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Abstract 
This paper presents the robust optimal shifting of eigenvalues control design and application for 
load frequency control. The optimal pole-shifting control is simple and applicable. Also, the pro-
posed optimal pole-shifting is fast and robust than any other controller. A method for shifting the 
real parts of the open-loop poles to any desired positions while preserving the imaginary parts is 
constant. In each step of this approach, it is required to solve a first-order or a second-order linear 
matrix Lyapunov equation for shifting one real pole or two complex conjugate poles respectively. 
This presented method yields a solution, which is optimal with respect to a quadratic performance 
index. Load-frequency control (LFC) of a single and two area power systems are evaluated. The 
objective is to minimize transient deviation in frequency and tie-line power control and to achieve 
zero steady-state errors in these quantities. The attractive feature of this method is that it enables 
solutions to complex problem to be easily found without solving any non-linear algebraic Riccati 
Equation. The gain matrix is calculated one time only and it works over wide range of operating 
conditions. To validate the powerful of the proposed optimal pole shifting control, a linearized 
model of a single area load frequency control is simulated. 

 
Keywords 
Optimal Pole Shifting Controller, Load Frequency Control, Pole Placement Control 

 
 

1. Introduction 
Designing a feedback freedom may be used to achieve additional advantageous control properties. One of such 
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desirable properties for feedback is the optimally for a quadratic performance index. Robustness properties of 
this optimal feedback gain have been presented. A problem has been considered for converted into reduced-or- 
der linear problems. In each of these problems, a first-order or a second-order linear Lyapunov equation is to be 
solved for shifting one real pole or two complex conjugate poles, respectively [1]. Power system oscillation is 
usually in the range between 0.1 Hz to 2 Hz. Improved dynamic, stability of power system can be achieved 
through utilization of supplementary excitation control signal [2] [3]. The method is based on the mirror-image 
property. The problem of designing a feedback gain that shifts the poles of a given linear multivariable system to 
specified position has been studied extensively in the past decade. Many control strategies as fuzzy control [4] 
[5] have been proposed based on classical linear control theory. However, because of the inherent characteristics 
of the change loads, the operating point of a power system may change often during a daily cycle. The dynamic 
performance of power systems is usually affected by the influence of its control system [6]-[8]. It has been rec-
ognized that the complexity of a large electric power system has an adverse effect on the systems dynamic and 
transient stability, and its stability can be enhanced by using optimal pole shifting control. Further, the two area 
power system, composed of steam turbines controlled by integral control only, is sufficient for all load distur-
bances, and it does not work well. Also, the non-linear effect due to governor deadzones and generation rate 
constraint (GRC) complicates the control system design [9]-[11]. Further, if the two area power system contains 
hydro and steam turbines, the design of LFC systems is important. There are different control strategies that 
have been applied, depending on linear or non-linear control methods.  

In this paper, a comparison between pole placement control and proposed optimal pole shifting controller is 
presented in single area load frequency control. This optimal pole shifting is fast response and simple imple-
mentation. 

No eigenvalues should have a multiplicity greater than the number of inputs.  
Calculate the feedback gain matrix K such that the single input system  

X AX BU= +                                      (1) 

The feedback control law:   

fbU K X= −                                       (2) 

Applied to Equation (1) a closed-loop system will be obtained in the form 

cX A X=  

with  

c fbA A BK= −                                      (3) 

Consider ( ) ( )i e i iS R s jlm s= +  to be a closed-loop pole of Equation (3). And ( ) ( )i e i iR jLmλ λ λ= +  is 
open-loop poles of Equation (1) for any iS  and iλ , which satisfy the optimality condition of, iα  [1] can be 
given: 

( ) ( )
2

e i e i
i

R s R λ
α

 − + =                                  (4) 

where iα  is a positive real constant scalar. 
R is a positive definite symmetric matrix. Then, for the following matrix algebraic equation:  

( ) ( )T 1 T 0P A I A I P PBR B P Q−= + ∝ + + ∝ − + =                       (5) 

There exists a positive semi-definite real symmetric solution P satisfying 

( )e iR S ≤ − ∝  

Therefore, according to [1]: 

( ) ( )2 2
i iS λ α+ ∝ = +  

with 1, 2, ,i n= 
 and 1 T

fbK R B−= . Further, the feedback control law.  
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fbU K X= −  minimizes the following quadratic performance index: 

( )T T
0

dX QX U RU t
∞

+∫  

with 2Q Pα=   

2. Single Area Load Frequency Control Model [9] [10] 
The load-frequency control plays an important role in power system operation and control. It makes the genera-
tion unit supply sufficient and reliable electric power with good quality. Figure 1 shows the block diagram of 
single area load frequency control. The model considered here can be written in state equations form as follows 

1 p p
g d

p p p

K K
f f P P

T T T
∆ = − ∆ + ∆ − ∆  

1 1
g g g

t t

P P X
T T

∆ = − ∆ + ∆  

1 1 1 1
g g

g g g g

X f X E U
RT T T T

∆ = − ∆ − ∆ − ∆ +  

iE K f∆ = ∆  

3. Optimal Shifting of Eigenvalues Control [1]-[3] [11] 
3.1. Shifting One Real Pole 

A real pole λ = γ is to be shifted to the new position S σ=  [3] which satisfies the optimality condition 
iσ γ> . The first-order model to be used is defined by: 

λΛ =  and TG C B=  

where TC  is the left eigenvector of 𝐴𝐴 associated with λ, if the positive scalar α is: 

( )
2

σ λ− +
∝ =                                      (6) 

Then an explicit solution for the above reduced-other problem can be obtained by solution of the first-order 
Lyapunov Equation 

 

 
Figure 1. Block diagram of single area load frequency control.                                                              
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( ) ( )V V Hσ σ+ ∝ + + ∝ =                                  (7)  

Is given by 
( )2

HV
σ

=
+ ∝



  where: 

1 TH GR G−=                                       (8) 
Then the required parameters , ,P Q K   can be calculated as 1 T 2K R G PQ P−= = ∝    and 1P V −=   then, the 

parameter rewritten as: 

( ) ( ) ( ) 1 T4 2
2 , andP Q K R G

H H H
σ σ σ −+ ∝ ∝ + ∝ + ∝ 

= = =  
 

 

  

                 (9) 

3.2. Shifting a Complex Pole 
A complex conjugate pair of poles λ, jλ γ β= ±  of Equation (3) is to be shifted to the new positions S; 
S jσ β= ± , which satisfy the optimality condition: iσ γ> . 

Let positive scalar α as: ( )
2

σ λ− +
∝ = . 

The second-order model Λ to be used is define 
T

T T 1
T
2

, and
C

G C B C
C

γ β
β γ

 − 
Λ = = =   −   

                       (10) 

where ( )T T
1 2C jC+  is the left eigenvector of A associated with the pole jλ λ β= +  and the left eigenvector 

satisfied the equation: 
T TΛC A C=                                     (11) 

By solving the following second-order linear Lyapunov Equation of Equation (7) 

( ) ( )T

1 T

I V V I H

H GR G−

Λ+ ∝ + Λ + ∝ =

=

  



                             (12) 

The parameters , ,P Q K   of the second-order optimal problem are obtained 
1 T 1, 2 andK R G P Q P P V− −= = ∝ =                             (13) 

Therefore, the feedback controller fbK  can be calculated from: 
T

fbK KC=                                       (14) 

where 
TP CPC=                                       (15) 

2Q P= ∝                                      (16) 

3.3. Shifting Several Poles 
Problem of shifting several poles may be solved by the recursive applications of the following reduced order op-
timal shifting problem 

Λi i i i iZ Z GU= +


                                  (17) 

i iU K Z=                                       (18) 

( )T T
0

di i i i i iJ Z Q Z U RU t
∞

= +∫                               (19) 

with 
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T T TΛ ,i i i i i iC A C G C B= =                                 (20) 

and 

1i i iA A BK+ = −  

T andi i i ik K C A A= =                                  (21) 

From Equation (18), the feedback matrix K can be constructed by the summation of the optimal feedback ma-
trix iK . Also the resulting matrices Q and P can be constructed as shown by the summation of the matrices iQ  
and iP , respectively [1] 

, andi i fb ii i iP P Q Q K K= = =∑ ∑ ∑                          (22) 

where: 
T T, and 2i i i i i i i i i ik K C P C PC Q P= = = ∝   

4. Pole Placement Control [6]-[8] 
By using full-state feedback can shift the poles to the left hand side by (10% - 15%). We could use the Matlab 
function place to find the control vector gain K, which will give the desired poles.  

( )place , ,K A B P=                                    (23) 

where: 
A: system matrix 
B: input vector 
P: pole shifting vector 
K: control gain 
A state feedback matrix K such that the eigenvalues of A B K− ∗  are those specified in vector P. The feed-

back law of u kx= −  has closed loop poles at the values specified in vector P. 

( )Poles eig A B K= − ∗  

5. Digital Simulation Results 

The normal parameters of single area power system are:  
0.2 sec, 0.5 sec, 1.25, 12.5 sec, 1 20, 2, 15 sec.g t A A p pT T K T R K T= = = = = = =  

The A and B matrices of single area model are calculated as: 

0.06 0.13 0 0
0 2.0 2.0 0
100 0 5 5
0.6 0 0 0

A

− 
 − =
 − − −
 
 

 

The dominant poles can be rewrite as: 
0.4752 2.1053j− ±  

21n njξω ω ξ− ± −                                   (24) 

where; 
ξ : damping coefficient 

nω : Frequency 
0.478nξω = −  

21 2.053nj jω ξ− =  
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0.22ξ =  

2.1nω =  

The settling time 72.7 secsT = . the desired value of the damping coefficient can be choosing as ζ = 0.82 to 
damping the oscillation of speed and constant imaginary part. The closed loop poles are specified as: 

0.82ζ =  and 21 2.05nj jω ξ− =  

From Equation (24), calculate the 3.568nω =  the new dominant eigenvalues can be calculated as follows 
21 2.92 2.053n nj jξω ω ξ− ± − = − ±  

The complete new poles are become as: 

1,2 2.92 2.053S j jσ β= ± = − ±  

3 6.08S = −  

4 0.0298S = −  

and calculate the settling time decreased ( sT ) from 72.7 to 1 sec. 
Shifting complex poles 1,2λ  to 1,2S , it can get:  

( )
1

0.4752 2.92
1.7040

2
− −

∝ = − =  

T
1C : left eigenvector which satisfy the Equation (10) 

T
1

7.27 0.23 0.195 0.35
11.07 0.64 0.198 0.55

C
− − 

=  − − − − 
 

Form Equation (10) 
0.478 2.05

Λ
2.05 0.478

− 
=  − − 

 

From Equations (11-12) 

1

0.9706
1.4767

G  
=  
 

 

1

0.94 1.433
1.433 2.18

H  
=  
 

  

Therefore, the solution of the corresponding second order Lyapunov Equation is found.  
From Equation (12) 

0.313 0.042
0.042 0.960

V  
=  
 

  

From Equation (13) 

1
1

3.213 0.142
0.142 1.04

P V − − 
= =  − 
   

[ ]1 T
1 1 1 2.908 1.409K R G P−= =   

1 1 1

10.95 0.484
2

0.484 3.569
Q P

− 
= ∝ =  − 

   

From Equations (14)-(16), the feedback controller gain matrix can be calculated as: 

[ ]T
1 1 36.78 0.222 0.222 1.813K KC= = − − −  
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T
1 1 1 1

275.8500 1.6665 2.1656 13.6008
1.6665 1.6665 0.0013 0.0002
2.1656 0.3090 0.1749 0.1002

13.6008 0.0955 0.1002 0.6709

P C PC

− 
 − = =
 − −
 

− 

  

1 1 1

940.09 5.6795 7.3805 46.3517
5.6795 2.2740 1.0531 0.3256

2
7.3805 1.0531 0.5959 0.3416

46.3517 0.3256 0.3416 2.2863

Q P

− 
 
 = ∝ =
 − −
 

− 

 

Also, another shifting real pole from −0.0296 to −15 
Calculate K2, P2 and Q2 as last. 

[ ]2 1000 0.1123 0.0059 0.0032 1.4659K = ∗ − − − −  

From Equation (23) the K total, P total and Q total are calculated as follows: 
1 2K K K= + , 1 2P P P= + , 1 2Q Q Q= +  as follows: 

0.0112 0.0005 0.0002 0.1101
0.0005 0.0000 0.0000 0.0058

1.0e 05
0.0002 0.0000 0.0000 0.0032
0.1101 0.0058 0.0032 1.4354

P

 
 
 = + ∗
 
 
 

 

0.0136 0.0007 0.0004 0.1653
0.0007 0.0000 0.0000 0.0087

1.0e 06
0.0004 0.0000 0.0000 0.0048
0.1653 0.0087 0.0048 2.1573

W

 
 
 = + ∗
 
 
 

 

The total control signal K is: 

[ ]optimal pole-shifting 1000 0.1491 0.0061 0.0030 1.4677K = ∗ − − − −  

And also, the feedback control from the Pole Placement Control Design is the follows: 
From Equation (23), desired vector P as: [ ]7.0811, 0.6780 2.0534 , 0.6780 2.0534 , 2.296P i i= − − + − − − . The 

gain matrix ( )place , , PK A B=  

[ ]pole placement 27.4982 1.1708 0.7619 95.9647K = − − − −  

Figure 2 shows the frequency deviation response due to 10% load disturbance of single area with and without 
controller. The frequency is more damping in case of optimal pole shifting controller than other controller in all 
disturbance and any change in operating points. Figure 3 depicts the frequency deviation response due to 10% 
load disturbance of single area with pole-placement and proposed optimal pole-shifting control. Figure 4 dis-
plays the root-locus of the system without control. Figure 5 shows the root-locus of the system with optimal 
pole-shifting control. Figure 6 depicts the frequency deviation response due to 10% load disturbance of single 
area with pole-placement and proposed optimal pole-shifting control at 50% increase in Tt and Tg. Also, Figure 
7 shows the frequency deviation response due to 10% load disturbance of single area with pole-placement and 
proposed optimal pole-shifting control at 50% increase in Tp and Kp. Table 1 displays the eigenvalues calcula-
tion with and without controller. Table 2 depicts the settling time calculation at different load conditions. 

From Table 1, the eigenvalues of the system in case of optimal pole-shifting controller is more damping than 
pole-placement control. 

6. Conclusions 
The present paper introduces a new controller for damping quickly the power system frequency. The problem of 
shifting the real parts of the open-loop poles to desired locations, while preserving the imaginary parts has been 
contributed. Load-frequency control (LFC) of single area systems is evaluated with two control strategies. 
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Figure 2. Frequency deviation response due to 10% load 
disturbance of single area with and without controller.                                       

 

 
Figure 3. Frequency deviation response due to 10% load 
disturbance of single area with pole-placementand proposed 
optimal pole-shifting control.                                       

 

 
Figure 4. Root-locus of the system without control.                                       
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Figure 5. Root-locus of the system with optimal pole-shift- 
ing control.                                                                             

 

 
Figure 6. Frequency deviation response due to 10% load 
disturbance of single area with pole-placement and proposed 
optimal pole-shifting control at 50% increase in Tt and Tg.                                       

 

 
Figure 7. Frequency deviation response due to 10% load 
disturbance of single area with pole-placement and proposed 
optimal pole-shifting control at 50% increase in Tp and Kp.                                       
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Table 1. Eigenvalues calculation with and without controller.                                                                             

Operating point Without controller Pole-placement 
controller Optimal pole-shifting 

Normal condition 

−6.0811 
−0.4780 + 2.0534i 
−0.4780 − 2.0534i 

−0.0296 

−7.0811 
−0.6780 + 2.0534i 
−0.6780 − 2.0534i 

−2.2960 

−20.9998 
−6.0811 

−2.3821 + 1.8658i 
−2.3821 − 1.8658i 

Increased 50% of 
Tt, Tg 

−4.2808 
−0.2115 + 1.6617i 
−0.2115 − 1.6617i 

−0.0296 

−5.3678 
−0.7661 + 1.9001i 
−0.7661 − 1.9001i 

−1.4996 

−20.1695 
−5.0664 

−2.1407 + 0.7094i 
−2.1407 − 0.7094i 

Increased 50% of 
Tp, kp 

−6.1699 
−0.4252 + 2.1711i 
−0.4252 − 2.1711i 

−0.0298 

−7.3832 
−0.7409 + 2.1134i 
−0.7409 − 2.1134i 

−2.3099 

−23.4841 
−5.9806 

−2.4271 + 1.8637i 
−2.4271 − 1.8637i 

 
Table 2. Settling time calculation at different conditions.                                                              

 Case Without control Pole-placement 
controller Optimal pole-shifting 

Settling Time 

Normal condition ∞ 7 Sec. 1.3 Sec. 

Increased 50% of Tt, Tg ∞ 6 Sec. 2 Sec. 

Increased 50% of Tp, kp ∞ 5 Sec. 2 Sec. 

 
It has been shown that the shift can be achieved by an optimal feedback control law with respect to a quadratic 
performance index. However, this has been done without any solving non-linear algebraic Riccati Equation. 
Moreover, the power system is subjected to different disturbances, and also, a comparison between the power 
system responses using the conventional pole-placement controller and the proposed optimal pole-shifting con-
troller is presented and obtained.  

The digital simulation result shows the powerful of the proposed optimal pole shifting controller than conven-
tional pole-placement controller in sense of fast damping oscillation and small settling time. Moreover, the op-
timal pole shifting controller has less overshoot and under shoot than pole-placement control.  

7. Discussions 
Figures 2-7 show the frequency deviation response due to 10% load disturbance of single area with and without 
controller. All the response frequency is more damping in case of proposed optimal pole shifting controller than 
other pole-placement controller in all disturbance and any change in operating points. From Table 1, the eigen-
values are more shifting to left hand side in case of proposed optimal pole-shifting controller than pole-place- 
ment controller. Also, as shown in Table 2 the settling time is less with optimal pole-shifting controller than 
other controller. 
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