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Abstract 
This paper presents the formulation of the possibilistic Renyi entropy function 
from the Renyi entropy function using the framework of Hanman-Anirban en-
tropy function. The new entropy function is used to derive the information set 
features from keystroke dynamics for the authentication of users. A new 
composite fuzzy classifier is also proposed based on Mamta-Hanman entropy 
function and applied on the Information Set based features. A comparison of 
the results of the proposed approach with those of Support Vector Machine 
and Random Forest classifier shows that the new classifier outperforms the 
other two.  
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1. Introduction 

With ever increasing use of computers, internet and online transactions, the 
need for access control and web security is necessitated. Various methods are 
used for secure access and online user authentication but most of them are af-
flicted with some drawbacks. Password/PIN based access control for user au-
thentication is easy to be forged using brute force attack. Similarly, tokens like 
smart cards used for authentication get lost or easily stolen. So, biometric sys-
tems employing both physiological and behavioral modalities have recently 
gained popularity. The physiological biometrics comprising physical traits such 
as face, fingerprint, iris, palm-print, speech and hand geometry has gained pop-
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ularity in recent years. Behavioral biometrics is based on the human physical ac-
tivity like gait, voice, signature and keystroke dynamics. Keystroke Dynamics 
depicts a natural typing rhythm captured through keyboard available on most 
computing systems including hand held devices like mobile/PDAs which possess 
touch based keyboard. Keystroke Dynamics is a strong behavioral biometrics 
with many advantages and offers solution to many problems faced with other 
access control mechanisms. Some of the advantages include: It cannot be copied 
as it is difficult to copy the human behavior, and it cannot be stolen, forged or 
lost. As no special device is required, it is a low-cost biometrics solution. Keys-
troke Dynamics has high user acceptance and can be operated in hidden mode. 
It can also be used for continuous user authentication while user is working on 
the system. Moreover, keystroke dynamics based authentication is best suited for 
online user verification as keystroke features comprise not so large timing vec-
tor. 

1.1. Literature Survey 

The features for keystroke dynamics mainly consist of timing data like time to 
move from one key to another also known as flight time and time for which a 
key is pressed also known as dwell time. Different researchers have used differ-
ent timing features based on the above basic keystroke timings. Some research-
ers have used Down-Down Time, Up-Up Time, Up-Down and Down-Up Time 
where Down Time is the time instance when key is pressed and Up Time is the 
time instance when key is released. Similarly, Press-Press Time (PPTime), Press- 
Release Time (PRTime), Release-Press Time (RPTime) and Release-Release 
Time (RRTime) are used. Press Time is the same as Down Time and Release 
Time is the same as Up Time. In addition to timing features we can also include 
keystroke pressure, i.e. the pressure applied on the key, as part of keystroke dy-
namics features [1] [2], but this pressure measurement requires a special hard-
ware; hence used scarcely. 

The text entry in the form of fixed string predetermined at the initial instance 
of user interaction with the authentication system for extracting keystroke dy-
namics is static. Text entry can also be dynamic where user types the free text for 
continuous authentication of a user. The static entry datasets are publicly availa-
ble in Killorhy and Maxion [3], Giot et al. [4], Loy et al. [1] [2]. The free text da-
tabases are:Biochaves by Filho and Freire [5] and Clarksons University Keys-
troke Dataset by Vural et al. [6]. 

User’s master profile is created based on keystroke dynamics behavior from 
username using trajectory dissimilarity technique in [7]. Master trajectory pro-
file of the user is created by averaging the trajectories of the first 10 input records 
and used as authentication mechanism in addition to the user’s password. By 
this method the best results of 4% equal error rate or 96% authentication accu-
racy are achieved. 

Killourhy and Maxion [3] have collected keystroke data of 51 users with 400 
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samples for each user and evaluated 14 detectors on the collected data. The error 
rates and the dataset collected are shared publicly to establish a benchmark for 
comparison. Hosseinzadeh and Krishnan [8] have used UUKL (Up-Up Keys-
troke latency) feature and made a comparison with other keystroke features us-
ing GMM based verification system. In this UUKL outperforms commonly used 
hold time and down-down keystroke latency. The user specific adaptive thre-
shold is based on leave-one-out method (LOOM) that achieves EER of 4.4% on 
the dataset of 41 users. Çeker and Upadhyaya [9] have also used GMM with dy-
namic text of 30 users and obtained Equal Error Rate (EER) of 0.08% with 2 
components whereas pure Gaussian gives EER of 1.3% for continuous authenti-
cation based system.  

Deng and Zhong [10] have used GMM-UBM (Gaussian Mixture Model with 
Universal Background Model) and DBN (Deep Belief Networks) wherein the 
data from background users is employed as imposters’ data during the training 
phase. The EERs of 0.055 and 0.035 are achieved with GMM-UBM and DBN 
respectively. 

Teh et al. [11] have proposed a statistical fusion approach using Gaussian 
Probability Density function and Direction Similarity Measure (DSM) which 
evaluates the consistency of user’s typing behavior. DSM is the difference in 
signs between the two consecutive keystrokes in a phrase. By this approach the 
best EER of 6.36% is obtained with the weighted sum rule on their own dataset. 

A hybrid model involving the fusion of Gaussian probability density function 
(GPDF) and SVM based scores is developed in [12]. The mean and standard 
deviation are calculated from the training feature vectors that serve as template 
during testing. The scores are then calculated using GPDF and SVM and the 
score-level fusion is applied using four fusion rules. Best results are achieved 
with the combination of Press-Release and Release-Press time-measurements 
using the weighted sum rule. 

Pisani et al. [13] have used the enhanced template update which adapts the 
user model as per the changes in the typing behavior over time. The templates 
are updated by considering the negative samples, i.e. samples classified as im-
posters in addition to the genuine samples. The experimental results show better 
predictive performance in terms of the reduced FMR (False Match Rate) and 
FNMR (False Non- Match Rate). 

Ivannikova et al. [14] have introduced dependence clustering based approach 
for user authentication using keystroke dynamics. Cross validation process is 
designed and artificially generated impostor samples are used to improve the 
learning process. The best results in terms of EER of 0.077 and ZMFAR of 0.358 
are achieved on CMU benchmark dataset due to Dependence Clustering using 
Manhattan distance. 

Sliding windows of different sizes are used in [15] for template update me-
thods. The double threshold method employs two thresholds: One update thre-
shold to decide if query can be used for reference template update and another 
verification threshold to decide if a query is accepted or denied. It is shown that 
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user-specific threshold that varies from one session to another because of the 
update mechanism yields lower error rates than those with the fixed threshold. 

1.2. Motivation 

The present work is concerned with the generation of information set features 
using the possibilistic Renyi entropy function from the keystroke dynamics 
comprising dwell time and flight time. Our previous work [16] deals with gener-
ation of the information set features from the same measurements of keystroke 
dynamics but uses the Mamta-Hanman entropy function in [17]. 

Though many classifiers falling under statistical methods, neural networks 
and pattern recognition techniques are in vogue for the authentication of a user 
using keystroke dynamics, we propose a new fuzzy classifier. 

The organization of the paper is as follows: Section 2 gives the derivation for 
the possibilistic Renyi Entropy function. It also formulates the Information Set 
features and higher form of these features based on this entropy function. Sec-
tion 3 develops an algorithm for the Composite Fuzzy classifier based on Com-
posite convex Entropy function. Section 4 describes the databases used in the 
present work and Section 5 discusses the results of implementation. Section 6 
gives the conclusions. 

2. Renyi Entropy 

To represent the probabilistic uncertainty, we have several entropy functions 
such as Shannon, Pal and Pal [18], Renyi [19], and Hanman-Anirban entropy 
functions [20]. Of which Hanman-Anirban entropy being an information theo-
retic entropy function is capable of representing both probabilistic and possi-
bilistic uncertainties. In this work, we would like to investigate the suitability of 
Renyi entropy function for representing the possibilistic uncertainty because it 
has one free parameter which we can cash in to meet our objective. The original 
Renyi Entropy function is given by: 

( )1

1 log
1

n
R iiH pα

α =
=

− ∑
                     

(1) 

To represent the possibilistic uncertainty, pi is replaced by Ti in (1). This leads 
to 

( )1

1 log
1

n
R iiH Tα

α =
=

− ∑
                     

(2) 

The unknown parameter in (2) is constant but we take it as a variable in the 
range (0, 1) and derive in the next section the adaptive Renyi entropy function 
by relating it to the Hanman-Anirban entropy function [20] given by  

3 2

e ii iaT bT cT d
i iH T

 − + + + =                       (3) 

where iT  is the information source value and a, b, c, and d are the parameters 
in the exponential gain function. These parameters are selected to be statistical 
parameters such that this gain function becomes the Gaussian function. For this  
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the choice of parameters is: 0a = , 2

1
2

b
σ

= , 2

2
2

Tc
σ

= −  and 
2

22
Td
σ

=  where 

T  is the mean value. Then (3) becomes i i iH Tµ= . 

2.1. Adaptive Renyi Function 

To bring (2) into the possibilistic domain, let us consider only ith term in the 
summation and α to be a variable. This leads to  

( ) ( )1 log log
1 1

i i
i i i

i i

H T Tα α
α α−

==
−                 

(4) 

Assuming the membership function value as 
1

1i
i

µ
α

=
−

, we have 

1
i

i
i

α
µ

α
= −

−
. The membership function µ  is taken to be Gaussian function  

with its statistical parameters, the mean T  and the variance 2σ  computed 
from the keystroke measurements { }T  as explained above. 

Now replacing this in (4) we have ith component of adaptive Renyi entropy 
function is: 

logi i iH Tµ= −                          (5) 

This r.h.s. of this equation is represented in modus ponen form as: logi iTµ → . 
This in turn allows us to write logi iTµ−  , which means we can write 

{ }max , logi i iH Tµ= − , though we have taken it as the product.  
Replacing 1log e pp −− =  in (5), we get one term of the adaptive Renyi entropy 

function as: 
( )1e iT

i iH µ −=                           (6) 

This is different from the entropy function term, i iTα βµ  derived in our pre-
vious work [16]. Looking at these two terms we notice that iT  and iµ  assume 
opposite roles. When iT  is an information source value, iµ  acts as a gain 
function value. Their roles are interchanged in (6), i.e. the complement mem-
bership function acts as the information source value and iT  appears in the 
gain function. Thus the relations between information source value and the gain 
function value are shown to be varied and such different forms help us try on 
different applications. Recall the one term of Pal and Pal entropy function in 
[18], that is ( )1e iT

iT −  and comparing this with (6) we find that only the informa-
tion value differs. As iµ  is a function of iT  involving statistical parameters it 
will have more flexibility if it is chosen as Gaussian function.  

The above is in the form given by 

( ) ( )1e iT
i iH f T −= ⋅                         (7) 

This is an information value in Hanman-Anirban entropy function for 
0a b= = , 1c = , 1d = −  and replacing iT  by a function of T as ( )i if T µ= . 

Thus the information source value is a complement membership function iµ  
and the gain function is exponential. We have shown that one term of Renyi 
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function takes one specific form of the Hanman-Anirban entropy function. 
From (6) it is easy to form an information set: ( ){ }1e iT

iµ
−  by varying the index i 

and the resulting possibilistic Renyi entropy function is: 

( )1
1 e in T

Rp iiH µ −
=

= ∑                        (8) 

Let the mean membership be 1

1 n
iin

µ µ
=

= ∑  and substituting this in (1) for 

α , we have 

( )1

1 log
1

n
R iiH T µ

µ =
=

− ∑
                     

(9) 

The difference R R RpH H H∆ = −  is the error incurred in the approximation 
of Renyi function in the possibilistic domain.  

2.2. Some Functions of Adaptive Renyi Entropy Function 

1) Complement Renyi Function: By replacing µ  with µ  in Equation (6) 
we get Complement Renyi function as: 

( )1e iT
i iH µ −=                          (10) 

The above can be written as ( )1 1i i i i iH T Tµ µ= − + = . With the substitution of 
proper values for the parameters in (2), we get what we call the basic informa-
tion value i iTµ . This is proved in [16] [21] [22] [23]; so Equation (10) is a va-
riant of this entropy function.  

2) Sigmoid Renyi Function: Considering Equation (6) as a unit of information, 
we will now apply a sigmoid function on it to get: 

( )1e

1

1 e
Ti

i
iS

µ −−
=

+                        
(11) 

3) Complement Sigmoid Function: Replacing µ  with µ  in (8), we get: 

( )1e

1

1 e
Ti

i
iS

µ −−
=

+                        
(12) 

4) Renyi Entropy Energy: This follows from (8) by multiplying it with µ . 
( )12e iT

i iH µ −=                         (13) 

5) Complement Renyi Energy: By taking complement of µ , we obtain this as: 
( )2 1e iT

iiH µ −=                         (14) 

6) Renyi Transform: Renyi entropy function is not amenable for conversion to 
transforms just as Hanman transform. When we put Renyi entropy function in-
to the form of Hanman-Anirban entropy function, it offers us the facility to 
create transforms. Consider the Hanman-Anirban entropy function in the fol-
lowing form: 

( )
3 2

e ii iaT bT cT d
i iH f T

 − + + + =                    (15) 

where ( )i if T T=  in the original Hanman-Anirban entropy function. But we 
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take ( )i if Tµ =  to convert into the Renyi entropy function form. Further tak-
ing 0a = , 0b = , ic µ=  and 0d =  we get the Renyi transform given by: 

e i iT
i iH µµ −=                          (16) 

To introduce non-linearity in the values of iµ  we can modify it as a power 
of α 

e i iT
i iH α µµ −=                         (17) 

7) Complement Renyi Transform: Taking complement iµ  in place of iµ  
we get Complement Renyi Transform as: 

e i iT
i iH µµ −=                          (18) 

8) Modified Sigmoid Renyi Function: Applying sigmoid function to Equation 
(5), we get Modified Sigmoid Renyi Function as: 

log

1
1 e i ii TS µ−=
+                         

(19) 

9) Modified Complement Sigmoid Renyi Function: Taking complement in 
Equation (19) by replacing µ  with µ  we get the modified complement sig-
moid Renyi function as: 

log

1
1 e i ii TS µ−=
+                         

(20) 

2.3. The Two-Component Information Set (TCIS) 

In our previous work [16] we have proposed the use of Two Component Infor-
mation System (TCIS) features for Keystroke Dynamics and the results were 
promising. In this approach, the first component I1 represents the temporal in-
formation and the membership function 1µ  is derived from the data that in-
cludes all the training feature vectors. The second component I2 represents the 
spatial information and the membership function 2µ  is derived using all the 
features contained in a single sample. When the above two information compo-
nents are concatenated, Two-Component Information set features are obtained 
denoted by I. The concatenated features are input to the classifier for authentica-
tion. 

Algorithm [16]:  
Step 1: Calculate mean ( )( )1

avgT  and variance ( )( )1σ  of all the training sam-
ples. 

Step 2: Calculate mean ( )( )2
avgT  and variance ( )( )2σ  of all the keystroke fea-

tures in a single training sample. 
Step 3: Compute ( )1µ  using ( )1

avgT  and ( )1σ  and similarly compute ( )2µ  
using ( )2

avgT  and ( )2σ . Next compute two components, ( ){ }1
1 ij ijI Tµ=  and 

( ){ }2
2 ij ijI Tµ=  using ( )1µ  and ( )2µ . 
Step 4: Concatenate I1 and I2 to form I. Then train any classifier using conca-

tenated I. 
Step 5: Compute It1 using ( )1

avgT  and ( )1σ  from Step 1 for each test sample. 
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Step 6: Compute mean ( )( )2
avgT  and variance ( )( )2σ  of all the features in the 

test sample. Also compute It2 using ( )2
avgT  and ( )2σ . 

Step 7: Concatenate It1 and It2 to obtain It and feed this feature vector to any 
classifier. 

3. Composite Fuzzy Classifier 
Design of a Composite Fuzzy Classifier 

Before proceeding to the design of a classifier we need the error vector between 
the training feature vector of lth user corresponding to mth training sample de-
noted by l

mjx  and the test feature vector jt . Let the size of the feature vector be 
n and the number of training feature vectors be s for each user. The error vector 
is computed from: 

; 1, 2, , , 1, 2, ,l l
mj mj je x t m s j n= − = = 

             
(21) 

As we need a membership in the formulation of a fuzzy classifier, we select an 
exponential membership function as: 

( )e ; 1,2, , , 1, 2, ,
l
mj jx tl

mj m s j nµ
− −

= = =               (22) 

In view of (21), Equation (22) is rewritten as  

e
l
mjel

mjµ −=                           (23) 

We now apply Frank t-norm (tF) on a pair of error vectors l
mje  and l

hje  to 
yield the normed error vector denoted by ( )l

mhE k  as follows: 

( ) ( ), ; , 1, 2, ,l l l
mh F mj hjE j t e e m h j n= ≠ = 

             
(24) 

In the above, Ft  is given by 

( )( )1 1
log 1 ; 1, 2, ,

1

l l
mj hje e

F q

q q
t k V

q

 − − 
= + = − 

 



           

(25) 

Similarly, we compute t-norm of a pair of membership functions l
mjµ  and 

l
hjµ  called the normed membership function using: 

( ) ( ), , , 1, 2, ,l l l
mh F mj hjM j t m h j nµ µ= ≠ = 

            
(26) 

As proved in [23] that the information value is the product of information 
source value and the corresponding membership function value. Considering 

( )l
mhE j  as the information source vector and ( )l

mhM j  as the corresponding 
membership function vector, their product ( ) ( ){ }l l

mh mhE j M j  gives the infor-
mation vector. 

Derivation of Composite Entropy Function: For this derivation, we take re-
course to Mamta-Hanman entropy function in the form:  

( )
1 e jcT dn

jjH T
βγ

α − +

=
= ∑                      

(27) 

By substituting 1c = − , 0d =  and 1β =  we obtain 
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1 e jTn
jjH T

γ
α

=
= ∑                        

(28) 

with ( ) ( )l l
j mh mhT E j M j= . To develop the composite entropy function, we ap-

ply logarithmic function on (28) leading to 

1log e jTn
jjH T

γ
α

=
= ∑                      

(29) 

The composite function is the result of applying logarithmic function on 
Mamta-Hanman entropy function. That is, we are modifying the entropy value 
by the logarithmic function. In this case the available information is Mamta- 
Hanman entropy value which we are modifying by applying logarithmic func-
tion. We will be making use of this composite function in the derivation of fuzzy 
classifier. To this end, an algorithm is outlined here. 

Algorithm for the Composite Fuzzy Classifier 
1) Find the error vector between the training feature vector and test feature 

vector for the lth user as: 

; , 1, 2, ,l l
mj mj je x t m h j n= − ≠ =   

2) Compute the membership function vectors  

( ) ( )1 2, , , 1, 2,3, ,l l l
m m mn m sµ µ µ ∀ =   for the lth user as follows: 

( )e ; , 1, 2, ,
l
mj jx tl

mj m h j nµ
− −

= ≠ =   

3) Compute the normed error vector  
( ), 1, 2, , , , 1, 2, ,l

mhE m h s m h j n∀ = ≠ =   for the lth user from: 

( ) ( ), ; , 1, 2, ,l l l
mh F mj hjE j t e e m h j n= ≠ =   

4) Compute the t-norm of a pair of membership functions, 
( ), 1, 2, , , , 1, 2, ,l

mhM m h s m h j n∀ = ≠ =   for the lth user as follows: 

( ) ( ), , , 1, 2, ,l l l
mh F mj hjM j t m h j nµ µ= ≠ =   

5) Compute l
mhH  using Composite entropy function 

( ) ( )( ) ( ) ( )( )
1

log e
l l
mh mh

n E j M jl l l
mh mh mh

j
H E j M j

γ
α

=

 
=  


⋅


∑  

6) Repeat Steps 1-4 for all users ( )1,2, ,l C=   and if { }min argl lk H= , 
then the test sample belongs to kth user. 

4. Methodology 

The above Renyi entropy features are applied on the publicly available dataset 
from CMU. 

For the evaluation of the keystroke dynamics based authentication system, we 
have used the following publicly available dataset:  

CMU Keystroke Dynamics Benchmark Dataset [3] 
Data is collected from 51 users in 8 sessions and 50 repetitions of the same 

password are recorded in each session. So, for each user there are 400 samples. 
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CMU benchmark dataset has keystroke features DD (Down-Down) time, UD 
(Up-Down) time and H (Hold) time. Each user has typed a 10-character pass-
word (“.tie5Roanl”). For the evaluation of Renyi Entropy based features, we have 
used Hold and Up-Down times. Therefore, we have 21 features which include: 
11 Hold Time values for 10 characters and an enter key, 10 Up-Down Time val-
ues for latencies between 11 key release and subsequent key press. 

Half of the samples for each user (i.e. 200 samples) is used as the training data 
and the remaining half is used for positive testing. Each user is considered as 
both genuine and imposter user; thus facilitating 51 × 50 experiments. 

For the classification, three classifiers are employed. The first one is Random 
Forest Classifier in which ensemble of decision trees is generated based on the 
training data. The second is two-class SVM classifier with a linear kernel. The 
third is the proposed Composite Fuzzy Classifier inspired from the Hanman 
Classfier [17]. 

To evaluate the performance of the derived features, error rates, viz., FAR 
(False Acceptance Rate), FRR (False Rejection Rate), EER (Equal Error Rate) and 
authentication accuracy are calculated for each of 51 × 50 experiments and re-
ported. 

5. Results of Implementation 

Table 1 shows Error rates for different features derived above in terms of FAR, 
FRR, EER and Accuracy on CMU dataset with Random Forest as classifier. The 
best EER of 0.0152 is obtained with Sigmoid Renyi Function and the best accu-
racy of 0.9825 is obtained with Energy Renyi Feature. 

Some of the features of Table 1 extracted from CMU database are classified 
using SVM and the results are given in Table 2. Here we get the best EER of 
0.0279 with an accuracy of 0.9708 for Sigmoid Renyi Function. 

The information set features derived from Renyi Entropy are applied on the 
Composite Fuzzy Classifier and the results are shown in Table 3. Here we get  

 
Table 1. Comparison of results for different features with Random Forest classifier. 

Feature FAR FRR EER Accuracy 

Adaptive Renyi Function 0.0114 0.0254 0.0153 0.9824 

Complement Renyi Function 0.0117 0.0258 0.0155 0.9820 

Sigmoid Renyi Function 0.0112 0.0258 0.0152 0.9823 

Complement Sigmoid Renyi Function 0.0118 0.0255 0.0155 0.9821 

Energy Renyi Feature 0.0117 0.0247 0.0153 0.9825 

Complement Energy Renyi Feature 0.0112 0.0271 0.0153 0.9818 

Renyi Transform 0.0112 0.0261 0.0153 0.9822 

Complement Renyi Transform 0.0116 0.0257 0.0153 0.9821 

Modified Sigmoid Renyi Feature 0.0114 0.0256 0.0153 0.9823 

Modified Complement Sigmoid Renyi Feature 0.0117 0.0277 0.0163 0.9812 
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Table 2. Comparison of results for different features with SVM. 

Feature FAR FRR EER Accuracy 

Adaptive Renyi Function 0.0187 0.0428 0.0283 0.9706 

Complement Renyi Function 0.0191 0.0441 0.0290 0.9698 

Sigmoid Renyi Function 0.0197 0.0412 0.0279 0.9708 

Complement Sigmoid Renyi Function 0.0202 0.0436 0.0293 0.9694 

Energy Renyi Feature 0.0218 0.0460 0.0312 0.9675 

Complement Energy Renyi Feature 0.0201 0.0438 0.0291 0.9694 

Renyi Transform 0.0185 0.0424 0.0285 0.9709 

Complement Renyi Transform 0.0194 0.0430 0.0291 0.9701 

Modified Sigmoid Renyi Feature 0.0183 0.0418 0.0272 0.9712 

Modified Complement Sigmoid Renyi Feature 0.0218 0.0458 0.0310 0.9675 

 
Table 3. Comparison of results for different features with Composite Fuzzy Classifier. 

Feature FAR FRR EER Accuracy 

Adaptive Renyi Function 0.0125 0.0190 0.0144 0.9846 

Complement Renyi Function 0.0144 0.0186 0.0153 0.9837 

Sigmoid Renyi Function 0.0113 0.0222 0.0148 0.9838 

Complement Sigmoid Renyi Function 0.0166 0.0198 0.0167 0.9820 

Energy Renyi Feature 0.0171 0.0268 0.0196 0.9786 

Complement Energy Renyi Feature 0.0119 0.0241 0.0149 0.9827 

Renyi Transform 0.0137 0.0180 0.0146 0.9844 

Complement Renyi Transform 0.0141 0.0189 0.0152 0.9838 

Modified Sigmoid Renyi Feature 0.0106 0.0248 0.0149 0.9831 

Modified Complement Sigmoid Renyi Feature 0.0181 0.0241 0.0199 0.9793 

 
the best performance with Adaptive Renyi Function for EER of 0.0144 and an 
accuracy of 0.9846. 

Now we will compare the performance of Composite Fuzzy Classifier with 
SVM and Random Forest in terms of ROC curves. EER is computed by taking 
the mean of EERs from 51 × 50 experiments and their ROC curves. So, the 
comparison of ROC curves is shown for one experiment for the user 20 and im-
poster 11 of CMU dataset. 

ROC curves for the above derived information set features for user number 20 
with imposter 11 are shown in Figures 1-10. 

In almost all the cases presented above, the proposed composite fuzzy classifi-
er clearly outperforms SVM and Random Forest Classifiers in terms of both er-
ror rates and ROC curves. 

6. Conclusions 

We have presented an approach for the authentication of users based on keys-
troke dynamics using the Information set features derived from the adaptive  
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Figure 1. ROC for user 20 (imposter user 11) of CMU dataset for Adaptive Renyi Function. 

 

 

Figure 2. ROC for user 20 (with imposter user 11) of CMU dataset for Complement Renyi Function. 
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Figure 3. ROC for user 20 (with imposter user 11) of CMU dataset for Sigmoid Renyi Function. 
 

 

Figure 4. ROC for user 20 (imposter user 11) of CMU dataset for Complement Sigmoid Renyi Function. 
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Figure 5. ROC for user 20 (with imposter user 11) of CMU dataset for Energy Renyi Feature. 
 

 

Figure 6. ROC for user 20 (with imposter user 11) of CMU dataset for Complement Energy Feature. 
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Figure 7. ROC for user 20 (with imposter user 11) of CMU dataset for Renyi Transform. 

 

 
Figure 8. ROC for user 20 (imposter user 11) of CMU dataset for Complement Renyi Transform. 
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Figure 9. ROC for user 20 (with imposter user 11) of CMU dataset for Modified Sigmoid Renyi Function. 
 

 

Figure 10. ROC for user 20 (with imposter user 11) of CMU dataset for Modified Complement Sigmoid Renyi Function. 
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Renyi entropy function by establishing its connection with Hanman-Anirban 
function. This in turn has paved the way in deriving several features in similar 
lines with the already existing information set features based on Hanman-Anirban 
entropy function. The feature vectors of a particular feature type corresponding 
to samples of each user are arranged in matrix form. Using columns as 
representing the spatial information component and rows as representing the 
temporal information, Two-Component information set (TCIS) features are de-
rived. Thus TCIS features for all feature types are obtained. 

For the development of composite entropy function the log function is applied 
on the Mamta-Hanman entropy function in which the product of the T-normed 
error value and T-normed-membership function value is considered as the in-
formation source value. Thus we have made use of the higher form of Mamta- 
Hanman entropy function. This composite entropy function is converted into a 
composite fuzzy classifier. Its performance is compared with that of Random 
forest classifier (Treebagger) and SVM. The best results are obtained with Adap-
tive Renyi entropy features using Composite fuzzy classifier. The results due to 
Random Forest and SVM are slightly inferior.  

We hope the new features will find applications in different domains.  
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