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Abstract 
We have obtained exact static plane-symmetric solutions to the spinor field 
equations with nonlinear terms which are arbitrary functions of invariant  

( )22 5
pI P iψγ ψ= = , taking into account their own gravitational field. It is 

shown that the initial set of the Einstein and spinor field equations with a 
power-law nonlinearity have regular solutions with a localized energy density 
of the spinor field only if 0m =  (m is the mass parameter in the spinor field 
equations). Equations with power and polynomial nonlinearities are studied 
in detail. In this case, a soliton-like configuration has negative energy. We 
have also obtained exact static plane-symmetric solutions to the above spinor 
field equations in flat space-time. It is proved that in this case soliton-like so-
lutions are absent.  
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1. Introduction 

The consideration of the nonlinear generalization of classical field theory is the 
only possibility to overcome the shortcomings to the theory which considers 
elementary particles as materials points. Indeed, with this theory, it is impossible 
to get a finite quantity of mass, charge and spin of elementary particles as 
prouved experimentaly. In order to describe the elemetary particles, it is necessary 

How to cite this paper: Adomou, A., 
Edou, J. and Massou, S. (2019) Plane Sym-
metric Solutions to the Nonlinear Spinor 
Field Equations in General Relativity Theory. 
Journal of Modern Physics, 10, 1222-1234. 
https://doi.org/10.4236/jmp.2019.1010081  
 
Received: June 7, 2019 
Accepted: September 15, 2019 
Published: September 18, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1010081
https://www.scirp.org/
https://doi.org/10.4236/jmp.2019.1010081
http://creativecommons.org/licenses/by/4.0/


A. Adomou et al. 
 

 

DOI: 10.4236/jmp.2019.1010081 1223 Journal of Modern Physics 
 

to take account the nonlinear terms in the field equations and their own gravi- 
tational field. In these conditions, we obtain the soliton-like solutions which are 
used in the formation of the fields configurations of elementary particles with 
limited total energy and localized energy density. The concept of soliton is more 
used in pure science for different purpose. It’s studied by many authors in the 
gravitational theory. G.N. Shikin has investigated the basics of soliton theory in 
general relativity. In his work, he has formulated clearly the requirements to be 
fulfilled by soliton-like solutions [1]. In a remarkable paper on the soliton, A. 
Adomou and G. N. Shikin have obtained exact plane-symmetric solutions to the 
spinor field equations with nonlinear terms which are arbitrary functions of the 
invariant S ψψ= , taking into account their own gravitational field. They have 
studied in detail equations with power and polynomial nonlinearities. They have 
shown that the initial set of the Einstein and spinor field equations with a power- 
law nonlinearity has regular solutions with a localized energy density of the spinor 
field only in the case of zero mass parameter in the spinor field, with a negative 
energy for the soliton-like configuration. They have also proved that the spinor 
field equation with a polynomial nonlinearity has a regular solution with positive 
energy. Their study has come out onto the non existence of soliton-like solutions 
in the flat space-time [2]. 

The plane-symmetric solitons of spinor and scalar fiels are studied by B. Saha 
and G. N. Shikin. They have considered a system of nonlinear spinor and scalar 
fields with minimal coupling in general relativity. The nonlinear term in the 
spinor field is given by an arbitrary function depending on the bilinear spinor 
forms S ψψ=  and ( )5P iψγ ψ= . As for the scalar lagrangian, it is chosen as 
an arbitrary function of the scalar invariant ,

,
α

αφ φΩ =  that becomes linear 
when 0Ω→ . The spinor and scalar fields in question interact with each other 
by means of a gravitational field. The gravitational field is given by a plane- 
symmetric metric. They have obtained exact plane-symmetric solutions to the 
gravitational, spinor and scalar field equations. They have also investigated the 
role of gravitational field in the formation of the configurations with limited 
total energy,spin and charge. In general, they have proved that the choice of 
spinor field nonlinearity can lead to the elimination of scalar field contribution 
to the metric functions, but having it contribution to the total energy unaltered 
[3]. V. Adanhoum, A. Adomou, F. P. Codo and M. N. Hounkonnou have 
obtained spherical-symmetric soliton-like solutions of nonlinear spinor field 
equations in gravitational theory. The regularity properties of the obtained 
solutions as well as the asymptotic behavior of the energy and charge densities 
are studied [4]. 

The aim of the paper is to study the role of nonlinear spinor as well as the own 
gravitational field in the formation of configurations of elementary particles with 
localized energy density and limited total energy. In this optic, we choose the 
nonlinear terms in the spinor field equations which are arbitrary functions of 

( )22 2
PI P iψγ ψ= = . 
The rest of the present research work is organized as follows. Section 2 deals 
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with fundamental equations and general solutions. In the first time, we have 
established gravitational and spinor fields equations, using the variational 
principle and usual algebraic manipulations. in the second time, we have obtained 
and analized the general solutions of the basic equations established. In Section 3, 
we have investgated in detail the polynomial nonlinearities equations. Section 4 
addresses to the concluding remarks. 

2. Fundamental Equations and Their General Solutions 

The lagrangian of the nonlinear spinor and gravitational fields can be written in 
the form [3]: 

( ) ,
2 2 2Sp N
R R iL L m Lµ µ

µ µψγ ψ ψγ ψ ψψ
χ χ

= + = + ∇ −∇ − +          (1) 

with R the scalar curvature and χ  the Einstein’s gravitational constant. The 
nonlinear term NL  in spinor lagrangian characterizes the self-interaction of a  
spinor field. ( )N pL F I=  represents an arbitrary function depending on the 

invariant ( )25
pI iψγ ψ= . 

The metric of space-time admitting static plane-symmetric may be written as 
[1]: 

( )2 2 2 2 2 2 2 2d e d e d e d d .s t x y zγ α β= − − +                 (2) 

Here the speed of light C is taken to be unity and the metric functions , ,α β γ  
depend exclusively on the spatial variable x. They satisfy the coordinate condition 
having the form:  

2 .α β γ= +                            (3) 

The general form of Einstein equation is:  
1 ,
2

G R R Tν ν ν ν
µ µ µ µδ χ= − = −                      (4) 

where Gν
µ  is the Einstein’s tensor; Rν

µ  is the Ricci’s tensor; ν
µδ  is the Kro- 

necker’s symbol and Tν
µ  is the energy-momentum tensor. 

Taking into account the metric tensor gµν , the larangian (1) and the varia- 
tional principle, we obtain Einstein’s field equations for the metric (2) under the 
coordinate condition (3) [5] [6]: 

( )0 2 2 0
0 0e 2 2 ,G Tα β γ β β χ− ′′ ′ ′ ′= − − = −                 (5) 

( )1 2 2 1
1 1e 2 ,G Tα β γ β χ− ′ ′ ′= + = −                   (6) 

( )2 2 2 2
2 2e 2 ,G Tα β γ β γ β χ− ′′ ′′ ′ ′ ′= + − − = −              (7) 

2 3 2 3
2 3 2 3, .G G T T= =                       (8) 

Let us write down the spinor field equations for the functions ψ  and ψ  [2] 
[6]: 

( ) 0,pi m F Iµ
µγ ψ ψ ψ′∇ − + =                    (9) 

( ) 0,pi m F Iµ
µψγ ψ ψ′∇ + − =                   (10) 
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with 

( ) 52 .p
p

FF I iP
I
γ∂′ =

∂
                     (11) 

The metric energy-momentum tensor of the spinor field is [5] [6] 

( )
4 Sp
iT g Lν νρ ν

µ µ ν ν µ µ ν ν µ µψγ ψ ψγ ψ ψγ ψ ψγ ψ δ= ∇ + ∇ −∇ −∇ −      (12) 

where spL  with respect to (9) and (10) takes the form 

( ) ( )1 2 .
2

pN N
Sp N P p

p

F IL L
L L I F I

I
ψ ψ

ψ ψ

∂∂ ∂ 
= − + + = − + ∂ ∂ ∂ 

      (13) 

From (13), let us write explicitly the nonzero components of the tensor Tν
µ :  

( ) ( )0 2 3
0 2 3 2 p

Sp p p
p

F I
T T T L I F I

I

∂
= = = − = −

∂
            (14) 

( ) ( ) ( )1 1 1
1 1 1 2 .

2
p

p p
p

F IiT I F I
I

ψγ ψ ψγ ψ
∂

= ∇ −∇ + −
∂

         (15) 

In (9), (10) and (12), µ∇  denotes the covariant derivative of spinor, having 
the form [3] [4] [7] [8] 

or
x xµ µ µ µµ µ

ψ ψψ ψ ψ ψ∂ ∂
∇ = −Γ ∇ = +Γ

∂ ∂
            (16) 

where µΓ  are the spinor affine connection matrices. 
In curved space-time, the Dirac’s matrices µγ  are defined in the following 

way. 
Using the egalities  

( ) ( ) ( ) ,a b
abg x e x e xµν µ ν η=  

( ) ( ) ,a
ax e xµ µγ γ=                        (17) 

where ( )1, 1, 1, 1ab diagη = − − − , aγ  are Dirac’s matrices in flat space-time,  
( )ae xµ  are tetradic 4-vectors, we obtain: 

( )0 0 1 1 2 2 3 3e , e , e , e .xγ α β βγ γ γ γ γ γ γ γ− − − −= = = =       (18) 

From  

( ) ( )1 ,
4

b
ax g e eρ ρ δ σ

µ ρµ µ σ µσ γ γΓ = ∂ −Γ                 (19) 

we get 

2 0 1 2 1 3 1
0 1 2 3

1 1 1e , 0, e , e
2 2 2

β β γ β γγ γ γ γ γ β γ γ β− − − − −′ ′ ′Γ = − Γ = Γ = Γ =  (20) 

The Dirac’s matrices aγ  in flat space-time are chosen as in [8] [9]. 
Using Einstein’s sommation, we find  

11 e .
2

µ α
µγ α γ− ′Γ = −                       (21) 

Taking into account the obtained expression for µ
µγ Γ  (21), we can rewrite 
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the Equations (9) and (10) as follows  

( )1 51e 2 0,
2

p
x

p

F I
i m iP

I
αγ α ψ ψ γ ψ−

∂ ′∂ + − + =  ∂ 
           (22) 

( )1 51e 2 0.
2

p
x

p

F I
m iP

I
α α ψγ ψ γ ψ−

∂ ′∂ + + − =  ∂ 
           (23) 

Further setting ( ) ( )x V xδψ =  with ( )

( )
( )
( )
( )

1

2

3

4

V x
V x

V x
V x
V x

δ

 
 
 =  
  
 

, for the components 
of spinor field one deduces the following set of equations from (22) 

( )4 4 1 3
1 e 2 e 0.
2 pV V im V PF I Vα αα′ ′ ′+ + − =              (24) 

( )3 3 2 4
1 e 2 e 0.
2 pV V im V PF I Vα αα′ ′ ′+ + − =              (25) 

( )2 2 3 1
1 e 2 e 0.
2 pV V im V PF I Vα αα′ ′ ′+ − + =              (26) 

( )1 1 4 2
1 e 2 e 0.
2 pV V im V PF I Vα αα′ ′ ′+ − + =               (27) 

The functions 1V , 2V , 3V  and 4V  are connected by the relations  
2 2 2 2

1 2 3 4 1 4 2 3 3 2 4 1and .V V V V cste V V V V V V V V− − + = + = +        (28) 

The set of Equations (24)-(27), leads to the system of equations for invariant 
functions S ψψ= , 5P iψγ ψ=  and 5 1R ψγ γ ψ= : 

( )4 e 0pS S F I P Rαα′ ′ ′+ + =                  (29) 

( )2 e 4 e 0pR R m P F I P Sα αα′ ′ ′+ + + =               (30) 

2 e 0P P m Rαα′ ′+ + =                     (31) 

Immediately, the solution of the system of equations of the invariant functions 
is 

( )22 2 2 e ,xP R S C α−− + =                      (32) 

.C const=  

Using the spinor field equation in the form (9) and the conjugate one in the 
form (10), we obtain the following expression for 1

1T  from (15):  

( )1
1 pT mS F I= −                        (33) 

Let us now solve the Einstein equation. In view of 0 2
0 2T T= , the difference 

0
0
 
 
 

 - 
2
2
 
 
 

 of the Einstein equations leads to  

0.β γ′′ ′′− =                          (34) 

By integrating, the Equation (34) has the solution  

( ) ( )x x Axβ γ= +                       (35) 

where A is the integration constant; another integration constant has been 
chosen equal to zero since the functions β  and γ  depend only of the spatial 
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variable x. 
From (3), we have  

2 .α β γ′′ ′′ ′′= +                         (36) 

Taking into account (34), we obtain from (36) the following equalities 

( ) ( ) ( ) ( )1 1, .
3 3

x x x xβ α γ α′′ ′′ ′′ ′′= =                (37) 

The solutions to the Equation (37) using (3) and (35) lead to the following 
expressions for ( )xβ  and ( )xγ : 

( ) ( )( ) ( ) ( )( )1 1, 2
3 3

x x Bx x x Bxβ α γ α= + = −           (38) 

where B is the integration constant. Taking into account the expressions (35) 
and (38), we deduce easily A B= . 

The Equation (6) being the first integral of (5) and (7), is a first order 
differential equation. Inserting (38) into (5) and substituting the result into (33),  

we get the Eintein equation 
1
1
 
 
 

 under the form  

( ) ( )2 2 23 e .pA mS F Iαα χ  ′ − = − −                  (39) 

In order to solve the Equation (39), it is necessary to choose massless spinor 
field, i.e., 0m =  according to unified nonlinear spinor theory of Heisenberg. 
The mass term should be obtained after quantization. For details, refer to [10] 
[11] and references therein. 

From (31), for 0m = , 1 d
d
P

P x
α′ = − . Therefore (39) becomes  

( )2 2 2
0

d d .
3 p

P x
A P C F Iχ

= ±
+

                   (40) 

Thus, the general exact solutions of Einstein equations and nonlinear spinor 
field equations are:  

( )
( )0 02 2 2

0

d , .
3 p

P x x x cste
A P C F Iχ

= ± + =
+

∫           (41) 

Let us remark that the general solutions depend on the analytics explicits 
forms of ( )pF I . Indeed knowing ( )pF I , we can find ( )P x  from (41). If 
( )P x  is known, we can determine ( )xα  from (31) and if ( )xα  is known, 

we can determine easily ( )xβ  and ( )xγ  from (38). 
Taking into account ( ) ( )

0e xP x C α−= , we can establish the regular properties 
of the obtained solutions and on the other hand to establish the regularity of the 
metric functions and the matter fields in the whole space-time. Studying the 
energy density 0

0T , we can establish the localization properties of the solutions 
and the finiteness of The total energy [2] [8]. 

Let us resolve the spinor field equations in the following paragraph . We can 
get a concrete form of the functions Vδ  by solving Equations (24)-(27) in a  
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more compacte form if we pass to the functions 2eV W
α

δ δ

−
= , 1,2,3,4δ = : 

( ) ( ) ( )4 3 0W x x W xφ′ − =                     (42) 

( ) ( ) ( )3 4 0W x x W xφ′ − =                     (43) 

( ) ( ) ( )2 1 0W x x W xφ′ + =                     (44) 

( ) ( ) ( )1 2 0W x x W xφ′ + =                     (45) 

With ( ) ( )2 epx F I P αφ ′= . Let us find from the set of first-order Equations 
(42)-(45) to a set second-order equations for the functions 1W , 2W , 3W , 4W . 

We have: 

2
1 1 1 0W W Wφ φ

φ
′

′′ ′− − =                      (46) 

2
2 2 2 0W W Wφ φ

φ
′

′′ ′− − =                     (47) 

2
3 3 3 0W W Wφ φ

φ
′

′′ ′− − =                     (48) 

2
4 4 4 0W W Wφ φ

φ
′

′′ ′− − =                     (49) 

The solution of the Equation (46) is  

( ) ( )( ) ( )( )1 1 2exp d exp dW x C x x iC x xφ φ= + −∫ ∫           (50) 

where 1C  and 2C  are integration constants. 
From (45), the solution of the Equation (47) is  

( ) ( )( ) ( )( )2 1 2exp d exp d .W x C x x iC x xφ φ= − + −∫ ∫          (51) 

Solving analogously Equations (48) and (49), we obtain the following expres- 
sions for 3W  and 4W :  

( ) ( )( ) ( )( )3 3 4exp d exp d ,W x C x x iC x xφ φ= + −∫ ∫           (52) 

( ) ( )( ) ( )( )4 3 4exp d exp dW x C x x iC x xφ φ= − −∫ ∫           (53) 

with 3C  and 4C  are integration constants. 
Let us determine the link between the integration constants C, 0C , 1C , 2C , 

3C  and 4C  which are in the solutions of Einstein’s and spinor fields equations. 

From 2eV W
α

δ δ

−
= , we get  

( ) ( )1 4 2 34 exp ,P C C C C α= − −                  (54) 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 2 2
2 4 3 12 exp 2 d exp 2 d exp ,R x C C x x C C x xφ φ α = − − + − − ∫ ∫ (55) 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 2 2 2
1 3 2 42 exp 2 d exp 2 d exp .S x C C x x C C x xφ φ α = − + − − ∫ ∫  (56) 

Substituting the expressions (50), (51), (52) and (53) obtained previously in 
(32), we have  
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( )2
1 2 3 416 .C C C C C= −                      (57) 

Later, comparing the expression of ( )P x  in (54) and ( ) 0eP x C α−= , we have 

( )0 1 4 2 34 .C C C C C= −                      (58) 

Thus, we have obtained the general solutions of the Equations (46)-(49) which 
contain four arbitrary constants 1C , 2C , 3C  and 4C . 

In the following section, we shall analyze the general solutions obtained in the 
previous section choosing the nonlinear term in the concrete form. 

3. Analysis of the Results: Concrete Form of Nonlinear Term  
in Spinor Lagrangian 

Let us study the solution to linear Equation (Dirac’s equation). Note that this 
solution is necessary for comparing with solutions to nonlinear spinor equations 
in order to clarify the influence of nonlinear terms in the nonlinear field 
equations in the formation of configuation of elementary particles. 

In the linear case 0NL =  for 0m =  we have from (22)  

1 1e 0
2xi αγ α ψ−  ′∂ + = 

 
                    (59) 

Taking into account (41), we get 

( ) ( )0
0e A x xP x C − +=                       (60) 

As ( ) 0eP x C α−= , from (60), we obtain the expression of the metric function:  

( ) ( )0x A x xα = +                       (61) 

From (38), we find the following expressions of β  and γ :  

( ) ( )0
2
3

x A x xβ = +                      (62) 

( ) ( )0
1
3

x A x xγ = − +                     (63) 

With 0NL = , the energy density is  
0

0 0T =                           (64) 

From (64) it follows that, the energy density of the system is not localized. In 
sum, the soliton-like solutions are absent in the linear case. 

Let us now consider a concrete type of nonlinear spinor field equation in the 
form ( ) 2n

N pL F I Pλ= =  where λ  is a nonlinearity parameter and n is a 
power of nonlinearity. In the first case, For 1n = , we find Heisenberg-Ivanenko 
type nonlinear spinor field equation [10]  

1 51 2 0,
2xie m iPαγ α ψ ψ λγ ψ−  ′∂ + − + = 

 
            (65) 

Substituting ( ) 2
P PF I I Pλ λ= =  into (41), we obtain the similar expression 

as for a linear spinor field, only now the constant 2A  is replaced by  
2 2

03A Cχλ+ . 
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We have  

( ) ( ) 2 2
0 03

0e x x A CP x C χλ+ +=                     (66) 

From the relation 0eP C α−= , we get  

( ) ( ) 2 2
0 03 .x x x A Cα χλ= − + +                  (67) 

According to the equality (38), we define the functions ( )xβ  and ( )xγ  as 
follows 

( ) ( ) 2 2
0 0

1 3
3

x x x A C Axβ χλ = − + + +  
             (68) 

( ) ( ) 2 2
0 0

1 3 2
3

x x x A C Axγ χλ = − + + +  
             (69) 

The invariant 2
PI P=  and the functions 2

00 eg γ= , 2
11 eg α= − ,  

2
22 33 eg g β= = −  are regular in all space. 
The energy density 0

0T  has the following expression:  
( ) 2 2

0 02 30 2
0 0 e x x A CT C χλ+ +=                     (70) 

hence we obtain for ( )xε  the energy density per unit invariant volume 

( ) ( ) 2 2
0 0

2
2 30 2 3

0 03 e e
Axx x A C

gx T C χλε + += − =              (71) 

We conclude from (70) and (71) that a localization of the energy density and 
the energy density per unit invariant volume are absent. The total energy diverges. 
The Equation (65) has no soliton-like solution. 

In the second case when ( ) 2n
PF I Pλ=  and 1n > , From (41), we have  

( )
( )

1
1

2
0

; 1.
3 sinh 1

n
AP x n

C A n xχλ

−  = > 
−    

           (72) 

From (14), the energy density is  

( )
( )

2
1

0
0 2

0

2 1 ; 1.
3 sinh 1

n
n

AT n n
C A n x

λ
χλ

−  = − > 
−    

        (73) 

We remark that, from 2n
NL Pλ= ; (72) and (73), when 0x → , ( )P x →∞  

and 0
0T →∞ . 

It follows that the energy density is not localized and the total energy does not 
finite value. 

When 2λ = −Λ , from the relation (41), we deduce that:  

( )
( )

1
1

2 2
03 cosh 1

n
AP x

C A n xχ

−  =  
Λ −    

              (74) 

From (74), it follows that ( )P x  has its maximum value 

1
1

2 2
03

nA

Cχ

−  
 

Λ  
; 
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1n >  when 0x =  and ( ) 0P x →  when x → ±∞ . In this case 0
0T  is 

( )
( )

2
1

0 2
0 2 2

0

2 1 ; 1
3 cosh 1

n
n

AT n n
C A n xχ

−  = −Λ − > 
Λ −    

        (75) 

From the expression (75), it follows that the energy density 0
0T  of a nonlinear 

spinor field is negative and localized in space when the nonlinear term of the 
equation is chosen under the form ( ) 2 2n

N pL F I P= = −Λ  with 2 0−Λ <  [2] [12] 
[13]. 

The energy density per unit invariant volume is: 

( ) ( )
( )

( )
4

3 15 2
0 2 3 3

0 0 2 2
0

3 2 1 e
3 cosh 1

n
n

Ax

g
Ax T n C

C A n x
ε

χ

−
−  = − = −Λ −  

Λ −    
 (76) 

From (76), it follows that the energy density is negative and localized. Indeed, 
when 0A > ; 1n >  and for ; 0x ε→ ±∞ → . Furthermore, ( )xε  has its mini- 

mal value ( )
( )

4
3 15

2 3
0 2 2

0

2 1
3

n
nAn C

Cχ

−
−  −Λ −  

Λ  
 when 0x = . 

The total energy of spinor field is defined by  

( ) 0
0d 3 d .f gE x x T xε

+∞ +∞

−∞ −∞
= = −∫ ∫  

Thus  

( )
( )

( )
4

3 15 2
2 3 3

0 2 2
0

2 1 e d .
3 cosh 1

n
n

Ax

f
AE n C x

C A n xχ

−
−

+∞

−∞

  = −Λ − < ∞ 
Λ −    

∫  (77) 

( )xε  is a regular, negative and localized function therefore the total energy 

fE  is limited and negative. 
Since the obtained solution is regular and has a localized energy density 0

0T , 
the total energy fE  negative, limited and the metric functions regular and 
limited, it is a soliton-like solution. Moreover, this solution can be used to 
describe the configuration of the elementary particles. 

From (50)-(53), we can obtain the concrete form of the functions ( )V xδ  in 
their more compact form. 

( ) ( ) ( )( ) 2
1 1 2e e e .x xV x C iC

α
σ σ −−= + ⋅                 (78) 

( ) ( ) ( )( ) 2
2 1 2e e e .x xV x C iC

α
σ σ −−= − + ⋅                (79) 

( ) ( ) ( )( ) 2
3 3 4e e e .x xV x C iC

α
σ σ −−= + ⋅                (80) 

( ) ( ) ( )( ) 2
4 3 4e e e .x xV x C iC

α
σ σ −−= − ⋅                (81) 

where 1C ; 2C ; 3C  and 4C  are integration constants. Furtermore,  
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( )
1

2 2
0e P x C

α
−

=     with ( )P x  defined by the expression (74). 

( ) ( ) ( ) ( ) ( )0
0

2d 2 d tanh 1
3 1P

nAx x x F I C x A n x
C n

σ
χ

′= Φ = = − −  −∫ ∫   (82) 

( )P x  is a regular function, then ( )xσ  and ( )V xδ  are also the regular 
functions. 

In sum, for a massless field (i.e. m = 0) and ( ) 2 n
p pF I I= −Λ ; 1n > ; the 

solutions of the equations of the spinor and gravitational fields have an energy 
density ( )xε  and total energy fE  negative, regular and localized. 

Let us now study the influence of the proper gravitational field in the for- 
mation of the configuration of elementary particles. 

In order to determine the role of the own gravitational field in the formation 
of regular localized solutions of soliton-like type to nonlinear spinor field equa- 
tions, it is necessary to consider solutions to Equation (9) in flat space-time 
when 0β α γ= = =  in (2). In this case, from (41) we get  

0 .P C cste= =                        (83) 

The explicit form of ( )V xδ  is:  

( ) ( )1 1 2e e .Mx MxV x C iC −= +                  (84) 

( ) ( )2 1 2e e .Mx MxV x C iC −= − +                 (85) 

( ) ( )3 3 4e e .Mx MxV x C iC −= +                  (86) 

( ) ( )4 3 4e e .Mx MxV x C iC −= −                  (87) 

where ( )x Mxσ = ; M cste=  and 0
0T cste= . 

We deduce that, the proper gravitational field of elementary particles plays an 
important role in the aim to obtain the regular solutions which possess a localized 
energy density and limited total energy of the nonlinear equations with the 
nonlinear term depending on 2P . 

The last point is addressed to the spinor current vector and the total charge. 
Using the general solutions of the Equations (24)-(27), we can write the com- 
ponents of the spinor current vector jµ µψγ ψ= : 

0 0 0j ψ γ γ ψ+=  

( )0 * * * *
1 1 2 2 3 3 4 4 e .j V V V V V V V V α γ− −= + + +  

( ) ( ) ( ) ( )0 2 2 2 2 2 2 2 2
1 2 1 2cosh cosh sinh sinh e .j C x C x C x C x α γσ σ σ σ − − = + + +  (88) 

1 0 1 .j ψ γ γ ψ+=  

1 * * * * 2
1 4 2 3 3 2 4 1 e .j V V V V V V V V α− = + + +   

1 0.j =                             (89) 
2 0 2 .j ψ γ γ ψ+=  

2 * * * * 2
1 4 2 3 3 2 4 1 e .j i V V V V V V V V α− = + + +   
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( ) ( ) ( ) ( )2 2 2
1 22 cosh sinh cosh sinh e .j C x x C x x α βσ σ σ − − = − −       (90) 

3 0 3j ψ γ γ ψ+=  

3 * * * *
1 3 2 4 3 1 4 2 e .j V V V V V V V V α γ− − = − + −   

3 0.j =                           (91) 

Since the field configuration is chosen to be static plane symmetric, the spatial 
components of the spinor current vanishes. Alone the component 0j  is non- 
zero. This assumption leads to the following relations between the constants:  

1 2 3 2
1 20 and 0 .j j j j C C a= = = = ⇒ = =            (92) 

The component 0j  defines the charge density of spinor field that has the 
following chronometric-invariant form given by the expression 

( ) ( ) ( )
1

0 22
0 2 cosh 2 e .x j j a x αρ σ −= =                 (93) 

The total charge of the spin is defined by  

( ) 3 dgQ x xρ
+∞

−−∞
= ∫                     (94) 

The spin tensor is given by the expression as in [9] [11] 

{ }, 1 .
4

S µν λ λ µν µν λψ γ σ σ γ ψ= +                 (95) 

The spatial density of the spin tensor ,0 , , 1;2;3ikS i k =  from (95) is:  

{ },0 0 0 01 1 .
4 2

ik ik ik ikS ψ γ σ σ γ ψ ψγ σ ψ= + =            (96) 

Here i, j, k take the value 1, 2, 3 and i j k≠ ≠ . Thus, for the projection of spin 
vector on the x, y and z axis, we get:  

23,0 * * * * 2
1 2 2 1 3 4 4 3 eS V V V V V V V V α β γ− − − = + + +              (97) 

31,0 * * * * 2
1 2 2 1 3 4 4 3 eS V V V V V V V V α β γ− − − = − + −              (98) 

12,0 * * * * 2
1 1 2 2 3 3 4 4 eS V V V V V V V V α β γ− − − = − + +              (99) 

Thus, we have 
12,0 13,0 0.S S= =                    (100) 

( )23,0 2 cosh 2 e .S a x ασ −=                   (101) 

From (101) the chronometric invariant spin tensor is defined by:  

( ) ( )
1

23,0 23,0 22
23,0 cosh 2 e .chIS S S a x ασ −= =              (102) 

We remark that the total charge and total spin are not limited because from 
(93), ( )xρ  is not a localized function since when x → ±∞ , we have  
( )xρ → ±∞ . Thus, we can note that the nonlinearity of the spinor field equation 

and the consideration of the proper gravitational field of the elementary particles 
are the necessary conditions but not sufficient in order to obtain the limited total 
charge and total spin to confirm what are got experimentaly. 
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4. Concluding Remarks 

In this research work, we have obtained the analytic general solutions of non- 
linear spinor and gravitational fields equations which are regular, localized 
energy density and finite total energy. These solutions are soliton like solutions. 
They can be used in order to describe the configuration of elementary particles. 
In flat space-time and linear cases, the soliton like solutions are absent. The role 
of the own gravitational field is crucial for the formation of soliton-like con- 
figuration of nonlinear spinor fields. In the case of the study of polynomial 
nonlinearities 2n

NL Pλ= , 1n > , we remark that the obtained solutions are 
regular, localized energy density and finite quantity of total energy in the exclu- 
sively case where 2λ = −Λ . Emphasize that the total charge and total spin are 
not limited in the all metric case. Our perspective, in the forthcomming research 
work, is to examine the spherical symmetric soliton-like solutions to the spinor 
field equations with nonlinear terms ( )N PL F I=  which are arbitrary functions 
of ( )25

PI iψγ ψ= . 
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