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Abstract 
Bell’s theorem founded on Bell’s inequalities asserts that no local realistic 
theories can reproduce all quantum mechanical predictions for spin correla-
tion of particle pairs. It is pointed out that the assumption of setting-inde- 
pendent probability makes Bell’s inequalities not impose constraint on all lo-
cal realistic models and thus constitutes a theoretical loophole of Bell’s theo-
rem. A counterexample is presented by showing that a local realistic model 
with appropriate probability density reproduces all quantum mechanical pre-
dictions. It becomes clear that experiments violate Bell’s inequalities because 
the real correlation functions are not constrained by these inequalities. It is 
also exposed that, rigorous logical reasoning of counter factual deduction 
does not permit to exclude any premises of Bell’s inequalities by a certain 
amount of experimental violations of these inequalities.  
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1. Introduction 

Bell’s theorem has influenced some physics researches over a half of century. As 
the foundation of the theorem, Bell’s original inequality [1] has inspired two va-
riants CHSH (Clauser-Horne-Shimony-Holt) inequality and CH (Clauser-Horne) 
inequality for convenience of experimental implementation [2] [3]. Several au-
thors also claimed proofs of the theorem without using inequality. These proofs 
include the GHZ (Greenberger-Horne-Zeilinger) paradox [4] and Hardy’s pa-
radox [5]. As all proofs without inequality commence with the quantum me-
chanical concept of entangled state, they involve inherent inconsistency in logic 
for experimental test to discriminate between quantum mechanical concepts and 
classical concepts. Therefore, we are confined to consider merely the original 
Bell’s theorem founded on Bell’s inequalities, which are derived totally from 
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classical concepts and have been used as criterions in most experimental tests. 
Since the publication of Bell’s seminal work, about twenty Bell experiments 

have been performed [6]. Majority of these experiments yielded outcomes vi-
olating one of Bell’s inequalities and meantime agreeing with quantum mechan-
ical predictions. During the earlier period, this experimental fact had been in-
terpreted as the evidence of completeness of quantum mechanics or as a proof 
that no hidden variable theories exist, as then it had been often claimed that 
quantum mechanics overwhelms local realistic theories experimentally. Indeed, 
if quantum mechanics were proved a complete theory, not merely correct in 
predicting some properties of quantum systems, all weird properties arisen from 
its interpretation would be accounted as real physical phenomena. But proof of 
completeness of quantum mechanics seems far more difficult than the contrary. 
It was recognized many years later that violation of Bell’s inequalities and proof 
of completeness of quantum mechanics are two irrelevant things. The objective 
of all Bell experiments was turned to exclude local realistic theories. Yet there 
has been no conclusive answer up to now. For the advocates of Bell’s theory, the 
pending situation is caused by remaining loopholes for experimental tests of 
Bell’s inequalities, despite the fact that the two main recognized loopholes were 
closed simultaneously in one experiment [7]. For other physicists, however, 
Bell’s theorem is dubious due to the basic concepts or skeptical assumption un-
derlying Bell’s inequalities. 

Negation of Bell’s theorem is from computer simulations and theoretical ana-
lyses. Only theoretical aspect is exemplified here. Tipler showed that quantum 
non-locality does not exist if observed quantum particles and observer are both 
assumed to obey quantum mechanics as in the many-world interpretation [8]; 
Hess and Philipp demonstrated that Bell’s theorem will be invalid if Bell’s in-
equalities cover an extended parameter space that includes instrument parame-
ters correlated by both time and setting dependencies [9] [10]. Although above 
viewpoints or alike have aroused argument or strong opposition from Bell’s fol-
lowers, they represent right stance against abandoning local realism, which is the 
fundamental believing in almost all other established scientific theories. 

So far, the fact of experimental violations of Bell’s inequalities has been estab-
lished. This fact explains that Bell’s inequalities are not applicable to the perti-
nent experiments. In other words, they are invalid in physics. Because their ma-
thematical derivations are too simple to be suspected, it is deduced that at least 
one of their premises is wrong. [Here, we see that the verification of Bell’s theo-
rem is somewhat logically strange in comparison with that of other rules or 
theorems in physics. The involved problem will be discussed in the Section 3]. 
Some physicists think the attribute of local realism associated with the expres-
sion of the spin correlation function must be ruled out. However, the assump-
tion of setting-independent probability can also be responsible for the situation. 
This point has long been ignored but is fatal to Bell’s theorem. Without any fur-
ther analysis, we immediately identify this assumption to be a theoretical loo-
phole of the theorem, because it is not a necessary condition for locality. A set-
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ting-dependent probability can also be factorized to guarantee the locality of a 
correlation function. Therefore, we are sure that Bell’s inequalities do not im-
pose constraint on all local models and for this reason their experimental viola-
tion cannot rule out locality theoretically. 

Zhao showed the necessity of setting dependence of the probability [11]. 
While the assumption of setting-independent probability is indispensible for de-
rivation of Bell’s inequalities. Bell had indeed sensed that setting-independent 
probability might be one of the four possibilities invalidating his theorem [12]. 
He thus proposed a measure for compensation while the inequality was kept in 
use [13]. Regarding this issue, Clauser also proposed a countermeasure [2]. To 
evaluate the effect of these compensations is very difficult, but it is unlikely that 
they could make the Bell’s inequality cover up all local models. 

To avoid the mentioned problem, actually, one can circumvent Bell’s inequa-
lities by investigating a correlation function directly. That is, one can exploit a 
correlation function that obeys the general condition of locality and then ex-
amine its compatibility with experimental outcomes as well as quantum me-
chanical prediction. If the concerned properties of a correlation function can be 
worked out directly, why do we make a detour by investigating them through a 
fabricated constraint on it? 

It has been demonstrated that quantum mechanical correlation could be re-
produced by local models. To author’s knowledge, Barut et al. advanced an in-
stance with a simple model of a classical break-up process [14], and Gisin et al. 
with a local hidden variable model exploiting detection loophole [15]. As these 
demonstrations are not directly related to the correlation function in Bell’s orig-
inal proof, and do not reveal the flaw of Bell’s inequalities, they do not disprove 
Bell’s theorem. 

In this paper, a counterexample to Bell’s theorem is presented by demonstrat-
ing that a spin correlation function adopted from an extension of Bell’s origin 
reproduces all quantum mechanical predictions under appropriate probability 
densities. It is explained that verification of Bell’s theorem through certain 
amount of experimental violations of Bell’s inequalities is logically prohibited 
even if these inequalities imposed constraint on all local models. In summary, 
the counterexample disproves Bell’s theorem firmly, and the cause for which is 
that Bell’s inequalities do not impose constraint particularly on real correlation 
functions.  

2. The Counterexample 

To avoid ambiguity, let us begin by making clear the precise scope of local realis-
tic models that is referred in Bell’s theorem. As generally understood and also 
explained by Greenberg et al. [16], “local realistic theories” means that there are 
no other restrictions except locality and reality on the probability density, the 
hidden variable and the measuring outcomes in the correlation expression in 
Bell’s original proof. For conciseness, spin 1/2 of particle is tacitly assumed in 
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following discussion. 
It is known that quantum mechanical prediction for the spin correlation of 

particle pairs in EPRB experiment is given by 

σ σΨ ⊗ Ψ = − ⋅a b a b                        (1) 

where ( ) 1 2Ψ = + ⊗ − − − ⊗ +  is the singlet spin state for the two par-
ticles, and σ = ⋅a aσ  and σ = ⋅b bσ  are the components of Pauli spin opera-
tor σ  in the directions of a  and b  respectively; ⊗ denotes the Kronecker 
product, a  is the unit vector of the spin analyzer setting for particle 1 and b  
for that of particle 2; the single particle vectors +  and −  denote “spin up” 
and “spin down” with respect to some coordinate system. 

On the other hand, Bell gave the correlation function of local realistic theories 
as [1] 

( ) ( ) ( ) ( )P , A , B , dρ= ∫a b a bλ λ λ λ                 (2) 

From the expression above Bell derived his inequality and found that quan-
tum mechanical prediction does not obey it. This led to his famous theorem. It is 
easily found that the setting-independent probability in Equation (2) is indis-
pensible for the derivation of Bell’s inequality. As aforementioned, this premise 
limits the range of local models imposed by the inequality. In other words, that 
correlation of Equation (2) cannot reproduce the quantum mechanical predic-
tion does not prevent the correlation given by other local models from repro-
ducing all quantum mechanical predictions. Hence, we will extend the correla-
tion of Equation (2) to a general form by considering a setting-dependent prob-
ability. Although the general correlation prohibits derivation of any Bell-type 
inequality, it can be used to solve the key concern whether local realistic model 
can yield prediction in agreement with experimental result as well as quantum 
mechanical prediction.  

Before the formal proof, all terms in Equation (2) are explained as follows. 
( )A ,a λ  and ( )B ,b λ  are two measuring outcomes for the spins of particle 

pairs respectively, which take the values either +1 or −1. ( )P ,a b  is the spin 
correlation that is given as an expectation of the product ( ) ( )A , B ,a bλ λ  with 
the probability density ( )ρ λ , which is commonly called the joint probability 
density. ( )P ,a b  has been also termed as joint detection probability in many li-
teratures, because the measuring outcomes have not dimension. λ  is a hidden 
parameter introduced by Bell, ordinarily considered to be a vector with its ter-
minal points uniformly distributed on the surface of a unit sphere. 

It is known, the general condition of locality is expressed by the factorability 
of the probability [17]. So, when probability density depends on the settings, the 
general correlation is given by 

( ) ( ) ( ) ( ) ( )
Λ

P , , , A , B , dρ ρ= ∫ a ba b a b a bλ λ λ λ λ            (3) 

where Λ  is the sample space of λ , ( ),ρa a λ  is the probability density for 
measuring ( )A ,a λ , and ( ),ρb b λ  for ( )B ,b λ . It is evident that Bell’s origi-
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nal correlation is a special case of the correlation given by Equation (3). Besides 
its generality in locality, this general correlation highlights that the measure-
ments are performed on two spatially-separate stations, while the correlation 
( )P ,a b  is merely a result of experimental data processing. Particularly, the 

measuring data at each station is allowed processing alone, so the statistical 
quantities of ( )A ,a λ  and ( )B ,b λ  can be calculated independently. For in-
stance, the expectation of ( )A ,a λ  is given as 

( ) ( ) ( )
Λ

E A , A , dρ= ∫ a a aλ λ λ                     (4) 

By the considerations above, the two probability densities must satisfy 

( )
Λ

, d 1ρ =∫ a a λ λ  and ( )
Λ

, d 1ρ =∫ b b λ λ             (5a,5b) 

respectively.  
The ideal counter-correlation of particle pairs is also assumed 

( ) ( )A , B , 1= −a aλ λ                          (6) 

Following Bell’s treatment, measuring outcomes can be designated 

( ) ( )A , sign= ⋅a aλ λ  and ( ) ( )B , sign= − ⋅b bλ λ       (7a, 7b) 

where sign(.) is the symbolic function. 
Suppose that ( ), aρ κ= ⋅a a aλ λ  and ( ), bρ κ= ⋅b b bλ λ  respectively, where 

aκ  and bκ  are normalizing coefficients respective to each probability density. 
With these designations and assumptions, Equation (3) becomes simply 

( ) ( )( )
Λ

P , dκ= − ⋅ ⋅∫a b a bλ λ λ                    (8) 

in which a bκ κ κ= , being not a normalizing coefficient for the so called joint 
probability (Appendix 1). 

Then suppose that λ  is a random vector with its terminal points distributing 
uniformly on the surface of a sphere with radius 1 3πr =  (Appendix 2), and 
denote it as ( )cos sin ,sin sin ,cosr ϕ θ ϕ θ θ=λ , where ϕ  is the azimuthal angle 
and θ  is the polar angle of the spherical coordinates, we have by inserting it in 
Equation (8) 

( ) ( )1 2 3 4P , I I I Iκ= − + + +a b                    (9) 

in which 

( )0 0

2π π3 2 2 2 2 2
1 1 1 2 2 3 3cos sin sin sin cos sin d dI r a b a b a bϕ θ ϕ θ θ θ ϕ θ= + +∫ ∫ , 

( )2π π3 3
2 1 2 10 0 2 sin cos sin d dI r a b a b ϕ ϕ θ ϕ θ= +∫ ∫ , 

( )2π π3 2
3 1 3 10 0 3 cos sin cos d dI r a b a b ϕ θ θ ϕ θ= +∫ ∫ , 

and 

( )2π π3 2
4 2 3 20 0 3 sin sin cos d dI r a b a b ϕ θ θ ϕ θ= +∫ ∫ , 

where ia  and ( )1,2,3ib i =  are components of a  and b , respectively.  
Simple calculations yield ( ) 3

1 4π 3I r= ⋅a b  and 2 3 4 0I I I= = = , and also  
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( )2  1 2πa b rκ κ= = . Substituting these and 1 3πr =  into Equation (9), we fi-
nally obtain 

( ) 1P , a b Iκ κ= − = − ⋅a b a b                       (10) 

which is exactly the right side of Equation (1), what quantum mechanics pre-
dicts.  

Quantum mechanical predictions may also include that the expectations of 
particle spin at each terminal are equal to zero, that is, 

( ) ( )E A E B= = 0                         (11) 

These are readily confirmed. For example, we have 

( ) ( ) ( ) ( ) ( )E A , A , d d da asignρ κ κ= = ⋅ ⋅ = ⋅∫ ∫ ∫a a a a a aλ λ λ λ λ λ λ λ  (12) 

and then substitution of λ  as supposed previously and a calculation gives  
( )E A 0= .  
Up to this point, we have presented the counterexample to Bell’s theorem. 

Definitely, the correlation function that we have achieved, just like quantum 
mechanical prediction, is not constrained by Bell’s inequalities. This is the true 
reason for experimental violation of these inequalities. 

3. Logical Issue with Experimental Verification of Bell’s  
Theorem 

Let us scrutinize a logical issue with application of Bell’s inequalities. We have 
made clear that Bell’s inequalities only impose constraint on partial local models. 
Moreover, even if this flaw does not exist, there is also a logical obstacle with ap-
plication of these inequalities. To exclude the premises of these inequalities by 
experimental violations belongs to the counter factual deduction of logical rea-
soning. However, to be rigorous, one will find in this logical deduction that a 
certain amount of experiments cannot substitute a theoretical proposition, be-
cause a theoretical proposition might involve indefinite or even infinite amount 
of experiments. Hence, to exclude the premises of Bell’s inequalities by experi-
mental violations of them is not permitted by rigorous logical reasoning.  

4. Discussion of Bell’s Model 

In his seminal paper, Bell intended to implement the guessed EPR’s idea of hid-
den variable model. As he stated, “...that idea will be formulated mathematically 
and shown to be incompatible with the statistical predictions of quantum me-
chanics.” But his inequality and its variants are actually unrelated to hidden va-
riable theory, because these inequalities are derived totally from classical con-
cepts. The introduced parameter λ  has nothing to do with completing the de-
scription of quantum mechanics though it has been termed hidden variable or 
parameter. The word of local hidden theories or models has concealed the inap-
propriateness of the assumption of setting-independent probability. Besides li-
miting the coverage of Bell’s inequalities, actually, the setting-independent proba-
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bility causes incompatibility with certain experimental observation. If the second 
moment of the outcome on one terminal is observed in the EPRB-type experi-
ment with the photons of linear polarization, it will make the established fact 
like Malus’ rule unpredictable. The demonstration is omitted here as it is very 
simple. Therefore, the assumption of setting-independent probability is incon-
sistent with what occurs in actual measuring process. Actually, that CHSH in-
equality was derived without any consideration of measuring process [18] has 
already hinted such inequality not for experimental test but to be a trivial ma-
thematical relation. 

5. Conclusions 

As a necessary assumption of Bell’s inequalities, the setting-independent proba-
bility makes these inequalities not impose constraint on all correlation functions 
representing local realistic models, and is also apparently false for actual experi-
mental measurement. Existence of the counterexample further manifests that 
Bell’s inequalities particularly do not impose constraint on real correlation func-
tions. The revealed fatal flaw of these inequalities explains why they have been 
violated by experiments. Moreover, even if these inequalities had not the flaw, 
they would be useless for experiment because certain amount of experiments 
cannot substitute a theoretical proposition in counter factual deduction. It is 
concluded that, Bell’s theorem is false because Bell’s inequalities are trivial ma-
thematical relations that, due to an unsuitable assumption of probability, lack 
essential connection with the real measuring process of the pertinent experi-
ments. 

Meanwhile, a point of view should be stated. Collapse of Bell’s theorem does 
not deny the conflicts between classical concepts and some weird notions by the 
orthodox interpretation of quantum mechanics. And what Einstein had insisted 
that these conflicts are caused by incompleteness of quantum mechanics in de-
scription of microscopic systems appears rather reasonable. 
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Appendix 1 

Due to the two constraints Equations (5a) and (5b), the product  
( ) ( ), ,ρ ρa ba bλ λ  generally termed as the joint probability is actually not a 

normalized probability density. The proof is given as follows. The product can 
be conceived as a degenerated joint probability from ( ) ( ), ,ρ ρa ba bλ γ  for two 
random variables λ  and γ , when γ  goes to equate λ  and both have the 
same sample space Λ . With this consideration, we have 

( ) ( ) ( ) ( ) ( )
Λ Λ Λ Λ

1 , , d d , , d dρ ρ ρ ρ δ= > −∫ ∫ ∫ ∫a b a ba b a bλ γ λ γ λ γ λ γ λ γ  

where ( )δ ⋅  is Dirac function. The most right part of the above is exactly 
( ) ( ), , dρ ρ

Λ∫ a ba bλ λ λ . 
It is noted that all Bell inequalities were derived by that the joint probability 

fulfills the normalization condition. This normalization would be justified if the 
joint probability were for ordinary two random events. But the two random 
outcomes in the considered experiment are dependent on one parameter λ  
with the expectation of their product being not determined by a normalized 
joint probability, as demonstrated above. This exceptional property was not no-
ticed in derivations of Bell’s inequalities. 

Appendix 2 

We deliberately choose 1 3πr =  rather than ordinarily 1r =  to obtain a 
normalized correlation function in end, though this operation is essentially un-
necessary. This means that a normalization of the correlation function is carried 
out in advance. Otherwise, it is readily found that the final correlation function 
will be ( ) ( )P , 1 3π= − ⋅a b a b . In a view of geometry, a series of data represents 
a line, and the essence of a correlation coefficient represents the cosine of the 
angle made by two lines. The value of the cosine is independent of either length 
of the two lines. While a correlation function is the extension of the correlation 
coefficient when it depends on a variable. In practice, it is well known to an ex-
perimental physicist or an engineer of signal processing that a scaling of experi-
mental data has to be carried out in order to verify a theoretical correlation 
function. This scaling is really equal to the normalization of a correlation func-
tion, entailing that the absolute magnitude of a correlation function makes non-
sense or that correlation functions only different in magnitude are equivalent. 
Please excuse the author for the wordy explanations above, since some theorists 
might ignore this tiny issue. For instance, Bell did not treat ( )1 3− ⋅a b  as 
equivalent to − ⋅a b  in his seminal paper [1]. 
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