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Abstract 
In this work, join and meet algebraic structure which exists in non-near-linear 

finite geometry are discussed. Lines in non-near-linear finite geometry 2d  

were expressed as products of lines in near-linear finite geometry 2
p  (where 

p  is a prime). An existence of lattice between any pair of near-linear finite 

geometry ( )2 , 1, ,= 

jp
j k  of 2d  is confirmed. For |q d , a one-to-one cor-

respondence between the set of subgeometry 2
jq

  of 2d  and finite geometry 
2d  from the subsets of the set ( ){ } d  of divisors of d  (where each divisor 

represents a finite geometry) and set of subsystems ( ){ }Π q  (with variables 

in q ) of a finite quantum system ( )Π d  with variables in d  and a finite 

system from the subsets of the set of divisors of d  is established. 
 

Keywords 
Lattice, Join, Meet, Least Upper Bound (LUB), Greatest Lower Bound (GLB), 
Partially Ordered Set (POSET) 

 

1. Introduction 

For quite some time, finite quantum systems with variables in d  had received 
enormous attention [1] [2] [3] with special focus on mutually unbiased bases 
[4]-[9]. Likewise in recent times, the weak mutually unbiased base (WMUB ) is 
getting more interest from researchers [10] [11]. This might be due to the fact 
that they are concepts that have a significant role in quantum computation and 
information [12] [13] [14] [15]. Previously, most work done on finite geometry 
is on near-linear geometry. In this type of geometry two lines have at most one 
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point in common [13]-[21]. In this work, we focus our attention on the structure 
of lattice found in lines in non-near-linear finite geometry and Hilbert space of 
finite quantum systems. A unique feature of our findings is that, any pair of 
small size finite geometry , 1, ,= 

jq
j k  of dimensions has a least upper bound 

(that is the meet) and greatest lower bound (the join). Furthermore, for any two 
prime dimesional finite geometry 2

jp
  there is a reducible join and an irreduci-

ble meet. We partition this work into the following sections; the definitions and 
meaning of notations used in our work was discussed in Section 2 titled prelim-
inaries. Section 3 covers the discussion of the non-near-linear geometry and its 
subgometries. In Section 4, we discuss the decomposition of lines in 
non-near-linear finite geometry d  and its subgometries q  in relation to 
group lattice and sublattices. Group lattice and sublattices in the set of finite 
quantum system is discussed in Section 5. Finally in Section 6, we conclude our 
work. 

2. Preliminaries 

1) A POSET means a partially ordered set.  
2) d  represents ring of integer modulo d .  
3) *d  is ( )ϕ d  where *d  represents the set of invertible elements in d  

and ( )ϕ d  is referred to as Euler Phi function. It is defined as  

( )
1

11ϕ
=

 
= −  

 
∏
k

j jp
d d                        (1) 

4) ( )ψ d  is called the Dedekind psi function where;  

( )
1

11 ; primeψ
=

 
= + =  

 
∏
k

j
j j

p
p

d d                  (2) 

5) The notation ( ){ } d  represents the set of proper divisors of d  and any 
pairs of divisors form a lattice in our work. It is a POSET with divisibility as par-
tial order. The number of element in this set is the divisor function ( )0σ d . 
where 

( ) 0
0

|
σ = ∑

q

q
d

d                          (3) 

It forms a complete lattice in d .  
6) In this paper, we use the symbol   to represent partial order. If q  is a 

factor of d  then q d  and q  is a subgroup of d .  
7) We define the set of subgroup of d  as  

( ){ }|= ∈ q q d d                        (4) 

It is a partially ordered set with divisibility as partial order. There is a bijection 
between the set ( ){ } d  of divisors of d  and q  where q  represents a divisor 
of d . The elements of q  are embedded in d  for |q d  thus  

.αα ∈ → ∈q
q

 d
d                        (5) 
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8) The notations: ∧  and ∨  denote meet or roof and floor or join respec-
tively. The greatest common divisor of two element α  and β  is represented 
in this work as ( ),α β .  

9) We express d  as  

1 2 .= × × × kp p pd                        (6) 

Mathematically, d  is a cyclic module. 
This work focuses on non-near-linear geometry. That is, in this case two lines 

for example intersects in more than one points. It is related to the fact that d  
is a ring of integer modulo d  and all the lines in this work are through the origin. 

3. Non-Near-Linear Geometry d  and Its Subgometries q  

We define the finite geometry 2= d d  as the combination  

( ), .=  d d d                           (7) 

d  represents points on a line and d  represent lines in d  where  

( ){ }, | , .e f e f= ∈ d d                      (8) 

Definition 3.1. A line through the origin is defined as  

( ) ( ){ }, , | ,s s sα β α β α β= ∈ ∈L  d d                (9) 

In this work 
1=∏ j

k

pj
  and 2

1=∏ j

k

pj
  represents the same concept, so as a re-

sult we use them interchangeably.  
Definition 3.2. We define a lattice as a POSET in which every pair of ele-

ments have the LUB (or the join, ∨ ) and GLB (or the meet, ∧ ). In this work 
each element of the set ( ){ } d  represents a finite geometry.  

From the results of [10] [11] [12] we confirm the following propositions 
without proof:  

Proposition 3.3. 1) If  
*b∈d  then ( ) ( ), ,b bα β α β=L L .              (10) 

also, if  
*b∈ − d d  then ( ) ( ) ( ), mod ,b bα β α β⊂L Ld ,      (11) 

hence ( ) ( ), ,b bα β α βL L                   (12) 

We confirmed that ( ),α βL  is a maximal line in d  if ( ) *,α β ∈ d  
and ( ),α βL  is a subline in d  if ( ) *,α β ∈ −  d d . 

2) The number of maximal lines in d  with d  points each is ( )ψ d .  
3) Suppose we define a line in finite geometry d  as in Equation (9), ( ),α βL  

is also  

( ) ( ){ }, , |s s s sα β ξα ξβ ξ= ∈L d , in ξ d              (13) 

at the same time the line ( ),ξα ξβL  in ξ d  is a subline of  

( ) ( ){ }, , | 0, , 1 ,s s sα β α β ξ′ ′ ′= = −L d               (14) 
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4) If two maximal lines have q  points in common where |q d . The q  points 

gives a subline ( ),α βL  where ,α β ∈ q
q


d . 

If we consider the subgeometry q , the subline ( ),α βL  in d  is a maxim-
al line in q . There is ( )ψ q  maximal lines in subgeometry q  of finite geo-
metry d .  

4. Factorization of Lines in Non-Near-Linear Geometry as  
Lines in Near-Linear Geometries 

In this section, each lines in 2d  is decomposed as lines in 2
1=∏ j

k

pj
 . Using the 

concept of Good [17] two bijective maps were created between the ordinates of 
each of the lines in non-near-linear geometry. Similar concept was used in the 
past by [1] [10] [11] to factorize a large finite dimensional finite quantum sys-
tems as products of many small dimensional finite systems that is,  

( ) ( )1, , ; mod ;γ γ γ γ γ γ γ↔ = = ∑ k j j j jp s             (15) 

( ) ( ) ( )1, , ; mod ; modγ γ γ γ γ γ γ γ↔ = = = ∑ k j j j j j j jpt t r d     (16) 

where  

( ); 1 mod ; .= = = ∈j j j j j j j

j

p
p

d
dr t r s t r               (17) 

Equation (15) and Equation (16) represent position and momentum states 
respectively. We used the above bijection in our earlier work [12] to factorize 
maximal lines in d  as prime factor lines 

jp
 . There is a bijection between the 

set of lines of d  that is,  

( ),x yL  in 2d                         (18) 

and prime factor lines 
jp

  that is  

( ) ( )1 1, ,x y x y× × k kL L  in 2

1=
∏ j

k

p
j

                (19) 

where  

( ) ( ) ( )1 1, , ,x y x y x y↔ × × k k  and jp  a prime        (20) 

We confirmed the existence of 2 1−d  maximal lines altogether. Out of which 
there are only ( )ψ d  maximal lines are distinct. We also confirm that each dis-
tinct lines has ( )ϕ d  equivalent lines whose all its points map the points of each 
of the distinct lines in the non-near-linear finite geometry d  and as a result we 
confirm the existence of an equivalence relation between all the points in each of 
the maximal lines and other ( )ϕ d  lines in the non-near-linear geometry. Also 
we discovered that each of the factored lines in 

jp
  is a maximal lines in q  

and at the same time a subline in d . In addition, if we take any two arbitrary 
maximal lines one from each near-linear geometry , 1, ,= 

jp
j k , the two lines 

join to form a subline q  of d  and at the same time taking the intersection of 
the near-linear geometries gives a meet which is a subgeometry of the two prime 
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geometries. Hence 
1p
  and 

2p  form a lattice of d .  
In this work, the term decomposition is analogous to factorization of non-prime 

integers as products of their primes. The geometry d  is related to the set of  

divisors ( ) d  of d , the subline ( ),sx syL  in ×q q
q q
 

d d  is related to  

common divisor between two or more integers and ( )0,0L  corresponds to a 
line which contains only one point ( )0,0 . 

The factorization is related to finding the lowest common multiple (L.C.M.) of 
a set of integer, the L.C.M. represents the roof. The H.C.F. of any two prime 
geometries is connected to finding the intersection any two disjoint sets. In this 
work we call the H.C.F. the floor. As an illustration, we define line in 2d  as in 
Equation (19) thus. 

Suppose ,x y∈d  for d  a non-prime, not every element in d  has a 
multiplicative inverse and so as a result Equation (19) is expressed further as,  

( ) ( ) ( )1 1
1 1, 1, 1,x y x y x y− −= × × k kL L L               (21) 

here we represent  
1x y−Θ ≡k k k                           (22) 

therefore 0x ≠ ;  

( ) ( ) ( ) ( )1 1, .x y = Γ Θ × ×Γ Θ = Γ Θ Θ k kL           (23) 

However, for 0x =l , the line ( ) ( ) ( ) ( )0, 0,1 1, 1 1y = = − ≡ Γ −kL L L . 
As an illustration, we express all maximal lines in 2= d d  for 6=d  in 

terms of its primes discussed in Equation (21) and Equation (23) above by de-
composing line ( )2,1L .  

Using Equation (15) the ordinate 2 in ( )1,2L  is decomposed as;  

( )2 0,2↔                         (24) 

also using Equation (16) the ordinate 1 in ( )1,2L  is decomposed as;  

( )1 1,2↔                         (25) 

Therefore ( )2,1L  is decomposed as;  

( ) ( )0,1 2,2 .×L L                      (26) 

if we relate Equation (26) to Equation (21) and Equation (23), ( )2,1L  is ex-
pressed as  

( ) ( ) ( )1, 1 1,1 1,1 .− × ≡ Γ −L L                 (27) 

Here we use Equation (15) and Equation (16) to express ( )6 12ψ =  maximal 
lines in 6  and its subgometries 23  and 32  as partition in Table 1 where 

6  is isomorphic to 2  and 3 . Suppose 6=d , 1 2=p , 2 3=p , 1 1=t , 
2=2t , 3=1r  and 2=2r  

Proposition 4.1. 1) Suppose 
1==∏ j

k

p d j
 is a non-near-linear finite geome-

try, then the set of near-linear geometries 
jp

  (for p  a prime) obtained 
through factorizing the non-near-linear geometry forms a lattice, and as a result 
forms a partition. 
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Table 1. Maximal lines in non-near-linear finite geometries G6 in terms of its prime factor lines. 

6 2 3≅ ⊕    1  2  3  3 1 2 32 =      

1  ( ) ( )0,1 1, 1= Γ − −L  ( ) ( )3,2 0, 1= Γ −L  ( ) ( )3,1 1, 1= Γ −L  ( ) ( )0,2 1= Γ −L  

2  ( ) ( )2,3 1,0= Γ −L  ( ) ( )1,0 0,0= ΓL  ( ) ( )1,3 1,0= ΓL  ( ) ( )2,0 0= ΓL  

3  ( ) ( )2,5 1,2= Γ −L  ( ) ( )1,4 0,2= ΓL , ( ) ( )1,1 1,2= ΓL  ( ) ( )2,2 1= ΓL  

4  ( ) ( )2,1 1,1= Γ −L  ( ) ( )1, 2 0,1= ΓL  ( ) ( )1,5 1,1= ΓL  ( ) ( )2,4 2= ΓL  

2 1 2 3 43 =        ( ) ( )0,3 1= Γ −L  ( ) ( )3,0 0= ΓL  ( ) ( )3,3 1= ΓL   

 
Proof: Since , 1, 2, ,= 

jp
j k  are near linear geometries and taking the inter-

section of any two lines ( )1 ,x yL  and ( )2 , , , , , ,a b a b x y∈ ∈
j jp pL    yields only 

line ( )0,0L  which is the trivial near-linear geometry 1 . Hence the proof is 
complete. 

2) Two lines in d  are isomorphic if there is a 1-1 correspondence between 
the points in 1L  and 2L . 

Proof: Since ( )1 ,x yL  and ( ) *
2 , ,rx ry r∈ ∈L  d d  and the existence of bi-

jection between the points in ( )1 ,x yL  and ( )2 ,x yL  make itself evident.  

4.1. Symplectic Group on d  

We define the matrices  

( ), | ,δ η λ θ                           (28) 

where ( ), | ,
δ η

δ η λ θ
λ θ
 

≡  
 

  

( ) ( )det 1 mod ;δθ ηλ= − = d  where , , ,δ η λ θ ∈d  

  form a group called symplectic group ( )2,Sp d  group. 
Suppose we act   on all points of line ( ),x yL  in 2d . This produces all the 

points of the line ( ),x y x yδ η λ θ+ +L . We write it as ( ) ( ), | , ,x yδ η λ θ L . 
Suppose d  is a prime, acting ( )0,1 | 1,− Θ  on the line ( )0,1L , we obtain 
all the lines (maximal lines) through the origin. In this work, we label the lines as  

( ) ( )1 1 0,1 ,Θ = − → Γ − = L                      (29) 

( ) ( ) ( ) ( )0, , 1 0,1 | 1, 0,1 1, .Θ = − → Γ Θ = − Θ = Θ  L L        (30) 

In this work, we take the condition that for 1Θ = − , ( )0,1 | 1,− Θ  is re-
placed by ( )1,0 | 0,1 . 

Thus, ( )2,Sp d  is expressed as ( ) ( )1
2, 2,Sp Sp× ×

kp p   

( ) ( ), | , , | ,δ η λ θ δ η λ θ=⊗ j j j j ji
  r , 

where , ,δ η θj j j  are related , ,δ η θ  in Equation (15) and λj  is related to λ  
in Equation (16). 

Any pair of geometry in the set form a lattice and the set { }d  of all subgo-
metries of d  is isomorphic to the set ( ){ } d .  
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4.2. Join Reducible and Meet Irreducible in Finite Geometry 

In this subsection, we discuss how the union of two or more near-linear geome-
tries 

ip  forms subgometries q  of non-near-linear geometry and their inter-
section produces maximal lines in near-linear geometry p  via partial ordering 
and as a result forms a lattice. Suppose we define the set of geometry  

{ } 11, , ; where ,N= ⊂                    (31) 

( )1 2 1 2,LUB Join∨ = =                     (32) 

and  

( )1 2 1 2,GLB Meet∧ = =                     (33) 

4.3. Examples 

Suppose { } { } { } { } { } { } { } { }{ }42 42 21 14 6 7 3 2 142, , , , , , , ,= =        d . 
If we take the set { }21  and { }14 : { } { }{ } { }21 14 42∨ =   , and  

{ } { } { }21 14 7∧ =   . 
That is the maximal lines in 21  and 14  are sublines in 42  and the in-

tersection of sublines is isomorphic to maximal lines in 7 . In this case 42 , 
they form a join in 42  and a meet in 7 . 42  and 7  are called the LUB and 
GLB { }21  and { }14  respectively. This forms a complete lattice in { }42 . 
Likewise the three sets, { }14 , { }21 , and { }42  are sublattices in { }210 . 
The subgometries 67  and 76  is isomorphic to 6  and 7  respectively. 

The join is analogous to non prime integers which can be expressed as prod-
ucts of prime integers, while the meet is related to the factors of such non prime 
integers which when one factorizes further it get to a point where there the only 
factor it will have is the integer 1. 

More examples are shown in Table 2 and Hasse diagram (Figure 1). 
 
Table 2. A table of maximal lines in non-near-linear finite geometry 42  and its sub-
gometries. 

42  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,1 , 1,0 , 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 1,7 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,8 , 1,9 , 1,10 , 1,11 , 1,12 , 1,13 , 1,14 , 1,15 , 1,16 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,17 , 1,18 , 1,19 , 1,20 , 1,21 , 1,22 , 1,23 , 1,24 , 1,25 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,26 , 1,27 , 1,28 , 1,29 , 1,30 , 1,31 , 1,32 , 1,33 , 1,34 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1,35 , 1,36 , 1,37 , 1,38 , 1,39 , 1,40 , 1,41 , 2,1 , 2, 23 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,7 , 2,9 , 2,11 , 2,13 , 2,15 , 2,17 , 2,19 , 2,21 , 2, 25 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,27 , 2,29 , 2,31 , 2,33 , 2,35 , 2,37 , 2,39 , 2,41 , 3,1 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3,2 , 3,4 , 3,5 , 3,7 , 3,8 , 3,10 , 2,3 , 2,5 , 7,3 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3,11 , 3,13 , 3,14 , 3,17 , 3,20 , 3,23 , 3,26 , 6,1 , 7,4 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6,5 , 6,7 , 6,11 , 6,13 , 6,17 , 6,23 , 7,1 , 7,2 , 7,5 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( )7,6 , 14,1 , 14,3 , 14,5 , 21,1 , 21,2 .L L L L L L  
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Continued 

21  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,2 , 2,0 , 2,2 , 2,4 , 2,6 , 2,8 , 2,10 , 2,12 , 2,14 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,16 , 2,18 , 2,20 , 2,22 , 2,24 , 2,26 , 2,28 , 2,30 , 2,32 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,34 , 2,36 , 2,38 , 2,40 , 6, 2 , 6,4 , 6,8 , 6,10 , 6,14 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( )6,20 , 6,26 , 14,2 , 14,4 , 14,6 .L L L L L  

14  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,3 , 3,0 , 3,3 , 3,6 , 3,9 , 3,12 , 3,15 , 3,18 , 3,21 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3,24 , 3,27 , 3,30 , 3,33 , 3,36 , 3,39 , 6,3 , 6,9 , 6,15 ,L L L L L L L L L  

 ( ) ( ) ( ) ( ) ( ) ( )6,21 , 6,27 , 6,33 , 6,39 , 21,3 , 21,6 .L L L L L L  

6  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,7 , 7,0 , 7,7 , 7,14 , 7,21 , 7,28 , 7,35 , 14,7 , 14,21 .L L L L L L L L L  

6  ( ) ( ) ( )14,35 , 21,7 , 21,14 .L L L  

7  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,6 , 6,0 , 6,6 , 6,12 , 6,18 , 6,24 , 6,30 , 6,36 .L L L L L L L L  

3  ( ) ( ) ( ) ( )0,14 , 14,0 , 14,14 , 14,28 .L L L L  

2  ( ) ( ) ( )0,21 , 21,0 , 21,21 .L L L  

1  ( )0,0 .L  

 

 
Figure 1. The Hasse diagram showing the non-near-linear geometry 42  and its sub-

gometries, and along with Hilbert spaces 42H  of the subsystems of ( )42Π . 
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5. Lattice Theory for Finite Dimensional Hilbert Space with  
Variables in d  

We consider a quantum system with positions and momenta in d , which we 
denote as ( )Π d . For q  a divisor of d , q  is a subgroup of d . In this case 
we say that ( )Π q  is a subsystem of ( )Π d . 

Let ;md  and ;md  be position and momentum states, respectively. 
Here the d , d  are not variables but rather represent position and momen-
tum respectively, in the d -dimensional quantum system. The variables of m 
belongs to d . The Fourier transform is given by:  

( ) ( )
1 1
2

, 0

2; ; ; exp
m

mm m m i π−−

=

 = Ω Ω =  
 

∑


    
d

d d dd
d

    (34) 

where ; ;m m=  d d d  We define the displacement operator ( ),D ν µ  as  

( ) ( )1, 2D Z Xν µν µ νµ−= Ω −                   (35) 

where  

( )
1

0
; ; ;Zν ν

−

=

= Ω∑


    
d

d d                (36) 

and  

( )
1

0
; ;X µ µ

−

=

= Ω −∑


    
d

d d                (37) 

where Equation (36) and Equation (37) satisfy the condition:  

( ); 1X Z Z X X Zµ ν ν µ νµ= Ω − = =d d                (38) 

The ( ) ( ),D ν µ λΩ  where , ,ν µ λ ∈d  form a representation of Heisen-
berg-Weyl group. References [2] [10] used Equation (15) and Equation (16) to 
decompose a system with variables in d , where d  is given in Equation (6), in 
terms of k  subsystems with variables in 

jp
 . The existence of one-to-one cor-

respondence between Hd  and the tensor product 1=⊗
j

k
j pH  is confirmed where  

1 1; ; ;γ γ γ↔ ⊗ ⊗

kp p k  d                 (39) 

The same analogy is done for momentum basis thus;  

1 1; ; ;γ γ γ↔ ⊗ ⊗

kp p k  d                 (40) 

Embedding of Small Systems into Large Systems 

If |q d  then ⊂q d  also means that ( )Π q  is a subsystem of ( )Π d .  
In quantum states, ( )Π q  which takes variables in q  is embedded in ( )Π d  

which takes values in d .  
We express it as  

1 1

0 0
; ;m m

m m

mm
− −

= =

→∑ ∑
q q

q
q

   d
d                  (41) 

The momentum representation is expressed as  
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1 1

0 0
; ;m m

m m

mm
− −

= =

→∑ ∑
q q

q
q

   d
d                  (42) 

Hence the set ( ){ }Ξ q  of subsystems, ( )Π q  of ( )Π d  is isomorphic to the 
set ( ){ }d  and form a complete lattice in ( )Π d .  

6. Conclusion 

Our central focus in this work is on the concept of lattice which exists in 
non-near-linear finite geometry d  and prime geometries 

kp
  and the finite 

quantum system ( )Π d  and its subsystem ( )Π q  with subsystems forming a 
lattice. More importantly, the complexity shown in this work demonstrates those 
important relations which exist between stucture and its substructures both in 
quantum system and geometry in its phase space. 
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