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Abstract 
The unattainability of the absolute zero of temperature is proved by using 
Carnot’s theorem. Hence this unattainability is distinct from the Planck-Fer- 
mi statement of the Third Law of Thermodynamics that the entropy vanishes 
at 0T = . It is shown that the isothermal compressibility Tκ  is in general 
larger than the adiabatic compressibility Sκ  and the difference T Sκ κ−  va-
nishes in the low temperature limit. 
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1. Introduction 

Fermi in his book [1] stated for the Third Law that the entropy S of any system 
approaches zero in the zero temperature limit:  

0 as 0.S T→ →                         (1) 

This form was proposed earlier by Planck, and will be called Planck-Fermi’s 
statement. Reif in his book [2] took a view that thermodynamics and statistical 
mechanics should be studied jointly by introducing Boltzmann’s connection 
between the entropy S and the number of microstates Ω  compatible with a set 
of macroscopic descriptors E, V, and N:  

Bln .S k= Ω                           (2) 

Nernst’s theorem (the third law) was expressed as  

( )0 constant as 0.S S T→ →                    (3) 

The difference between the two statements is due to the zero point motion 
arising from the Heisenberg’s uncertainty principle. Neither disorder nor 
dissipation can be generated by the zero-point motion. Quantum statistics will 
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play a roll. 
Pauli, in his book [3], showed that the unattainability of absolute zero can be 

derived from Planck-Fermi’s statement by considering Carnot’s cycles. We shall 
show in the present work that the unattainability can be derived by using 
Carnot’s theorem (the second law). 

The heat absorbed by a body is denoted by Q. The heat capacity C is defined 
by  

0

d lim .
d T

Q QC
T T∆ →

∆
= ≡

∆
                        (4) 

This molar heat at constant volume, VC , and that at constant pressure, PC , are 
defined by  

( ),d ,
dV

V V

E T VQ EC
T T T

∂∂  ≡ = ≡  ∂ ∂  
                 (5) 

d ,
dP

P P

Q HC
T T

∂  ≡ =  ∂  
                      (6) 

where E and H E PV≡ +  are the internal energy and the enthalpy, 
respectively. We assume that all thermodynamic functions for a one-component 
system are analytic within each domain of the gas, liquid and solid (phases). The 
thermodynamic functions are singular on the phase boundary. The body 
temperature should rise when heat is supplied. Hence the heat capacity should 
be non-negative. The body volume should become smaller when a pressure is 
applied from outside. Hence the compressibility should be positive. 

Pauli showed in his book [3] that  

, 0V TC κ ≥                           (7) 

by using the increasing entropy principle. The difference between VC  and PC  
is given by  

2 0,P V TC C TVα κ− = ≥                     (8) 

where  

1

P

V
V T

α ∂ ≡ ∂ 
                         (9) 

is the coefficient of thermal expansion and  

1
T

T

V
V P

κ ∂ ≡ − ∂ 
                       (10) 

is the isothermal compressibility. 
We see from Equation (8),  

0 as 0.P VC C T− → →                    (11) 

The adiabatic compressibility Sκ  is defined by  

1 .S
S

V
V P

κ ∂ ≡ − ∂ 
                      (12) 

Both Tκ  and Sκ  are positive. Since the restoring forces are different the 
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compressibility κ  are distinct in the different phases. 
We shall show newly in Section 3 that  

0 as 0.T S Tκ κ− → →                      (13) 

2. The Unattainnability of the Absolute Zero 

Let us consider a gas. In the Carnot cycle shown in Figure 1 the heat ( )2 1Q Q  
are absorbed (emmitted) on isothermal lines AB (CD) and the cycle is closed on 
adiabatic lines BC (DA). Carnot’s equation is given by  

1 1

2 2

.Q T
Q T

=                            (14) 

The efficiency of the Carnot’s engine is  

2 1
2

, ,C
W W Q Q
Q

η = = −                      (15) 

where W is the work produced. According to Carnot’s theorem, no engine 
working between two temperatures ( )1 2,T T  can have a hgher efficiency than 
the Carnot engine. Thus the Carnot efficiency C 1 21 T Tη ≡ −  represents the 
highest possible efficiency for any engine working between 1T  and 2T , 2 1T T> . 

In the Carnot cycle operated in the reverse direction an amount of heat 1Q  is 
extracted from the low temperature reservoir. We may look at it as an ideal 
refrigirator if we regard the high temperature 2T  as the environment 
temperature. By solving Carnot’s equations Equations (14) and (15) we obtain  

2
C 1

1

1 .TW Q
T
 

= − 
 

                       (16) 

This expression indicates that the work W needed to extract a fixed amount of 
heat 1Q  from a body at 1T  becomes greater as 1T  decreases. Accordingly, the 
operating cost of a refrigerator is higher if the temperature is set lower. 
Furthermore, if the temperature 1T  were to approach absolute zero, the work 
W needed will approach infinity. This means that attaining absolute zero by any 
means is impossible. All actual refrigerating machines must involve irreversible  
 

 
Figure 1. The Carnot (ideal) cycle: P-V Diagram and a schematic of a Carnot 
engine operating between hot and cold reservoirs at temperatures 2T  and 1T . 
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processes which add an extra heat to the right-hand side of Equation (16). 

3. Isothermal and Adiabatic Compressibilities Approach  
Each Other in the Low Temperature Limit 

After straightforward calculations which are outlined in Appendix, we obtain  

.S V

T P

C
C

κ
κ

=                           (17) 

Using this we obtain  

1 0.V
T S T

P

C
C

κ κ κ
 

− = − ≥ 
 

                   (18) 

The last inequality follows from inequalities in Equation (8). Hence the iso- 
thermal compressibility Tκ  is in general larger than the adiabatic compressi- 
bility Sκ . Using Equation (11), we then obtain  

0 as 0.T S Tκ κ− → →                    (19) 
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Appendix: Derivation of Equation (17) 

Pressure P, volume V and temperature T are interrelated by the equation of 
state. If the variables ( ), ,X Y Z  are interrelated, then the differentials are 
related as  

d d d .
Z Y

X XX Y Z
Y Z
∂ ∂ = + ∂ ∂ 

                  (20) 

From this we obtain  

1 .
Z Z

X Y
Y X
∂ ∂ = ∂ ∂ 

                      (21) 

1.
Z X Y

X Y Z
Y Z X
∂ ∂ ∂   = −  ∂ ∂ ∂  

                   (22) 

Using Equations (12) and (22), we obtain  

1 1 .S
S V P

V S S
V P V P V

κ ∂ ∂ ∂  ≡ − =  ∂ ∂ ∂  
               (23) 

If we regard S as a function of ( ),T V  and T as a function of ( ),P V :  
( ),S S T V= , ( ),T T P V=  we get  

.
V V V

S S T
P T P
∂ ∂ ∂  =  ∂ ∂ ∂  

                     (24) 

Similarly, we obtain  

.
P P P

S S T
V T V
∂ ∂ ∂  =  ∂ ∂ ∂  

                     (25) 

Using Equations (10), (23)-(25), we obtain  

1

1

1 .

S
V V P P

V P
V P

V P T V P
T

S T S T
V T P T V

T TC C
V P V

VC C C C
V P

κ

κ

 ∂ ∂ ∂ ∂   =     ∂ ∂ ∂ ∂    
 ∂ ∂ =   ∂ ∂  
 ∂ = − = ∂  

              (26) 

Dividing this by Tκ  we obtain Equation (17). 
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