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Abstract 
In the present work, the elastic constants and derived properties of tetragonal 
Heusler compounds were calculated using the high accuracy of the 
full-potential linearized augmented plane wave (FPLAPW) method. To find 
the criteria required for an accurate calculation, the consequences of increas-
ing the numbers of k-points and plane waves on the convergence of the calcu-
lated elastic constants were explored. Once accurate elastic constants were 
calculated, elastic anisotropies, sound velocities, Debye temperatures, mallea-
bility, and other measurable physical properties were determined for the stu-
died systems. The elastic properties suggested metallic bonding with interme-
diate malleability, between brittle and ductile, for the studied Heusler com-
pounds. To address the effect of off-stoichiometry on the mechanical proper-
ties, the virtual crystal approximation (VCA) was used to calculate the elastic 
constants. The results indicated that an extreme correlation exists between the 
anisotropy ratio and the stoichiometry of the Heusler compounds, especially 
in the case of Ni2MnGa. Metastable cubic Ni2MnGa exhibits a very high ani-
sotropy (≈28) and hypothetical cubic Rh2FeSn violates the Born-Huang stabil-
ity criteria in the L21 structure. The bulk moduli of the investigated tetragonal 
compounds do not vary much (≈130 ··· 190 GPa). The averaged values of the 
other elastic moduli are also rather similar, however, rather large differences 
are found for the elastic anisotropies of the compounds. These are reflected in 
very different spatial distributions of Young’s moduli when comparing the 
different compounds. The slowness surfaces of the compounds also differ 
considerably even though the average sound velocities are in the same order 
of magnitude (3.2 ··· 3.6 km/s). The results demonstrate the importance of the 
elastic properties not only for purely tetragonal Heusler compounds but also 
for phase change materials that exhibit magnetic shape memory or magneto-
caloric effects. 
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1. Introduction 

Heusler-type intermetallic compounds X2YZ (X, Y = transition metals, and Z = 
main group elements) have become of particular interest due to their fascinating 
thermal, electrical, magnetic, and transport properties [1]. The Heusler compounds 
crystallize in a face-centered cubic (fcc) lattice. They are distinguished in two 
groups: regular or inverse Heusler compounds. Regular Heusler compounds 
belong to 3F m m  (space group No. 225) symmetry, and inverse Heusler 
compounds belong to 43F m  (space group No. 216). Both cubic phases may 
undergo a cubic-tetragonal phase transition, in which the regular Heusler 
compounds transform from 3F m m  to the tetragonal I4/mmm (No. 139), and 
the inverse Heusler compounds transform from 43F m  to tetragonal 4 2I m  
(No. 119). Thus, the parent cubic and obtained tetragonally distorted phases 
obey a supergroup-subgroup relation. 

Due to simple features of Heusler compounds, it is critically important to have 
an instrument for phase prediction. For example, cubic ferromagnetic Heusler 
compounds follow the Slater-Pauling rule for localized moment systems. Their 
magnetic moment m depends simply on the valence electron concentration vn  
with 24vm n= − . Further, prospective candidates for superconductivity include 
certain Heusler compounds with 27 electrons that exhibit a saddle point at the L 
point close to EF in the band structure according to the van Hove scenario [2] 
[3]. On the other hand, a high density of states at the Fermi level causes 
instability and a phase transition to lower symmetry forced by a band 
Jahn-Teller distortion [4] [5]. This competition is one example that shows the 
importance of phase prediction in the Heusler compounds. However, both 
tetragonal and cubic phases have their own importance for industrial as well as 
fundamental research. 

Tetragonally distorted Heusler compounds have attracted interest in the field 
of spintronics, in particular, for spin-torque applications, owing to their 
magnetic anisotropy in the perpendicular axes [6] [7] [8] [9]. Phase change 
Heusler compounds are interesting as magnetocaloric and magnetic shape 
memory effect materials [10]. Therefore, the theoretical prediction of new 
materials with suitable designed properties is active research in this field [11]. 

In fact, processing and designing new materials requires knowledge of 
physical properties, such as hardness, elastic constants, melting point, and 
ductility. The calculation of elastic constants is an efficient and fast tool used for 
elucidating physical properties as well as the mechanical stability and possible 
phase transitions of crystalline systems. Applied strains, such as shear or 
elongation, provide not only valuable information about the instability itself but 
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also the directional dependence of instabilities in crystals. The directional 
dependence of instabilities becomes important when not only cubic-tetragonal 
but also cubic-hexagonal, tetragonal-hexagonal, and lower symmetry phase 
transitions are relevant, such as those observed in Mn3Ga [6] [7]. Unlike 
mechanical instability, the determination of elastic constants is essential for 
applications of magnetic shape memory alloys. The elastic constants also provide 
valuable information on the structural stability, anisotropic character, and 
chemical bonding of a system [12] [13] [14]. Moreover, other measurable 
properties can be estimated using the elastic constants, such as the velocity of 
sound, Debye temperature, melting point, and hardness. This information is an 
essential requirement for both industrial applications and fundamental research. 
For example, these properties are essential for studying superconductivity and 
heavy fermion systems in which a drastic change of elastic constants and related 
properties have been reported upon the phase transition [15] [16]. The elastic 
properties are so important that Gilman [17] concluded: “the most important 
properties of a crystal are its elastic constants”. 

In the present study, some well-known tetragonal and cubic Heusler 
compounds are examined and compared with the available experimental and 
theoretical data [18]-[26]. Starting from the cubic phase, cubic L21 Ni2MnGa and 
Rh2FeSn are considered for detailed studies. For the tetragonally distorted 
systems, Ni2MnGa (in the non-modulated tetragonal ( 1>/ac ) structure), 
Mn2NiGa, Fe2MnGa, and Mn2FeGa Heusler compounds are examined. The 
intermetallics Mn2YGa (Y = Fe, Ni) and X2MnGa (X = Fe, Ni) undergo 
tetragonal magneto-structural transitions that may result in half metallicity and 
magnetic shape memory or magnetocaloric effects. In the case of Ni2MnGa, the 
composition dependence (chemical disorder effect) of the phase transition is 
studied using the virtual crystal approximation (VCA). Calculating the 
mechanical and elastic properties of off-stoichiometric compounds in the 
tetragonal phases elucidates phase transformations. Elastic constants and 
mechanical properties of some Rh-based Heusler compounds, reported by Suits 
[27], are calculated. The dependence of the elastic constants and the number of 
used k-points and plane waves (defined in full-potential linearized augmented 
plane wave (FPLAPW) by MT maxR k , where MTR  is the muffin tin radius and 

maxk  is the largest k vector) are discussed in detail. The importance of using 
sufficiently large numbers of k-points and plane waves for a reliable estimation 
of the elastic properties is demonstrated. 

The present work concentrates on the elastic properties of metastable cubic, 
tetragonal, and phase change materials that exhibit magnetic shape memory or 
magnetocaloric effects. 

2. Methodology  
2.1. Computational Details 

In this section, the basic equations for calculating the elastic constants are 
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presented (for more details see Appendix A). The most easily determined 
quantity is the bulk modulus B, which provides the behavior of the crystal 
volume or lattice parameters under hydrostatic pressure. There are several ways 
to calculate the bulk modulus from the energy-volume ( )totE V  relation (see 
References [28] [29] [30]). In the present work, the bulk modulus B is 
determined by fitting the total energy calculations to the Birch-Murnaghan 
equation of state [29] [30]. According to this model, the dependence of the 
energy on the change in the crystal volume V under hydrostatic pressure p is 
given by 

( )2 2 30
0

9 6 4 ,
16 14703.6

BVE E v Bη η ′= + − +                   (1) 

where d dB B p′ =  is the pressure derivative of the bulk modulus and 
2 1vη = − , with the ratio ( )1 3

0v V V=  of the actual volume V under pressure 
to the relaxed volume 0V  at the lowest total energy 0E  (see Reference [31]). 
The related pressure is given by 

( ) ( )7 53 31 4 .
2 4

p B v v B η ′= − + −  
                    (2) 

For tetragonal crystals, the dependence of the bulk modulus B on the elastic 
stiffness is given by 

( )11 12 13 33
1 2 2 4 .
9

B c c c c= + + +                       (3) 

In the case of cubic crystals, 12 13c c= , 11 33c c= , and 44 66c c=  (see also 
Appendix A). Therefore, the equations of the elastic constants for cubic systems 
are easily obtained from the tetragonal equations. 

The remaining elastic properties are determined by applying different types of 
strain ( ie ) to the tetragonal lattice and by applying proper relations between the 
total energy and the strain components. The energy ( )iE e  of the strained 
lattice is calculated using Hooke’s law (see Equation (10)). According to Wallace 
[31], if the strains ie  are small, the change of the energy is given by 

,
0

1 .
2i i i j i j

E e c e e
V
∆

= ∆ +∑ ∑∑                       (4) 

Here, ( ) 0iE E e E∆ = −  with equilibrium energy 0E  at volume 0V  without 
strain. The linear terms vanish at equilibrium or if the strain causes no change in 
the volume of the crystal. The elastic constants ,i jc  are obtained from the 
second-order terms and are calculated from the second derivatives of the energy 
with respect to the strains: 

0

2

, 2i j
i j V V

Ec
e e

=

∂
=

∂ ∂
                           (5) 

The second derivative relation of elastic constants ( ijc ) with total energy 
highlights the importance of an accurate calculation of the total energy. 
Therefore, the choice of the density functional theory solver in the calculation of 
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elastic constants and related properties is significant. 
For cubic crystals, three independent elastic constants need at least two 

different strains to be applied in the calculations, while in tetragonal systems 
(space group Nos. 89-142), six independent elastic constants need five different 
strains. The third (for cubic systems) or sixth (for tetragonal systems) condition 
to solve the linear set of equations are found from the calculated bulk modulus 
using the equation of state (see Equations (1) and (3)). In fact, there are 
numerous ways to apply the six different strains and their combinations to the 
crystal. One condition is that the applied strains (δ) should result in different 2nd 
derivatives of the strain energy given by Equation (4) (see Table 1). Another, 
necessary side condition of Equation (5) is that the volume must be conserved 
when applying the strain. Therefore, the use of linear strain components ( ie δ=  
in all possible cases and combinations in the strain matrix of Equation (9) of 
Appendix A) would lead to large uncertainties because they are not always 
volume conservative, or they make the use of additional derivatives necessary  

(for example, E
V
∂
∂

, 
i

V
e
∂
∂

, and higher orders). 

Table 1 and Figure 1 summarize the applied strains that are used to 
determine the elastic constants in the present work. The applied strains are the 
same as those reported by Kart et al. [32]. The isotropic strain (0) is not used 
directly for the calculation of the elastic constants, as it gives the same 
information as discussed for the bulk modulus B (see discussion above). The five 
strain types (Equations (1)-(5) in Table 1) are chosen to be volume conservative. 
The last strain type does not conserve the volume, but it keeps the same 
symmetry as the crystal and thus can be calculated from the energy versus c/a 
relation [32], where c/a is the ratio of the two independent lattice parameters of 
the tetragonal crystals. 

In the present work, six distortions of each type in the range of 
3% 3%δ− ≤ ≤ +  were applied to the relaxed structure with 0V  from the 

structural optimization using the Birch-Murnaghan equation of state. For 
tetragonal systems, the energy ( )E δ  versus applied strain curves were fitted to 
a fourth-order polynomial ( ) 2 3 4

0 2 3 4E E a a aδ δ δ δ= + + + . 
 

Table 1. Strain table for calculation of the elastic constants in tetragonal systems. Note that only types (1) to (5) are volume 
conservative. Only components with 0ie ≠  are given. Type (0) corresponds to calculation of the bulk modulus. 

Type  Strain   0E V∆  

(0) isotropic 1e δ=  2e δ=  3e δ=  (see bulk modulus) 

(1) monoclinic ( )2 2
1 1e δ δ= −  4e δ=   ( )2 4

442c Oδ δ+  

(2) triclinic ( )2 2
3 1e δ δ= −  6e δ=   ( )2 4

662c Oδ δ+  

(3) orthorhombic 1e δ=  2e δ= −  ( )2 2
3 1e δ δ= −  ( ) ( )2 4

11 12c c Oδ δ− +  

(4) orthorhombic 1e δ=  ( )2 2
2 1e δ δ= −  3e δ= −  ( ) ( )2 4

11 13 332 2c c c Oδ δ− + +  

(5) tetragonal 1e δ=  2e δ=  ( ) ( )2

3 2 1e δ δ δ= − + +  ( ) ( )2 4
11 12 33 132 4 2c c c c Oδ δ+ + − +  

(6) tetragonal 3e δ=    2
33 2c δ  
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Figure 1. Strain types for calculation of the elastic constants in tetragonal systems. (a) 
shows the tetragonal Heusler structure with I4/mmmm symmetry. (0)-(6) show the strain 
types and resulting distortions according to Table 1. 
 

Here, an alternative method of verifying the convergence as well as the 
accuracy of the results is introduced. In principle, it is sufficient to use either 
Equations (4) or (5) of Table 1 to calculate all six elastic constants. This is the 
usually applied method. However, in the present work the elastic constants and 
all related properties are calculated with both equations to ensure that they 
provide the same results. This happens, indeed, only if the results are well 
converged (see also Section 3.1). The system is overdetermined by using both 
types of strains; however, in this way, the accuracy of the calculated quantities 
can be estimated. In fact, the values reported here have an error below 0.5%. The 
combination of different strains as well as different types of equations of state 
allow determination of the uncertainty of the calculated results, which is 
expected for a reliable computer experiment. 

2.2. Electronic Structure Calculations  

The ab-initio electronic structure calculations were performed using the Wien2k 
code [33]. The all-electron full-potential method, FLAPW, with an unbiased 
basis covers all elements of the periodic table with any spin configuration. This 
feature is essential for Heusler compounds because they may contain diverse 
types of atoms, including lanthanide and actinide atoms, together with exotic 
magnetic ordering. The accuracy of this method makes it suitable for the studied 
systems. For example, Co2TiAl fails with spherical potentials or full symmetry 
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potentials together with bare exchange-correlation functionals neglecting 
gradient corrections [34] [35] [36]. Since elastic constants are calculated from 
the second derivatives of the total energy, an accurate calculation of total energy 
is extremely important. 

The exchange-correlation functional was taken in the generalized gradient 
approximation of Perdev, Burke, and Enzerhoff (GGA-PBE) [37] [38]. The 
number of plane waves was restricted by MT max 9R k = , and the number of 
k-points was set to 8000 k-points in the full Brillouin zone. As discussed in 
Section 3.1, these criteria ensure the convergence of the calculated elastic 
properties for the investigated systems. 

The lattice parameters were optimized before calculating the elastic constants. 
The results of the structural optimizations are summarized in Table 2 along with 
some previously reported experimental and theoretical values. Here, the c/a ratio 
was obtained by a full optimization of the Heusler compounds in tetragonal 
space groups 119 or 139. In other words, to find the energy minimum, not only 
the c/a ratio changed (the elongation of c) [32] [39] (see also Figure 2) but also 
the volume of the structures was relaxed. The assignment of lattice parameters 
should be performed carefully since the optimization was performed in the 
tetragonal symmetry. When reducing the cubic fcc cell to a tetragonal fct cell, 
the cubic lattice parameter ca a=  becomes c, and the tetragonal parameter 

ta a=  becomes 2ca . To better understand the distortion of the cubic  
 
Table 2. Results of the structural optimization. Lattice parameters a and c are given in Å, 
ε is dimensionless, and total magnetic moments m are in μB. All structures are fully 
optimized (V, c/a, magnetic state) for the given symmetries. Column sym gives the 
number of the corresponding space group, and cubic and tetragonal structures are 
assigned by the Pearson symbols cF16 and tI4, respectively. Experimental values are given 
for comparison. Note that the cubic variant of Rh2FeSn is only hypothetical. 

Compound sym ac, c at ε mtot 

Mn2NiGa tI4 119 6.91 3.78 0.293 1.0 

Ni2MnGa tI4 139 6.80 3.78 0.272 4.0 

Exp. [40]  6.44 3.90 0.168 4.09 

Ni2MnGa cF4 225 5.81  0 4.1 

Exp. [41]  5.82  0 4.17 

Mn2FeGa tI4 119 7.30 3.68 0.403 0.77 

Fe2MnGa tI4 139 7.31 3.62 0.428 0.13 

Rh2CrSn tI4 139 7.33 4.08 0.270 2.40 

Exp. [27]  7.16 4.09 0.238  

Rh2FeSn tI4 139 7.12 4.13 0.219 3.92 

Exp. [27]  6.91 4.15 0.177 3.70 

Rh2FeSn cF4 225 6.25  0 3.54 

Rh2CoSn tI4 139 7.22 4.05 0.261 2.25 

Exp. [27]  6.90 4.14 0.179 2.44 
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Figure 2. (a) The calculated spatial distributions of the rigidity 
modulus ( )ˆG r  of Ni2MnGa. (b, c) The total energy as a function of 

tetragonal strain along the c-axis at constant volume. Panel (b) focuses 
on the 5M modulated phase with 0.9c a ≈ . 

 
Heusler structure to the tetragonal Heusler structure, the distortion parameter ε 
is defined by 

1 1,
2t

c
a

ε = −                           (6) 

where at is the tetragonal a parameter. At 0ε = , the structure is cubic; at 0ε < , 
the cubic cell is compressed; and at 0ε > , the cubic cell is elongated along one 
of the principal axes. 

The magnetic state was verified using different settings of the initial 
magnetization: ferromagnetic (all initial spins parallel) or ferrimagnetic (initial 
spins partially antiparallel). From the studied systems, all Mn2YZ compounds 
exhibit ferrimagnetic order in which one Mn has majority and the other Mn has 
minority orientation. For all other compounds, the ferromagnetic ground state 
has the lowest total energy. 

3. Main Results  

Prior to discussing the tetragonal Heusler compounds, the elastic constants of 
the unstable and metastable cubic systems are discussed. Here, Ni2MnGa with 
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L21 structure is selected as a metastable system. This compound is one of the 
most investigated materials owing to its shape memory behavior and its 
potential applications in actuator devices. In fact, in Section 3.1, only the cubic 
phase is addressed, and the tetragonal phase of Ni2MnGa is discussed in Section 
3.2. Moreover, Ni2MnGa was used as an example case to study the significance 
of increasing the number of k-points and plane waves and their relations to the 
convergence of the elastic constants. In the second part of this section, the 
tetragonal phase of Heusler compounds are discussed. The elastic constants 
together with the corresponding measurable properties for selected tetragonal 
Heusler compounds are investigated. The role of the stoichiometry on the phase 
transition of Ni2MnGa is also explored. 

3.1. Elastic Constants and Metastability in Cubic and Tetragonal  
Compounds 

Stoichiometric Ni2MnGa undergoes a structural phase transition from the 
austenite into the martensite phase [42]. Depending mostly on the composition, 
the martensite structure is characterized by the tetragonal 5M modulated 
structure with 0.94c a ≈ , the orthorhombic 7M structure with 0.9c a ≈ , and 
the non-modulated tetragonal structure with 1.2c a ≈  [39]. Figure 2 shows 
the appearance of different stable and metastable phases with varying c/a 
elongation. To focus on the cubic phase, Figure 2(b) shows only the small range 
of strains with 1c a <  that cover the cubic phase. The deepest energy 
minimum is located at a distortion of about 0.27ε = , corresponding to 

1.26c a ≈  (non-modulated phase). A shallow minimum (see Figure 2(b)) 
appears at a distortion of about −0.05 ( 0.94c a ≈ , 5M phase). The elastic 
constants of the structure with 1c a >  will be discussed in Section 3.2. 

As shown in Figure 2(c), the metastable cubic phase exists only under an 
infinitesimal strain and exhibits a very low energy modulation. The optimized 
lattice constant of cubic Ni2MnGa with the L21 structure is 5.81 Å, in excellent 
agreement with the experimental value of 5.82 Å [41]. This phase is only stable 
within ±1 meV energy changes, which confines the lattice distortion to < ±1%. 
This distortion relates to the tetragonal distortion, providing the 11 12c c−  
combination of elastic constants. To observe such a non-trivial change in energy 
and to have a smooth dependence on strain, the results need to be precisely 
converged with very high precision. This does not imply, however, that the 
results do not need to be converged for a wide energy window with a deep 
minimum. As an example, the importance of converged results is demonstrated 
in Figure 3. The c44 shear modulus is stable for a lattice distortion of about ±3% 
and an energy change of more than ±30 meV. In this case, the rough calculation 
provides a smooth curve, but the calculated elastic constants significantly deviate 
from the converged results. The convergence of the results have the same 
importance for the calculation of the bulk modulus (B) (see Figure 3(c) and 
Figure 3(d)). 
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Figure 3. Convergence of elastic properties. The shear modulus c44 and 
bulk modulus (B) as a function of MT maxR k  and the number of k-points. 
The right side panels (a,c) show the increment of B and c44 as a function 
of the k-points with MT max 7R k = . Using the converged k-points (16,000 
or 8000), in the left side panels (b,d), these values decrease with 
increasing MT maxR k . Therefore, the minimum number of k-points and 
value of MT maxR k  are 8000 and 9, respectively. 

 
Figure 3 shows the convergence of c44 and B with respect to MT maxR k  and 

number of k-points. As shown in (a,c) for constant MT max 7R k = , increasing the 
number of k-points increases the c44 and B values. These results converge at 8000 
k-points. In contrast, increasing MT maxR k  decreases c44 and B. Note that a 
similar result could be obtained at a more relaxed criterion, for example at 2000 
k-points and MT max 7R k = , due to error cancellations. Therefore, MT max 9R k =  
and 8000 k-points are the minimum criteria to converge the results for the 
systems studied in this work. 

The calculated elastic constants of Ni2MnGa with L21 structure are given in 
Table 3. The calculated results show a reasonable agreement with the 
experimental results and coincide with previously reported theoretical results 
[32] [39]. Note, however, that good agreement with the experiment results does 
not guarantee the accuracy of the calculations. First, the experiments were 
performed at 300 K for Ni2MnGa in the L21 phase, and off-stoichiometry has a 
significant effect on the measured elastic constants [44]. Moreover, the 
employed experimental method may result in different measured elastic 
constants [43]. As an example, the c44 value deviates by about 60 GPa based on 
the experimental method. In general, the measured elastic constants are 
inversely related to temperature [45]. Hence, a higher value should be expected 
for the calculations. Fortunately, c', which is a difference between two constants 
(c11 and c12), is argued to be less dependent on temperature [45]. In fact, the 
calculated 4.5c′ =  GPa exhibits a better agreement with the experiment  
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Table 3. Elastic properties of metastable Ni2MnGa and hypothetical Rh2FeSn with L21 
structure. The calculated elastic parameters cij, c', and B are given in GPa, and the cubic 

elastic anisotropy 44

11 12

2
e

cA
c c

=
−

 is dimensionless and corresponds to the tetragonal A001. 

Compounds c11 c12 c44 c' B Ae 

Ni2MnGa 164 156 115 4.1 159 28.02 

Exp.1 152 143 103 4.5 146  

Other calc.2 163 152 107 5.5 156  

Rh2FeSn 124 206 84.3 -82 179 <0 

 
(4.1 GPa) than previously reported values [32] [39]. 

In addition, c12 and c11 do not have any exclusive physical basis; in other 
words, no phonon mode directly corresponds to these constants. Mixing with 
other stiffness ( ijc ), however, results in a meaningful combination. For example, 
the tetragonal shear modulus ( )11 12 2c c c′ = −  corresponds to cubic-tetragonal 
distortion. Moreover, it is well established that c'—associated with slow 
transverse acoustic waves [43]—plays an important role in the occurrence of 
structural transformations. Another important quantity is the Cauchy pressure 

12 44pc c c= − . A negative value of pc  ( 12 14c c< ) may indicate covalent bonds, 
where the angular dependence of the inter-atomic forces becomes important. 

Furthermore, detailed analysis of elastic constants sheds light on the stability 
and phase transition in Heusler compounds. Cubic Ni2MnGa with soft c' is on 
the border of the phase transition. With the similar interpenetration (see 
Appendix B), the large elastic anisotropy eA  of Ni2MnGa ( 28eA = ) hints on 
its tendency to deviate from the cubic structure. Anisotropy is another indicator 
for the instability of cubic structures. The elastic anisotropy of crystals is also an 
important parameter for engineering since it correlates to the possibility of 
micro-cracks in materials. Unlike the mechanical properties, anisotropy shows 
the tendency of a system toward phase transitions as it inversely relates to the c’ 
parameter. In fact, an illustrative way to show the anisotropy is to visualize the 
rigidity modulus ( )ˆG r  or Young’s modulus ( )ˆE r . Figure 2(a) shows that the 
rigidity modulus is largest in the 111 -type direction that is along the 
tetragonal axes. Such a significant deviation from spherical shape indicates that 
the moduli of Ni2MnGa exhibit a large degree of anisotropy. In principle, when 

11 12  0c c− → , the rigidity distribution exhibits a stronger directional dependency, 
as shown for Ni2MnGa in Figure 2(a). 

In the next step, a compound that is not stable in the cubic structure was 
examined for comparison. In the case of Rh2FeSn shown in Figure 4, the cubic 
structure exhibits a maximum of the total energy, and any tetragonal distortion 
will lead to a different stable structure. Based on Figure 4, the appearance of 
energy minima are expected for two different tetragonally distorted systems with 

1c a >  and 1c a < . Larger distortions show that 1c a >  is the stable phase, 
while 1c a <  is a metastable phase. Previous works only reported the structure  
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Figure 4. Energy-strain relation for hypothetical Rh2FeSn with 
L21 structure. Displayed are the calculated total energies as 
function of (a) tetragonal (symmetry No. 139) and (b) 
orthorhombic (symmetry No. 69) strains. 

 
with 0ε >  [27] [46]. However, the calculated elastic constants also supported 
the instability of the cubic phase from negative values of tetragonal shear 
modulus c' and anisotropy Ae. The metastable structure with 0ε <  appears 
when expanding the in-plane lattice parameter a while keeping c at the cubic 
lattice parameter. Such a situation may be artificially initialized by epitaxial or 
pseudomorphic thin film growth on a substrate with an appropriate lattice 
parameter. Similar metastable situations may exist in many other tetragonal 
Heusler compounds and will open the field of lattice parameter engineering to 
enlarge the number of properties on demand. 

3.2. Tetragonal Heusler Compounds  

The tetragonal Heusler compounds studied in this work along with their elastic 
constants are summarized in Table 4 and Table 5. The Heusler intermetallics 
Mn2YGa (Y = Fe, Ni) and X2MnGa (X = Fe, Ni) undergo tetragonal 
magneto-structural transitions that result in half-metallicity, magnetic shape 
memory, or magneto-electric effects. In this section, the off-stoichiometric 
compositions are briefly discussed, and then, the elastic constants and related 
properties of the Heusler compounds are analyzed. Calculating the elastic 
properties of the tetragonal phases illuminates the structural transformations, 
chemical bonding, and mechanical stability of these intermetallic compounds for 
applications. Likewise, the elastic properties of Rh-based Heusler compounds 
synthesized by Suits [27] are calculated. Although Ni2MnGa has been widely 
studied experimentally at different phases, there is no experimental measurement  
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Table 4. Elastic properties of selected tetragonal Heusler compounds. The different moduli (B,G,E) and elastic constants ijc  are 

given in GPa, the corresponding elastic compliances ijs  are in (TPa)−1. The anisotropies ( BA , 100A , 001A ), Phug’s ratio k, and 

Poisson’s ratio ν are dimensionless. The compressibility κ is in GPa−1. For Ni2MnGa, results taken from Reference [39] are given in 
brackets (). 

 
Mn2NiGa Ni2MnGa Mn2FeGa Fe2MnGa Rh2CrSn Rh2FeSn Rh2CoSn 

 normal 25.1Mn 30.9Ga 28.1Ni 27.9Ni      

BV 134.9 159.2 (158) 161.8 158.9 158.0 161.3 141.2 154.7 176.6 178.8 187.8 

BR 126.5 159.2 (157.8) 161.7 131.6 157.5 155.1 134.6 154.3 161.6 176.5 185.8 

B 130.7 159.2 (157.9) 161.8 145.2 157.8 158.2 137.9 154.5 169.1 177.7 186.8 

GV 109.3 95.9 (73.8) 95.9 96.0 93.7 95.1 106.6 116.2 108.3 86.2 101.5 

GR 80.5 66.3 (53.8) 66.6 57.2 62.5 50.3 37.9 56.1 85.2 74.6 76.5 

G 94.8 81.1 (63.6) 81.2 76.6 78.1 72.7 72.3 86.2 96.7 80.4 89.0 

E 229.2 208 (208) 208.8 195.4 201.1 189.1 184.6 218.0 243.7 209.6 230.4 

c' 67 60 62 60 58 67 12 21 73 70 67 

c11
 194 227 (252) 235 196 229 222 181 195 234 252 257 

c12
 60 108 (74) 112 77 113 88 157 154 88 113 123 

c13
 118 140 (144) 142 157 139 156 110 122 160 153 168 

c33
 232 199 (194) 196 255 184 208 151 205 300 265 258 

c44
 163 148 (100) 145 151 143 150 167 177 154 124 154 

c66
 110 95 (55) 100 93 99 91 155 162 112 66 94 

s11
 7.45 7.80 (7.26) 7.61 10.43 8.05 10.21 23.26 14.76 6.72 6.25 6.82 

s12
 0.02 −0.58 (1.65) −0.57 2.05 −0.53 2.76 −17.60 −9.83 −0.14 −0.94 −0.66 

s13
 −3.80 −5.09 (−6.61 −5.09 −7.69 −5.66 −9.69 −4.13 −2.95 −3.51 −3.06 −3.99 

s33
 8.17 12.21 (15.0) 12.47 13.40 13.97 19.29 12.66 8.41 7.06 7.30 9.05 

s44
 6.11 6.80 (10.0) 6.89 6.63 7.01 6.67 6.00 5.66 6.47 8.06 6.47 

s66
 9.01 10.51 (18.2) 10.04 10.74 10.10 10.98 6.46 6.16 8.89 15.05 10.64 

AB
 0.15 0.93 1.17 −0.41 1.42 −0.03 2.89 1.27 0.015 0.52 0.49 

A100
 3.44 4.04 3.94 4.39 4.20 5.04 5.97 4.57 2.88 2.35 3.44 

A001
 1.64 1.59 1.63 1.56 1.70 1.36 12.64 7.98 1.54 0.95 1.41 

k 1.38 1.96 (2.48) 1.99 1.90 2.02 2.18 1.91 1.79 1.75 2.20 2.09 

ν 0.21 0.282 (0.322) 0.28 0.28 0.29 0.30 0.28 0.26 0.26 0.30 0.29 

κ 0.0079 0.0063 0.0062 0.0076 0.0063 0.0064 0.0079 0.0065 0.0062 0.0056 0.0054 

 
of the elastic modulus of the non-modulated tetragonal phase, and only 
theoretical works on this phase have already been reported [32] [39]. 

As shown in Table 4, in the case of Ni2MnGa, the results show a qualitative 
agreement with the previous theoretical report (values in brackets). However, a 
quantitative comparison of the results reveals some significant deviations. These 
differences can be traced back to the calculation method and the method of 
performing structural optimization. To address this problem, the cubic phase is 
briefly considered. In the cubic phase, the present as well as other calculations 
are performed for the same lattice parameters using different calculation  
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Table 5. Derived physical properties of tetragonal Heusler compounds. Tabulated are the 
longitudinal lv , transverse tv , and average v  sound velocities as well as the acoustical 
Debye temperature ac

Dθ  and acoustical Grühneisen parameter acζ  estimated from the 
sound velocities. All v are given in ms−1, θ is given in K, ζ is dimensionless. 

Compound lv  tv  v  ac
Dθ  acζ  

Mn2NiGa 5667 3441 3803 490 1.67 

Ni2MnGa 5688 3219 3487 451 1.95 

Exp.1    345  

Other calc.2 5572 2853 3196 323  

Mn2FeGa 5443 3023 3367 434 2.02 

Fe2MnGa 5753 3253 3618 470 1.96 

Rh2CrSn 5404 3078 3421 410 1.93 

Rh2FeSn 5277 2803 3133 376 2.19 

Rh2CoSn 5346 2885 3221 389 2.13 

 
schemes. Here, the results of FPLAPW calculations are slightly larger than those 
of projected augmented wave (PAW) calculations, and the deviations range from 
1% for c11 up to 7% for c44. These small differences are expected because of the 
selected methods and convergence criteria. In contrast, in the case of the 
tetragonal system (see Table 4), the deviations between calculations range up to 
30%, such as the case of c44 and c66. Indeed, the different calculation methods 
should not lead to such a large discrepancy (if all factors are set carefully), and 
these observed differences mainly arise from the underlying structural 
optimization. Here, all initial tetragonal structures are fully optimized at their 
relevant symmetries (I4/mmm or 4 2I m ), and thus, they differ from the simply 
elongated cubic structures (see also Section 2.2 for more details about the 
calculations). 

The elastic constants of all studied tetragonal Heusler compounds follow the 
inequality 44 0B c G c′> > > > , so that the tetragonal shear modulus c' is the 
main constraint on the stability and properties. Pugh’s and Poisson’s ratio (see 
Appendix A) supply valuable information about the malleability and the type of 
bonding in crystals. Small values of Pugh’s ratio indicate low malleability of 
crystals [47], meaning they are brittle. Pugh’s ratio indicates the type of bonding, 
namely covalent or metallic bonding, because changes in the angle of a covalent 
bond require more energy than stretching-stressing the bond, meaning G 
becomes larger compared to B; this leads to smaller values of k. On the other 
hand, Poisson’s ratio for covalent bonding is about 0.1ν =  and increases for 
ionic crystals up to 0.25ν = . For instance, Pugh’s and Poisson’s ratios of strong 
covalent compounds such as diamond are assumed to be 0.83k =  and 

0.069ν = , respectively, while in the strongly ionic KCl, Pugh’s and Poisson’s 
ratios are 1.19k =  and 0.27ν = , respectively [48] [49]. Despite having 
different types of bonding, both KCl and diamond are brittle. On the other hand, 
strongly malleable gold exhibits ratios of 6.14k =  and 0.42ν =  [47] [50], and 
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gold is the most ductile metallic element. According to Christensen [51], the 
critical value for the ductile-brittle transition appears at a Pugh’s ratio of 

/
2 1 2.3,
3 1 1 2B Dk = ≈

−
                       (7) 

which corresponds to a critical Poisson’s ratio of ( ) 1

/ 3 2 1 0.31B Dν
−

= − ≈  
(compare equations for k and ν in the Appendix). Based on the calculated elastic 
constants, the studied tetragonal compounds exhibit Pugh’s ratios between 1.38 
and 2.2 and Poisson’s ratios between 0.21 and 0.3, indicating that they have an 
intermediate behavior between ductile and brittle type behavior. The values of k 
and ν indicate the covalent or metallic character of these systems. More details 
about the bonding type may be found from a Bader analysis of the charge 
densities [52] [53] [54]. It should be kept in mind that ductility and brittleness 
are rather subjective criteria and usually related to the elastic constants by 
empirical or semi-empirical rules. 

The shear anisotropy factor Ae provides a measure of the degree of anisotropy 
of the bonds between atoms in different planes. Tetragonal systems are described 
by two different shear anisotropic factors A001 and A100 (or equivalent A010). 
Young’s moduli of some of the studied Heusler compounds are shown in Figure 
5. The shear anisotropy for {100} planes is considerably higher compared to 
{001} planes for Mn2NiGa and Rh2FeSn. This behavior is similar for Mn2FeGa 
and other Rh2-based compounds, as shown in Table 4. In contrast, in the case of 
Fe2MnGa and Mn2FeGa, the anisotropy for {001} is higher than that for {100}. 
Moreover, Rh2FeSn has an interesting distribution of Young’s modulus: it is 
isotropic in the square x-y planes of the tetragonal structure, arising from the 
value of 001 0.95A = , which is close to unity. 

3.3. Virtual Crystal Approximation 

One interesting feature of Heusler compounds, including Ni2MnGa, is their 
sensitivity to stoichiometric compositions. An infinitesimal deviation may lead 
to a phase transition or to changes in the electronic structure properties. Here, 
VCA was applied to explore off-stoichiometric systems. This approximation is 
valid for small changes of components with nearly the same radius, which holds 
for the considered systems. Moreover, VCA is only valid for neighboring 
elements and for small differences in the number of valence electrons 
( 0.1e−∆ < ). 

In VCA, the atom ZA with charge Z is replaced by atom Z A′  with the virtual 
charge Z Z′ = ±   to reflect that the average charge deviates from the original 
value at a certain position. In Ni2MnGa, if the site where 28Ni resides is partially 
occupied by 25Mn, the charge at that site will be lower; accordingly, the charge 
will be higher when 30Ga occupies the same site. In parallel to the change in the 
nuclear charge, the number of electrons in the primitive cell changes to remain 
neutral. Thus, for 28 25 31

2Ni Mn Ga± , the number of valence electrons will be 
30 2vn = ±   in the primitive cell, whereas the number of core plus semi-core  
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Figure 5. Calculated spatial distribution of Young’s moduli ( )ˆE r  of some Mn- and Rh-based Heusler compounds. The change 

from the round shape of Rh2FeSn to the sharply elongated shape in Mn2FeGa indicates an increase of the elastic anisotropy (see 
also Table 4). (a) Ni2MnGa; (b)Rh2FeSn; (c) Fe2MnGa; (d)Mn2FeGa. 

 
electrons stays fixed at 72. The following cases are used in the present work:  
• 30.9Ga ⇒ Ni or Mn at Ga site,  
• 25.1Mn ⇒ Ni or Ga at Mn site,  
• 27.9Ni ⇒ Mn at Ni site, and  
• 28.1Ni ⇒ Ga at Ni site.  

All elongated structures of off-stoichiometric Ni2MnGa have been fully 
optimized within the VCA approximation. As shown in Figure 6, a small change  
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Figure 6. The energy change along c/a is plotted for the 
non-stoichiometry composition of Ni2MnGa. The energy landscape 
(here, along the c-axis) is extremely sensitive to the stoichiometric 
composition, in particular, the Ni component. 

 
in the number of electrons at the Ni site has the most drastic effect on the energy 
landscape. The largest difference appears between Ga-rich (28.1Ni) and Ni-poor 
(27.9Ni) compounds. Increasing Ni at Ga and Mn sites lowers the energy 
minimum at 1c a >  compared to the stoichiometric compound. Conversely, 
increasing Ga at the Ni site increases the energy of 1c a >  with respect to the 
stoichiometric compound. These results are in agreement with previously 
reported calculations [55]. Differences in the ( )E δ  dependence are more 
pronounced when the distorted structure is far from the initial structure. In the 
next step, the elastic constants of the off-stoichiometric Ni2MnGa were 
calculated using VCA for the tetragonal distorted structures with 1c a >  at the 
lowest total energy (see Figure 6). 

Table 4 summarizes the results of the elastic constant calculations for 
stoichiometric and off-stoichiometric Ni2MnGa. An extreme effect of the 
off-stoichiometry is reflected in the anisotropy ratio (AB). As shown in Table 4, 
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the 27.9Ni and 30.9Ga compounds exhibit negative anisotropies of −0.02 and −0.4, 
respectively. In fact, the negative anisotropy highlights the extreme instability of 
these systems. In particular, 30.9Ga has a large negative value. The results explain 
why 30.9Ga (Ga-poor) and 27.9Ni (Mn-rich) Ni2MnGa synthesis is difficult. 
Moreover, the 28.1Ni (Ga-rich) and 25.1Mn (Mn-poor) compounds have large 
anisotropies, which are twice the value of the stoichiometric anisotropies. The 
large value also explains the tendency of phase transitions in these materials. 
Therefore, off-stoichiometric Ni2MnGa—nearly all synthesized samples are 
slightly off-stoichiometric—is expected to have pronounced phase transitions 
depending on the composition [56]. Thus, deficiency of valence electrons at the 
Mn or Ga sites in these systems leads to a negative anisotropy ratio and thus 
structural instability. Among the elastic constants, c11 and c22 are more strongly 
influenced when the composition changes compared to c66 and c44, which remain 
nearly constant. Therefore, a small excess of each of the elements (small change 
of the valence electron concentration in the vicinity of that site) will not change 
the shear in the {100} direction. However, the asymmetries AB and A100 
significantly change compared to A001, reflecting a change of the in-plane 
chemical bonding. Here, Ni2MnGa is used as an example of the sensitivity of 
Heusler compounds on their stoichiometry. Disorder-induced phase transitions 
have been reported for other Heusler compounds such as iron-based 
compounds [57]. 

3.4. Derived Properties of Tetragonal Heusler Compounds  

Finally, some physical properties and material parameters of the compounds are 
derived from the calculated elastic properties. The velocity of sound is an 
important quantity. Its averaged values can be directly determined from the 
calculated elastic constants. In experiments, on the other hand, the sound 
velocities can be used to measure elastic constants. Therefore, the sound 
velocities v are nearly synonymous with the elastic stiffness constants c. Further, 
sound velocities have been used to study various solid-state properties and 
processes [45]. Therefore, having the sound velocities predicted by calculations 
in advance could be quite important for experimental measurements. Usually, 
the directionally dependent acoustic properties are analyzed in terms of the 
slowness that is the inverse of the phase velocity. The group velocities are found 
from the derivatives of the slowness. 

Figure 7 compares the slowness surfaces of Fe2MnGa and Ni2MnGa. The 
slowness surfaces reflect the elastic anisotropy in comparison to Figure 5, which 
shows the distribution of Young’s modulus. Three slowness surfaces appear in 
both cases, representing different polarizations of the sound wave. The pressure 
(p) wave is longitudinal polarized. Moreover, p has the highest phase velocity 
and thus the smallest slowness (Figure 7(a) and Figure 7(d)). The remaining 
two surfaces belong to the fast (s1) and slow (s2) shear waves that are transversely 
polarized. The slowness surfaces of the p waves have a similar shape for both 
materials, and their maxima are found along the {001}-type principle axes. The  
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Figure 7. Slowness surfaces of Fe2MnGa (a)-(c) and Ni2MnGa (d)-(f). The slowness is given in (km/s)−1. 

 
shapes of the slowness surfaces of the shear waves differ between the two 
compounds. The observed differences reflect the differences in the anisotropy of 
both materials, and it is clearly seen that Ni2MnGa has a much lower anisotropy 
in the x-y plane. 

Further material parameters are derived from the average sound velocities as 
described in Appendix C. At low temperatures, where only acoustic vibrational 
modes contribute, the Debye temperature Dθ  can be estimated from the 
average sound velocity [58]. The values estimated in this way are generally larger 
than Debye temperatures determined from phonon calculations or in 
experiments [59] because the optical phonon branches are neglected when the 
elastic constants are used for calculating the “acoustical” Debye temperature 

acc
Dθ . In a similar way, the average sound velocities can be used to estimate the 

“acoustical” Grüneisen parameter acζ  [60]. 
The calculated average sound velocities together with the estimated Debye 

temperatures and Grüneisen parameters are listed in Table 5. The average sound 
velocities are rather similar for all compounds, ranging from about 3100 to 3800 
m/s. The acoustical Debye temperatures are all above room temperature, 
ranging from 376 to 490 K. As expected, compounds consisting of heavier 
elements tend to have lower values. With the exception of Mn2NiGa, all acζ  
values are about 2. This demonstrates that the anharmonicity of the lattice 
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vibrations is nearly the same for all compounds. 
As further shown in Table 5, the theory and experimental values have about a 

20% discrepancy for the case of Ni2MnGa. As reported in Reference [61], 
however, the stoichiometry of the compound has a large effect on the measured 
Debye temperature. As shown in Table 4, the Debye temperature decreases by 
about 20% in 27.9Ni. However, in the calculations, the changes in stoichiometry 
are extremely small. The changes in the calculated values may be more evident 
with larger variations in the stoichiometry. For example, in experiments, the 
results change from 261 K in the case of Ni49.6Mn21.9Ga28.5 to 345 K in the case of 
Ni53.1Mn26.6Ga20.3. Therefore, having an ideal 2:1:1 system, like that assumed in 
most theories, is not easily possible or may even be impossible from an 
experimental standpoint. However, the estimation of measurable properties 
should provide information about the studied system and its potential for 
applications. 

4. Summary 

In the present work, the elastic constants of tetragonally distorted Heusler 
compounds were determined. The full-potential LAPW method and the 
gradient-corrected PBE exchange-correlation functional were employed for all 
calculations. The relation between the calculated elastic constants and 
convergence criteria was discussed. Increasing only one of the parameters, such 
as the k-points or MT maxR K , while keeping the other parameter low led to large 
errors in the calculated elastic constants. Therefore, to calculate both elastic 
constants accurately, MT maxR K  and k-points must be sufficiently large to 
guarantee convergance. Structural optimization was shown to have an important 
effect on the elastic constants for tetragonal Heusler compounds. The method 
was used to investigate the crystalline stability of materials based on the 
calculation of their elastic properties. 

Based on the calculated results, the considered tetragonal Heusler compounds 
are intermediate materials, between brittle and ductile. Elastically, they exhibit 
mainly metallic rather than covalent bonding. The structural instability, 
mechanical properties, structural anisotropy, and other mechanical properties 
were also explored. Using the virtual crystal approximation, the importance of 
the stoichiometric composition for Ni2MnGa was demonstrated, and extreme 
sensitivity on the variation of the Ni component in Ni2MnGa was observed. 
Negative anisotropy of 27.9Ni2MnGa and Ni2Mn30.9Ga together with the large 
anisotropy of the 28.1Ni2MnGa and Ni2

25.1MnGa compounds indicated instability 
of off-stoichiometric Ni2MnGa in the tetragonal phase. 

The calculated material properties are useful for applications focusing on bulk 
materials. However, the appearance and prediction of metastable tetragonal 
structures allow lattice parameter engineering with artificial c/a ratios initialized 
by epitaxial or pseudomorphic thin film growth. Thus, Heusler thin films could 
be designed to have specific properties. 
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Appendix 
Appendix A. Basic Equations for the Elastic Constants, Moduli, and 
Related Parameters  

The equations that describe the elastic properties of solids have been described 
in detail by Nye [62]; this discussion is summarized here and compares 
tetragonal, hexagonal, and cubic systems with focus on the tetragonal case. The 
strain matrix   transforms lattice A with basis vectors , ,X Y Z  into the 
deformed lattice 

( )1A A′ = +                              (8) 

with basis vectors , ,X Y Z′ ′ ′ . The symmetric strain matrix   contains six 
different strains ie  and has the form (numbering of the elements follows 
Reference [62]): 

1 6 5

6 2 4

5 4 3

1 11
2 2

1 11 1
2 2
1 1 1
2 2

e e e

e e e

e e e

 + 
 
 

+ = + 
 
 

+ 
 

                      (9) 

The elastic relations (Hooke’s law) between the strain (  ) and stress (σ) 
matrices are mediated by the elastic compliance (S) or the elastic stiffness (C) 
matrices: 

or
σ

σ
=
=
S

C



                            (10) 

From the elastic equations, the relations between the compliance matrix and 
the stiffness matrix are 

1−=S C                              (11) 

and vice versa 1−=C S . These relations imply that 1= =SC CS . 
In the most general case, the elastic matrix is symmetric and of order 6 6× . 

In triclinic lattices, the elastic matrix contains 21 independent elastic constants. 
This number is largely reduced in high symmetry lattices. For example, in an 
isotropic system, it contains only the two constants 11 22 33c c c= =  and 

12 13 23c c c= = , and the remaining diagonal elements of the matrix are 
determined by ( )44 55 66 11 12 2c c c c c= = = − . 

In cubic lattices, the three elastic constants 11c , 12c , and 44c  are 
independent. There are five independent elastic constants for hexagonal 
structures ( 11c , 12c , 13c , 33c , and 44c ), while tetragonal structures have either 
seven (classes: 4, 4 , or 4/m) or six ( 11c , 12c , 13c , ( 16 15c c= − ), 33c , 44c  and 

66c ) elastic constants. The elastic matrix for all classes of cubic and hexagonal 
crystals as well as the classes 4mm, 42m , 422, or 4/mmm of tetragonal crystals 
have the form 
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11 12 13 16

12 11 13 16

13 13 33

44

44

16 16 66

. .

. .

. . .
. . . . .
. . . . .

. . .

c c c c
c c c c
c c c

C
c

c
c c c

 
 − 
 

=  
 
 
  − 

                (12) 

where zero elements are assigned by dots and additional tetragonal elements for 
classes 4, 4 , or 4/m are given in brackets. Moreover, the elastic matrix has 
restrictions 33 11c c= , 66 44c c= , 13 12c c=  in cubic systems and  

( )66 11 12 2c c c= −  in hexagonal systems. 
The matrix tetraC  has six eigenvalues for the classes 4mm, 42m , 422, or 

4/mmm:  
• 1 11 12

tC c c= − ,  

• ( )2,3 11 33 12
1
2

tC c c c Z= + + ±   

• 4 66
tC c= , and  

• 5,6 44
tC c= ,  

where 2 2 2 2
11 11 12 11 33 12 12 33 13 332 2 2 8Z c c c c c c c c c c= + − + − + + . The last eigenvalue 

( 5,6
tC ) is twofold degenerate (also note the double sign (±) in the second line). 

The crystal becomes unstable when one of the eigenvalues becomes zero or 
negative or in case that 0Z < . 

The relations between the elastic constants ijc  and the elements of the 
compliance matrix ijs  are found from Equation (11). In all classes of hexagonal 
systems or in tetragonal systems belonging to the classes 4 mm, 42m , 422, or 
4/mmm, the relations between ijc  and ijs  are given by 

( )
2

11 33 13
11

11 12

c c cs
c c c

−
=

−
                        (13) 

( )
2

12 33 13
12

11 12

c c cs
c c c
− +

=
−

 

13
13

cs
c

−
=  

11 12
33

c cs
c
+

=  

( ) 2
33 11 12 132c c c c c= + −  

44
44

1s
c

=  

66
66

1s
c

=  

where c66 appears only in tetragonal systems. Indeed, the number of equations is 
much less in cubic systems as shown from the restrictions given above. 

The elastic properties of single crystals are completely determined by the 
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elastic matrices C and S. In reality, polycrystalline materials are considered more 
often than single crystals. Polycrystalline materials consist of randomly oriented 
crystals, and thus, a description of their elastic properties requires only two 
independent elastic moduli: the bulk modulus (B) and the shear modulus (G). 
The relationships between the single-crystal elastic constants and the 
polycrystalline elastic moduli are given by the Voigt [62] or Reuß [64] averages. 
Voigt’s approach uses the elastic stiffnesses ijc , while Reuß’s approach uses the 
compliances ijs . Voigt’s moduli [63] are given as function of the elastic 
constants by the equations: 

( )

( )

11 12 13 33

11 12 13 33 44 66

1 2 2 4
9
1 2 4 6 3

15

V

V

B c c c c

G c c c c c c

= + + +

= − − + + +
              (14) 

and Reuß’s moduli [64] are usually calculated from the elements of the 
compliance matrix: 

( ) 2
11 12 33 13

11 12 13 33 11 12 33 13

11 12 13 33 44 66

21
2 2 4 2 4

15
8 4 8 4 6 3

R

R

c c c c
B

s s s s c c c c

G
s s s s s s

+ −
= =

+ + + + + −

=
− − + + +

           (15) 

For cubic or isotropic crystals, the bulk moduli in Voigt’s ( VB ) and Reuß’s 
( RB ) approach are equal, as shown by using the restrictions on ijc  given above. 
In cases other than isotropic or cubic, RG  cannot be easily rewritten in terms of 
the elastic constants. 

Finally, the mechanical properties of polycrystalline materials are approximated 
in the Voigt-Reuß-Hill [65] approach, where the bulk and shear moduli are 
given by arithmetic averages: 

( )

( )

1
2
1
2

V R

V R

B B B

G G G

= +

= +
                          (16) 

The bulk modulus B of a material characterizes its resistance to fracture, 
whereas the shear modulus G characterizes its resistance to plastic deformations. 
Therefore, ratios between the elastic moduli B and G are often given for 
characterization and comparison of different materials. Pugh’s modulus k is the 
simple ratio of the bulk and shear moduli [47]: 

.k B G=                              (17) 

Poisson’s ratio ν also relates the bulk and shear moduli: 

1 3 2 3 2 .
2 3 6 2

B G k
B G k

ν
− −

= =
+ +

                       (18) 

Further, Poisson’s ratio bridges between the rigidity modulus G and Young’s 
modulus E, which is given by 
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( ) 92 1 .
3

BGE G
B G

ν= + =
+

                       (19) 

Appendix B. Elastic Stability and Representation of Elastic  
Properties  

The set of elastic moduli and their ratios allows characterization of the elastic 
behavior of materials. However, the mechanical stability is still open. As a first 
criterion, the elastic moduli all must be positive. Born and coworkers developed 
a theory on the stability of crystal lattices [66]-[72]. For tetragonal crystals at 
ambient conditions, the seven elastic stability criteria are given by 
• 11 33 12 132 2 4 0c c c c+ + + >   
• 11 33 132 0c c c+ − >   
• 12 33 44 66, , , 0c c c c >   
• 11 12 0c c− >   

Note that the number of criteria is reduced for the lower number of elastic 
constants in hexagonal or cubic crystals to 5 or 3, respectively. The last condition 
is used to define the tetragonal shear modulus ( )11 12 2c c c′ = − . In some works, 
the direct difference 11 12C c c′ = −  is used. If external, hydrostatic pressure p is 
applied, then the crystal becomes unstable when 2 p C′> , that is, at p c′> . 

The linear compressibility β is the crystal response to hydrostatic pressure by a 
length decrease. For cubic systems, the linear compressibility is isotropic, that is, 
a sphere of a cubic crystal under hydrostatic pressure remains a sphere. The 
situation is different in non-cubic systems where ( )r̂β β=  becomes 
directionally dependent. In hexagonal, trigonal, and tetragonal systems, the 
directional dependence is given by 

( ) ( )( ) ( )2 2 2
11 12 13 11 12 13 33ˆ ˆ ˆ ˆ .r s s s x y s s s s zβ = + + + − + − −           (20) 

The linear compressibility of a cubic crystal is simply cub
11 122s sβ = + . The 

volume compressibility κ of hexagonal and tetragonal systems is also 
directionally dependent and given in Reuß’s approach by 

( ) ( )( ) ( )2 2 2
11 12 13 33 13ˆ ˆ ˆ ˆ2r s s s x y s s zκ = + + + + +              (21) 

For cubic systems, 13 12s s=  and 33 11s s= , that is, ( )cub
11 123 2s sκ = + , and 

thus, the bulk modulus 1B κ=  is isotropic for crystals with cubic symmetry. 
For hexagonal and tetragonal systems, κ becomes isotropic when the two terms 

11 12 13s s s+ +  and 33 132s s+  in Equation (21) are equal. Therefore, the 
anisotropy of the hexagonal and tetragonal bulk moduli is defined by 

33 13

11 12 13

2
,B

s sA
s s s

+
=

+ +
                          (22) 

and their isotropic compressibility becomes hex,tet
iso 11 33 12 132 2 4s s s sκ = + + + . 

Other than the bulk modulus of cubic crystals, Young’s modulus of cubic, 
hexagonal, or tetragonal systems is not isotropic. The representation surface of 
Young’s modulus for tetragonal systems with classes 4 mm, 422, 42m , and 
4/mmm is given by 
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( ) ( ) ( ) ( )( )4 4 4 2 2 2 2
11 33 12 66 13 44

1 ˆ ˆ ˆ ˆˆ ˆ ˆ2 1 2
ˆt x y s z s x y s s z z s s

E r
= + + + + + − +    (23) 

For the tetragonal classes 4, 4/m, and 4 , an additional term is present such 
that 

( ) ( ) ( )2 2
16

1 1 ˆˆ ˆ ˆ2 .
ˆ ˆt t xy x y s

E r E r′ = + −                    (24) 

The shear anisotropic factors provide a measure of the degree of anisotropy in 
the bonding between atoms in different planes. The number of different shear 
anisotropies depends on the crystal system. In both hexagonal and tetragonal 
systems, the shear anisotropic factors 100A  (or equivalent 010A ) for the { }100  
shear planes between the 011  and 010  directions and 001A  for the 
{ }001  planes between 110  and 010  are: 

44
100

11 33 13

66
001

11 12

4
2

2

cA
c c c

cA
c c

=
+ −

=
−

                         (25) 

In cubic crystals, both factors are the same ( )001 44 11 122eA A c c c= = − , as 
mentioned above. In hexagonal systems, ( )66 11 12 2c c c= − , and thus, 001 1A = . 
For isotropic crystals, all A factors must be unity, while any value smaller or 
greater than unity is a measure of the degree of elastic anisotropy possessed by 
the crystal. 

Comparing the Equations (22) and (25) for the elastic anisotropies with the 
Born-Huang [72] criteria, these equations can clearly be used to show the elastic 
stability. Most obviously, crystals with one negative anisotropy are not stable. 
Further, crystals with large anisotropies also tend to instabilities; in particular, 
crystals are not stable for A→∞  when one of the denominators becomes zero. 
This behavior makes the anisotropies important parameters, even though they 
may not cover all possible causes for Born-Huang instabilities. 

Appendix C. Equations for Calculating Properties from the Elastic 
Constants  

Besides the elastic moduli, further important physical quantities can be derived 
from the elastic constants. Acoustical spectroscopy is widely used to determine 
the elastic properties of crystalline solids. The propagation of sound waves in 
solids is described by the Christoffel equation: 

( )2 0,ij ij jv Uρ δΓ − =                          (26) 

where v is the phase velocity, ρ is the mass density, ijδ  is the Kronecker delta, 
U is the polarisation vector, and 

ij ijkl j lc l lΓ =                              (27) 

is the Christoffel tensor built from the elastic constants and the direction cosines 

il  ( 1,2,3i = ) that describe the direction of wave motion. For tetragonal 
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systems, the Christoffel tensor is given by 
2 2 2

11 11 1 66 2 44 3 16 1 22c l c l c l c l lΓ = + + +                  (28) 
2 2 2

22 66 1 11 2 44 3 16 1 22c l c l c l c l lΓ = + + −  
2 2 2

33 44 1 44 2 33 3c l c l c lΓ = + +  

( )2 2
12 16 1 16 2 12 66 1 2 16 2 3c l c l c c l l c l lΓ = − + + −  

( )13 13 44 1 3c c l lΓ = +  

( )23 13 44 2 3c c l lΓ = +  

and ij jiΓ = Γ . The Christoffel tensor reduces for the classes 4 mm, 42m , 422, 
and 4/mmm, where 16 0c = , to 

2 2 2
11 11 1 66 2 44 3c l c l c lΓ = + +                      (29) 

2 2 2
22 66 1 11 2 44 3c l c l c lΓ = + +  

2 2 2
33 44 1 44 2 33 3c l c l c lΓ = + +  

( )12 12 66 1 2c c l lΓ = +  

( )13 13 44 1 3c c l lΓ = +  

( )23 13 44 2 3c c l lΓ = +  

The solution of the characteristic 3 3×  matrix results in a third-order 
equation in v2 for the phase velocity. Three distinct modes appear, one with 
longitudinal and two with transversal polarisation. Due to possible mixing, these 
modes are often referred to as quasi-longitudinal or quasi-transversal modes. 
The longitudinal mode corresponds to a pressure (p-wave) or compression wave 
as it appears also in gases. On the other hand, the transversal modes appear for 
solids, and they are distinguished as fast (s1) and slow (s2-wave) shear waves. The 
wave properties are presented as slowness surfaces. 

The elastic constants also allow direct estimation of the averaged sound 
velocity v  from the longitudinal ( lv ) and transverse ( tv ) elastic wave 
velocities of isotropic materials, which are given by 

3 4
3l

t

B Gv

Gv

ρ

ρ

+
=

=

                         (30) 

where ρ is the mass density of the material. Here, v  is approximately predicted 
by 

1 3

3 3

3 .
2l t

v
v v− −

 
=  + 

                       (31) 

For low temperatures, where only acoustic vibrational modes contribute, the 
Debye temperature DΘ  can be estimated from the average sound velocity using 
the relation [58]: 
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ac 3 3
1 ,

4π 4π
A

D
B B p

Nh f h fv v
k M k V

ρ
Θ = =                  (32) 

where h, kB, and NA are Plank’s constant, Boltzman’s constant, and Avogadoro’s 
number, respectively. The degree of freedom for n atoms in a primitive cell with 
volume pV  ( 12f =  for Heusler compounds with L21 structure) is 3f n= , 
and M is the molecular mass, that is, the sum of all masses of the atoms in the 
primitive cell of the compound. 

In solids, the Grüneisen parameter ζ is a measure of the anharmonicity of the 
interactions between the atoms. In general, it is calculated from logarithmic 
derivatives of the vibrational frequencies with respect to the crystal volume. 
However, full phonon calculations as function of crystal volumes are demanding 
tasks, and fast estimates are thus welcome. Belomestnykh [60] derived an 
“acoustical” Grüneisen parameter acζ  that is directly related to the sound 
velocities. Therefore, acζ  is given by 

( )
( )

2 2
ac

2 2

3 43 .
2 2

l t

l t

v v

v v
ζ

−
=

+
                        (33) 
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