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Abstract 
The self-gravitating systems a priory are non-equilibrium. The new approach, 
based on non-equilibrium statistical operator, which allows taking into ac-
count inhomogeneous distribution of particles and temperature, has been 
proposed. Such method employs a saddle point procedure to find dominant 
contributions to the partition function and permits to obtain all thermody-
namic parameters of the system. Statistical induced dynamic and behavioral 
peculiarities of self-gravitating systems for different conditions have been 
predicted. 
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1. Introduction 

The statistical description of a system of interacting particles has a fundamental 
physical interest. In that context, the interacting system provides a model of 
fundamental interest for which ideas of statistical mechanics and thermody-
namics can be tested and developed. For self-gravitating system the thermody-
namical ensemble can be nonequivalent [1] [2]. In particular, since energy is 
not-additive, and cannot use the canonical ensemble to study the system with 
long-range interaction. Since equilibrium states are only local entropy maxi-
mum. 

Two type approaches (statistical and thermodynamic) have been developed to 
determine the equilibrium states of the interacting system and describe possible 
phase transition. It is generally believed that mean field theory is exact for sys-
tems. Since in mean field theory any thermodynamical function depends on the 
thermodynamical variables only through the dimensionless combinations and 
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the system is thermodynamically stable but the thermodynamical limit does exist 
[3]. 

Formation of the spatially inhomogeneous distribution of interaction particles 
is a typical problem in condensed matter physics and requires non-conventional 
methods of the statistical description of the system tailored to gravitational inte-
racting particles with regard for an arbitrary spatially inhomogeneous particles 
distribution. Statistical description must employ the procedure to find dominant 
contributions to the partition function and to avoid entropy divergences for 
infinite system volume. Formation of the inhomogeneous distribution of inte-
raction particles requires a non-conventional method, which was proposal in [4] 
[5] [6] [7] [8]. This method is based on Hubbard-Stratonovich representation of 
statistical sum [9] which is now extended and applied to the self-gravitating sys-
tem to find solution for particles distribution without using spatial box restric-
tions. It is important that this solution has no divergences in thermodynamic 
limits. For this goal using the saddle point approximation took into account the 
conservation number of particles in limiting space and provided to nonlinear 
equation. The partition function in the case of homogeneous distribution of the 
particles, and in case of inhomogeneous distribution was obtained in [5] [6] 
[10], but in this approach described only condition in the formation of the poss-
ible inhomogeneous distribution of the interacting particles. 

Systems with long-range interactions, such as self-gravitating system do not 
relax to the usual Boltzmann-Gibbs thermodynamic equilibrium, but become 
trapped in quasi-stationary states, the lifetime of which diverges with the 
number of particles. The instability threshold was predicted for spontaneous 
symmetry breaking for a class of d-dimensional systems [11]. Non-equilibrium 
stationary states of systems were described in article [12] where concluded that 
three-dimensional systems do not evolve to thermodynamic equilibrium but 
trap in non-equilibrium quasi-stationary states. 

Mostly due to the fact that self-gravitating system exist in a states that far from 
equilibrium and the relaxation time to equilibrium state is very long. The ho-
mogeneous particle distribution in a self-gravitating system is not stable. The 
particles distribution in such a system is inhomogeneous in space, from the be-
ginning. There is standardized behavior of the interacting system, it is described 
differently for different equilibrium ensembles. That approach does not seem to 
be very consistent, due to the fact that, the state equation has to come from the 
definition of partition function, but the definition of it is unknown for the space 
inhomogeneous systems [13] [14]. Therefore, there is a dilemma, either to take 
the postulates of equilibrium statistical mechanics to obtain only instability 
criteria or not to try to account for the space in homogeneity using different ap-
proach. Such inhomogeneous distribution of the particles, temperature and 
chemical potential can be accounted for in non-equilibrium statistical operator 
approach [15], where possibility of local change of thermodynamic parameters is 
included. This system is non-equilibrium and inhomogeneous distribution of 
particle can motivate the inhomogeneous distribution of temperature and 
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chemical potential and other thermodynamic parameter. 
In this article are proposed the new approach, based on non-equilibrium 

statistic operator [15], which are more suitable for the description of a self- 
gravitating systems. The equation of state and all thermodynamic characteris-
tics needed are defined by the equations which contribute the most to the par-
tition function. Therefore, there is no need to introduce additional hypothesis 
about temperature on density dependence. This dependence is an outcome of 
solving corresponding thermodynamic relations, which describe extreme of 
non-equilibrium partition function. The possible space inhomogeneous distri-
butions of particles and temperature have been obtained for the simple cases. 
For the equilibrium case the well-known result [16] [17] of partition function 
has been reproduced. Has been shown, that used this approach can describe 
inhomogeneous distribution of particle and determine necessary parameter in 
the self -gravitating system. The main idea of this paper is to provide a possi-
ble detailed description of self -gravitating system based on the principles of 
non-equilibrium statistical mechanics and obtain possible distribution par-
ticle by fixed number of particle and energy of the system. After that we can de-
termine the dynamic of self -gravitating system which induced the statistical 
principles and low increasing the entropy in the case existence the thermody-
namic limit. 

2. Nonequilibrium Statistical Operator 

Phenomenological thermodynamic based on the conservation lows for average 
value of physical parameter as number of particles, energy and impulse. 
Statistical thermodynamic non-equilibrium system based too on conservation 
lows not the average value dynamic variables but in particular for this dynamic 
variable. It present local conservation lows for dynamic variables. For the deter-
mination thermodynamic function of non- equilibrium system are teed use the 
presentation of corresponding statistical ensembles which take into account the 
non-equilibrium states of this systems. The conception of Gibbs ensembles can 
brings to description non-equilibrium stationary states of system. In this case 
can determine non-equilibrium ensemble as totality of system which be con-
tained in same stationary external action. This system has same character of 
contact with thermostat and possess all possible value macroscopic parameters 
which compatibility present conditions. In system, which are in same stationary 
external condition will are formed local equilibrium stationary distribution. If 
external condition will be depend from time that local equilibrium distribution 
are not stationary. For exactly determination local equilibrium ensemble must 
accordingly determine the distribution function or statistical operator of the 
system [15], finally, can recall that the stable states on the series of equilibrium 
of classical self-gravitating particles are only metastable because they correspond 
to local maximal of entropy from which can determine behavior of the system. 

If assume that non-equilibrium states of system can determine through in-
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homogeneous distribution energy ( )H r  and number of particles (density) 
( )n r  the local equilibrium distribution function for classical system can write 

in the form [15]: 

( ) ( ) ( ) ( )( ){ }1 exp dl lf Q H nβ η−= − −∫ r r r r r              (1) 

where 

( ) ( ) ( ) ( )( ){ }exp dlQ D H nβ η= Γ − −∫ ∫ r r r r r             (2) 

present determination of statistical operator local equilibrium distribution. The 
integration in present formula must take over all phase space of system. Must 
note, that in the case local equilibrium distribution Lagrange multipliers ( )β r  
and ( )η r  are function of spatial point. The microscopic density of particles 
can present in standard form: 

( ) ( )i
i

n δ= −∑r r r                        (3) 

The introduction local equilibrium distribution are possible if relaxation time 
in all system is more as relaxation time on local macroscopically area as part of 
this system. 

After determination of non-equilibrium statistical operator can obtain all 
thermodynamic parameter non-equilibrium system. For this can determine 
thermodynamic relation for inhomogeneous systems. The variation of statistical 
operator by Lagrange multipliers can write necessary thermodynamic relation in 

the form [15]: 
( ) ( )ln l

l

Q
H

δ
δβ

− = r
r

 and 
( ) ( )ln l

l

Q
n

δ
δη

= r
r

. This relation is nat-

ural general prolongation well-known relation which take place in the case equi-
librium systems, on the case inhomogeneous system. The conservation number 
of particles and energy in system can present in form natural relations 

( )dn N=∫ r r  and ( )dH E=∫ r r  

For further statistical description of non-equilibrium system is necessary 
determine Hamiltonian of system. In general case Hamiltonian of system inte-
racting particle can present as: 

( )
2

,

1
2 2

i
i j

i i j

p
H W

m
= −∑ ∑ r r                       (4) 

where ( )i jW r r  determine the attractive interaction energy. Further will be use 
only density of energy which for self-gravitating system can write in the follow-
ing form: 

( ) ( ) ( ) ( ) ( ) ( )
2 1 , d
2 2

p
H n W n n

m
′ ′ ′= − ∫

r
r r r r r r r              (5) 

This density energy of a system is possible to use if we smash to equal bits all 
space with equal mass and consider moving in phase space not compressed gra-
vitational fluid. In our case interacting system can write are non-equilibrium 
statistical operator in the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1exp d ,
2 2l

p
Q D n W n n

m
β η β

   ′ ′= Γ − − +      
∫ ∫ ∫

r
r r r r r r r r r (6) 

https://doi.org/10.4236/jmp.2019.107049


B. I. Lev 
 

 

DOI: 10.4236/jmp.2019.107049 691 Journal of Modern Physics 
 

The integration over phase space can present as 
( )3

1 d d
2π

i i
i

D r pΓ = ∏


. 

In order to perform a formal integration in second part of this presentation, 
additional field variables can be introduced making use of the theory of Gaus-
sian integrals [8] [9]: 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

2

2
1

exp , d d
2

exp d d d
2

n n

D n

ν β ω

νσ β ω σ σ ν β σ
−

 
′ ′ ′− 

 
 

′ ′= − − 
 

∫

∫ ∫ ∫

r r r r r r r

r r r r r r r r r r
(7) 

where 
( )

d

det 2π ,

s
sD

σ
σ

βω
=

′

∏
r r

 and ( )1 ,ω− ′r r  is the inverse operator which 

satisfies the condition ( ) ( ) ( )1 , ,ω ω δ− ′ ′ ′′ ′′= −r r r r r r , that means: the interac-

tion energy presented the Green function for this operator and 2 1ν = ±  de-
pending on the sign of the interaction or the potential energy. After present 
manipulation the field variable ( )σ r  contains the same information as original 

distribution function, i.e. all information about possible spatial states of the sys-
tems. 

After this manipulation the statistical operator can rewrite in the form: 

( ) ( ) ( ) ( ) ( ) ( )
2

exp d
2l int

p
Q D D n Q

m
ψ β η β ψ

   = Γ − − −      
∫ ∫ ∫

r
r r r r r r  (8) 

where part which cam from interaction 

( ) ( )( ) ( ) ( )11exp , d d
2intQ Wβ ψ ψ

− ′ ′ ′= − 
 ∫ r r r r r r r          (9) 

In this general functional integral can be provide the integration on phase 
space. If use the definition of density we can rewrite the non-equilibrium statis-
tical operator as: 

( )
( ) ( ) ( ) ( )

2

3

1 d d exp
22π !

i
l i i i i i i int

i

p
Q D r p Q

mN
ψ ξ β β ψ

   = − −  
   

∏∫ ∫


r r r r (10) 

where introduce the new variable ( ) ( )expξ η≡r r  which can interpreter as 
chemical activity. Now can make integration over impulse. Real part of 
non-equilibrium statistical operator take the form: 

( )
( )

( ) ( )( )
3
2

3

1 2πd exp
!l int i i i i

i i

mQ D D Q r
N

ϕ ψ ξ β ψ
β

 
=   

 
∏∫ ∫ ∫



r r r
r

     (11) 

( )
( )

( ) ( )( )
3
2

3

1 2πd exp
!

N

l int
N

mQ D D Q
N

ϕ ψ ξ β ψ
β

 
  =    
  

 

∑∫ ∫ ∫


r r r r
r

    (12) 

After that the non-equilibrium statistical operator take the simple form: 
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( )
( )

( ) ( )
3
2

3

2πexp exp dl int
mQ D D Q rϕ ψ ξ β ψ

β

  
   =          

∫ ∫ ∫


r r r
r

   (13) 

In definition intQ  are the reverse operator of interaction energy. For further 
description we must determine this inverse operator. For general case of long 
range interaction as Coulomb like or Newtonian gravitational interaction in 
continuum limit should be treated in the operator sense, i.e. 

( ) ( )1
2

1,
4π

W
Gm

δ− ′ ′= − ∆ −rr r r r                  (14) 

where ∆r  is Laplace operator in real space. Gravitation interaction energy in 
three dimensional case can write in well-known form 

( )
2

, GmW ′ =
′−

r r
r r

                        (15) 

G is gravitational constant and m is mass of separate area. For long range in-
teraction between particle we can rewrite the non-equilibrium statistical opera-
tor in the form: 

( )2 31exp exp d
2lQ D

rψ
ψ ψ ξ βψ−

    = − ∇ − Λ       
∫ ∫ r         (16) 

where all function , ,β ϕ ψ  are dependence from spatial point. In this presenta-
tion was using the definition thermal de-Broglie wavelength and definition of 
interaction length as 

( )
( )

( ) ( )1 2
2

2 , 4π ,m r Gm rψ β
β

−  
Λ = =  

 

r r
r

            (17) 

In general case the non-equilibrium statistical operator can rewrite in the 
form: 

( ) ( ) ( )( ){ }exp , ,lQ D Sψ ψ ξ β= −∫ r r r               (18) 

where effective non-equilibrium “local entropy” take the form: 

( )( ) ( ) ( ) ( )2 31 exp d
2

S r
rψ

ψ ξ β ψ−
 

= ∇ − Λ 
  
∫ r r r r         (19) 

The statistical operator allows obtain use the of efficient methods developed in 
the quantum field theory without imposing additional restrictions of integration 
over field variables or the perturbation theory. The functional  

( ) ( ) ( )( ), ,S rϕ ξ βr r  depends on the distribution of the field variables ( )ϕ r , 

the chemical activity ( )ξ r  and inverse temperature ( )β r . The saddle point 

method can now be further employed to find the asymptotic value of the statis-
tical operator lQ  for increasing number of particles N to ∞ . The dominant 
contribution is given by the states which satisfy the extreme condition for the 

https://doi.org/10.4236/jmp.2019.107049


B. I. Lev 
 

 

DOI: 10.4236/jmp.2019.107049 693 Journal of Modern Physics 
 

functional. It’s easy to see that saddle point equation present thermodynamic re-
lation and it can write in the other form as: equation for field variable 

( )
0Sδ

δψ
=

r
 for the normalization condition  

( )( ) ( )( ) ( )dS S Nδ δ ξ
δ η δ ξ

= − =∫ r r
r r

 and for the conservation the energy of the 

system 
( )( ) ( )dS Eδ ξ

δ β
− =∫ r r

r
 Solution of this equation fully determine all 

thermodynamic parameter and describe general behavior of interacting system, 
whether this distribution of particles is spatially inhomogeneous or not. The 
above set of equations in principle solves the many-particle problem in 
thermodynamic limit. The spatially inhomogeneous solution of this equations 
correspondent the distribution of the interacting particles. Such inhomogeneous 
behavior is associated with the nature and intensity of the interaction. In other 
words, accumulation of particles in a finite spatial region (formation of a cluster) 
reflects the spatial distribution of the fields, the activity and temperature. Very 
important note, that only in this approach can take into account the inhomoge-
neous distribution temperature, which can depend from spatial distribution of 
particle in system. 

3. Saddle-Point Equation for Self-Gravitating System 

The solution of saddle-point equation completely determines all the thermody-
namic parameters and describes the general behavior of a self-gravitating system 
both for spatially homogeneous and inhomogeneous particle distributions. The 
above set of equations in principle solves the many-particle problem in the 
thermodynamic limit. The spatially inhomogeneous solution of these equations 
corresponds to the distribution of the interacting particles. Such inhomogeneous 
behavior is associated with the nature and intensity of the interaction. In other 
words, accumulation of the particles in a finite spatial region (cluster formation) 
reflects the spatial distribution of the field, activity, and temperature. It is very 
important to note that only this approach makes it possible to take into account 
the inhomogeneity of temperature distribution that may depend on the spatial 
distribution of the particles in the system. In other approaches [2] the depen-
dence of the temperature on a spatial point is introduced through the poly-
trophic dependence of temperature on particle density in the equation of state 
[18]. In the present approach, such dependence follows from the necessary 
thermodynamic condition, and can be found for various particle distributions. 
Now we derive the saddle-point equation for the extreme of the local entropy 

functional ( ), ,S ψ ξ β . The equation for the field variable 0Sδ
δψ

=  in the case 

0λ =  and absent repulsive interaction 0ϕ =  yields. 

( ) ( )
( )

( ) ( ) ( )( )
3
2

2

1 2π exp 0,
m

m r r
r

ψ ξ β β ψ
β

 
∆ + =  

 

r r r
r

      (20) 

where the notation 24πmr Gm≡  is introduced. The normalization condition 
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may be written as 

( )
( )

( ) ( )( )
3
2

2

2 exp dm r Nξ β ψ
β

 
=  

 
∫



r r r
r

            (21) 

and the equation for the energy conservation in the system is given by 

( )
( )
( ) ( ) ( )( ) ( ) ( )( )

3
2

2

1 2π 3 exp d .
2

m r r E
ξ

β ψ β ψ
ββ

 
− =  

 
∫


r
r r r

rr
   (22) 

To draw more information on the behavior of a self-gravitating system, we 
introduce new variables. The normalization condition ( )d Nρ =∫ r r  yields the 
definition for the density function, i.e., 

( )
( )

( ) ( ) ( )( )
3
2

2

2π exp ,mρ ξ β ψ
β

 
≡   
 

r r r r
r

             (23) 

which reduces the equations to a simpler form. The equation for the field varia-
ble is given by 

( ) ( ) ( ) 0.mrψ β ρ∆ + =r r r                     (24) 

In the case constant temperature and chemical activity, this equation trans-
form into an equation for gravitational potential ( )ψ β ψ= r  in the 
well-known form: 

( ) ( )24π .Gmψ βρ∆ = −r r                      (25) 

The equation for energy conservation takes the form 

( )
( ) ( ) ( )( )1 3 d .

2
r E

ρ
β ψ

β
− =∫

r
r r

r
                 (26) 

Hereinafter we obtain the chemical activity in terms of chemical potential 
( ) ( ) ( )( )expξ µ β=r r r . Having differentiated the equation for energy conser-

vation over the volume, we obtain interesting relation for the chemical potential 
( )
( ) ( ) ( )( ) ( ) ( )1 3 ,

2
E Vr
V N

ρ δ δβ ψ µ ρ
β δ δ

− = =
r

r r r
r

        (27) 

which yields the chemical potential to be given by 

( ) ( ) ( ) ( )3 1 .
2 2

rµ β β ψ= −r r r                  (28) 

and the equation for the energy conservation reduces to very simple form: 
( ) ( ) Eρ µ =∫ r r . The equation thus obtained cannot be solved in the general 

case, but it is possible to analyze many cases of the behavior of a self-gravitating 
system under various external conditions. Within the context of the expression 
for density, and the definition of reduced thermal de-Broglie wavelength, and 
the gravitation length, i.e., 

( ) ( ) ( ) ( )
1

2 2
2, 2π ,

2 gR Gm
me
β

β
 

Λ = =  
 

 r
r r r                (29) 
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we can rewrite all the equations and the normalization condition in terms of 
density and temperature. Thus we have general equation in the term of concen-
tration and temperature in the form: 

( ) ( )( )
( )

( )
( )

( )
3ln

0.gRρ
ρ

β β

 Λ
 ∆ + =
 
 

r r r
r

r r
               (30) 

The chemical potential reduces to 

( ) ( ) ( ) ( )( )33 ln .
2

µ β ρ= − Λr r r r                 (31) 

In this way we can obtain the equation of state for self-gravitating system if we 
use the thermodynamic relation for conservation energy E, 

1 .SP
V
δ

β δ
= −                          (32) 

Using the definition of the density of particles, one can obtain the local en-
tropy in the form 

( ) ( ) ( )( ) ( )3ln d ,S ρ ρ ρ = − Λ − ∫ r r r r r             (33) 

from which the local equation of state can present as 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )3 11 ln
2

P β ρ ρ ρ µ β = − Λ = − 
 

r r r r r r r r    (34) 

In general case this equation of state has a multiplier which logarithmically 
depends on the density of the particles. Only in the case ( ) ( )3 1ρΛ =r r  we ob-
tain the equation of state for an ideal gas Pβ ρ≡ . We have a sense to talk about 
pressure in classical cases only. If the concentration is large, and takes place the 
reverse relation ( ) ( )31 ρΛ r r , the determination of pressure are not correct. 

In the classical case ( ) ( )3 1ρΛ r r . As shown below there is a natural limit of 
our approach. We cannot describe the processes which can be realize within 
short distances since because in a system with large concentration quantum ef-
fects would take place. In the case of the ideal gas we obtain usual equation of 
state, because in this case ( ) 0ϕ =r  and Pβ ρ=  as result absent of interac-

tion. In the case on ideal gas ( ) ( ) 3
2

µ β =r r  and equation of state reproduce to 

the equilibrium relation for the ideal gas. In this case the energy of the system 
3
2

E NkT=  which corresponds to the previously obtained results [16] [17]. In 

the next section, we find the classical distributions of particles for various inner 
and external conditions. 

4. Statistical Induced Dynamic for Self-Gravitating System 

In system not far from equilibrium, patterns may form as results of the competi-
tion long-range interactions operating of different length scales [19]. The latter is 
countered by a long range gravitation attractive interaction. This is often accom-
panied by the macroscopical separation transition which leads to spontaneous 
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formation of patterns in ideally homogeneous system upon variation of control 
parameter. An important class of system with competing interaction is the 
system in which the long-range interaction is gravitational. The fundamental 
nature of the gravitational interaction makes this class of system extremely di-
verse. We stop on the point statistical induced dynamics of self-gravitating sys-
tem taking into account the possible spatial distribution of particle. For this goal 
we must determine the dynamic equation for field variable or density of particle. 
In this sense we can use the Ginsburg-Landau equation for density 

( )
( )

2,
,

t S
t

ρ δγ
δρ

∂
= −∇

∂
r

r
                    (35) 

where γ  is dynamic gravitational viscous coefficient [20]. In self-gravitating 
system we have not any other viscous process without dynamic influence of gra-
vitational action, all systems on local spatial point. This evolution equation is, in 
fact applicable to a number of systems with non-conserved order parameter. 
Taking into account the presentation of local entropy in the terms of density, we 
can write the dynamic equation for density in the form: 

( ) ( ) ( )( )2 3,
= ln ,

t
t

t
ρ

γ ρ
∂

−∇ Λ
∂
r

r r                (36) 

The evolution of patterns in non-equilibrium will generate to be guided by the 
local entropy landscape and the morphological instabilities of the parameter. 
The dynamic of the system is dissipative, it will result in decrease of the local en-
tropy of the patterns with time. To mimic this behavior we can use the simple 
gradient, descent dynamic defined with chemical potential may be considered as 
generalization of Cahn equation for non-uniform system with an arbitrary con-
centration gradient which becomes Cahn nonlinear diffusion equation [21]: 

( ) ( ) ( ) ( )( )2 3,
ln ,

t
t

t
ρ

γ βµ γ ρ
∂

= ∇ ∇ = −∇ Λ
∂
r

r r r            (37) 

which is fully equivalent previous dynamic equation in Ginsburg-Landau ap-
proach. If we take the solution of this dynamic equation in the form 
( ) ( ) ( ), exp mt r tρ γ ρ=r r  the solution of problem reduces to solve the previous 

equation 

( )( ) ( )3ln 0gRρ ρ∆ Λ + =r r                  (38) 

and can be transformed to 

( )( ) ( )ln 0.gRρ ρ∆ + =r r                   (39) 

for constant temperature, that means, the obtained spatial solution will be 
existed in all time increasing the density of particles. If we determine the possible 
structure in distribution of density, this pattern will be conserved in all-time de-
crease of density. In this approach [7], the probable behavior of a self-gravitating 
system can be predicted for any external conditions. On much longer timescales, 
an evolution towards the true thermal equilibrium is postulated. In this way we 
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can solve the complicated problem of statistical description of self-gravitating 
systems. Moreover, this method can also be applied for the further development 
of the physics of self-gravitational and similar systems that are not far from the 
equilibrium. 
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