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Abstract 
The critical limit principle of maximum entropy is put forward, it’s a suffi-
cient condition to obtain accurate critical points, and ensure that the new 
phase system is still in the maximum entropy state. Two representations for 
the phase transition of Ising models are found; the universal formula of criti-
cal points is explained by thermodynamics. From the point of view of fractal 
geometry and the correspondence between symmetry and conservation, the 
scaling laws are reinterpreted. The self consistence equations for the universal 
class are set up, by which and the scaling laws higher accurate exponents to 
date are obtained. The temperature where the self similar transformation 
disappears is calculated. 
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1. Introduction 

As a fundamental issue, the critical phenomena theory has pervaded modern 
physics, the approach to the critical point, the critical fluctuation, and the critical 
exponents help us understand critical laws deeply. The precise calculation of 
critical points and critical exponents is the common goal of the researchers. The 
symmetry analysis that is usually applied in particle physics makes our research 
to a new state, and has got more quantitative results [1]. There are some impor-
tant models, among which Ising model is particularly striking. However, the ac-
curate evaluation of the critical points was always an unsolvable problem for 3d 
models by conventional theory. The main difficulty is that one cannot get the 
exact value of a block spin because all conventional theories and methods are li-
mited to Euclidean geometry. Euclidean geometry uses simple graphics as a tool 
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to study certain objects with complexity. On the contrary, fractal geometry gets a 
simple result when using complicated self similar (SS) transformation. By means 
of fractal geometry, the accurate critical points for 2d and 3d models are ob-
tained [2]. For an infinite lattice system, it seems that there are two ways to an 
ordered state: 1) In the fractal geometry sense, the local lattices are correlated to 
each other to form finite size block spins, and the system is ordered by infinite 
hierarchical SS transformation, i.e., the block side length can be considered as 
the lattice correlation length, and it is finite. 2) From the eyes of the Euclidean 
geometry, all lattices are correlated to one another to construct an ordered sys-
tem, the correlation length is infinite. The system entropy in the first way is 
greater than that of the second way, since the ordering degree of the system in 
the first way is lower than that in the second way. In a word, relative to infinity, 
the finite correlation length makes the system more chaotic, thus the system en-
tropy is greater. 

The focus of both views is the lattice correlation length. Whether the correla-
tion length is infinite or finite, we can respond in only one of the two ways. In 
fact, the concept of infinite correlation length is merely a theoretical assumption. 
We can’t measure the infinite length; we can only measure the exponent υ  that 
is associated with the length in term of the conventional theory. According to 
the assumption, the infinite correlation length occurs at the critical temperature 

cfT , and disappears at the temperature T that is in the vicinity of cfT , and 

cfT T< . The idea that the ordered state is derived from the lattice correlation is 
reasonable, but the argument that the correlation length disappears suddenly in 
the vicinity of cfT  is hard to convince us. Let a system have mN  lattices in total, 
a block contain N lattices, the maximum hierarchy number of the SS transfor-
mation be mr , we have 

ln lnm mr N N=                         (1) 

where the symbol “ln” represents natural logarithm. If the system is infinite, 

mN →+∞ , with the deceasing of temperature the lattice correlation length n 
increases from *n , which is the block side length at the critical pint, to infinity, 
so does N at csT , where the correlation length becomes infinity and the whole 
system is a block [1]. Since N is finite at the critical point, no matter what val-
ue N takes, mr  will tend to infinity due to the infinite mN . However, this is 
an ideal situation that can’t occur in nature. The exponent υ  is a measurable 
parameter, and a specimen that can be measured only has limited size and lat-
tices mN , although it may be approximately considered as infinity. It is the fi-
nite mN  that leads to that the maximum hierarchy number mr  can’t become 
infinity: When the temperature decreases after the transition, the correlation 
length (the block side length n) increases, and mr  is changing smaller and 
smaller with N is getting bigger and bigger. This proves that the exponent υ  
describes actually the behavior of the number mr  rather than the correlation 
length’s. For example, for the irreducible lattice system of Ising model [2], mr  
behaves as 
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m cfr T T
υ−

∝ −                          (2) 

For the reducible lattice system [2], we have the similar conclusion. 
This paper is formed by the above point of view. In Section 2, we put forward 

the critical limit principle of maximum entropy. We prove again the uniqueness 
of the critical point. From the dual relation of J and 2S , we find two representa-
tions for the phase transition: spin representation and coupling constant repre-
sentation. We clarify, in the thermodynamics sense, the meaning of the critical 
point. From the point of view of the SS transformation, we reinterpret the scal-
ing laws that they are conserved laws corresponding to the symmetry transfor-
mation. We set up universal class self consistence constant and the relevant equ-
ations for the exponents, and point out that the exponents must satisfy simulta-
neously the scaling laws and the equations, and the scaling laws are available for 
the whole renormalization region cs cfT T T< ≤  rather than in the vicinity of 

cfT
.
. The structural meaning of the disorder-order phase transition is that the 

original lattice spin system has become the self-similar block spin system. In 
Section 3, we calculate csT  and exponents, get a group of exponents, which is 
the most accurate and self consistent datum to date. Section 4 is conclusion re-
mark. For simplicity, both blocks and sub-blocks are uniformly called blocks in 
this paper, and the relation between the sub-block’s dimension and the block’s 
dimension for the reducible lattice system is given by the formula (6.2) of refer-
ence [2]. 

2. Theory 
2.1. Critical Limit Principle of Maximum Entropy 

The conventional theory thinks that since lattice spins are correlated over scales 
up to the correlation length ζ , it may be plausible to regard the spins with re-
gions up to ζ  in size as behaving like a single block spin of side length n, and 
n ζ≤ , i.e., the block formation originates from the infinite correlation length. 
It’s said that one can get accurate critical point only if let n take ζ , if ζ → +∞ . 
In fact, this is not true [2]. 

We find that there exist simultaneously two sorts of blocks: n+ -blocks and 
n− -blocks, only one of them can become ordered, another disordered [1]. So, 
there are two kinds of correlation lengths: the first refers to the ordered, the 
second to the disordered. They are different from each other, resulting in that 
both are finite. Consider a system consisting of infinite subsystems, the values of 
spins of the i-th subsystem are identical and equal to iS , the free energy is iF ; 
the system free energy F is given by 

1 i iiF PF∞

=
= ∑                          (3) 

where iP  is the occurrence probability of the i-th subsystem. The value of iP  
can’t change the influence of the singularity of iF  on the singularity of F. If iP  
is determined by Gaussian distribution, F is also the Gaussian distribution free 
energy, and represented in the form as the Equation (11) of reference [2]. The 
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Gaussian distribution makes the system in the maximum entropy state [1]. We 
then get a principle: 

Critical limit principle of maximum entropy: A thermodynamic equili-
brium system keeps itself in the maximum entropy state before disorder-order 
phase transition, and tends to the critical point in this manner. 

According to the fractal theory that a system containing a large plenty of lat-
tice spins becomes ordered as the same as a point spin is a kind of spin contrac-
tion mapping, which ensures the uniqueness and existence of self similar trans-
formation [3]. This principle pledges the uniqueness of the critical point. It is 
this principle that helps us get accurate critical points for 2d and 3d models [2]. 
It’s should be emphasized that the Gaussian distribution differs from the Gaus-
sian model, the former determine which subsystem is that we need; the latter al-
lows the system change the value of the block spin at the same temperature, al-
though all block spins have the identical value. The common feature of both sys-
tems is they have the same free energy singularity. This means that we can get 
the critical point by Gaussian model. Using the fixed-point Equation (5) of ref-
erence [1], we can prove that the block side length *n  at the critical point is 
unique and finite. For the triangle lattice system, substituting  

( )( )1 2 2N n n= + + , see [2], into the equation: 

 ( ) ( )2
min min min2 3 1 2 0D n D n D− + − − =                (4) 

Equation (4) has only a positive finite real solution *n  due to min1 2D< < . 
For the tetrahedron lattice system, ( )3 26 11 6 6N n n n= + + + , see [2], the equa-
tion becomes 

( ) ( ) ( )3 2
min min min min3 12 6 11 11 6 0D n D n D n D− + − + − − =        (5) 

This equation has a unique finite real root *n . As the same reason, there is a 
unique finite side length *n  at the critical point for any one system, which ac-
cords with the result of numerical calculation [2]. 

2.2. Dual Relation 

The energy conservation of transformation produces a dual relation of J and 2S  
[2]: 

2 22ZJS Djs=                          (6) 

where the lattice spin 2 1s = , its coupling constant j, the block fractal dimension 
is D, its spin square is 2S , coupling constant J, and coordinate number Z. For a 
given system Z is constant. Let J j= , we get spin representation: 

( )2 22S D Z s=                         (7) 

If let 2 2S s= , we have coupling constant representation from Equation (6): 

( )2J D Z j=                          (8) 

The two representations are equivalent. In the early renormalization group 
(RG) theory the coupling constant representation is adopted [4]. In the Gaussian 
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distribution, we use the spin representation [2]. Both relate to the common 
transformation ( )2D Z , and the fractal dimension D takes the minimum minD  
at the critical point. The theory that the critical point is a fixed point in the 
coupling constant representation should be equivalent to that the minD  at the 
critical point corresponds to the fixed point of the block side length in the spin 
representation as the two representations describe the same case.. 

2.3. Universal Formula of Critical Points for Ising Models 

The singularity of the free energy gives rise to 
2
min B cfZJS k T=                          (9) 

This is a universal relation for the critical points of Ising models [2], where 

cfT  is the disorder-order phase transition temperature, Bk  Boltzmann constant. 
At a temperature T, a system has a definite mean energy E , its free energy F 
and entropy eS  obey thermodynamic condition: 

eF E TS= −                         (10) 

Only if the entropy eS  is maximum can the free energy F be minimized 
when the T is constant. That the block spin takes the minimum when the system 
reaches to cfT  is the best selection to satisfy the condition. We may view 

2
minZJS  as an ordering tendency, B cfk T  as a disordering tendency caused by 

thermal motion. The critical point not only is a balance point for the two ten-
dencies, but also a starting point of the ordering of the system. The fact that the 
block spin formation is the self-organization behavior and the cooperation phe-
nomena of the lattice spins. Discussing the atomic system, Dirac pointed out 
that the observed specific heats at ordinary temperatures are given fairly well by 
a theory that takes into account merely the motion of each atom as a whole and 
assigns no internal motion to it at all [5]. Likewise, we should only consider the 
interaction between the block spins, the interaction between the lattice spins ex-
ists only inside the block spins. Under the condition of the maximum system 
entropy, the increasing of the ordering degree is compensated by the decreasing 
of temperature, and the ordering tendency overwhelms the disordering tendency 
below cfT : 

2
BZJS k T>                          (11) 

It’s the lattice correlation length that determines the size of the block space, 
i.e., the block side length. The lower the temperature, the longer the correlation 
length, and the larger the block side length (the block spin) and the higher the 
ordering degree. By means of boundary condition, Onsager carried the plane 
square lattice system onto a torus, and obtained a lager critical point than ours 
[2] [6]: 0.4407 > 0.4387, which means his model has lower critical temperature 
than the model on the plane. The lower critical temperature originates in the 
boundary condition, which requires an extra ordering degree, besides the plane 
systems. 
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2.4. Reinterpretation of Scaling Laws—Symmetry and Conservation 

The cfT  is just the critical temperature cT  defined by the conventional phase 
transition theory. We notice that there is no singularity behavior below cfT , i.e., 
the block structure exists until csT  and the block spins replace the lattice spins. 
We call the region cs cfT T T< ≤  as renormalization region, rather than merely 
the criticality one. 

The scaling laws are based on the scaling hypothesis, which is purely a con-
jecture. Taking Ising model as an example, we interpret it by Euclidean geometry 
and fractal geometry. From the point of view of Euclidean geometry, the reason 
why the GR theory works is that the lattice correlation length becomes infinity in 
the vicinity of cfT , such that the influence of all finite microscopic characteristic 
lengths are wiped out, and the correlation length is a unique characteristic quan-
tity. The singularities of thermodynamic parameters are attributed to the corre-
lation length singularity, and any size transformation can’t change the form of 
the free energy function, only changes the parameter scaling. On the other hand, 
the transformation hierarchy is emphasized in terms of fractal geometry: The 
formation of blocks with finite side length n begins at cfT , they can go through 
r-hierarchical SS transformations at the same temperature, and the original lat-
tice spin system is replaced by the block spin system. For any finite value of r, 
one can find the same form of the free energy function represented by the block 
spins, no matter what value of r will be. Clearly, both interpretations describe the 
same phenomena. It’s impossible to explain in terms of Euclidean geometry the 
uniqueness of the block side length *n  at the critical point and the coexistence 
of n+ -blocks and n− -blocks. In fact, the renormalization transformation is just 
the self similar one. In a word, the geometrical structure and the physical para-
meters function forms on the (r + 1)-th hierarchy maintain the original ones on 
the r-hierarchy. By the forms, we are unable to recognize which belong to the 
r-hierarchy and what is the actual value of r. The indistinguishability means 
symmetry [7]. The SS transformation comes essentially from the spacetime ho-
mogeneity and is a special type of symmetrical transformation, differing from 
the conventional operations such as rotation, translation, inversion, etc. The GR 
is a symmetry group, its corresponding conserved quantity is the scaling, and 
there exists scaling invariance. The scaling laws do be the conservation laws. 

For a universal class of space dimension d and order parameter dimension m, 
there are two independent conserved constants: p and q, they can be considered 
as the magnitudes of two orthogonal constant vectors p and q, respectively. Ac-
cording to Wilson theory [8], p and q are given by 

( )ln 2 lnp D Z N∝ , ( )ln 2 lnq D Z N∝            (12) 

where the elementary excitation of block spins is badly neglected [9]. The actual 
relation between p and q should be as 

( ),p d m qσ=                         (13) 

where ( ),d mσ  is a universal class self consistence constant. Three parameters 
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in this equation, only two of them are independent. p and q control six expo-
nents: 

2 1 pα = − , ( )1 q pβ = − , ( )2 1q pγ = −             (14) 

( )1q qδ = − , ( )1 2 2d qη = − + , 1 pdυ =             (15) 

They determine four scaling laws: 

2 2α β γ+ + = , ( )1γ β δ= −                  (16) 

( )2γ υ η= − , 2dυ α= −                    (17) 

Using Equations (13)-(17), there should theoretically be 15 self consistence 
equations for ( ),d mσ  by the combinations of any two different exponents. 
But, the combinations of α  and υ , η  and δ  have no consequence, 13 equ-
ations are actually established: 

( )1 1 2σ α β= − − , ( )2 1σ β γ= + , ( )( )3 2 2 2d dσ α η= − + −      (18) 

( ) ( )4 1 2σ δ δ α= + − , ( )5 2 2σ γ α= + − ,            (19) 

( )6 1σ βδ= , ( )7 1 dσ υ β= − , ( ) ( )8 1σ δ δγ= − , ( )9 2 dσ γ υ= +   (20) 

( ) ( )10 4 2 2dσ η γ η= − + − , ( )11 2 2d d dσ υ η= + −          (21) 

( ) ( )12 1 dσ δ υ δ= + , ( ) ( )13 2 2d dσ η β η= − + + −         (22) 

The conservation requires that all exponents should not only obey the scaling 
laws, but also satisfy the self consistence equations, and ( ),i d mσ σ=  for all i, 

1,2, ,13i =  . Our experience indicates that the scaling laws are not sensitive to 
the errors of the exponents: if the deviation between the exponents values and a 
law is 0.0001, the difference between the high accurate value of the exponent and 
its crude value is usually greater than 0.0001. As this reason, the exponents must 
strictly obey the laws. In most cases, the self consistence equations have higher 
sensitivity to the exponents values: the exponents that can comply with the laws 
are not necessarily accord with them. Only those exponents that satisfy both the 
laws and the self consistence equations have higher accuracy. 

The experimental datum illustrate that all order parameters curves are smoothly 
continuous when the temperature is below cfT  [8]. We think that the scaling 
laws and the self consistence equations are applicable to the renormalization re-
gion cs cfT T T< ≤ , and the exponents values are determined by T. The relevant 
power law can be written as 

( ) x
yT T

±
−                          (23) 

where yT  is in the normalization region, yT T> , and T in the vicinity of yT , 
, , , , ,x α β γ δ η υ= , their positive and negative signs are the same as the ones’ at 

0cfT − , which is in the vicinity of cfT , and 0cf cfT T− < . For example, by Equations 
((1), (2), and (23)), we get 

( )( )ln ln m yN N T T
υ

∝ −                     (24) 
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N increases with the decreasing of T. Equation (24) verifies that the power law 
is a characteristic of fractals [10]. 

3. Discussion 
3.1. Calculation of Tcs 

Whether it is irreducible system or reducible system [2], the blocks disappear at 

csT , where the mean energy E  of the elementary excitation of the block spins 
vanishes. We then get the following consequence [9] 

2

0
d 0

e 1
Dx

x

xE x= =
−∫                      (25) 

where Bx k Tω=  , D D B csx k Tω=  ,   is Plank constant, ω  the magnetic 
phonon frequency, Dω  the Debye frequency. Generally, we may get csT  from 
the integral equation. If e 1x

 , e 1 ex x− ≈ . Equation (25) simplifies as 

2
0

e d 0Dx xx x− =∫                         (26) 

This leads to an algebraic equation 
2 e 2 e 2e 2 0D D Dx x x
D Dx x− − −+ + − =                  (27) 

We’ll get csT  from the solution. If e 1x ≈ , Equation (25) becomes 

0
d 0Dx

x x =∫                          (28) 

0Dx = , the solution is unreasonable. 

3.2. Numerical Estimation of Critical Exponents 

The elementary excitation of block spins also contributes to the free energy non-
singularity [9]. In addition, there is disorder-order state transformation between 
the n+ -blocks and the n− -blocks [2], all these add the complexity of calculating 
the exponents. Usually, they are obtained by numerical approximation, in which 
process it’s common practice to introduce appropriate adjustable parameters. The 
usual methods involve ε-expansion, field theory, Monte Carlo, high-temperature 
expansion, etc. [11]. A number of expansions are divergent, for example, the 
ε-expansion. An experienced author can get more exact results from the series 
by using Borel summation and educated guess. In this regard, Zinn-Justin 
achieved success [12]. Unfortunately, we examine that his exponents can’t satisfy 
simultaneously the scaling laws and the self consistence equations. The self con-
sistence equations provide us a new key for the numerical simulation. Based on 
the datum given by him and others [8] [11] [12] [13] [14], we get higher accurate 
solutions by golden section method and numerical approximation in the scaling 
laws and the self consistence equations. They are listed in the Table 1 below, in-
cluding the exponents of 2d Ising model. Because all exponents are dependent 
on the constant ( ),d mσ , the repetitive operation may produce an extra addi-
tive effect of errors. In order to reduce the superposition, we make the p, q, and 
the constant ( ),d mσ  accurate to the sixth decimal place, the exponents and  
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Table 1. Universal class self consistence constant and critical exponents. 

d,m ( ),d mσ  q p α  β  γ  δ  η  υ  

2.1 8/15 15/16 1/2 0 1/8 7/4 15 1/4 1 

3.1 0.638613 0.827204 0.528263 0.1070 0.3271 1.2388 4.7872 0.0368 0.6310 

3.2 0.610231 0.817227 0.498697 −0.0052 0.3665 1.2722 4.4713 0.0966 0.6684 

3.3 0.583511 0.826243 0.482122 −0.0742 0.3604 1.3534 4.7552 0.0425 0.6914 

 
constant iσ  accurate to the fourth decimal place, so as to let the extra errors lie 
as behind as possibly the fourth decimal point. In principle, if we want the ex-
ponents and the constant iσ  to be accurate to the x-th decimal place, the con-
stant ( ),d mσ , p, and q should be to the (x + 2)-th decimal place. For example, 
the following exponents and iσ  for the universal class of d = 3 and m = 1 are 
accurate to the sixth decimal point, x = 6: 0.107063α = , 0.327093β = , 

1.238571γ = , 4.787153δ = , 0.036779η = , 0.630979υ = ,  
( )0.638633 1,2, ,13i iσ = =  ; and the others to the eighth decimal place: 

( )3,1 0.63863311σ = , 0.52827948p = , 0.82720347q = . This group of expo-
nents is the most accurate and self consistent datum to date. More accurate ex-
ponents will be obtained by the same method. 

4. Conclusion Remark 

The critical limit principle of maximum entropy introduces a correct way to ob-
tain accurate critical points. The reinterpretation of the scaling laws from the 
correspondence between symmetry and conservation gives us a new under-
standing of scaling invariance. Based on the experimental and theoretical datum 
given by other authors, and applying golden section method and numerical ap-
proximation in the scaling laws and the self consistence equations, we can get 
higher accurate exponents. 
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