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Abstract 
We report results from ab-initio, self-consistent density functional theory 
(DFT) calculations of electronic, transport and bulk properties of rock salt 
magnesium sulfide (MgS). In the absence of experimental data on these 
properties, except for the bulk modulus, these results are predictions. Our 
calculations utilized the Ceperley and Alder local density approximation 
(LDA) potential and the linear combination of Gaussian orbitals (LCGO). 
The key difference between our computations and other previous ab-initio 
DFT ones stems from our use of successively larger basis sets, in consecutive, 
self-consistent calculations, to attain the ground state of the material. We 
predicted an indirect (Γ-X) band gap of 3.278 eV for a room temperature lat-
tice constant of 5.200Å. We obtained a predicted low temperature indirect 
(Γ-X) band gap of 3.512 eV, using the equilibrium lattice constant of 5.183Å. 
We found a theoretical value of 79.76 GPa for the bulk modulus; it agrees 
very well with the experimental finding of 78 ± 3.7 GPa. 
 

Keywords 
Density Functional Theory (DFT), Local Density Approximation (LDA),  
Linear Combination of Atomic Orbitals (LCAO), Band Gap, Band Structure, 
The Bagayoko, Zhao and Williams (BZW) Method 

 

1. Background and the Motivation for This Work 

Magnesium sulfide (MgS) belongs to the group of alkaline earth sulfides. The 
interests of scientists in alkaline earth sulfides have been increasing due to their 
potential applications in multicolor thin-films electroluminescent and magne-
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to-optical devices [1]. Due to its large band gap, MgS has wide applications in 
blue-light emitting diodes and optical storage devices [2] [3]. It is a favorable 
material for active solar blind UV detection [4]. It is also useful in lithium-ion 
batteries as electrode material [5]. MgS exists in three structures (rock salt, zinc 
blende, and wurtzite), with the rock salt structure as the most stable one. Many 
theoretical [1] [6]-[20] studies have been carried out on MgS. Table 1 below lists 
both calculated and experimental band gap values for MgS. The Hartree-Fock 
method has been applied by Pandey et al. [1] to compute the electronic band 
structure. Their study found an indirect band gap value of 6.48 eV. Drief et al. 
[6] reported first principle calculations for rock salt MgS, employing a local den-
sity functional approximation (LDA) potential and the full potential linearized 
augmented plane wave (FP-LAPW) method. They predicted an indirect band 
gap of 2.208 eV. There are several other calculated, [7] [8] [9] [10] [11], indirect 
band gap values of rock salt MgS, obtained with ab-initio LDA potentials. Five 
(5) of these values were within the range of 2.5 to 2.7 eV. Recently, Tairi et al. 
[12] studied the structural and electronic properties of rock salt MgS by using  
 
Table 1. Theoretical band gaps of rock salt magnesium sulfide (MgS) in the literature.  

Computational formalism and method 
Potentials 

(DFT and others) 
Band gap, 

Eg (eV) 

Full potential-linearized augmented plane wave (FP-LAPW) LDA 2.208 (indirect)a 

Full potential linear muffintin orbitals (FP-LMTO) LDA 2.657 (indirect)b 

Linear augmented plane wave (LAPW) LDA 2.69 (indirect)c 

Plane-wave pseudo potential approach LDA 2.56 (indirect)d 

FP-LAPW LDA 2.6 (indirect)e 

Pseudo potential plane wave basis LDA 2.65 (indirect)f 

FP-LAPW GGA 2.745 (indirect)g 

FP-LAPW GGA 2.794 (indirect)h 

Pseudo-potential plane wave GGA 2.76 (indirect)i 

Plane-wave pseudo potential approach GGA 2.76 (indirect)j 

FP-LAPW GGA 2.64 (indirect)k 

Tight binding LMTO (TB-LMTO) LDA 2.7 (indirect)l 

OLCAO LDA 4.59 (indirect)m 

Projector augmented wave (PAW) TB-mBJ 4.00 (indirect)n 

FP-LAPW mBJ 4.248h 

PAW GW 4.80 (indirect)o 

Pseudo potential plane wave basis GW 4.15f 

Hartree-Fock method  6.48 (indirect)p 

aReference [6]; bReference [7]; cReference [8]; dReference [9]; eReference [10]; fReference [11]; gReference 
[12]; hReference [13]; iReference [14]; jReference [15]; kReference [16]; lReference [17]; mReference [18]; 
nReference [19]; oReference [20]; pReference [1]. 
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the full potential linearized augmented plane wave method. They obtained an 
indirect band gap of 2.745 eV and 4.248 eV with a generalized gradient approx-
imation (GGA) and mBJ potentials, respectively. Several other groups [13] [14] 
[15] [16] have studied the properties of rock salt MgS by utilizing ab-initio GGA 
potentials. Their calculated band gap values range from 2.6 - 2.79 eV. An indi-
rect band gap of 2.7 eV was found by Kalpana et al. [17] utilizing tight binding 
linear muffin tin orbitals (LMTO), with GGA potentials. Ching et al. [18] calcu-
lated the band structure of MgS by applying the self-consistent orthogonalized 
linear combination of atomic orbital (OLCAO) method. Their calculated, indi-
rect band gap was 4.59 eV. The indirect band gap range of MgS was found to be 
4.0 - 4.80 eV, [11] [12] [19] [20] using hybrid potentials.  

Experimental investigations performed on this material are very limited. Ta-
leatu et al. [21] experimentally determined a direct band gap for MgS thin films 
(3.54 eV, 3.73 eV, and 3.14 eV) using X-ray diffraction technique. They have 
suggested that there is difficulty in the determination of the nature and value of 
the band gap of MgS. They noted difficulties stemming from the spontaneous 
oxidation of MgS in air and its reactivity with water. 

The disagreement among theoretical results indicates the need for further in-
vestigations of the band gap and related properties of MgS. The above disagree-
ment and current and potential applications of MgS motivated our ab-initio, 
self-consistent calculations of electronic, transport, and bulk properties of MgS. 
Our computational method has been successful in correctly describing and pre-
dicting properties of semiconductors in the past [22]. Hence, this work is ex-
pected to provide an accurate DFT description of MgS, as most previous, 
ab-initio DFT calculations are presumed to have underestimated the band gap of 
MgS. Further, in the case of MgS, a reliable experimental value of the band gap 
of bulk MgS is not available. Indeed, the experimental values noted above per-
tain to thin films and are subject to significant uncertainties, according to the 
authors. We describe below our method that led to highly accurate results in 
dozens of previous ab-initio DFT calculations. 

2. Computational Method 

We recall the fundamental theorems of DFT, along with the correct under-
standing of them, in order to facilitate the discussions on our method. For a sys-
tem of N electrons in a box, subject to an external potential v(R), the first theo-
rem states that v(R) is a unique functional of the charge density n(R), except for 
an additive constant. A corollary of this theorem is that the energy content of the 
Hamiltonian E(Ψ) = <Ψ|H|Ψ> is a unique functional of the charge density n(R). 
This energy content of the Hamiltonian is simply the sum of the occupied ener-
gies. Hence, a second corollary of the first theorem is that the spectrum of the 
Hamiltonian is a unique functional of the charge density [22]. 

The second DFT theorem states that E(Ψ’) = <Ψ'|H|Ψ'> reaches its minimum 
if Ψ' ≡  Ψ of the correct ground state, for arbitrary variations of Ψ' that keep the 
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number of particles constant [22]. Specifically, the second theorem means that 
E(Ψ') > E(Ψ), where Ψ is for the ground state, for all Ψ' ≠ Ψ. For over 50 years, 
the community at large understood that the minimization of E (Ψ’), using a sin-
gle basis set Ψ', provides the DFT solution for the system under study. It does 
not. The minimization resulting from self-consistency with a single basis set only 
leads to a stationary solution among an infinite number of stationary solutions. 
Indeed, every reasonable basis set (without linear dependency) leads to a statio-
nary solution upon the attainment of self-consistency. The generalized minimi-
zation unveiled by Bagayoko [22] is required to attain, verifiably, the ground 
state of the system. This generalized minimization entails several self-consistent 
calculations with successively augmented basis sets until the occupied energies 
totally cease to decrease. Then, and only then, do we have the ground state of the 
system, and hence, the DFT description of the material. The first basis set to 
produce this description, indubitably, generates the ground state charge density 
upon reaching self-consistency.  

Our calculations employed a method that ensures the attainment of the 
ground state of a material without the use of very large basis sets that are 
over-complete for the description of the ground state [22]-[31]. The Ceperley 
and Alder [32] LDA potential was parameterized by Vosko et al. [33]. We used 
the linear combination of atomic orbitals (LCAO) and the Bagayoko, Zhao, and 
Williams (BZW) method, [23] [24] [25] [29] as enhanced by Ekuma and Frank-
lin (BZW-EF) [28]. We employed the electronic structure package developed at 
the US Department of Energy Laboratory in Ames, Iowa [34] [35].  

Our calculations started with a basis set slightly larger, by one orbital, than the 
minimum basis set. We performed self-consistent Calculation I with this small 
basis set. The second self-consistent calculation was done with a basis set that 
consists of the first basis set, from Calculation I, augmented by one orbital cor-
responding to an excited state in the ionic species of the system. A comparison 
of the occupied energies from the two calculations shows that the occupied 
energies from Calculation II were lower than or equal to their corresponding 
values from Calculation I. This comparison follows the setting of the Fermi level 
to zero in both sets of eigenvalues. This lowering of occupied energies, from 
their values from Calculation I, indicates that the basis set used in Calculation I 
does not lead to the ground state. After augmenting the basis set of Calculation 
II with one orbital, we performed Calculation III and compared the resulting 
occupied energies with those from Calculation II. The successive, self-consistent 
calculations, with augmented basis sets, were stopped only after three consecu-
tive ones led to the same occupied energies.  

This situation signifies that we reached the lowest possible values of the occu-
pied energies, i.e., the ground state of the material, as required by the second 
DFT theorem.  

The above generalized minimization of the energy, one that is far more than 
the minimization resulting from self-consistent iterations with a single basis set, 
is required by the second DFT theorem [22]. Calculations with augmented basis 
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sets larger than that of the third of the referenced three (3) calculations, also led 
to the same occupied energies. While the above three (3) successive calculations, 
and others with larger, augmented basis sets, led to the same occupied energies, 
they generally produced some different (i.e., lower), unoccupied energies, in-
cluding some of the lowest ones. Generally, the larger the basis set, the lower 
were some unoccupied energies as compared to their counterparts obtained with 
the first of the calculations leading to the ground state. Clearly, the question 
arises as to which of the calculations producing the ground state provides the 
DFT description of the material. Bagayoko [22] showed, using a corollary of the 
first DFT theorem, that the first of the three (3) consecutive calculations leading 
to the ground state, with the smallest basis set, is the one producing the DFT de-
scription of the material. The basis set of this calculation is referred to as the op-
timal basis set. Indeed, the corollary simply states that the spectrum of the Ha-
miltonian is, like the external potential, a unique functional of the charge densi-
ty. Thus, the occupied energy content of the Hamiltonian is a unique functional 
of the charge density [22]. The sum of the occupied energies in this spectrum is 
the energy content of the Hamiltonian. In light of this corollary, unoccupied 
energies different (generally lower) from their corresponding values obtained 
with the optimal basis set cannot belong to the spectrum of the Hamiltonian, a 
unique functional of the charge density.  

There is another way to prove that the first of the calculations producing the 
ground state is the calculation providing the DFT description of the material. 
This proof rests on a theorem for eigenvalue due to Rayleigh. The theorem ap-
plies to eigenvalues of the same equation obtained with two different basis sets 
where the larger one includes entirely the small one. In this condition, the theo-
rem states that the ordered eigenvalues obtained with the larger basis set are 
lower than or equal to their corresponding values obtained with the smaller basis 
set. All the calculations producing the ground state lead to the same self-consistent 
charge density and the same Hamiltonian, within computational uncertainties. 
We note that the same Hamiltonian does not mean the same Hamiltonian ma-
trix, as the dimension of the matrix varies with the size of the basis set. Hence, 
after the first calculation producing the ground state, other calculations leading 
to the ground state and some different (lowered) unoccupied energies do not 
provide the DFT description of the material. Indeed, the unoccupied energies 
lowered from their corresponding values obtained with the optimal basis set re-
sult from a mathematical artifact stemming from the Rayleigh theorem; they are 
not physically correct eigenvalues of the Hamiltonian which did not change 
from its value obtained with the optimal basis set.  

Computational details in this work follow. Magnesium sulfide has a cubic 
structure. It is in the space group 3Fm m . The positions of the Mg and S ions in 
the irreducible zone are (0, 0, 0) and (1/2, 1/2, 1/2), respectively. The lattice con-
stant we utilized in our self-consistent calculations is 5.200Å [36]. Our first 
self-consistent calculations were for Mg2+ and S2−; they provided the input orbit-
als for the study of solid MgS. We expanded the radial parts of the wave function 
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in terms of Gaussian functions with even-tempered Gaussian exponents. The 
numbers of Gaussian orbitals utilized for the s, p, and d orbitals for Mg2+ were 
18, 16, and 16, respectively, and 18, 18, and 16, respectively, for S2−. The smallest 
and largest exponents were respectively 0.1822 and 0.11 × 106, for the Mg2+, and 
0.1489 and 0.44 × 105 for the S2−. Our criterion for self-consistency is to have no 
more than a difference of 10−5 between potentials from two consecutive itera-
tions. It typically took 60 iterations to satisfy this condition. We utilized 81 k 
points in the irreducible Brillouin zone for the production of the final, self-con- 
sistent bands. Extensive testing, over the years, has established the 20 divisions 
for each of the intervals L-Γ, Γ-X, X-K, and K-Γ that are amply adequate for the 
description of this structure.  

3. Results 

The valence orbitals for the successive, self-consistent calculations for MgS are 
shown in Table 2, along with the resulting band gaps. As per the above explana-
tion of our method, Calculation III is the one that provides the DFT description 
of MgS. While Calculations IV-VI also led to the absolute minima of the occu-
pied energies (i.e., the ground state), they produced some low-laying unoccupied 
energies lower than their corresponding values obtained in Calculation III, with 
the optimal basis set. The electronic energies from Calculation III are shown in 
Table 3. The electronic energy bands, densities of states, effective masses, and 
bulk modulus discussed below are from Calculation III.  

Figure 1 compares the results from Calculations III (solid lines) and IV (dashed 
lines). The basis set of Calculation IV consists of that of Calculation III plus the 4s0 
on S2−. The occupied bands from the two calculations are the same. Calculations V 
and VI also produced the same occupied energies as Calculation III. 

Figure 2 and Figure 3 respectively show the calculated, total density of states 
(DOS) and the partial densities of states (pDOS), derived from the bands from 
Calculation III. We found a total valence bandwidth of 12.597 eV. From the  
 
Table 2. The successive calculations of the BZW-EF method, with the valence orbitals of 
Mg2+ and S2− in Columns 2 and 3, respectively. Column 4 and 5 show the total number of 
valence functions and the band gap, respectively. The employed, room temperature expe-
rimental lattice constant was 5.200Å. The superscript zero indicates an empty orbital. The 
optimal basis set is that of Calculation III. The corresponding, indirect band gap for bulk 
MgS, from Γ to X, is 3.278 eV, at room temperature.  

Calculation 
no. 

Magnesium  
(Mg2+) (1s2-core) 

Sulfur (S2-) 
(1s22s22p2-core) 

No. of  
valence functions 

Energy  
Gap (eV) 

I 2s22p63p0 3s23p6 22 6.590 (Γ-L) 

II 2s22p63p0 3s23p64p0 28 6.475 (Γ-L) 

III 2s22p63p03s0 3s23p64p0 30 3.278 (Γ-X) 

IV 2s22p63p03s0 3s23p64p04s0 32 3.337 (Γ-X) 

V 2s22p63p03s04p0 3s23p64p04s0 38 3.370 (Γ-X) 

VI 2s22p63p03s04p04s0 3s23p64p04s0 40 3.19 (Γ-X) 
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Figure 1. Calculated, electronic energy bands of MgS, from Calculations III (solid lines) 
and IV (dashed lines). The perfect superposition of the occupied bands from Calculations 
III, IV, and IV signifies the attainment of the absolute minima of the occupied energies, 
i.e., the ground state, by Calculation III. 
 

 
Figure 2. Total density of states (DOS) for rock salt MgS, derived from the bands from 
Calculation III. Zero, on the horizontal axis, indicates the position of the Fermi energy. 
 
Table 3. Electronic energies at high symmetry points in the Brillouin zone for bulk rock 
salt MgS, as obtained from Calculation III, with the optimal basis of the LDA-BZW-EF 
method. The lattice constant is 5.200 Å, at room temperature. 

L-point Γ-point X-point f K-point 

15.022 38.257 26.933 20.186 

9.893 12.884 13.231 11.901 

8.362 12.884 13.231 11.186 

8.362 12.884 12.269 11.102 

6.476 4.809 3.278 4.785 

−0.541 0.000 −1.780 −1.408 

−0.541 0.000 −1.780 −3.269 

−5.018 0.000 −4.369 −3.809 

−11.179 −12.597 −10.782 −10.781 
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Figure 3. Results for partial densities of states for rock salt MgS, derived from the bands 
from Calculation III. The zero on the horizontal axis indicates the position of the Fermi 
energy. 
 
DOS figure, the width of the lowest laying valence band is 1.85 eV, while that of 
the group of upper valence bands is about 5.0 eV. As per the partial densities of 
states in Figure 3, Mg-s and Mg-p dominate in the lowest, conduction band. 
There is a small contribution from S-p. In contrast, S-p strongly dominates up-
per valence bands, with minimal contributions from Mg-p and Mg-s. Sulfur s 
(S-s) clearly dominates in the lowest laying valence band. These results are in 
qualitative agreement with findings of Drief et al. [6] for the valence states.  

Effective masses are important quantities in the theoretical calculation of 
transport properties; such properties include electrical conductivities and the 
Seebeck coefficient [37]. As per the content of Table 4, we have performed cal-
culations of electron effective masses around the minimum of conduction band, 
at X, and around the lowest conduction bands at Γ. The effective masses of the 
light and heavy holes were derived from the uppermost valence bands at Γ. The 
calculated effective masses are shown in Table 4, for the various directions, in 
units of the mass of the electron (mo). The effective masses of heavy Hole 1 and 
heavy Hole 2 are equal, except in the (Γ-K)110 direction. Their difference in that 
direction is due to the splitting of the bands in the (Γ-K)110 direction by the 
Coulomb crystal field. The quasi-isotropic nature of the electron effective masses 
at Γ is in contrast to that of the clearly anisotropic ones at X. The calculation 
performed by Ghebouli et al. [14] reported the electron effective mass for rock 
salt MgS, at the X point, to be 0.2179 mo. This value is smaller than our predicted 
ones of 0.324 and 0.319 mo at X, in the transverse direction. Our result is 0.503 
for the longitudinal direction, at X. We found no experimental values for these 
effective masses. We expect future measurements to confirm our predictions in 
Table 4. 
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Figure 4 shows the total energy versus the lattice constant. The range of the 
lattice constant over which we calculated the total energy was from 5.10 to 5.30 
Å. Our predicted equilibrium lattice constant, at the minimum of the total ener-
gy, is 5.183Å. With this lattice constant, we predicted a zero temperature band 
gap of 3.512 eV, larger than the room temperature value by 0.234 eV. For our 
purposes, no general fitting of the total energy to an equation of state is neces-
sary; we fitted the curve in the immediate vicinity of the minimum in order to 
calculate the bulk modulus. Our calculated bulk modulus of 79.76 GPa is in ex-
cellent agreement with the experimental value of 78.9 ± 3.7 GPa [36]. 
 

 
Figure 4. The graph of the total energy versus the lattice constant, for rock salt MgS, as 
obtained from calculations using the optimal basis set. 
 
Table 4. Calculated, effective masses for rock salt MgS, in units of free electron mass (mo): 
Me indicates an electron effective mass at the X-point and Γ-point, in the conduction 
band; Mhh and Mlh represent the heavy and light holes effective masses, respectively. 

Types and Directions of Effective Masses Values of Effective Masses (mo) 

Me(X-Γ) Longitudinal 0.503 

Me(X-U) Transverse 0.324 

Me(X-W) Transverse 0.319 

Me(Γ-L)111 0.493 

Me(Γ-X)100 0.420 

Me(Γ-K)111 0.433 

Mhh1(Γ-L)111 3.116 

Mhh1(Γ-X)100 1.056 

Mhh1(Γ-K)110 1.620 

Mhh2(Γ-L)111 3.116 

Mhh2(Γ-X)100 1.056 

Mhh2(Γ-K)110 1.204 

Mlh(Γ-L)111 0.220 

Mlh(Γ-X)100 0.300 

Mlh(Γ-K)110 0.270 
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4. Discussion 

Our calculated, indirect band gap is 3.278 eV. This value is higher than the pre-
dicted value from calculations with ab-initio LDA and GGA potentials, with 
ranges of 2.208 - 2.69 eV, for LDA, and 2.64 - 2.79 eV, for GGA. One cannot 
draw conclusions from results of calculations with ad hoc potentials, given their 
variability with the adjustable parameters. The Green function and dressed 
Coulomb approximation (GWA) is not DFT theory. For this reason, we do not 
make comparisons between our LDA findings and those from GWA (or GW) 
calculations. We suggest the following explanation for the differences between 
our results and the previous, ab-initio DFT ones in Table 1.  

To our knowledge, previous DFT calculations mostly employed single basis 
sets. The chance for a self-consistent calculation with a single basis to lead to the 
ground state of the material is practically zero. Rather, such a calculation leads to 
one of the potentially infinite number of stationary solutions. Our calculations in 
Table 2 produced such stationary solutions. The progressive increase of the basis 
set allowed us to identify the first one among them that 1) yields the ground 
state energy and 2) is not over-complete for the description of the ground state. 
Basis sets that contain the optimal one and are over-complete produce the same 
occupied energies obtained with the optimal basis set, but they generally pro-
duce some unoccupied energies, including lowest laying ones, that are lower 
than their counterparts obtained with the optimal basis set. Consequently, these 
basis sets produce band gaps that are smaller than corresponding, experimental 
ones. This phenomenon, we suggest, explains the differences between our calcu-
lated band gap and those from previous ab-initio DFT (i.e., LDA or GGA) cal-
culations as shown in Table 1.  

Similarly, our calculated electron effective masses are larger than the previous 
results discussed above. In general, a lowering of unoccupied bands results in a 
decrease of their degree of flatness. A decrease of the degree of flatness around 
the conduction band minimum clearly leads to a decrease of the electron effec-
tive mass. Hence, the above unphysical lowering of unoccupied energies is re-
sponsible for the underestimation of the electron effective masses in a way that is 
linked to the underestimation of the band gap.  

5. Conclusion 

We have employed the LCAO formalism and an LDA potential to perform 
ab-initio, self-consistent calculations to predict electronic and related properties 
of rock salt MgS. By searching for and by verifiably attaining the ground state of 
the material, as required by the second DFT theorem, our results have the full, 
physical content of DFT and agree with available experimental results. Our cal-
culated, room temperature indirect band gap is 3.278 eV. Our predicted equili-
brium lattice constant and zero temperature band gap are 5.183Å and 3.512 eV, 
respectively. The calculated bulk modulus (79.76 GPa) agrees very well with the 
measured value of 78.9 ± 3.7 GPa. It is hoped that our predictions will spur new 
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experimental investigations of properties of MgS. As noted in the background 
and motivation section, we only found bang gap measurements for thin films of 
MgS. Possible methods for measuring band gaps include optical absorption, 
optical transmittance, spectroscopic ellipsometry, and UV to visible and near 
infrared absorption, with diffuse reflectance. 
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