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Abstract 
Three theorems on critical fluctuations and new concepts of isomorph spin, 
hyperspin, quablocks, and pioblocks are proposed, these new quantities cor-
respond to the same symmetries although they have distinguishable values in 
different lattice systems. The self-similar transformations take place not only 
in the ordblocks, but also in the disblocks. In the quablocks sense, the critical 
fluctuation is analogous to the asymptotic freedom of the quark theory, and 
the reciprocal transformation between the ordblocks and disblocks is like the 
transfer between protons and neutrons. There are three transition tempera-
tures, different temperature regions correspond to different symmetries and 
gauge invariances, leading to that there is no unified quantum theory. 
 

Keywords 
Critical Fluctuation, Symmetry, Gauge, Isomorph Spin, Hyperspin 

 

1. Introduction 

The basic idea of lattice quantum chromodynamics was introduced by K. Wilson 
in 1974 [1], based on large-scale Monte-Carlo numerical calculation. The lattice 
field theory is very similar to the continuous phase transition of the lattice sys-
tem: Many physical quantities such as thermal capacity and susceptibility will 
diverge at the critical temperature, which is equivalent to the ultraviolet diver-
gence in quantum field theory. This means the continuum limit of quantum 
field theory and the critical phenomena are different language descriptions of 
the same process. In addition to the numerical calculation, we think symmetry 
analysis and gauge invariance exploration are still elementary theoretical re-
search, which will make the lattice model closer to the quantum field theory. In 
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turn, the quantum field theory will help us uncover the mysterious nature and 
details of the continuous phase transition.  

In reference [2], we pointed out the fractional side length *n  of the ordered 
block may destroy the system symmetry, and forces the system adjust the side 
length to compose of blocks with identical integer side to conserve the symmetry, 
and the system tries constantly to reach up to the critical point. It’s possible that 
there are two ways for the adjustment: 1) the old blocks break into lattices, and 
the lattices then construct new blocks; 2) the old blocks transfer directly into 
another type of spin structures. The second path is reasonable in that the lattices 
correlation length at the critical temperature is much longer than the lattice con-
stant, and doesn’t allow the blocks to disperse to lattices. The critical opalescence 
reveals that the density fluctuations become of a size comparable to the incident 
light wavelength, the light is scattered and causes the normally transparent sam-
ple to appear cloudy, which is a structure of the size larger than the molecular 
[3]. 

The critical ups and downs are not disorganized, there are symmetries and 
gauge invariance. They govern the fluctuation process and determine the rule of 
the structure adjustment. What forms will the critical fluctuation be? What 
symmetries will follow? In this paper we will investigate the two questions. In 
Section 2, we put forward three theorems on the critical fluctuations, then two 
new concepts, isomorph spin and hyperspin, are proposed. In Section 3, we dis-
cuss SU(3) symmetries including octet and decuplet states, introduce quablocks 
and pioblocks, find out abnormal symmetries and three transition temperatures 
by analysis on symmetries. We predict the influence of these transition temper-
atures on the quantum field theory. Section 4 is conclusion remark. 

2. Theory 
2.1. Three Theorems on Critical Fluctuations 

Let f be the statistical distribution function of the block spins for a system con-
taining only various of block spins at temperature T little higher than the order- 
disorder transition temperature. Because the mean value of the block spin S  
is zero before the transition: 

d 0S Sf S
+∞

−∞
= =∫                        (1) 

While the relevant mean square of the spin 2S  is  

2 2 d 1S S f S
+∞

−∞
= =∫                       (2) 

The formula will hold only if we take proper adjustment of the function coef-
ficient. Probability theory says that Gaussian distribution has maximum 
Boltzmann entropy among those functions according with Equations ((1) and 
(2)). Moreover, Jaynes pointed out that the best approximating function for the 
unknown density distribution should be that has the maximum Boltzmann en-
tropy, since it’s not prejudiced [4] [5]. Using the Gaussian distribution function, 
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we describe the Ising model, and the high accurate datum of the critical point 
verify it is the best approximation [2]. It’s the Gaussian function that proves the 
minimum block spin minS  relates to the critical point. 

Theorem 1. The fixed-point equation of the side length n of the blocks de-
rived from the minimum fractal dimension minD  of the blocks gives a unique 
solution *n . 

Proof: From reference [2], the fractal dimension D of a block is defined as  

( )ln lnD N n n=                           (3) 

where ( )N n
 is the total number of lattices inside the block. Considering tem-

porarily n as a continuous variable, the derivative of D with respective to n is 
zero when D takes the minimum, 

[ ] *d d 0n nD n
=

=                         (4) 

Equation (4) results in a fixed-point equation for n  

( ) ( ) ( )d dn F n N n D N n n= = ⋅                     (5) 

Equation (5) has a unique solution *n  by the contraction principle [6]. In the 
configuration space sense, the critical fluctuation is the fluctuation of the lattice 
correlation lengths. We expand D as a series of n around *n , ignoring the terms 
larger than the second power, 

( ) [ ] ( ) ( )* *

2* 2 2 *
min d d d dn n n n

D D n D D n n n D n n n
= =

 = = + − + −       (6) 

where [ ] *d d 0n nD n
=

= , and *
2 2d d 0

n n
D n

=
  >   because of minD , we get 

( ) ( )2*
minD n D C n n= + ⋅ −                     (7) 

where *
2 2d d

n n
C D n

=
 =    is a positive constant. The ( )D n  is an opening- 

upward parabolic function with minD , the uniqueness of *n  determines the 
uniqueness of minD , which indicates ( )D n  is a monotonic function if *n n> . 
On the other hand, it cannot be a self-similar transformation for the fractional 
side length *n , which will force the system to adjust the sides to be integers. 
Hence, there is another theorem: 

Theorem 2. The critical fluctuation corresponds to a vibration of integers n 
about *n . 

The self-similar transformation permits only one kind of block’s integer side 
length for the ordered state, resulting in the following theorem: 

Theorem 3. The critical fluctuation around *n  takes place in the transfer 
from the disordered state to the ordered state between n+-blocks and n−-blocks. 

Where the n+  and the n−  are integer numbers nearest neighbor to *n , and 
*n n+ > , *n n− < , their blocks are n+-blocks and n−-blocks, respectively. 

2.2. Isomorph Spin If 

In the figures of this paper the n−-blocks are colored by grey, the n+-blocks, white. 
Figure 1 and Figure 2 illustrate the n+-blocks and the n−-blocks turn out spon-
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taneously. In the tetrahedron lattice system a n−-block has four same triangle 
faces: the first face, for example in Figure 2, is colored by grey, the second is ad-
jacent to one face of its nearest n+-block, each of the other two faces is respec-
tively oriented to one face of its two nearest neighbor n−-blocks. The numerical 
calculation indicates there is no lattice outside block. Both types of blocks are the 
production of the lattices correlation, they should have fractal dimensions. For 
the triangle lattice system: * 14.4955n = , 14n− = , 15n+ = , and their fractal 
dimensions: 1.81409160D− = ,  1.81409299D+ = ,  and the difference is 

0.00000139 0D D+ −− = ≈ . For the tetrahedron lattice: * 8.7272n = , 8n− = , 
2.45544074D− = , 9n+ = , 2.45474569D+ = , and 0.00069505D D− +− = . In 

the Figure 3 and Figure 4 of reference [2], there are only n+-blocks. In Figure 3 
and Figure 4 of this paper, the sub-blocks of the n−-blocks lie inside or between 
the sub-blocks of the n+-blocks, sharing partly the carrying space of the 
n+-blocks. This case is like the protons and neutrons inside the nucleus. Below, 
for simplicity, we call the sub-block as block, and differentiate them unless we 
have special needs. For the two systems, the side lengths must take odd integers  

 

 
Figure 1. The triangle lattices. 

 

 
Figure 2. The tetrahedron lattices. 

 

  
Figure 3. The plane square lattices. 

 

 
Figure 4. The simply cubic lattices. 
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because of their symmetries. For the plane square lattice system, * 7.8400n = , 
7n− = , 9n+ = , 1.7810D− = , 1.7804D+ = , and 0.006D D− +− = . For the 

simply cubic lattice system, we see that two n+-blocks stand in line, each of them 
has side length 5n+ = , and contains four sub-blocks. Twenty seven other sub- 
blocks of grey color with 3n− =  belong to the n−-blocks, each of which has four 
sub-blocks: * 4.7491n = , 2.5237D− = , 2.4785D+ = , and 0.0452D D− +− = . 
These results show that the fractal dimensions difference is so small that the 
n+-block and the n−-block can be interpreted as two states of a sort of spin for 
the same block, the new spin is called isomorph spin, denoted by fI , and its 
third component 3fI  is 

3 , 1, , 1,f f f f fI I I I I= − − + −
                  (8) 

Obviously, the isomorph spin is only meaningful to the blocks. Like the isos-
pin space, the isomorph spin space is abstract. A disordered block, simply writ-
ten as disblock, is a non-zero vector in the isomorph spin space although it is 
supposed to an empty set in the spin space. The ordered blocks, simply as 
ordblocks, and disblocks keep the original symmetries, respectively. For the 
n+-blocks and the n−-blocks, only one type of them can become the ordblocks, 
another are the disblocks, otherwise the original symmetries will be destroyed. 
The isomorph spin is analogous to the isospin, they have the same symmetries: 
SU(3) and SU(2) groups and Lie algebras. 

For an ordblock, 1 2fI = , 3 1 2fI = , its wave function ord  of the iso-
morph spin is  

1 2,1 2 1 2,1 2ord χ≡ =
                     (9) 

For a disblock, 1 2fI = , 3 1 2fI = − , its wave function dis  is 

 1 2, 1 2 1 2, 1 2dis χ −≡ = −
                   (10) 

Equations ((9) and (10)) show the smallest non-trivial multiple of SU(2). For 
example in Figure 3, the wave function of an ordered structure composed of one 
n+-block, labeled by “1”, and one n−-block, labeled by “2”, can be built by the 
Equations ((9) and (10)) as the following two forms: 

( ) ( ) ( ) ( )3 1 2,1 2 1 2, 1 2 1 2, 1 2 1 2,1 20, 0 1 2 1 2 2f fI I χ χ χ χ− − = = = −    
 (11) 

This is the singlet state of the isomorph spin, another is one of the triplet state: 

( ) ( ) ( ) ( )3 1 2,1 2 1 2, 1 2 1 2, 1 2 1 2,1 21, 0 1 2 1 2 2f fI I χ χ χ χ− − = = = +     (12) 

2.3. Hyperspin Yf 

There are only two energy states for the coupling of two isolated lattice spins: 
excitation state out of their spins antiparallel, and basic state from the spin pa-
rallel. This case is available to the statistical calculation. Another situation should 
be much accounted of when we analyse symmetry: A lattice in a system has Z 
(coordinate number) nearest neighbors, the number of the coupling energy states 
for this lattice is more than two, i.e. the complexity of the coupling energies 
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makes the lattice spin have much more excitation states. More states are equiva-
lent to that a lattice spin has multiple spin states from the smallest minS  to the 
largest spin maxS , not just the singlet one. Generally, min max 0S S+ ≠ , and the 
spin multiple is not necessarily located symmetrically around the origin of the 
spin axis. Hence, the center of spin may differ from zero. A new concept, hyper-
spin fY , is introduced: 

min maxfY S S= +                        (13) 

Apparently, the spin symmetry center is 2fY , its unit is bS  determined by 
the Equations ((6.1) and (6.2)) of reference [2], so does fI . By the similarity to 
the isospin, the block spin S is expressed as 

32f fS Y I= +                         (14) 

For these new variables, different lattice systems give different numerical val-
ues. 

3. Discussion 
3.1. Octet and Decuplet 

The isomorph spin and the hyperspin manifest themselves SU(2) symmetries, 
respectively, and form SU(3) symmetry together. Figure 5 and Figure 6 are the 
octet and the decuplet of the blocks spin states. In Figure 5, the label A 
represents ordblock states, the B, disblock states. A+ , A−  and B+ , B−  are the  

 

 
Figure 5. The octet of states. 

 

 
Figure 6. The decuplet of states. 

https://doi.org/10.4236/jmp.2018.92016


Y. G. Feng 
 

 

DOI: 10.4236/jmp.2018.92016 247 Journal of Modern Physics 
 

basic states for them. 0A  and 0B  are their intermediate states when they 
transfer from A+  and B+  to A−  and B− , and *A+  and *A−  are the excita-
tion states for the ordblocks. 

There are more possible excitation states for them in Figure 6. Not every lat-
tice system has all of these states, the number of the states for a system depends 
on its individual structure. 

3.2. Quablocks and Pioblocks 

Considering the resemblance of the isomorph spin to the isospin [7] [8] [9], we 
introduce quablocks uq , dq , sq , and uq , dq , sq , being respectively congru-
ent relationship to the quarks u , d , s , and u , d , s . The quablocks 
states are expressed by 3, ,f fY I S , consequently, 1 3,1 2,2 3uq = , 

1 3, 1 2, 1 3dq = − − , 2 3,0, 1 3sq = − − , 1 3, 1 2, 2 3uq = − − − , 
1 3,1 2,1 / 3dq = − , 2 3,0,1 3sq = . The quablocks exist only in the iso-

morph spin space since there is no set scale inside the blocks in the configura-
tion space, where we are unable to find the occurrence of the quablocks. In the 
isomorph spin space these quablocks can produce pioblocks P− , 0P , and P+ , 
which states are given by  

0, 2 ,d u u u d d u dP q q P q q q q P q q− += = − =         (15) 

A possible transfer between the ordblocks and disblocks is represented as 
0P A P B−

+ ++ ⇔ +                       (16) 

where u u dA q q q+ = , u d dB q q q+ = . The blocks and pioblocks are viewed as 
the bound states of the quablocks, and the three pioblocks as an isomorph spin 
triplet ( 1fI = , 3 1,0,1fI = − ), or spin triplet ( ,0,b bS S S= − − ). 

3.3. Correspondence to Quantum Field Theory 

The regular distribution of the disblocks cannot be explained if the interaction is 
emphasized only for the ordblocks. There must be a non-spin coupling between 
the disblocks, along with a non-spin interaction among the ordblocks and dis-
blocks. The non-spin interaction implies the isomorph spin symmetries and 
gauge invariance. It’s well known the so-called spin coupling constant is an ex-
change integral [10], generally, it is related to an electric potential for the ferro-
magnetic phase transition, the non-spin interaction is actually the nearest elec-
tromagnetic interaction. However, in the time-lattice model [11], the potential is 
only associated with the strong interaction independent of the spins. The choice 
of the ordblock state for the first block compels all the other blocks of identical 
size to take in an order relative to this state, the attempt to disturb this order 
creates the elastic waves, showing U(1) symmetry. In like manner, there are elas-
tic waves and U(1) symmetry in another kind to retain disordered. The critical 
point and the critical temperature are two things, although the former appears 
only at the later. The critical point is a specific value ( *n ) that a quantity (n) ap-
proaches but never reaches. Such behavior is analogous to the asymptotic freedom 
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of the quark theory [12], signifying there exists non-Abelian gauge. We may in-
terpret this phenomenon in the sense of quablocks: At first, a non-spin attrac-
tion among the quablocks make the n+-blocks (or n−-blocks) ordered to shorten 
the distance between the system state and the critical point, resulting in a strong 
non-spin repulsion among the quablocks. Then the repulsion coerces the quab-
locks to make the n+-blocks (or n−-blocks) disordered such that the quablocks 
non-spin attraction becomes stronger again, making the n−-blocks (or n+-blocks ) 
ordered and the system approach closely to the critical point once more. The 
closer to the critical point the system is, the stronger the non-spin repulsion will 
be, and the weaker the attraction will become, and vice versa. 

The self-similar transformations for the ordblocks and disblocks take place on 
the limit hierarchies. After infinity iteration the whole system becomes an 
ordblock containing some disordered regions, which are the disblocks on the 
former hierarchy. On the limit hierarchy the system always conserves the SU(3) 
symmetry, which breaks only on the infinite hierarchy. In the point of view of 
symmetries, we find three transfer temperatures. The first is cfT , linking to the 
order-disorder transition, the local lattice spins symmetry breaks to form the 
n+-blocks and the n−-blocks on the limit hierarchies to set up the SU(3) symme-
try, evolving the isomorph spin symmetry and the hyperspin symmetry. There 
are elementary excitation with U(1) symmetry [13], while the lattice correlation 
length is limited. The block side length changes into longer and longer with the 
temperature decreasing after the first transition. There are n-blocks with side 
length n, acting as steady ordblocks, and n’-blocks with side length n’ nearest to 
n, n’ < n, acting as steady disblocks, without the order-disorder transfer between 
them. Hence, the SU(3) symmetry still holds until the second transition temper-
ature csT . The lattice correlation length is of infinity at csT , and the whole sys-
tem represents for an ordblock, and the disblocks disappear, then the local SU(3) 
symmetries of the blocks are broken. When csT T< , the lattices hyperspin 
symmetry holds locally until the third transition temperature ctT , i.e. Bose- 
Einstein transition one, 0 ct csT T< < , the local lattices hyperspin symmetry is 
broken. 

A crucial key is that all phase transitions are mutation processes, which can-
not be described by any dynamic equation. Different temperature regions cor-
respond to different symmetries and different gauge invariances. This states that 
there is no unified field theory to discuss about the particles properties, each 
characteristic region should have its special equation. This scene provides theo-
retical basis for Tomonaga’s “Principle of renunciation”: One should give up the 
hope that the theory is perfect and that everything can be calculated [14].  

If the lattices have only charges, but no spins, we may discuss the charge order 
phase transition [15]. 

3.4. Abnormal Symmetries 

It’s said the higher the temperature rises, the more chaotic the system is, and the 
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more number of symmetries will be. However, the additional symmetries such as 
the U(1) out of the elementary excitation and the SU(3) of the isomorph spin 
and hyperspin only appear in the region cs cfT T T< ≤  rather than in the higher 
region cfT T< < +∞ . The abnormal symmetries are associated with the scaling. 
For particles, it may occur in the same region, where the cfT  is concerned in the 
time order-disorder transition, the csT , in the electro-weak transition [12]. This 
implies those particles with the isospin symmetries may be born in the region. 

4. Conclusion  

There exist symmetries and gauge invariances in the lattice system, which are as 
the same as in the quantum field theory. The analysis on the symmetries helps us 
understand deeply the critical phenomena, which, in turn, makes us realize there 
is no unified theory for the quantum field. 
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