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Abstract 
The self-consistent Kohn-Sham equations for many-electron atoms are solved 
using the Coulomb wave function Discrete Variable Method (CWDVR). 
Wigner type functional is used to incorporate correlation functional. The 
discrete variable method is used for the uniform and optimal spatial grid dis-
cretization and solution of the Kohn-Sham equation. The equation is numer-
ically solved using the CWDVR method. First time we have reported the so-
lution of the Kohn-Sham equation on the ground state problem for the 
many-electronic atoms by the CWDVR method. Our results suggest CWDVR 
approach shown to be an efficient and precise solution of ground-state energies 
of atoms. We illustrate that the calculated electronic energies for He, Li, Be, B, 
C, N and O atoms are in good agreement with other best available values. 
 

Keywords 
Density Functional Theory, Effective Potential, Electronic Energies, 
Kohn-Sham Equation 

 

1. Introduction 

Numerical approach of many-electron systems is extremely difficult computa-
tion. Density functional theory (DFT) [1] [2] is a computational quantum me-
chanical modeling method used to investigate many-electron systems, in partic-
ular atoms, molecules, and the condensed phases [3] [4]. It provides a powerful 
alternative technique to ab-initio wave function approach, since the electron 
density ( )ρ r  possesses only three spatial dimensions no matter how large the 
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system is. The DFT proves accurate and computationally much less expensive 
than usual ab-initio wave function methods, such as a Hartree Fock method. 
However, the majority of the applications are restricted to the ground states. The 
exchange-correlation energy functional, which is a functional of the total elec-
tron density, is not known exactly, and thus approximate exchange-correlation 
energy functional must be used. Moreover, while the highest-occupied orbital 
energy corresponds to the negative of the ionization potential for well-behaved 
potentials vanishing at infinity, energies of other occupied and unoccupied or-
bitals have no rigorous correspondence to the excitation energies. Nevertheless, 
it has been shown recently [5] that the unoccupied true Kohn-Sham eigenvalues 
can also provide good excitation energies which the commonly used approx-
imate density functionals usually do not satisfy. Nevertheless, numerous at-
tempts [3] [6] have been made in this direction over the years; the ensemble 
density functional method [7] [8] [9] [10] [11], the method based on partition-
ing of the wave function, the time-dependent density functional theory (TDDFT) 
approach [12] [13] [14] [15]. The DFT based upon the Hohenberg-Kohn (HK) 
energy functional [3] [4] focuses on the solution of exchange-correlation energy 
and it had been used in many calculations of ground state properties an atomic 
system. An efficient and accurate grid method for solving the time-dependent 
Schrödinger equation for an atomic system interacting with an intense laser 
pulse has been shown by Liang-Y.Peng and A.F. Starace [16]. Instead of the 
usual finite difference (FD) method, the radial coordinate is discretized using the 
discrete variable representation (DVR) constructed from Coulomb wave func-
tions. The DVR method has its origin in the transformation method devised by 
Harris et al. [17], where it was further developed by Dickinson and Certain [18]. 
Light et al. [19] first explicitly used the DVR method as a basis representation for 
quantum problems, where after different types of DVR methods have found 
wide applications in different fields of physical and chemical problems. The 
DVR method gives an idea; associated basis functions are localized about dis-
crete values of the coordinate under consideration. The DVR simplifies the 
evaluation of Hamiltonian matrix elements. The matrix elements of kinetic 
energy can also be calculated very simply and analytically in most cases [20]. 
Since the CWDVR method is able to treat the Coulomb singularity naturally, it 
is suitable for atomic systems [16]. The Kohn-Sham equation is shown to be 
solved by the Coulomb wave function discrete variable representation method. 

To the best of our knowledge, no one reported the solution of the Kohn-Sham 
equation on the ground state problem for the many-electronic atoms by the 
CWDVR method. Furthermore, we accurately present the ground state energies 
of the many-electronic atoms by the CWDVR method.  

This paper consists of methodology and results obtained within the CWDVR 
method. We show that ground state energy values calculated by the present me-
thod are in good agreement with other precise theoretical calculations. Finally, 
we present conclusions. Here, atomic units (a.u.) are used throughout this paper 
unless otherwise specified. 
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2. CWDVR Method 

In this section, we first give a brief introduction to the DVR constructed from 
orthogonal polynomials and Coulomb wave functions, which will be used to 
solve the Kohn-Sham equation for many-electron atomic systems. The DVR ap-
proach basis functions can be constructed from any complete set of orthogonal 
polynomials, defined in the domain with the corresponding weight function 
[21].  

It is known that a Gaussian quadrature can also be constructed using nonclas-
sical polynomials. The DVR derived from the Legendre polynomials has been 
shown by Machtoub and Zhang [22] to provide very precise results for the me-
tastable states of the exotic helium atom. An appropriate quadrature rule for the 
Coulomb wave function was given by Dunseath et al. [23] with explicit expres-
sions for the weights.  

It is known that a Gaussian quadrature can also be constructed using nonclas-
sical polynomials. The DVR derived from the Legendre polynomials has been 
shown by Machtoub and Zhang [22] to provide very precise results for the me-
tastable states of the exotic helium atom. An appropriate quadrature rule for the 
Coulomb wave function was given by Dunseath et al. [23] with explicit expres-
sions for the weights.  

The time dependent single particle Kohn-Sham equation has the form 

( ) ( ) ( )0

,
, , 1,j

eff j

t
i H t j N

t
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υ ψ
∂

= + =
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             (1) 

here, ( ), tψ r  is the single particle Kohn-Sham orbit of N electron atom, 0H


—atomic Hamiltonian, effυ  is the time dependent effective potential, and 
charge density depends on the coordinates and time and is given by  

( ) ( ) 2

1

N

j
j

ρ ψ
=

= ∑r r                      (2) 

However, one can write Equation (1) in imaginary time τ  and substitute 
itτ = − , t being the real time, to obtain a diffusion-type equations: 
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j
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R t
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The Kohn-Sham effective local potential contains both classical and quantum 
potentials and can be written as: 

[ ]; , ee ne xc ext
eff

E E E E
t

δ δ δ δ
υ ρ

δρ δρ δρ δρ
= + + +r .           (4) 

here; the first term is inter-electronic Coulomb repulsion, the second is the elec-
tron-nuclear attraction term, the third is exchange-correlation term, and last 
term comes from interaction with the external field (in the present case, this in-
teraction is zero). A simple local energy functional form has been applied for the 
atoms, and the exchange part can be found to be [24],  
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The simple local parameterized Wigner-type correlation energy functional [25] 
used for ground states: 

1 3 dcE
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where: 9.81a = , 21.437b = , 28.582667c =  are respectively. 
The solution of Equation (1) is used split time method, for split time t∆ . It 

can be written 

( ) ( )0 0ˆ ˆˆ2 2, e e e ,tH tHV tR t t R t−∆ − ∆− ∆+ ∆ ≅r r               (9) 

One of the main features of the DVR is that a function ( ),R tr  can be ap-
proximated by interpolation through the given grid points:  

( ) ( ) ( )
0

N

j j
j

R r R r g r
=

≅ ∑                      (10) 

here: ( )jR r  is the interpolation function, ( )jg r  is the cardinal function.  
The Coulomb wave function is defined by radial grid points. Interpolation 

function is obtained by using the radial function that is derived from the cardin-
al functions.  

By noting that ( )F r  is the Coulomb function, ( )F r′  is the first derivative 
from ( )F r  at the position jr , jψ  is found to be ( ) ( )j R r F rψ ′= . 

The propagation in the energy space (step first in equation) can now be 
achieved through 

( ) ( ) ( )0 0ˆ ˆ2 2

0
e e .

N
H t H t

j j
j

R r R r g r− ∆ − ∆

=

= ∑               (11) 

The cardinal functions ( )jg r  in Equation (10) are given by the following 
expression  

( ) ( )
( )1

j
jj

F r
g r

r rF r
=

−′
                     (12) 

where the points ( )1,2, ,jr j N=   are the zeros of the Coulomb wave function 
( )F r  and ( )jF r′  stands for its first derivative at jr  and ( )jg r  satisfies the 

cardinality condition 

( )j i ijg r δ= .                         (13) 
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Since the Coulomb wave functions was expressed in quadrature rule with ex-
pressions for the weight jω , then DVR basis function ( )jF r  satisfies the ei-
genvalue for the radial Kohn-Sham type equation:  

( ) ( ) ( )Ĥ r r E rψ ψ=                      (14)  

and  

( ) ( )
2

2
ˆ .

2
dH r V r
d

= − +                      (15) 

The DVR greatly simplifies the evaluation of Hamiltonian matrix elements. 
The potential matrix elements involve merely the evaluation of the interaction 
potential at the DVR grid points, where no integration is needed.  

The DVR basis function ( )jf r  is constructed from the cardinal function 

jg  as follows 

( ) ( )1
j j

j

f r g r
ω

= ,                      (16) 

here the weight jω  is given by [23]: 

2j
ja

ω ≈
π .                           (17) 

( )j ja F r′=                           (18) 

The second derivative of the cardinal function jg ′′  is given,  
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where ka  is given by Equation (18) and kc . Here kinetic energy matrix ele-
ments ijD  calculated using: 

( )2 2k kc a E Z r= − + ,                     (20) 
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In the Equation (15), to expand ( )jR r  in the eigenvectors of the Hamilto-
nian 0Ĥ , we first solve the eigenvalue problem for 0Ĥ  after discretization of 
coordinate, the differential equation for this problem can be written as: 

( )
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ij j ij kj k kj
j
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here ijD  denotes the symmetrized second derivative of the cardinal function 
that is given as, 
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Equation (2) is then numerically solved to achieve a self-consistent set of or-
bitals, using the DVR method. These orbitals are used to construct various Slater 
determinants arising out of that particular electronic configuration and its ener-
gies computed in the usual manner.  

A key step in the time propagation of Equation (9) is to construct the evolu-
tion operator ( )0ˆ 2e H t S− ∆ ≅

  through an accurate and efficient representation 
of 0Ĥ



. Here we extend the DVR method to achieve optimal grid discretization 
and an accurate solution of the eigenvalue problem of 0Ĥ



.  
In the present work, we are particularly interested in the exploration of the 

improvement of the Kohn Sham type equation in electron structure calculation. 
Thus we choose the Slater wave function as our initial state at 0t = . Note that, 
the differential equation for time propagation is normalized at each time step. 
Here the 152 grid points are used for the DVR discretization of the radial coor-
dinates and 0.001 a.ut∆ = , with 500 iterations is used in the time propagation 
to achieve convergence.  

3. Results and Discussions  

In this section we present results from nonrelativistic electronic structure calcula-
tion of the ground states of He, Li, Be, B, C, N and O atoms. Wolfram Mathema-
tica Software has used for the calculations. Here, parameters of the Coulomb 
wave function such as wave number and effective charges are chosen to be 

2 3k E= =  and 400Z = . Table 1 summarizes the main results for the men-
tioned atoms. The first row shows the present results. The results from the Amlan  
 
Table 1. Calculated ground-state properties of He, Li, Be, B, C, N and O atoms (in au) 
along with literature data for comparison. 

 He Li Be B C N O 

−E 

Present work 2.900 7.3197 14.582 24.779 37.9484 55.625 74.795 

Hartree-Fock [3] 2.8617 7.4332 14.573 24.529 37.688 54.400 74.809 

Roy [26] 2.8973 7.221 14.221 23.964 36.953 53.407 73.451 

−Z/r 
Present work 6.853 17.054 33.447 56.728 88.447 128.915 178.317 

Hartree-Fock [3] 6.749 17.115 34.072 58.143 88.649 127.326 176.324 

−Ex 

Present work 1.039 1.752 2.656 3.732 5.0416 6.527 8.223 

Hartree-Fock [3] 1.026 1.781 2.667 3.744 5.045 6.596 8.174 

Roy [26] 1.032 1.574 2.404 3.478 4.640 5.987 7.490 

−Ec 

Present work 0.0424 0.0659 0.093 0.1252 0.1637 0.2058 0.2524 

Hartree-Fock [3] 0.0423 0.0435 0.094 0.111 0.1560 0.1890 0.2412 

Roy [26] 0.0423 0.154 0.322 0.302 0.368 0.434 0.543 

T 

Present work 2.960 7.301 14.172 23.888 37.301 53.536 74.825 

Hartree-Fock [3] 2.8617 7.433 14.573 24.529 37.688 54.401 74.810 

Roy [26] 2.8974 7.382 14.844 25.300 37.924 53.664 73.444 
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K Roy [26] for energies for the ground states for He, Li, Be, B, C, N and O atoms 
are shown below the present results. The corresponding Hartree-Fock values 
from the literature are listed for comparison. For all atoms considered, we found 
the present results of the total electronic energies considerably match the Hart-
ree-Fock values and are significantly better than the results from Amlan K Roy 
[26].  

It is satisfying that the CWDVR approach can be used to perform a high pre-
cision calculation of the Kohn-Sham type equation with the use of only a few 
grid points.  

Analyses of the results for exchange and correlation energies are given in the 
same table separately. The results from exchange energies (Ex) calculations of 
the present calculations show a good agreement with the Hartree-Fock results 
[3]. For the Be, B, C and O atoms, the calculated exchange energy is nearly exact, 
while for He, Li and N, there is an underestimation by 1.05% - 1.63%. The cal-
culated exchange energy for He and N gives close results to Amlan J Roy, unde-
restimated about 0.68% - 1.05%, the rest atoms are being the worst case. This in-
dicates that the simple local exchange functional in Equation (5) is well accurate, 
compared to those of Amlan J Roy [26], which show a closer agreement with 
Hartree-Fock exchange energies.  

The “exact” correlation energies are considered for the Li, Be, B, C, N and O 
atoms in Table 1 due to the comparison with other results. The Wigner-type 
correlation energy functional likely seems to be sufficiently enough for the sys-
tems considered. Compared with Hartree-Fock results for He, Be, C and O 
atoms, it is nearly exact, otherwise underestimated by about 0.24% - 4.94%; the 
Li, B and N atoms are being the worst case. The calculated correlation energy for 
He atom is nearly exact to Amlan J Roy, but worse results for other atoms.  

We note that the primary purpose of this work is to explore the feasibility of 
extending the CWDVR to the solution of the Kohn-Sham type differential equa-
tion with imaginary time propagation. LDA-type xc energy functional can be 
easily adopted in the present CWDVR approach.  

Table 1 shows that the virial theorem is nearly satisfied for all atoms. The 
calculated kinetic energy term for the O atom is reasonably exact to Hart-
ree-Fock, while for rest atoms there is an underestimation by 1.03% - 3.44%.  

The results for total energies are given in the same table separately. The results 
from total energies calculations of the present calculations show a good agree-
ment with the Hartree-Fock results [3]. For the Be, and O atoms, the calculated 
exchange energy is nearly exact, while for rest atoms there is an underestimation 
by 1.02% - 2.25%. This indicates that the total energy functional is well accurate, 
compared to those of Amlan J Roy [26], which show a closer agreement with 
Hartree-Fock total energies.  

Results from the calculations of radial densities of atoms were created images 
of correspondent plots. Examples of radial density plots are shown in Figure 1 
and Figure 2. In Figure 1, we report the radial density plots for beryllium. The 
inset (a) reports the result from the present calculation; the inset (b) shows the  

https://doi.org/10.4236/jmp.2019.109073


N. Davgiikhorol et al. 
 

 

DOI: 10.4236/jmp.2019.109073 1141 Journal of Modern Physics 
 

 
Figure 1. Radial density plot of Be (in au). The inset (a) 
reports the result from the present calculation; the inset 
(b) shows the Hartree-Fock plot for comparison. 

 

 
Figure 2. Radial density plot of C (in au) obtained from 
the present calculation. 

 
Hartree-Fock plot for comparison. Here, the radial density plot shape from our 
calculation is in good agreement with Hartree-Fock plot [3]. 

Figure 2 shows the radial density plot for carbon. We note that the radial 
density of carbon calculated maintain the expected shell structure and closely 
resemble the Hartree-Fock density, where Hartree-Fock plot is not shown.  

4. Conclusion 

In this paper, we present that nonrelativistic ground-state properties of He, Li, 
Be, B, C, N and O atoms can be calculated by means of time-dependent 
Kohn-Sham equations and an imaginary time evolution methods. The CWDVR 
approach is shown to be an efficient and precise solution of ground-state ener-
gies of atoms. The calculated electronic energies are in good agreement with the 
Hartree-Fock values and are significantly better than the results in the literature 
[26]. The approach likely opens a road to the solution of ionization and excita-
tion states of many electron atoms.  

Acknowledgements 

This work was supported by the Science Technology Foundation Project (Code: 

https://doi.org/10.4236/jmp.2019.109073


N. Davgiikhorol et al. 
 

 

DOI: 10.4236/jmp.2019.109073 1142 Journal of Modern Physics 
 

ShUS-2019/08) of Mongolia. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Hohenberg, P. and Kohn, W. (1964) Physical Review, 136, B864.  

https://doi.org/10.1103/PhysRev.136.B864 

[2] Kohn, W. and Sham, L.J. (1965) Physical Review, 140, A1133.  
https://doi.org/10.1103/PhysRev.140.A1133 

[3] Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Mole-
cules. Oxford Univ. Press, New York. 

[4] Gross, E.K.U. and Dreizler, R.M. (1995) Density Functional Theory. Plenum, New 
York. 

[5] Savin, A., Umrigar, C.J. and Gonze, X. (1998) Chemical Physics Letters, 288, 
391-395. https://doi.org/10.1016/S0009-2614(98)00316-9 

[6] Singh, R. and Deb, B.M. (1999) Physics Reports, 311, 47.  
https://doi.org/10.1016/S0370-1573(98)00081-7 

[7] von Barth, U. (1979) Physical Review A, 20, 1693.  
https://doi.org/10.1103/PhysRevA.20.1693 

[8] Ziegler, T., Rauk, A. and Baerends, E.J. (1977) Theoretica Chimica Acta, 43, 261.  
https://doi.org/10.1007/BF00551551 

[9] Ziegler, T. (1991) Chemical Reviews, 91, 651. https://doi.org/10.1021/cr00005a001 

[10] Daul, C. (1994) International Journal of Quantum Chemistry, 52, 867.  
https://doi.org/10.1002/qua.560520414 

[11] Nagy, A. (1991) Journal of Physics B, 24, 4691. 
https://doi.org/10.1088/0953-4075/29/3/007 

[12] Petersilka, M., Gossmann, U.J. and Gross, E.K.U. (1996) Physical Review Letters, 
76, 1212. https://doi.org/10.1103/PhysRevLett.76.1212 

[13] Petersilka, M. and Gross, E.K.U. (1996) International Journal of Quantum Chemi-
stry, 60, 181.  
https://doi.org/10.1002/(SICI)1097-461X(1996)60:7<1393::AID-QUA21>3.0.CO;2-4 

[14] Casida, M.E., Jamorski, C., Casida, K.C. and Salahub, D.R. (1998) The Journal of 
Chemical Physics, 108, 4439. https://doi.org/10.1063/1.475855 

[15] Grabo, T., Petersilka, M. and Gross, E.K.U. (2000) Journal of Molecular Structure: 
THEOCHEM, 501, 353. https://doi.org/10.1016/S0166-1280(99)00445-5 

[16] Peng, L.-Y. and Starace, A.F. (2006) The Journal of Chemical Physics, 125, Article 
ID: 154311. https://doi.org/10.1063/1.2358351 

[17] Harris, D.O., Engerholm, G.G. and Gwinn, W.D. (1965) The Journal of Chemical 
Physics, 43, 1515. https://doi.org/10.1063/1.1696963 

[18] Dickinson, A.S. and Certain, P.R. (1968) The Journal of Chemical Physics, 49, 
4209-4211. https://doi.org/10.1063/1.1670738 

[19] Lill, J.V., Parker, G.A. and Light, J.C. (1982) Chemical Physics Letters, 89, 483.  
https://doi.org/10.1016/0009-2614(82)83051-0 

https://doi.org/10.4236/jmp.2019.109073
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1016/S0009-2614(98)00316-9
https://doi.org/10.1016/S0370-1573(98)00081-7
https://doi.org/10.1103/PhysRevA.20.1693
https://doi.org/10.1007/BF00551551
https://doi.org/10.1021/cr00005a001
https://doi.org/10.1002/qua.560520414
https://doi.org/10.1088/0953-4075/29/3/007
https://doi.org/10.1103/PhysRevLett.76.1212
https://doi.org/10.1002/(SICI)1097-461X(1996)60:7%3C1393::AID-QUA21%3E3.0.CO;2-4
https://doi.org/10.1063/1.475855
https://doi.org/10.1016/S0166-1280(99)00445-5
https://doi.org/10.1063/1.2358351
https://doi.org/10.1063/1.1696963
https://doi.org/10.1063/1.1670738
https://doi.org/10.1016/0009-2614(82)83051-0


N. Davgiikhorol et al. 
 

 

DOI: 10.4236/jmp.2019.109073 1143 Journal of Modern Physics 
 

[20] Heather, R.W. and Light, J.C. (1983) The Journal of Chemical Physics, 79, 147.  
https://doi.org/10.1063/1.445574 

[21] Baye, D. and Heenen, P.H. (1986) Journal of Physics A, 19, 2041.  
https://doi.org/10.1088/0305-4470/19/11/013 

[22] Machtoub, G. and Zhang, C. (2002) International Journal of Theoretical Physics, 
41, 293. https://doi.org/10.1023/A:1014010923548 

[23] Dunseath, K.M., Launay, J.M., Terao-Dunseath, M. and Mouret, L. (2002) Journal 
of Physics B, 35, 3539. https://doi.org/10.1088/0953-4075/35/16/313 

[24] Deb, B.M. and Chattaraj, P.K. (1989) Physical Review A, 39, 1696.  
https://doi.org/10.1103/PhysRevA.39.1696 

[25] Roy, A.K. and Chu, S.-I. (2002) Journal of Physics B: Atomic, Molecular and Optical 
Physics, 35, 2075-2086. 

[26] Roy, A.K. (2011) Journal of Mathematical Chemistry, 49, 1687-1699.  
https://doi.org/10.1007/s10910-011-9851-2 

https://doi.org/10.4236/jmp.2019.109073
https://doi.org/10.1063/1.445574
https://doi.org/10.1088/0305-4470/19/11/013
https://doi.org/10.1023/A:1014010923548
https://doi.org/10.1088/0953-4075/35/16/313
https://doi.org/10.1103/PhysRevA.39.1696
https://doi.org/10.1007/s10910-011-9851-2

	Imaginary Time Density Functional Calculation of Ground States of Atoms Using CWDVR Approach
	Abstract
	Keywords
	1. Introduction
	2. CWDVR Method
	3. Results and Discussions 
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

