (29) 

( ) ( ) ( ) ( ) ( )1 0 1 1 1
1 1 1
2 2 22 e r r g

iC t N t N t N t N tη
= − + + −          (30) 

( ) ( ) ( ) ( )2 2 1 2
1 1

22 2e g g
iC t N t N t N tη

= + −             (31) 

( ) ( )3 3
1
2 gC t N t= −                       (32) 

here egω  is frequency e-g levels and 2
egω ω η υ= −  for Equation (24). i is 
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complex number, and i is ion index. 
We plotted N and C of two quantum systems as ( )l l l l′ ′⊗ ≤  in Figures 2-7  

 

 
Figure 2. The time dependence of negativity, for three 0.09η = , 0.2η =  and 0.3η = . 
t is dimensionless and scaled with υη , other assumptions parameters are the same as 
Figure 1 in the system. 

 

 
Figure 3. The time dependence of concurrence, for three η . Other assumptions para-
meters are the same as Figure 1 in the system. 

 

 
Figure 4. The LDP evolution of N is given t = 10.16 s. Other assumptions parameters are 
the same as Figure 1 in the system. 

 

 
Figure 5. The LDP evolution of C is given t = 10.16 s. Other assumptions parameters are 
the same as Figure 1 in the system. 
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and Table 1. We found that final state vector ( )final tψ  is superposition of 
twelve function in Equations (24)-(32). 

3. Two Measurements, Beyond LDR and Discussion 

Hilbert spaces are 4l =  for two-phonons, 3l′ =  for ion. It is used a simpli-
fied density matrix ( )ion phonon ion pTrρ ρ −=  by Equation (33). Fully density ma-
trix ion pρ −  is performed with 12 12×  matrix with respect to the bases ,i p . 
With tracing, 3 3× -simplified density matrix, ionρ  is performed 

( )ion p i p

Tr e e Tr e r Tr e g
Tr Tr r e Tr r r Tr r g

Tr g e Tr g r Tr g g
ρ ρ −

 
 = =  
 
 

         (33) 

where diagonal terms, e e , r r  and g g  are a 4 4× -matrix. For help 
to Equation (32), fully density matrix of two quantum system is written as: 

( )ion phonon Z Zρ − =                      (34) 

where Z Z  is a 12 12× -square matrix and Hilbert 12-space in qauntum 
mechanic. The initial state in second section derive in Hilbert 12-space  

i pH H H= ⊗ . In state vector ( )tψ , fully density matrix of system is given by 
( ) ( )ion phonon t t Z Zρ ψ ψ− = =  in Equation (33). Negativity is first reported 

in literature as a quantum entanglement measurement in [20]. 
In this part, we examine if the state is entangled how much quantum entan-

glement it involves. They are analyzed quantum correlations with concurrence 
and negativity [17] [23]. The quantum state ψ  of a system such as X and Y, 
with dimensions k and k ′ , can be given 

j j j
j

x yψ µ= ∑                      (35) 

where ( ), 1, ,j j kµ =   are Schmidt coefficients abbreviated as SCs, jx  and 

jy  are orthogonal basis in XH  and YH  [23]. We have given by Schmidt 
form for wave function. 

Therefore, three SCs are the three eigenvalues of the matrix in Equation (33), 

jµ  [23]. Their time dependence is illustrated in Figure 1. Upper two curves are 

1µ  and 2µ , while the lower curve, 3µ  is the third SCs for 0.09η = , 0.2η =  
and 0.3η = . There are two ways to quantify the quantum entanglement. We 
work the entanglement of the solutions of our system by calculating negativity 
and concurrence. 

Negativity of any quantum system is written as [23] 

( ) 2
1 i j

i j
N

k
ψ µ µ

<

 
=  −  

∑                   (36) 

( ) ( )1 2 1 3 2 3
2

3 1
N ψ µ µ µ µ µ µ= + +

−
          (37) 

Concurrence is developed as a quantum entanglement measurement for bi-
partite system of two qubits [13] [24]. The concurrence of bipartite system is 
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given by [13] [24] 

( ) 2 i j
i j

C ψ µ µ
<

 
=  

 
∑                     (38) 

( ) ( )1 2 1 3 2 32C ψ µ µ µ µ µ µ= + +               (39) 

As shown in Figures 2-5, LDPs are taken between 0.09 and 0.30. It is unders-
tood that taking these adjustable values of LDP is an appropriate choice, because 
the N and C values have seen with the maximums. This leads to higher dimen-
sional entanglement with η . In Figure 2 & Figure 3, time evolution of N and C 
is illustrated by 0.09η = , 0.2η =  and 0.3η = . We have obtained high 
amount of entanglement for three values of LDP. 

We reported entanglement via negativity in the LDR discretely from other 
papers [9] [17]. The values of N and C in one ideal times are shown with Table 
1. In Figures 2-7, a maximum value of N is reported 0.553N =  for 0.3η =  
in Table 1. A maximum value of C is reported 1.000C =  for 0.3η =  in Table 
1. The three values of η  are determined and taken into account throughout 
this study. In literature, we did not see that it has been worked with the value 
0.09. We explain quantum dynamics of N and C according to time in Figures 
2-7. The results of our former studies [9] [10] [17] [18] are in similar in Figure 3 
& Figure 4. N, C and E, which are the other advanced measurements defining 
entanglement motion, have been worked out in literature [7] [11] [18] [19] [20]. 

 

 
Figure 6. Contour plot of negativity for scaled time change of LDP to 0.3 from 0.09. Col-
or scale from black to orange equals to 0.0 - 1.0. Other assumptions parameters are the 
same as Figure 1 in the system. 
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Figure 7. Contour plot of concurrence for scaled time change of LDP to 0.3 from 0.09. 
Color scale from black to orange equals to 0.0 - 1.0. Other assumptions parameters are 
the same as Figure 1 in the system. 

 
Table 1. Six values of negativity and concurrence within one ideal times, t = 10.16 ms or t 
= 10.16 scaled time, with respect to Figure 2 and Figure 3. 

 0.09η =  0.2η =  0.3η =  

Negativity, t = 10.16 ms, Figure 2 0.493 0.512 0.553 

Concurrence, t = 10.16 ms, Figure 3 0.978 0.992 1.000 

 
We show the quantum correlations with N and Cfor coupling parameters. We 

found seperate dynamic features in N in reaction to increasing η . In Figure 2, 
N oscillates between the values of minimum 0N =  and highest rate 0.553N =  
at 10.16 mst =  for 0.3η = . The variations between the maximum and the 
minimum values of negativity are regular with time. In Figure 3, C oscillates 
between the values of minimum 0C =  and highest rate 1.000C =  at 

10.16 mst =  for 0.3η = . The presence of long lived entanglement in trapped 
ion and phonons system has been recognized by Figure 6 & Figure 7. We ex-
plore with N and C that measurement degrees have a flash crop entangled state 
up in parallel to raising η  and this is in comparison to the previous observa-
tions [14] [15] [16] [17] [25]. Similar quantum correlations exist between the N 
and the C: see Figure 6 & Figure 7. The color domain is from White to orange. 
The lower N and C obtain the darker colored domains. However, the system is 
disentangled some scaled times in Figure 6 & Figure 7. The existence of quan-
tum entanglement is shown by entropy calculations in subatomic particles such 
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as electron, proton and quark [26]. It is investigated the dynamical and statio-
nary properties of the entanglement entropy after a quench from initial states 
[27]. The entanglament between measured qubit and memory qubit has been 
inspected via von Neumann entropy [28]. Quantum entanglement has demon-
strated with certain statement in time-dependent fifteen-dimensional Hilbert 
space [29]. Quantum linearity is theoretically characterized by the second order 
terms of the LDP [30]. 

4. Conclusions 

We concentrated on quantum entanglement of two quantum systems in the 
Hilbert 12-space. We investigate the negativity through the definition of va-
riance LDR. Some physical correlations have been that we measure N and C. 
Our analysis has discovered maximally entangled state. The family is equal to a 
group of quantum measurements. To more detailed understanding of entangle-
ment measurement results N and C, “contour plot” was preferred in Mathema-
tica 8 in Figure 6 & Figure 7. 

These plots are obtained by N and C with quantum corrections. Entanglement 
is compared and is analyzed by two quantum measures which are N and C. 
Quantum correlations and interactions between ion and two phonons are inves-
tigated. Because, the discussion on physical properties of trapped ion-two pho-
nos interaction is an important subject for quantum information. 

The main contribution and novelty of my work has been explained with con-
cluding remarks shown below: 
• In our system, quantum entanglement is shown to have the capacity and de-

gree of N and C are N = 0.553, C = 1.000; 
• N bases on three different LDPs; 
• This extracts that such entanglement is connected with η . We achieved 

long-lived entanglement in LDR; 
• Maximally entangled states as presented by means of ion-two phonons sys-

tem can be important for researchers with trapped ions; 
• Extending the life time can be succeeded by using Rabi frequencies and η . 

This study and similar studies based on quantum measurement will lead to a 
better understanding of quantum physics and quantum entanglement. 
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Abstract 
Emerging infectious viral diseases are a major threat to humankind on earth, 
containing emerging and re-emerging pathogenic physiognomies has raised 
great public health concern. This study aimed at investigating the global pre-
valence, biological and clinical characteristics of novel Corona-virus, Wuhan 
China (2019-nCoV), Severe Acute Respiratory Syndrome Corona-virus (SARS- 
CoV), and Middle East Respiratory Syndrome Corona-virus (MERS-CoV) 
infection outbreaks [1]. Currently, novel Corona-virus disease COVID-2019 
is already pandemic and causing havoc throughout the world. Scientific 
community is still struggling to come out with concrete therapeutic measures 
against this disease and development of its vaccine is far off from sight in the 
immediate near future. However, humanity will be put to such pressures very 
often in the near future and given the present circumstances, what we can 
expect from the scientific world now? I think QIT (Quantum Information 
Theory) has an answer to this question. One of the very basic mechanisms 
that every infectious virus follows to infect is the entry of the virus through 
cell surface receptors, engulfing, un-coating of viral genome and its transcrip-
tion to form multiple copies and translation to form viral proteins and coat-
ing of viral genome to form multiple copies of the viral particles and then of 
course the cell bursting to infect other cells. This very basic mechanism does 
not occur randomly but through a regulated and more dynamic process 
which we may call coding and decoding of information through reduction in 
error or noise. 
 

Keywords 
COVID-19, Corona-Virus, QIT, SARS-CoV, Iobits, Neobits 

 

1. Introduction 

Lots of discoveries have taken place in scientific world and among them, the vi-
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rus is one of the significant ones however it appears the smallest. A virus, ac-
cording to Wikipedia Encyclopedia, is a submicroscopic infectious agent that 
replicates only inside the living cells of an organism. Viruses can infect all types 
of life forms, from animals and plants to microorganisms, including bacteria and 
archaea. Now the question is even in the least possible form, its work is beyond 
the imagination. It is hard to understand the nature of virus, its configuration 
and the cause of manifestation is an ordeal and even dreadful. Although, bacteria 
are the tiniest living organisms found yet but this virus is even tinier and also 
found in bacteria’s [2]. Now the question is even in the tiniest form, how does it 
exist and what is the mode of manifestation of this virus? Even though there are 
different types of viruses in the world, this particular one has to be watched very 
keenly and to study its structure we need to go through microscopic study for 
which we use electron microscope or electron X-ray techniques and hence, we 
learn that this living organism works exactly like the others i.e. its structure is 
like a bacteria composing protein and lipid membranes and DNA/RNA which 
are also found in different shapes and sizes. Now our point is what makes this 
organism the tiniest [3]? 

Scientifically, it has been proven that it contains RNA which works like a code 
and acts as a source in its formation. In other words, it basically forms from the 
RNA. But the point is how the RNA actually initiates when later acquires mass 
and takes the shape of virus [4]. After that, this virus works in two ways initially, 
in recessive mode and next, in dominant mode i.e. this virus keeps on forming 
an unmatched track and at the same time does its work. The other virus which is 
primarily in the recessive mode but also looks for the host and then works as the 
dominant factor i.e. it looks for the target to complete its task [5]. But the ques-
tion is that, how does RNA which is the basic source of its creation, build? To 
understand this, one has to take aid of quantum information theory that helps in 
understanding the internal information of the RNA, its configuration and its 
mode of manifestation. The internal information of the RNA is extremely dif-
ferent from the laws which are identified and acknowledged, it has its own laws 
and mechanisms that play a key role in acquiring mass wherein super energy 
mechanism/super time mechanism and super dimensional mechanism are 
amazing. After interpreting these three laws, let’s know how super energy that is 
in the non-baryonic form with the help of super time and super dimensional 
mechanism converts into baryonic form? Until, these three laws aren’t cognized, 
formation of this virus won’t be grasped. 

2. Quantum Information Theory 

It is such information which plays an important role in formation of matter that 
actually is an energy and later with other formulas like super energy, super time 
and super dimension concepts, changes from non-existing form/non-baryonic 
form to existing form [6]. This information is actually in hidden geometrical 
form which we need to understand e.g. it is necessary that every matter contains 
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some information it is because of this information, the matter exists. We have 
also framed a mathematical equation for this which actually works same as the 
mechanism found inside the matter at micro level and it has the same functions 
like the hereditary information has, at the micro level. Since, it is in non-existing 
form but on quantum level, we can form a quantum information equation that 
helps in the formation of hereditary information. As we know, hereditary infor-
mation contains codes which internally are of different charges or have a dual 
nature. They work as small bits which are linked to each other in order to make 
a larger bit which has been named as cubit or we can also claim that information 
is formed on the basis of the smaller bits. These bits of different nature combine 
to form a sort of pattern i.e. the equation that we call as Nano-bit and Iobit 
means iobit-1 and iobit-2 forms Nano-bit and these Nano-bits later form the 
precursor of positive and negative charge to make unique cubit. Similarly the 
other iobits also form different types of Nano-bits and later these Nano-bits 
combine to form a cubit which acquires a unique charge and this charge later 
can be differentiated into plus and minus. Now the question is what this plus 
and minus actually is? This is also a different mechanism which we can under-
stand from super energy concept, super time and super dimension concept and 
it works like lock and key methodology and it later interacts with the bit of a 
particular configuration and this method continues till the matter is formed to 
which we assign different names e.g. plus means positive charge and minus 
means negative charge, sometime it may also have dual nature. This can be un-
derstood by a configuration or geometrical structural information. 

3. QIT and Its Role 

Actually, the quantum information which is present in it also carries the shape of 
its manifestation or we can say that quantum information becomes the source of 
its designing which later takes a geometrical shape [7]. Even though it is present 
in geometrical information, but it is in non-baryonic/non-existing form initially 
and later converts into baryonic form. It means that if we will talk about the 
world of particles, these particles play an important role in the formation of a 
structure but along with its structure it also has a particular design/pattern 
which is present in these quantum information bits and play vital role in the de-
signing of the structure or we can say that in any living or non-living matter 
there is a particular code for its structure [8]. The plant right from its first par-
ticle i.e. nucleic code till it gets developed into a complete plant, is controlled by 
genetic code and the hereditary of this plant works through the quantum infor-
mation which means that the structure/manifestation of all the living organ-
isms/matter is present in their codes and its configuration is hidden in its infor-
mation. 

4. Statistical Analysis 

Whenever, the error or noise becomes more absurd, recombination oramplifica-
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tion of signal occurs which results in a more appropriate information rendered 
to be coded and decoded in the next phase of infection. This has happened in 
this virus as follows: SARS-CoV1 TO SARS-CoV2. 

The Quantum Information theory is superimposed in two interdependent 
states we may call it non-infective say 0 and infective state say 1. We may have 
ample number of states between non-infective and infective states. The virus is 
both infective and non-infective at the same time t = 0, however it may exist in 
either of these forms at t > 0. So temporal aspect of the virus cycle is important 
to note. A corollary can be drawn as at t = 0.01, at t > 0, 0…..1. 

Let’s have a look at this equation, 

I = iobits 

N = Neobits 

C = Cubits 

T = Charge (+ve, −ve) 

T C N I= = =  
( ) ( )1 2 1 2T C N N I I= = + = +  
( ) ( )1 2 1 24 2T C I I N N= + + +  

( ) ( )1 1 2 3 4 2 5 6 7 8T C N I I I I N I I I I= = = + + + + + + + +  
( ) ( )1 1-4 2 5-8T C N I N I= = +  

T C=  

1 2C N N= +  
( )1 1 2N I I= +  
( )2 3 4N I I= +  

( ) ( )1 1 2 2 3 4C N I I N I I= + + +  
( ) ( )1 1 2 2 3 4T C N I I N I I= = + + +  
( ) ( )1 1 2 2 3 4T C N I I N I I= = + + +  
( ) ( )1 2 1 1 2 2 2 4T C C N I I N I I= + = + + +  

So, this superimposed information can be decoded in advance before any vi-
rus becomes infectious and communicable. Here is the diagram that makes it 
clearer in Figure 1. 

5. Conclusion 

That quantum phenomena might be observable in the messy world of living sys-
tems is historically a pejorative idea. While quantum theories accurately describe 
the behavior of the individual particles making up all matter, scientists have long 
presumed that the mass action of billions of particles jostling around at ambient 
temperature drowns out any weird quantum effects and is better explained by 
the more familiar rules of classical mechanics formulated by Isaac Newton and  
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Figure 1. QIT Structure layout. 

 
others [9]. 

1) Indeed, researchers studying quantum phenomena often isolate particles at 
temperatures approaching absolute zero—at which almost all particle motion 
grinds to a halt—just to quash the background noise [10]. 

2) “The warmer the environment is, the busier and noisy it is, the quicker 
these quantum effects disappear”, says University of Surrey theoretical physicist 
Jim Al-Khalili, who coauthored a 2014 book called Life on the Edge that brought 
so-called quantum biology to a lay audience. “So it’s almost ridiculous, counte-
rintuitive, that they should persist inside cells. And yet, if they do—and there’s a 
lot of evidence suggesting that in certain phenomena they do—then life must be 
doing something special [11]”. 

3) Al-Khalili and Vedral are part of an expanding group of scientists now ar-
guing that effects of the quantum world may be central to explaining some of bi-
ology’s greatest puzzles—from the efficiency of enzyme catalysis to avian naviga-
tion to human consciousness—and could even be subject to natural selection 
[12]. 
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4) In the words of Chiara Marletto “The whole field is trying to prove a 
point”, a University of Oxford physicist who collaborated with Coles and Vedral 
on the bacteria-entanglement paper. “That is to say, not only does quantum 
theory apply to these [biological systems], but it’s possible to test whether these 
[systems] are harnessing QIT to perform their functions [13]”. 

5) Outbreaks of emerging and reemerging pathogens across the globe can be 
prevented with the help of QIT to minimize the disease burden locally and glo-
bally [14]. 
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