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Abstract 
In this treatise we stress the analogy between strongly interacting many-body 
systems and elementary particle physics in the context of Quantum Field 
Theory (QFT). The common denominator between these two branches of 
theoretical physics is the Green’s function or propagator, which is the key for 
solving specific problems. Here we are concentrating on the vacuum, its exci-
tations and its interaction with electron and photon fields. 
 

Keywords 
Quantum Vacuum, Quantum Electrodynamics, Quantum Field Theory,  
Relativistic Quantum Mechanics, Feynman Diagrams  

 

1. Introduction 

It is the aim of this treatise to pay tribute to Feynman’s propagator method and 
its visualization in Feynman diagrams. This method has applications as wide as 
e.g. many electron theories, condensed matter physics and quantum field theory. 

It consists on one hand of showing for intricate mathematical expressions of 
the underlying physics, and on the other hand, of applying pre-established rules 
to these graphs, to set up these expressions. 

Here we are not giving a lecture on these procedures; we are merely applying 
them to vacuum excitations interacting with electron and photon fields. 

Starting from routinely used techniques as e.g. developed in the book by M. E. 
Peskin and D. V. Schroeder [1], we introduce some novelties in the derivation of 
final results. In particular, a discussion of the electron self-energy result in terms 
of a Zitterbewegung is presented. 

In a first introductory part, we recall the basic facts of the second quantization 
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of the Klein-Gordon and the Dirac field and discuss the resulting consequences. 
Then we define propagators for the Dirac and photon fields and use them to 

treat interactions of these fields with the vacuum. More specifically we study the 
electron and photon self-energies. 

We do not concern ourselves in general with collisions between elementary 
particles, although this is one of the main subjects met in Quantum Field 
Theory. As an exception we consider however electron-electron scattering be-
cause of its connection with vacuum polarization. The resulting physical facts 
are discussed extensively. 

2. Particles and Fields 

It is the aim of this section to recall how, in relativistic quantum physics, nega-
tive energy states are avoided by adopting the field viewpoint. For this purpose 
we chose as the simplest possible case that of an uncharged particle obeying the 
Klein-Gordon equation. The essential arguments developed here then apply 
equally to the case of more general systems. 

Negative energy states, causality. 
In quantum mechanics we associate a particle with a wave function ( ),x tΨ  

depending on time and space coordinates t  and x  respectively. The wave 
functions are solutions of a differential equation known as the Schrödinger equ-
ation. In a heuristic way this equation can be derived by replacing the energy 
and momentum of the particle by operators, according to the relations 

E i
t
∂

= −
∂
�  and p i= − ∇�  

For a particle we then have in the non relativistic case 
2

0
2
pE
m

− =  yielding  

2 0
2
i

t m
∂ − ∇ Ψ = ∂ 

�
                     (2.1) 

In the relativistic case we start from the relation 2 2 4 2 2E m c p c= +  and ob-
tain, after inserting the relevant differential operators  

2 2 2
2

2 2 2

1 0m c
c t

 ∂
− +∇ Ψ − Ψ = 

∂  �
                (2.2) 

This relativistic version of the Schrödinger equation is called the Klein-Gordon 
equation. It is important to note that in contrast to the non relativistic Equation 
(2.1) the Klein-Gordon equation contains the second time derivative meaning 
that it allows for negative energy solutions. Using from now on natural units 

1=� , 1c = , we write explicitly  
2

2 2
2 0m

t
 ∂
− +∇ Ψ − Ψ = ∂ 

                  (2.3) 

Setting  

( ) ( ), e iEtx t xψ −Ψ =  

Equation (2.3) reduces to  
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( )2 2 2 0E p mψ ψ− − =                    (2.4) 

where we have used 2 2p∇ = − . 
For plane wave solutions with 2 constp = , we then have the energy relations 

( )2 2 2E p m= +                      (2.5a) 

2 2E p m= ± +                      (2.5b) 

Hence there are negative energy solutions. The question arises whether these 
solutions cannot be discarded as non physical. But in that case we would not 
have a complete set of basic functions since these solutions are part of it. In ac-
tual calculations this could yield erroneous results. Furthermore, in a less ob-
vious way, omitting these solutions leads to a violation of the principle of causal-
ity as we shall demonstrate now. 

Consider the amplitude ( ) 0e iHtA t x x−=  for the evolution of a free par-
ticle from an initial to a final position during the time interval t . Discarding 
negative energy states this amplitude would be  

( )
2 2 2 23

0 0e d eit p m it p mA t x x p x p p x− + − += = ∫        (2.6) 

Inserting the wave functions  

( ) ( )03 2 3 2

1 1e e
2π 2π

;  ip x ip xx p p x⋅ − ⋅= =              (2.7) 

we have  

( )
( )

( ) 2 2
03

3

1 d e e
2π

ip x x it p mA t p ⋅ − − += ∫                 (2.8) 

Using polar coordinates as follows:  

( )0 0 cosp x x p x x ϑ⋅ − = − ; 3 2d 2π sin d dp p pϑ ϑ=  

we arrive after integration over ϑ  at the expression  

( ) ( ) 2 2

02
0

1 d sin e
2π

it p mA t p p p x x
x x

− += −
− ∫           (2.9) 

For simplicity we set 0X x x= − . With a convergence factor  
2 2Λ ,  e Λ 0,p m− + >  inserted the value of this integral is known [2]. Setting  

Λb it= +  its value is proportional to the Bessel function ( )1 22 2
2K m X b +  

  

up to a rational function of X  and t . For large values of its argument the  

Bessel function reduces essentially to the exponential ( )1 22 2

e
m X b− +

 [3], leading  
for Λ 0=  to the result  

2 2
e m X t− −                          (2.10) 

Given this factor in the expression of ( )A t  we have a non-zero amplitude 
outside the light cone, thus violating the principle according to which space like 
separated events cannot be causally connected. Consequently violation of the 
causality principle occurs if only positive energy functions are taken into ac-
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count. 
There are however other shortcomings contained in the relativistic particle 

theory. One could argue that any positive energy state must be unstable since af-
ter some time the particle would fall into a lower energy state, in the same way as 
an atomic electron in an excited state falls into the ground state after some short 
lifetime. In the case of fermions this can be prevented by assuming, following 
Dirac, that all negative energy states are occupied already. This situation is due 
to the fact that, according to the Pauli principle, each state can only receive one 
electron. The completely filled negative states constitute the Dirac sea. Moreo-
ver, this picture has led Dirac to the prediction of the positron, i.e. a positively 
charged electron, appearing as a hole in the Dirac sea when by some process an 
electron is removed from it. 

It is however possible to give a less artificial description of relativistic quan-
tum particles by adopting the field viewpoint which will be presented now. 

Lagrangian field method 
We consider a field function φ  depending on the time-space vector ( ),x t x=  

with components ,  0,1, 2,3xα α = . Distinguishing between contra- and covariant 
components, ,x xα

β  respectively, we further have x g xα αβ
β=  and a similar  

relation with 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

g gαβ
αβ

 
 − = =
 −
 

− 

 the metric tensor As usual, Greek  

indices belong to the Minkowski four-space, Latin ones to ordinary space, with 
0x t= . 
In analogy with classical mechanics, we introduce a Lagrange function, having 

here the character of a density, given by the expression ( ), ,αφ φ , where we 
have set  

,
xα α α

φφ φ ∂
= ∂ =

∂
. 

Note also the complementary relation ,
x

α α

α

φφ φ ∂
= ∂ =

∂
. We now define an  

action integral S  over a region Ω  bordered by a closed surface ( )∑ Ω , as 
follows:  

( ) ( )4d , ,S x αφ φ
Ω

=Ω ∫                     (2.11) 

Varying this integral in the usual way according to the relation  

( ) 4d ,
,

S x α
α

δ δφ δφ
φ φΩ

 ∂ ∂
= + 

∂ ∂ 
Ω ∫

                (2.12) 

and using the identities  

;   ,
, , ,α α α α α
α α α

δφ δφ δφ δφ δφ
φ φ φ

   ∂ ∂ ∂
∂ = ∂ + ∂ ∂ =   ∂ ∂ ∂   

    

we arrive at  
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( ) 4d
, ,

S x α α
α α

δ δφ δφ
φ φ φΩ

    ∂ ∂ ∂ = − ∂ + ∂    ∂ ∂ ∂    
Ω


∫

  
       (2.13) 

The last term in the parenthesis can be seen as the four-divergence of a 
four-vector proportional to δφ . Therefore with Gauss’s theorem it can be 
transformed into a surface integral over the border ( )∑ Ω . Since the Lagrange 
method postulates 0δφ =  at the surface, this term disappears. On the other 
hand, if the action integral S  has to be an extremum, Sδ  must vanish for any 
value of δφ . This leads to the familiar Euler-Lagrange equations 

0
,α
αφ φ

∂ ∂
− ∂ =

∂ ∂
                        (2.14) 

or more explicitly  

0
x

x

α

α
φφ

∂ ∂ ∂
− =

∂∂ ∂  ∂  ∂ 

  .                   (2.15) 

These equations apply to classical fields, e.g. one component of the electro-
magnetic vector potential, as well as to wave functions in particle quantum me-
chanics. 

As an example let us therefore consider the Klein-Gordon wave function. 
Setting  

( ){ }2 21 , ,
2

mα
αφ φ φ= −                   (2.16) 

we write 2, , ,gα αβ
α βφ φ φ=  and hence  

{ }
2

2 2 2 2
0 0 2

1 1, , ,
, 2 2 i ig

t
αβ

α α β
α

φ φ φ φ
φ

 ∂ ∂
∂ = ∂ = ∂ −∂ = −∇ ∂ ∂ 



 

yielding with 2m φ
φ
∂

= −
∂


 the Klein-Gordon equation  

2
2 2

2 0m
t

φ
 ∂

−∇ + = 
∂ 

                   (2.17) 

The Hamiltonian. 
In order to establish a link with classical mechanics, we first conceive the 

space coordinates ix  as a countable set, each element occupying an infinite-
simal space segment ixδ . 

Considering the classical expression of the Hamiltonian  

i iiH p q L= −∑ �                      (2.18) 

with the canonical variable ip  obeying the relation  

i ip L q= ∂ ∂ �                        (2.19) 

we have the correspondence  

;  i
i i i i i i

i

q p x xφ δ π δ
φ
∂

→ → =
∂

�� �


 

defining the canonical variable  



F. Schuller et al. 
 

387 

i
i

i

π
φ
∂

=
∂ �


.                         (2.20) 

With these definitions we obtain for the classical relation (2.18) the following 
equivalent expression:  

( )i i i iiH xπ φ δ= −∑ �                     (2.21) 

Switching now to the limit of continuous space coordinates, this result takes 
the form  

( ) ( ) ( ){ } ( )3 3d , , dH x x x x xαπ φ φ φ= − =∫ ∫�            (2.22) 

where   represents the Hamiltonian density  

( ) ( ) ( )x x xπ φ= −�                    (2.23) 

with ( )xπ  the canonical momentum given by  

( )xπ
φ
∂

=
∂ �
 .                      (2.24) 

Let us consider as an example the Klein-Gordon case. 
According to Equation (2.16) the Lagrange density can be written as  

( )( )22 2 21
2

mφ φ φ= − ∇ −� .               (2.25) 

We then have ( )xπ φ= �  and hence  

( ) ( ) ( )( )2 22 2 2 2 2 2 21 1 1 1
2 2 2 2

x m mφ φ φ φ φ φ φ= − + ∇ + = + ∇ +� � � .  (2.26) 

Second quantization. 
Simply speaking, a given wave function is quantized if it is replaced by an op-

erator. This is familiar in quantum electrodynamics where e.g. one component 
of the vector potential is replaced by photon creation and annihilation operators. 
A similar procedure can be applied to quantum mechanical wave functions and 
in this latter case one then talks of second quantization, since the wave functions 
are already obtained by a first quantization procedure. Note however that the 
term second quantization is not universally accepted. 

Here we consider again as an example the Klein-Gordon case, which consti-
tutes the simplest one, as it concerns spinless particles like K or π mesons. 

Let us first switch from x  space to p  space by introducing the following 
transformations:  

( )
( )

( )
3

3

d, e ,
2π

ip xpx t p tφ φ⋅= ∫ .                (2.27a) 

( )
( )

( )
3

3

d, e ,
2π

ip xpx t ip p tφ φ⋅∇ = ∫               (2.27b) 

( ) ( )
( )

( )
3

3

d, , e ,
2π

ip xpx t x t p tφ π π⋅= = ∫�             (2.27c) 

The Hamiltonian density then takes the form  
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( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
3 3

2
3 3

d d 1e
22π 2π

i p p xp px p p pp m p pπ π φ φ′+ ⋅′
′ ′ ′= + − +∫ ∫ (2.28) 

Since we want to quantize the system by replacing wave functions with oper-
ators in the Schrödinger picture, we disregard t  in this expression. 

Integrating over the space coordinates, we thus arrive at the following expres-
sion for the Hamiltonian in terms of functions in p  space: 

( )
( )

( ) ( ) ( ) ( ){ }
3

3 2
3

dd
2π

p
pH x x p p p pπ π ω φ φ= = − + −∫ ∫       (2.29) 

with  
2 2 2
p p mω = +                        (2.30) 

To obtain Equation (2.29) we have made use of the relation  
( ) ( )3 3d ei p p xx p pδ′+ ⋅ ′= +∫  

The parenthesis inside the integral of Equation (2.29) reminds one of the Ha-
miltonian  

( )2 2 21
2

p qω+  

of a harmonic oscillator. 
In the latter case quantization is achieved by introducing creation and de-

struction operators †a , a , according to the relation  

( ) ( )† †1 ;  
22

pq a a p i a a
ω

ω
= + = − −  

with the commutator †, 1a a  =  . 
We therefore try in Equation (2.29) the substitutions  

( ) ( )†

2
p

p pp i a a
ω

π −= − −                 (2.31a) 

( ) ( )†1
2 p p

p

p a aφ
ω −= +                 (2.31b) 

The parenthesis inside the integral in Equation (2.29) is then found to be giv-
en by the expression  

( ) ( ) ( ) ( ){ } ( )†2
p p p p p pp p p p a a a aπ π ω φ φ ω − −− + − = +†  

Since complete summation over p  takes place, we can disregard the minus 
signs of the indices and write  

( ) ( ) ( ) ( ){ } ( )2 †
,

† † † 12
2p p p p p p p p p p pp p p p a a a a a a a aπ π ω φ φ ω ω   − + − = + = +   

 

We thus obtain for the Hamiltonian the following result  

( )

3
† †

,3

d 1
22π

p p p p p
pH a a a aω   = +   ∫                (2.32) 

According to general rules of quantum physics, the commutation relation for 
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canonical variables takes the following form in the present case:  

( ) ( ) ( )3,x x i x xφ π δ′ ′= −   .                  (2.33) 

Inserting into the commutator the transformation relations given By equa-
tion’s (2.27a), (2.27c) we write  

( ) ( )
( ) ( )

( ) ( )
3 3

3 3

d d, e e ,
2π 2π

ip x ip xp px x p pφ π φ π′ ′⋅ ⋅′
′ ′=      ∫ ∫        (2.34) 

Substituting for ( ) ( ),p pφ π ′  the expressions given by Equation’s (2.31a), 
(2.31b) we obtain after a lengthy but straightforward calculation  

( ) ( ) { }† †, , ,
2 p p p p
ip p a a a aφ π ′ ′− −   ′ = +                    (2.35) 

Adopting the trial rule  

( ) ( )3† 3, 2πp pa a p pδ′  ′= −                    (2.36) 

Equation (2.35) reduces to  

( ) ( ) ( ) ( )3 3, 2πp p i p pφ π δ′ ′= +                  (2.37) 

Substituting this result into Equation (2.34) we recover the commutation rela-
tion of Equation (2.33). This confirms the validity of the trial rule of Equation 
(2.36). 

In the field equations developed above the number of particles concerned is 
not specified. Let us now be more specific by introducing single particle states 

p  assumed to constitute an orthonormal set in a given inertial frame. Acting 
with the Hamiltonian of Equation (2.32) on one of these states, e.g. 1p , and 
using Equation (2.36) for the commutator, we obtain the formal expression  

( )
( )

1

3
3

1 1 13

d 1 0
22π

p p
pH p p pω ω δ

 
 =
 
 

+ ∫            (2.38) 

The second term on the r.h.s. of this equation contains the infinite quantity 
( )3 0δ  and moreover it involves an infinite sum over energies 2pω . Mostly 

this term can be considered as some sort of ground state energy 0E  which 
cannot be detected experimentally and thus can be ignored. 

In order to establish the time dependence of the operators φ  and π  one has 
to replace them by Heisenberg operators according to the relation  
( ), e eiHt iHtx tφ φ −=  and similarly for ( ),x tπ . 
Starting from the expressions (2.31a), (2.31b) we evaluate the corresponding 

Heisenberg operators of pa  and †
pa  as follows: 

Acting on an eigenstate p  of H , according to Equation (2.38), the infinite 
zero-point energy term cancels in the operator product since it is a c number. 
We are thus left with the expression  

e e e pi tiHt iHt
p pa p a pω−− =  

using  

e 0iHt
p pa p a p= = . 
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Similarly we have  
† †e e 0 e 0pi tiHt iHt
p pa aω− =  

Hence the requested operator equations are 

( ) e pi t
p pa t aω−=                      (2.39a) 

( )† †e pi t
p pa t aω=                      (2.39b) 

With Equation (2.31b) the quantized form of Equation (2.27a) becomes  

( )
( )

( )
3

†
3

d 1, e e e e
22π

p pi t i tip x ip x
p p

p

px t a aω ωφ
ω

− ⋅ − ⋅= +∫         (2.40) 

where Equation’s (2.39a), (2.39b) have been used. 
Introducing the Lorentz invariant scalar product 0 0px p x p x= − ⋅  in four 

space, with 0 pp ω=  and 0x t= , we obtain for the quantized field the expres-
sion  

( )
( )

( )
3

†
3

d 1, e e
22π

ip x ip x
p p

p

px t a aφ
ω

− ⋅ ⋅= +∫ .           (2.41) 

Causality again. 
As mentioned earlier, two points ,  x y  with space like separation  

( )2 0x y− <  are not causally connected. This means that in this case, which 
corresponds to the region outside the light cone, the commutator ( ) ( ),x yφ φ    
must vanish. 

Starting from Equation (2.41) the commutator is given by the expression  

( ) ( )
( )

( ) ( )( )
3

3

d 1, e e
22π

ip x y ip x y

p

px yφ φ
ω

− ⋅ − ⋅ −= −   ∫          (2.42) 

where the operator commutation rule of Equation (2.36) has been used. In order 
to obtain zero for this quantity, the inversion transformation ( )x y x y− → − −  
has to be applied to the second integral. However, this is only legitimate if this 
transformation leaves the value of the integral invariant. This we shall discuss 
now. First set ( )0 ,x y− = ∆ = ∆ ∆ , with 0 t∆ = ∆ , x∆ = ∆ . Then we have  

( ) 0 0 0;  pp x y p p p ω⋅ − = − ⋅∆ =∆                (2.43) 

Now we define a space like surface [3] 
2 2 2
0 0;  K K∆ −∆ = − >                    (2.44) 

Without loss of generality we can restrict ourselves to the plane ( )0 1,∆ ∆  
where the surface of Equation (2.44) appears as the curve  

2 2 2
0 1 K∆ −∆ = −  see Figure 1                (2.45) 

Now take a particular point ( )0 1,∆ ∆  on this curve and rotate the coordinate 
frame in both terms of Equation (2.42) from ( )0 1,∆ ∆  to ( )0 1,′ ′∆ ∆ . 

One then has the relations  

1
1 1 2 2

1 0

cos ;   cosϕ ϕ
∆′∆ = ∆ =

∆ + ∆
               (2.46) 
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Figure 1. Transformation diagram for space like coordinates in connection with the cau-
sality proof discussion. The quantities 0∆  and 1∆  representing the vertical and the ho-
rizontal axis are defined by Equation (2.43). 
 

Hence the transformed quantities are  

0 1 2 3 3
1 ,  ,

cosϕ
′ ′ ′ ′∆ ∆ = ∆ = ∆ = ∆  

yielding the following result in terms of rotated quantities: 
( ) ( )e e e eip x y ip x y ip ip− ⋅ − ⋅ − ′ ′ ′ ′− ⋅∆ ⋅∆− → −  

Now the cumbersome factor 0 0eip ∆  has disappeared and the transformation 
′ ′∆ → −∆  leaves the value of the second integral unchanged, since in this 

integral one can change the sign of the integration variable without affecting its 
value. The fact that for any point on a given curve the corresponding coordinate 
rotation can be made, and that this is true for any curve, proves the statement 
that the commutator vanishes at any point outside the light cone. 

Inside the light cone, i.e. for time like separations, the commutator does not 
vanish so that in this region points can be causally connected. It is however in-
teresting to note that the corresponding commutator is invariant with respect to 
proper Lorentz transformations as shown e.g. in ref. [1]. 

Note finally, that in many calculations the infinite energy of the vacuum state 
is eliminated by performing normal ordering of operators. It consists in reshuf-
fling operator products in such a way that destruction operators always stand on 
the right of creation operators. 

Generalizations [4] [5] [6]. 
Particles obeying the Klein-Gordon equation do not bear any electric charges. 

In order to treat charged particles, complex wave functions have to be intro-
duced into the theory. Even more profound modifications are necessary in the 
case of electrons according to the Dirac theory. Here, due to the presence of 
spin, wave functions are represented by spinors consisting of four functions as 
components of a vector. An even more striking difference occurs if second 
quantization is performed. In this case, the fermion character of the particle is 
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taken into account in postulating anti-commutation rules for the field operators 
instead of the commutation rules pertaining to bosons. 

However, the general idea of avoiding negative energy states by means of 
second quantization, already applied to the Klein-Gordon case, remains essen-
tially the same in this and other situations. 

3. Symmetry Transformation Relations 

An essential feature of relativistic particles and fields is their behaviour with re-
spect to transformations of the Lorentz group. 

Transformation operators 
We recall that the elements of this group are three rotations in the xy, xz, and 

yz planes around the z, y and x axis respectively, completed by three pseu-
do-rotations belonging to the xt, yt and zt planes respectively. These transforma-
tions can be viewed as an infinite succession of infinitesimally small rotations 
which generate a representation of the group. Designating the rotation operator 
with respect to the plane ,x xµ ν  as J µν , and the corresponding rotation para-
meter as µνω , then an infinitesimal transformation is generated by the operator  

Λ 1
2
i J µν

µνω → − 
 

                     (3.1) 

yielding for the finite Lorentz transformation operator the expression  

exp
2
i J µν

µνω Λ = − 
 

.                    (3.2) 

Recalling that the familiar expression for rotations in ordinary space can be 
generalized to Minkowski space as  

( ) ,  J i x x J Jµν µ ν ν µ νµ µν= ∂ − ∂ = − ,               (3.3) 

we can generate a four dimensional representation of the proper Lorentz group 
by acting with this operator on the vector ( )0 ,x x . Using the relations  

ij i jJ x ix= − , ij j iJ x ix=                    (3.4) 

we consider the example 12 21ω θ ω= = − , all other µνω  equal zero. Equation 
(3.1) then yields the matrix  

1 0 0 0
0 1 0
0 1 0
0 0 0 1

M
θ

θΛ

 
 − →
 
 
 

                   (3.5) 

This matrix thus corresponds to a rotation by an infinitesimal angle θ  in the 
xy  plane as can be shown by multiplying the matrix by the vector ( )0 ,x x . 

As a second example we consider the Lorentz boost in the 1x  direction by 
setting 01 10ω β ω= = −  with all others equal zero. Then the relation  

0 0 0 0 0 0,i i i i i i i
iJ x ix J x ix x ix x ix= − = ∂ − ∂ = −=           (3.6) 

with 1i =  substituted into Equation (3.1) leads to the result  
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1 0 0
1 0 0

0 0 1 0
0 0 0 1

M

β
β

Λ

 
 
 →
 
 
 

                    (3.7) 

Note that the factor 1 2  in Equation (3.1) disappears because in both exam-
ples two equal terms are accounted for. Note also that by multiplying the matrices  

of Equation’s (3.5) and (3.7) by the column vector 
0x

x
 
 
 

 one recovers the usual  

relations for the corresponding infinitesimal rotations and Lorentz boosts. 
Applying a Lorentz transformation as expressed by the operator Λ  of Equa-

tion (3.2) to wave functions ( )xΨ , one obtains the following change: 

( ) ( )1x x−Ψ →Ψ Λ                      (3.8) 

The criterion for the corresponding wave equations to be valid is their Lorentz 
invariance. This property can be established by proving that the Lagrange densi-
ty, from which a given wave equation is derived, is a Lorentz scalar. We shall 
now demonstrate this point in the particular case of the Klein-Gordon equation.  

We cast the Lagrange density of Equation (2.16) in the form  

( ){ }2 2 21
2

g mαβ
βφ φ= ∂ −                  (3.9) 

with only one type of differential operator. With the transformation of Equation 
(3.8), i.e. 

( ) ( )*1Λx xφ φ→                     (3.10) 

the scalar property of 2φ  is obvious. We therefore focus on the quantity ( )2
βφ∂  

and write  

( ) ( )( ) ( )( ) ( ) ( )2 1 1Λ Λg x x g
σβν βν

β β ν ρ ρβ ν
φ φ φ φ φ− −

⋅ ⋅
   ′ ′∂ → ∂ ∂ = ∂ ∂      


 (3.11) 

where we have omitted on the r.h.s. the argument 1Λ x−  of the φ  functions. 
Note also that the horizontal shift of the lower indices on matrix elements allows 
us to distinguish between line and column indices. Since matrix elements are 
c-numbers, their product can be treated separately. It is sufficient to do this in 
the limit of infinitesimal rotations. The more abstract general treatment can be 
found in the literature e.g. in ref. [1]. 

According to Equation’s (3.1) and (3.2) we write  

( ) ( ) ( )( )1 1Λ Λg gβν βν ρ ρ σ σ
β β ν νβ β

δ λ δ λ− −
⋅ ⋅ ⋅ ⋅⋅ ⋅

= + +
 

         (3.12) 

With the defining relation  

J ϕψ
ϕψλ ω=                        (3.13) 

Treating only the change introduced by the transformation and given the fact 
that λ  is an infinitesimal quantity, we consider the expression  

g gβν σ βν σ ρ
β ν ν βδ λ δ λ⋅ ⋅ ⋅ ⋅+                    (3.14) 
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In the first term the indices β  and ν  are eliminated yielding with β ρ= , 
ν β= =   

g ρρ σ
ρλ⋅  no summation 

whereas for the second term we find with ν σ= , β ν σ= = ,  

gρ σσ
σλ⋅  no summation 

Hence the final result  

g gρρ σ σσ ρ
ρ σλ λ⋅ ⋅+  no summation               (3.15) 

Suppose now that ρ  and σ  belong both to ordinary space i.e.  
,i jρ σ= =  then the g  elements are both equal to 1− , but as shown by Equ-

ation (3.5), we have j i
i jλ λ⋅ ⋅= −  and the sum in Equation (3.15) is zero. In the 

opposite case of Lorentz boosts with e.g. 0ρ = , iσ =  we have 00 1g =  and 
1iig = −  whereas, according to Equation (3.7) 0

0
i

iλ λ⋅ ⋅=  and the sum is again 
zero. This proves the statement that Lorentz transformations do not affect the 
Lagrangian density function, except for the argument of the wave functions, and 
hence it is a Lorentz scalar. The resulting Euler-Lagrange equation, i.e. the wave 
function, has therefore a Lorentz invariant form. 

The proof given here for infinitesimal variations is generally valid, since finite 
transformations involve an infinite succession of infinitesimal ones. As already 
mentioned, more formal proofs are found in the literature, but we thought it in-
structive to approach the problem by explicit calculations as well. 

Spinors. 
Having treated as an example the case of a structure less particle obeying the 

Klein-Gordon equation, we are now moving to the case of the electron, where in 
addition to space coordinates spin variables have to be considered, together with 
the existence of an electric charge. 

Introducing spin functions ,  u u v v+ − + − , with the + − signs indicating spin va-
riables 1 2+ , 1 2−  in a given frame, the wave function in four space can be 
written in the form  

1 2 3 4u u v vψ ψ ψ ψ+ − + −Ψ = + + +                 (3.16) 

Considering components 1uψ +  etc. as elements of a vector in spin space, we 
can also write  

1

2 1 3

3 2 4

4

,   A
A B

B

Ψ 
 Ψ Ψ Ψ Ψ      Ψ = = Ψ = Ψ =      Ψ Ψ Ψ Ψ      
Ψ 

          (3.17) 

where the functions 1Ψ  etc depend on both the space and the spin variable. 
The column vector of Equation (3.17) is known as a spinor. 

Its Lorentz transformation can be expressed as follows: 

( )1
1 2 x−Ψ → Λ Ψ Λ                      (3.18) 

where it is understood that the operator 1 2Λ  acts only on spin states. 
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We now define operator matrix elements S ρσ  by introducing for 1 2Λ  the 
limiting expression  

1
2
i S ρσ

ρσω − 
 

                      (3.19) 

with ρσω  being the usual rotation and boost parameters. 
We now recall that spin functions transform under rotations in ordinary space 

according to the Pauli spin matrices iσ  with 

1 2 30 1 0 1 0
1 0 0 0 1

i
i

σ σ σ
−     

= = =     −     
            (3.20) 

Then clearly, ordinary space rotations occur according to the relation 

01 1
2 20

kk
A Aij A

kk
B B B

S
σσ
σσ

Ψ Ψ    Ψ   
= =      Ψ Ψ Ψ      

          (3.21) 

i j k in normal order. 
Remark: normal order means that i j k are all different and that starting with 1 

2 3 an odd number of permutations introduces a minus sign. One may ensure this 
property automatically by multiplying with a quantity known as the ijkε -tensor. 

The question now arises, what happens in the case of Lorentz boosts? Without 
entering into details, we only state the answer given by Dirac’s theory according 
to the relation  

0 0
2 20

ii
A Ai B

ii
B B A

i iS
σσ
σσ

 
 

Ψ Ψ  Ψ   
= =     Ψ Ψ Ψ    

          (3.22) 

Hence the matrices of Equation’s (3.21) and (3.22) constitute a four-dimen- 
sional representation of the Lorentz group known as the Dirac-Pauli representa-
tion. 

The Weyl representation. 
The Dirac-Pauli representation is reducible since its matrices can be brought 

into diagonal form by a unitary transformation involving the matrices  

11 1 1 11 1,   
1 1 1 12 2

M M − −   
= =   −   

             (3.23) 

With these matrices we have  

1 0 0
0 0

i i

i iM M
σ σ

σ σ
−    −

=   
   

 

and hence  

0 0
2 0

i
i

i

iS σ
σ

 −
=  

 
                     (3.24) 

whereas the ij  matrices remain unaffected. 
Designating as left and right handed spinors LΨ  and RΨ  the spinors 

which now replace AΨ  and BΨ , we have instead of Equation’s (3.21), (3.22) 
the relations  
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1
2

k
Lij L

k
R R

S
σ
σ

Ψ  Ψ 
=   Ψ Ψ   

 and 0

2

i
Li L

i
R R

iS
σ
σ

Ψ − Ψ 
= Ψ Ψ 

 
 
 

     (3.25) 

Taking as an example the values ijω θ= , 0iω β=  with particular figures for 
ij  and all other sω′  equal 0, Equation’s (3.19) and (3.25) then yield the equa-
tion  

11
4 4

k i
L L L

k i
R R R

i σ σ
θ β

σ σ
 
 
 

 Ψ  Ψ − Ψ 
→ − +     Ψ Ψ Ψ    

,         (3.26) 

showing that the functions LΨ  and RΨ , called Weyl spinors, transform inde-
pendently from each other. 

Clearly, these relations can be generalized for arbitrary rotation and boost pa-
rameters described by vectors θ  and β  respectively. This leads to the trans-
formation relations  

1
2 2L Li σ σθ β Ψ → − − Ψ 

 
               (3.27a) 

1
2 2R Ri σ σθ β Ψ → − + Ψ 

 
               (3.27b) 

Hence the Weyl spinors LΨ , RΨ  constitute the basis for two-dimensional 
representations of the Lorentz group, instead of the reducible four-dimensional 
representation of the Dirac-Pauli basis. 

In order to explain the designations of ,L RΨ Ψ  as left and right handed spi-
nors, we consider the fact that they are eigenstates of the helicity operator  

01 ˆ
2 0

i

i ih p
σ

σ
 

=  
 

 with eigenvalues 1 2−  for left and 1 2+  for right handed  

spinors. 
As an example the spinors introduced in Section 4 are right handed for those 

of Equation’s (4.13a), (4.15a) and left handed for those of Equation’s (4.13b), 
(4.15b). This can be shown by applying the helicity operator with 3i =  to these 
spinors. 

Connection with wave equations. 
The wave equation for spinors Ψ  is Dirac’s equation, which can be derived 

from the Lagrange density  

( ) † 0,   i mµ
µγ γ= Ψ ∂ − Ψ Ψ = Ψ                (3.28) 

as the corresponding Euler-Lagrange equation applied to Ψ , with the result  

( ) ( ) 0i m xµ
µγ ∂ − Ψ = .                    (3.29) 

Note that for µ
µγ ∂  and similar products Feynman has introduced the slash 

notation ∂ . 
The γ  matrices entering the Lagrange density are of vital importance, since 

in choosing them in an appropriate way, one meets the condition that   has to 
be a Lorentz scalar, necessary for the corresponding wave function to be valid. 
As a consequence, there is clearly a connection between these matrices and the 
Lorentz transformation properties of the spinors. The corresponding relations 
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are derived in many textbooks and will be given here only in their final form. 
According to Dirac, the following equations hold: 

,
4
iS µν µ νγ γ =                       (3.30) 

, 2gµ ν µνγ γ
+

  =                      (3.31) 

where the + index indicates an anticommutator. Note that later in this text the 
anticommutator will be designated by the symbol { } . 

Given the fact that the matrices 0iS  are different in the Dirac and the Weyl 
representation, one would expect a similar difference in the γ  matrices. Subs-
tituting in Equation’s (3.30), (3.31) the special values 0µ = , iν = , one obtains  

0 02i iS
i

γ γ =  and ( ) 10 02i iS
i

γ γ
−

=               (3.32) 

Making the guess that iγ  is equal in both the Dirac and the Weyl representa-
tion, i.e. for 

0 0
0

i
i

iS
σ

σ
 

=  
 

 Dirac and 0 0
0

i
i

iS
σ

σ
 −

=  
 

 Weyl 

one obtains the result  

0
0

i
i

i

σ
γ

σ
 

=  
− 

                       (3.33) 

By setting  

( ) 10 0 1 0
0 1

γ γ
−  

= =  − 
 Dirac                (3.34) 

( ) 10 0 0 1
1 0

γ γ
−  

= =  
 

 Weyl                 (3.35) 

one then obtains the following relations:  

0
i

R i R
i

L L

σ
γ γ

σ
Ψ  Ψ 

Ψ = Ψ =   Ψ − Ψ   
 

The Dirac equation, given in its general form by Equation (3.29), then takes in 
the case of the Weyl representation the form of the following two coupled equa-
tions: 

( )0 0R Li mσ∂ + ⋅∇ Ψ − Ψ =                 (3.36a) 

( )0 0L Ri mσ∂ − ⋅∇ Ψ − Ψ =                 (3.36b) 

written in matrix form as  

( )
( )

0

0

L

R

m i
i m

σ
σ

 − ∂ + ⋅∇ Ψ 
   ∂ − ⋅∇ − Ψ  

             (3.37) 

As can be seen from these equations, the mixing of the two Lorentz group re-
presentations LΨ  and RΨ  occurs because of the mass term in the Dirac equ-
ation. 
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Noether currents. 
Let us now consider some continuous symmetry transformations on the wave 

functions, which leave the Lagrangian density invariant. In the infinitesimal lim-
it we then write  

( ) ( )x xφ φ δφ→ +                      (3.38) 

The corresponding change in the Lagrange density ( ), µφ φ∂  is then 
represented by the expression  

( ) ( )µ
µ

δ δφ δ φ
φ φ
∂ ∂

= + ∂
∂ ∂ ∂
 

                  (3.39) 

With the obvious relation  

( )µ µδ φ δφ∂ = ∂                       (3.40) 

we then have 

( ) µ
µ

δ δφ δφ
φ φ
∂ ∂

= + ∂
∂ ∂ ∂
 

                  (3.41) 

Using the identity  

( ) ( ) ( )µ µ µ
µ µ µ

δφ δφ δφ
φ φ φ

   ∂ ∂ ∂   ∂ = ∂ + ∂
   ∂ ∂ ∂ ∂ ∂ ∂   

    

the second term on the r.h.s. of Equation (3.41) can be rewritten with the result  

( ) ( )µ µ
µ µ

δ δφ δφ
φφ φ

    ∂ ∂ ∂    = ∂ + − ∂    ∂∂ ∂ ∂ ∂     

  
          (3.42) 

Now the second term of this equation, set equal to zero, represents the Eu-
ler-Lagrange equation as given by Equation (3.14). For 0= , according to the 
invariance condition of the Lagrange density, we then write  

( )
0µ

µ

δφ
φ

 ∂ ∂ =
 ∂ ∂ 

                     (3.43) 

Introducing Noether currents by the defining relation  

( )
jµ

µ

α δφ
φ

 ∂ =
 ∂ ∂ 

 ,                   (3.44) 

Equation (2.43) involves the four-divergence of this quantity for which we 
thus have 

0jµµ∂ =                         (3.45) 

Integrating this expression over the entire ordinary space, and applying Gauss’ 
theorem to the corresponding three-divergence, with vanishing contribution at 
the infinite surface, we are left with the expression 

all sp
0 3

ac0 e
d 0j x∂ =∫ .                   (3.46) 

Hence the space integral 
all space

0 3dj x∫  is a conserved quantity. 
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In order to interpret this quantity, let us consider the Dirac equation. The 
corresponding Lagrange density function is given by Equation (3.28). This equa-
tion is invariant under the phase transformation e iα−Ψ → Ψ , or in infinitesimal 
form  

iδ αΨ → − Ψ                        (3.47) 

For Noether’s current we then have, according to Equation (3.44) 

( )j i iµ µα γ α= Ψ − Ψ                     (3.48) 

and  
†0j = Ψ Ψ                        (3.49) 

where we have used the fact that in any representation ( )20 1γ = . As can be 
seen, 0j  represents the probability density, which multiplied by the electron 
charge, constitutes the charge density. Hence Equation (3.46) expresses the fact 
that the electric charge of the electron is a conserved quantity. 

4. The Dirac Field 

As an entrance door to the Dirac field let us consider free particle solutions of 
the Dirac Equation (3.29). These solutions can be viewed as superpositions of 
plane waves of the form  

( ) ( ) .e ip xx u p −Ψ =  with 2 2p m=               (4.1) 

Plugging this expression into Equation (3.29), yields the equation  

( ) ( ) 0p m u pµ
µγ − =                     (4.2) 

This equation is most easily solved in the rest frame, where only the compo-
nent 0p m=  is different from zero, so that we have 

( ) ( ) ( )0
0

1 1
0

1 1
m m u p m u pγ

− 
− = = − 

            (4.3) 

where for 0γ  the Weyl expression (3.35) has been used. 
Introducing two-component spinors ξ , the solution is  

( )0u p m
ξ
ξ
 

=  
 

                      (4.4) 

where the factor m  has been chosen for future convenience. 
Let us now look for a more general solution with two components 0p E=  

and 3 0p ≠  and 2 2p m=  becoming  

( )22 3 2E p m− =                       (4.5) 

This solution can be obtained by performing a Lorentz boost on the previous 
one, which in infinitesimal form can be written as  

3

0 1
1

1 0 0
E m
p

η
      

= +      
      

                  (4.6) 

This relation can be deduced by analogy from the matrix of Equation (3.7) 
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noticing that all spatial directions are equivalent whereas the infinitesimal para-
meter η , called rapidity, replaces the previous β . 

For finite values of η  we therefore have  

3

0 1 1 0 0 1 cosh
exp cosh sinh

1 0 0 0 1 1 0 0 sinh
E m m m
p m

η
η η η

η
                

= = + =                
                

(4.7) 

The second expression on the r.h.s. is obtained by expanding the exponential  

and noticing that even powers of the matrix 
0 1
1 0
 
 
 

 yield the unit matrix,  

whereas odd ones leave this matrix unchanged. 
Now we apply the same boost to the amplitude ( )u p  of Equation (4.1) and 

write  

( ) 1 2u p m
ξ
ξ
 

= Λ  
 

                    (4.8) 

From the infinitesimal operator as given by Equation (3.24) with I = 3, we 
deduce the relevant Lorentz transformation operator  

3

1 2 3

01exp
2 0

σ
η

σ

  
Λ = −  

−   
                (4.9) 

Considering the matrix 3 1 0
0 1

σ
 

=  − 
, with ( )23σ  the unit matrix, an even  

power of the matrix in the exponent of Equation (4.9) yields the unit matrix, 
whereas an odd one yields this same matrix. The series expansion of the expo-
nential operator of Equation (4.9) therefore leads to the following matrix expres-
sion: 

3

1 2 3

1 0 01 1cosh sinh
0 1 2 20

σ
η η

σ
      Λ = −       −      

        (4.10) 

Explicitating 3σ  and adding all matrices, a lengthy but straightforward cal-
culation yields the following diagonal matrix  

3

3

1 3
2

3

0 0 0

0 0 01

0 0 0

0 0 0

E p

E p
m E p

E p

 −
 
 +
 Λ =
 +
 
 − 

      (4.11) 

where the relation  
3

/21 1cosh sinh e
2 2

E p
m

ηη η ± ±   ± = =   
   

            (4.12) 

has been used. 
We now go back to Equation (4.8) and calculate the amplitude ( )u p  for two  

special spinors 
1
0

ξ
 

=  
 

 and 
0
1

ξ
 

=  
 

, corresponding to spins oriented in the  

positive and negative 3x  direction respectively. The matrix of Equation (4.11) 
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then immediately yields the results  

( )

3

3

1
0

1
0

u p
E p

E p

  
−  

  
   +     

=



                  (4.13a) 

( )

3

3

0
1

0
1

u p
E p

E p

  
+  

  
   −     

=



                  (4.13b) 

So far we have put the minus sign on the exponent of the defining relation 
given by Equation (4.1). Consider now the case of a plus sign with  

( ) ( )eip xx v p ⋅Ψ =                      (4.14) 

We choose however to maintain 0 0p >  and hence 0E > . Despite this 
choice this case corresponds to the negative energy solutions which constitute 
the famous Dirac sea. This is only apparent if e.g. the Hamilton density is calcu-
lated. At this stage we take it only as a known fact. 

We are not repeating a calculation similar to the previous one, but indicate 
only the relations replacing Equation’s (4.13a), (4.13b). For these special situa-
tions one finds  

( )

3

3

1
0

1
0

E p

E p
v p

  
−  

  
   − +     

=



                 (4.15a) 

( )

3

3

0
1

0
1

v p
E p

E p

  
−  

  =    − +     

                 (4.15b) 

Defining as usual † 0u u γ=  and † 0v v γ= , it is instructive to calculate the 
products uu , vv  and † †,  .u u v v  Considering the special case of Equation 
(4.13a) we have  

( ) ( )( )† 3 31,0 , 1,0u E p E p= − +  

( ) ( )( )3 31,0 , 1,0u E p E p= + −  

With u  given by Equation (4.13a) we thus obtain  

2 †2 2 ,  2 2uu E p u u Em== − =                (4.16) 

A similar calculation for the case of Equation (4.15b) yields the result  
†2 2vv mv v E= − =                       (4.17) 

For the case of an arbitrary spin orientation axis we introduce the notations 
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,r ru v  with 1,2r =  designating the two opposite spin directions. Then the re-
lations (4.16), (4.17) have to be completed as follows: 

†2 2r s rs r s rsu u m u u Eδ δ= =                   (4.18) 
†2 2r s rs r s rsv v m v v Eδ δ= − = .                 (4.19) 

Furthermore we have the relations  

( ) ( )† 0r su p v p− = , ( ) ( )† 0r sv p u p− =              (4.20) 

The Hamiltonian. 
Starting from the expression (3.28) of the Lagrangian density  

( ) † 0i mµ
µγ γ= Ψ ∂ − ΨΨ = Ψ  

and from the expression of the conjugate variable ∂
Π =

∂Ψ�
 , the Hamiltonian  

density is given, according to Equation (2.23) by the expression  

ΠΨ= −�   

More explicitly we then have with 0∂ Ψ = Ψ� �  and ( )20 1γ =  

( )† † †0 ,   i i m iγ γ= Ψ Ψ +Ψ ⋅∇ − Ψ Π = Ψ��            (4.21) 

In the expression of   the term ΠΨ�  thus cancels the first term in Equa-
tion (4.21) and we are left with the result  

( )† 0 0i mγ γ γ= Ψ − ⋅∇ + Ψ                 (4.22) 

Involving the single particle Hamiltonian  
0 0 0 0i

D ih i m i mγ γ γ γ γ γ= − ⋅∇ + = − ∂ +             (4.23) 

The amplitudes ( )u p  and ( )v p  of Equation’s (4.1) and (4.14) are eigen- 
functions of this Hamiltonian with eigenvalues E  and –E  respectively. To 
see this, multiply the Dirac Equation (3.29) by 0γ  and write  

( )0 0
0 0i

ii i mγ γ γ∂ + ∂ − Ψ =                 (4.24) 

remembering that ( )20 1γ = . 
This equation can be expressed in the form  

( )0 0Di h∂ − Ψ =                      (4.25) 

Replacing Ψ  by the free-particle expressions of Equation’s (4.1) and (4.14) 
we then have  

( )0 0 e ip xi p u p − ⋅∂ Ψ =                   (4.26a) 

( )0 0 eip xi p v p ⋅∂ Ψ = −                   (4.26b) 

Introducing these expressions into Equation (4.25) yields the eigenvalue rela-
tions stated above  

( ) ( )0Dh u p p u p= , ( ) ( )0Dh v p p v p= − ,            (4.27) 

with 0 0.p E= >  Hence the amplitudes ( )v p  correspond to negative energy 
solutions which constitute the famous Dirac sea. As in the Klein-Gordon case, 
this inconvenience is circumvented by means of a fully quantized treatment. 
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Second quantization. 
In replacing the wave function ( )xΨ  by an operator, we first consider the 

time-independent Schroedinger operator ( )xψ  which, in analogy with Equa-
tion (2.40), we write in the form (summation rule with 1,2s = ) 

( )
( )

( ) ( )( )
3

3

d 1 e e
22π

s s ip x s s ip x
p p

p

px a u p b v p
E

ψ ⋅ − ⋅= +∫        (4.28) 

or equivalently  

( )
( )

( ) ( )( )
3

3

d 1 e
22π

ip x s s s s
p p

p

px a u p b v p
E

ψ ⋅= + −∫         (4.29) 

Defining an empty state 0  it is understood that we must have  
0 00s s

p pa b= = . 
Introducing the total Hamiltonian 3dH x= ∫   we obtain using Equation 

(3.22) in the Schoedinger picture  
3 †d DH x hψ ψ= ∫                      (4.30) 

After substituting the expression (4.29) and its adjoint we write  

( )
( )

( ) ( )( ) ( ) ( )( )

3 3
3

6

† † † †

d d 1d e
2 22π

      

i p q x

p q

r r r r s s s s
q q p p p p

p qH x
E E

a u q b v q E a u p E b v p

− ⋅

− −

=

× + − − −

∫ ∫
     (4.31) 

Inverting the order of integration, we take advantage of the relation 

( ) ( ) ( )33 3d e 2πi p q xx p qδ− ⋅ = −∫  

and notice that, according to Equation (4.20), the cross terms in the product of 
the integrand in Equation (4.31) disappear. We are thus left with the expression  

( )
( ) ( ) ( )( )

3
† † † †

3

d 1 ( )
22π

r s r s r s r s
p p p p p p

p

pH E a a u p u p E b b v p v p
E

= −∫    (4.32) 

where, given the integration over all values of p , the replacement p p→ −  has 
been made. 

Eliminating the amplitudes by means of the relations (4.18), (4.19), we thus 
arrive at the final expression  

( )
( )

3
† †

3

d
2π

r r r r
p p p p p p

pH E a a E b b= −∫                (4.33) 

At this stage it has to be reminded that in the present case of fermions the op-
erators obey anti-commutation relations, which in contrast to the boson rela-
tions (2.37), are of the form  

{ } ( ) ( )3† † † 3, 2πp p p p p pa a a a a a p pδ′ ′ ′ ′≡ + = −            (4.34) 

This relation allows us to deal with the embarrassing negative energy term in 
the integrand of Equation (4.33). 

Writing by means of the rule stated by Equation (4.34)  
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( )
( )

3
† † 3

3

d d 2
2π

r r r r
p p p p p p p

pH E a a E b b p E= + −∫ ∫            (4.35) 

we have cast the negative energy into an infinite constant term which can be ig-
nored if the origin of the energy scale is shifted adequately. 

A next step consists in interchanging the order of †r
pb  and r

pb . This is a trick 
justified in detail in ref’s [1] [4] [6]. Here we indicate only that it has to do with 
the fact that in the one-particle case, according to the Pauli principle, we have 

† 01β =  so that by interchanging †β β→ , 1 0→  we recover the funda-
mental relation 0 0= . 

Normal ordering 
A procedure of eliminating negative energy terms in the Hamiltonian consists 

in what is called normal ordering. It means that all operator products are reshuf-
fled in such a way that annihilation operators stand always on the right of crea-
tion operators. These operations are symbolically expressed by the letter N  in 
front of the products. 

Applying this convention to the expression (4.22), supposed second quan-
tized, we thus write  

( ){ }3dH xN i mγ= Ψ − ⋅∇ + Ψ∫                (4.36) 

where ,  Ψ Ψ  are time-dependent Heisenberg operators given by the expres-
sions, similar to Equation (4.28) and its conjugate 

( )
( )

( ) ( )( )
3

. .
3

d 1 e e
22π

s s ip x s s ip x
p p

p

px a u p b v p
E

−Ψ = +∫ †      (4.37a) 

( )
( )

( ) ( )( )
3

†
3

d 1 e e
22π

s s ip x s s ip x
p p

p

px b v p a u p
E

− ⋅ ⋅Ψ = +∫      (4.37b) 

Here the time dependence of the operators has been absorbed into the expo-
nential factors. Moreover, the interchange †r r

p pb b↔  discussed above, has been 
taken into account. 

A calculation similar to that developed above, with only the cross terms con-
tributing, then leads to the expression  

( )
( )

( )
( )

3 3
† † † †

3 3

d d
2π 2π

s s s s s s s s
p p p p p p p p p p

p pH E N a a b b E a a b b= + = +∫ ∫     (4.38) 

This is exactly the result obtained previously if in Equation (4.35) the infinite 
negative energy term is ignored and if the operator and state changes discussed 
there, are accomplished. Thus clearly normal ordering merely integrates these 
facts. 

5. Propagators 

The retarded Green’s function. 
Let us first consider propagation amplitudes given by the expressions 

( ) ( )
( )

( ) ( ) ( )
3

3

d 10 0 e
22π

ip x ys s
a b a bs

p

px y u p u p
E

− ⋅ −Ψ Ψ = ∑∫     (5.1a) 
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( ) ( )
( )

( ) ( ) ( )
3

3

d 10 Ψ Ψ Ψ e
22π

ip x ys s
b a a bs

p

py x v p v p
E

− ⋅ −= ∑∫     (5.1b) 

These expressions are obtained by using the fact that in the product of the 
wave functions of Equation’s (4.37a), (4.37b) only cross terms contribute. This is 
because in the other terms annihilation operators are on the right and therefore 
eliminate these terms in the mean values of Equation’s (5.1a), (5.1b). Further-
more the operator relation (4.34) has been accounted for. 

We now evaluate the spin sums appearing in Equation’s (5.1a), (5.1b). Using 
Equation’s (4.13a), (4.13b) and (4.15a), (4.15b) we obtain the following tensor 
products:  

( )
3 3

1 1 3 3
33

0 0
0 0 0 0 0

0 0
0 0

0 0 0 00

E p m E p

u u E p E p
E p mE p

−

 − − 
 

+ − =  ++

 
 
 =  
 

 
 
 


 

 

where the relation ( )22 3E p m− =  has been used. 

A similar calculation yields  

3
2 2

3

0 0 0 0
0 0
0 0 0 0
0 0

m E p
u u

E p m

−

 
 + =
 
 

− 

 

For the spin sum we therefore arrive at the result  
3

3
1 1 2 2

1,2 3

3

0 0
0 0

0 0
0 0

s s
a b a b a b

m
m

E p
E pu u u u u u

E m
m

p
E p

−
+

= +
+

−

 
 
 =  
  
 

∑     (5.2) 

It is now an easy matter to show that this matrix is identical with the expres-
sion 0 3 3E p mγ γ− +  or by extension p mµ

µγ + . Consequently we obtain  

1,2
s s
a bu u p mµ

µγ= +∑                   (5.3a) 

with after a similar calculation  

( )1,2
s s
a bv v p mµ

µγ= − − +∑                 (5.3b) 

Making these replacements in the expressions (5.1a), (5.1b) and adding them 
afterwards, we obtain an anticommutator of the form  

( ) ( ){ }
( )

( ) ( ) ( ) ( )( )
3

3

d 10 , 0 e e
22π

ip x y ip x y
a b

p

px y p m p m
E

µ µ
µ µγ γ− ⋅ − ⋅ −Ψ Ψ = + − − +∫ (5.4) 

with 0 pp E=  and hence  

( ) ( ) ( ) ( ) ( )0 0 0 0
0

i i
i pp x y p x y p x y E x y p x y⋅ − = − − − = − − ⋅ −     (5.5) 

We now want to link the above commutator to an integral in four space. For 
this purpose we introduce a quantity defined by the relation  
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( )
( )

( ) ( )

( )
( ) ( ) ( )0 0

0

4

4 2 2
0

3
0

3 2 2
0

d e
2π

dd e
2π2π

ip x yab
R

p

ip x yip x y

p

p iS x y p m
p E

pp ie p m
p E

µ
µ

µ
µ

γ

γ

− ⋅ −

− −⋅ −

− = +

−
=

−

+

∫

∫ ∫
     (5.6) 

where 0p  has now become an integration variable. The 0p  integral can be 
evaluated by considering a closed circuit in the complex plane with two singu-
larities at 0 pp E= ±  as shown in Figure 2(a). The corresponding residua are 
for  

( ) ( ) ( )0 0
1 0

0 1
1 e

2π 2
piE x yi

p p i
p

ip E a E p m
E

γ γ
− −

−= = + +  

for  

( ) ( ) ( )0 0
2 0

0 1
1 e

2π 2
piE x yi

p p i
p

ip E a E p m
E

γ γ
−

−
−

= − = − + +  

for the lower clockwise circuit, corresponding to 0 0x y> , we therefore obtain 
for the integral the value  

( ) ( )

( ) ( )

0 0

0 0

0

0

e12π
2 e

p

p

iE x yi
p i

iE x yip
p i

E p m
i res

E E p m

γ γ

γ γ

− −

−

 + + 
= − =  

 − − + + 

∑∮        (5.7) 

whereas for the upper circuit, corresponding to 0 0x y< , the integral is zero. 
Inserting the value given by Equation (5.7) into the complete integral given by 

Equation (5.6) we can, without loss of generality, replace in the second term ip  
by ip−  and in this way we obtain for 0 0x y>  

( )
( )

( ) ( ) ( ) ( )( )
3

3

d 1 e e
22π

ip x y ip x yab
R

p

pS x y p m p m
E

µ µ
µ µγ γ− ⋅ − −− = + − − +∫  (5.8a) 

and for 0 0x y<  

( ) 0ab
RS x y− =                        (5.8b) 

Comparing with Equation (5.4) we thus find  

( ) ( ){ }0 0 0 , 0a bx y yΘ − Ψ Ψ                  (5.9) 

where ( )0 0x yΘ −  is the Heaviside step function. 
 

 
(a)                   (b) 

Figure 2. (a) Complex integration path for evaluating the integral of Equa-
tion (5.6) in the Green’s function case. (b) Similarly in the Feynman’s case. 
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Going back to Equation (5.6) we notice that the denominator 2 2
0 pp E−  can be 

written as 2 2 2 2 2
0p p m p m− − = − . One can also prove that ( )22p pµ

µγ=  so 
that in the end we have  

( )
( )

( )
( )

4

4 2 2

d e
2π

ip x yab
R

i p mpS
p m

µ
µ

µ
µ

γ

γ

− ⋅ −
+

=
−

∫              (5.10) 

Written in the form  

( )
( )

4

4

d
2π

ip x yab ab
R R

pS S e− ⋅ −= ∫ �                  (5.11) 

this quantity can be regarded as the Fourier transform of  

( )
( )2 2

ab
R

i p m
S

p m

µ
µ

µ
µ

γ

γ

+
=

−
�                    (5.12) 

or in Feynman slash notation  

( )
2 2

pab
R

i m
S

p m
+

=
−

�                     (5.12’) 

This expression is known as the Dirac propagator. Its Fourier transform 
represented by Equation (5.10) is a Green’s function of the Dirac operator de-
fined in Equation (3.29). To see this, we first notice that for plane wave states 
this operator can be written as p mµ

µγ − . Acting with it on the expression given 
by Equation (5.10) the denominator cancels and we obtain  

( )
( )

( ) ( )
4

4
4

d e
2π

ip x yab
R

pp m S i i x yµ
µγ δ− ⋅ −− = = −∫         (5.13) 

thus proving the Green’s function relation stated above. 
Note however that the integral in Equation (5.10) can be evaluated along dif-

ferent paths. The way chosen so far yields the particular expression (5.9), called 
the retarded Green’s function. This is because it is only non zero during the time 
period 0 0x y> . 

The Feynman propagator. 
A different path for evaluating the integral of Equation (5.6) is that shown on 

Figure 2(b). Designating by ( )1∮  the lower circuit, i.e. 0 0x y>  and by ( )2∮  
the upper one, i.e. 0 0x y< , the theorem of residua then yields, instead of Equa-
tion (5.7) the following two contributions:  

( ) ( ) ( ) ( )0 0
1 0
1

11 2π e
2

piE x yi
p i

p

ia E p m
E

γ γ
− −

−= − = + +∮       (5.14a) 

( ) ( ) ( ) ( )0 0
2 0
1

12 2π e
2

piE x yi
p i

p

ia E p m
E

γ γ
−

−= = − + +∮       (5.14b) 

Inserting these expressions into Equation (5.6) we obtain the Feynman Green’s 
function  

( )
( ) ( )

3
0 0

3

d 1 e
22π

ip x y
F

p

pS p m x y
E

µ
µγ − ⋅ −= + >∫          (5.15a) 
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( )
( ) ( )

3
0 0

3

d 1 e
22π

ip x y
F

p

pS p m x y
E

µ
µγ ⋅ −= − + <∫          (5.15b) 

where again in the second line i ip p→ − . 
Comparing these expressions with Equation (5.4) we see that we have  

( ) ( )
( ) ( )

0 0

0 0

0 0         for   
0 0      for    

a b
F

b a

x y x y
S

y x x y
 Ψ Ψ >= 
− Ψ Ψ <

          (5.16) 

This can also be written as  

( ) ( )0 0F a bS T x y= Ψ Ψ                  (5.17) 

where T  is the time ordering operator which ensures that the earlier time al-
ways stands on the right, with the additional condition of a minus sign if the op-
erators are interchanged. 

In the Feynman case the integration paths can be slightly modified with re-
spect to those of Figure 2(b) if we replace Equation (5.10) by the expression 

( )
( )

( )
( )

4

4 2 2

d e
2π

ip x y
F

i p mpS
p m i

µ
µ

µ
µ

γ

γ ε
− ⋅ −

+
=

− +
∫            (5.18) 

With the denominator equal to 2 2
0 pp E iε− + , the singularities are now shifted  

away from the real axis to 0 2p
p

ip E
E
ε

= ± ∓  so that this axis is now entirely part  

of the integration paths. 
Interpreting Equation (5.18) as a Fourier integral we thus obtain for the 

Feynman propagator the expression  

( )
( )2 2

F

i p m
S

p m i

µ
µ

µ
µ

γ

γ ε

+
=

− +
�                   (5.19) 

or in slash notation  

( )
2 2

p
F

i m
S

p m iε
+

=
− +

�                     (5.19’) 

These expressions are basic elements in Many-Body type calculations. 
The photon propagator. 
In analogy with Equation’s (5.16) and (5.17) representing the Feynman prop-

agator in the Dirac case, we define a photon propagator by the relations 

( ) ( )
( ) ( )

0 0

0 0

0 0
0 0

A x A y x y
A y A x x y
µ ν

ν µ

 >
 <

                (5.20) 

Corresponding to the time-ordered product  

( ) ( )0 0D TA x A yµν µ ν=                  (5.21) 

Here ( )A xµ , ( )A yν  are operators of the quantized vector potential ac-
cording to the expression  

( )
( )

( ) ( )( )
3

3 † *
3 0

d 1 e e
22π

r r iqx r r iqx
q qr

q

qA x a q a q
Eµ µ µε ε−

=
= +∑∫      (5.22) 
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The quantities ( )r qµε  and *r
µε  are polarization vectors labeled by the index 

r  in a chosen basis. Let us first consider the product  

( ) ( )
( ) ( )

3 3
3 3 † *

3 3 0 0

d d 1 e e
2 22π 2π

r r r r iqx iq y
q qr r

q q

q q a a q q
E E µ νε ε′ ′ ′−

′′= =

′
′∑ ∑∫ ∫   (5.23) 

Postulating the rule  

( ) ( )3† 2πr r
q q rra a q qδ δ′

′ ′′= −                    (5.24) 

This expression reduces to  

( )
( ) ( )

3

3

d 1 e
22π

iq x y

q

q f q
E µν

− −∫                   (5.25) 

with  

( ) ( ) ( )3 *
0

r r
rf q q qµν µ νε ε
=

= ∑                  (5.26) 

The value of the quantity ( )f qµν  depends on the choice of a particular 
gauge. In the case of the Lorentz-Feynman gauge this value reduces to the metric 
tensor gµν , as shown in standard textbooks. 

As in the Dirac case we now link the expression (5.25) to an integral in 4 di-
mensional space of the following form: 

( )
( )

( )
( ) ( )0 0

0
4 3

0
4 2 2 3 2 2

0 0

dd de e e
2π2π 2π

iq x yiq x y iq x y

q q

g qq q ig
iq E q E

µν
µν

− −− − −=
− −∫ ∫ ∫  (5.27) 

Performing the integration over 0q  along the paths indicated in Figure 2(b) 
we obtain the two expressions  

( )
( )

3
0 0

3

d e
22π

iq x y

q

gq x y
E
µν − −− >∫                 (5.28a) 

( )
( )

3
0 0

3

d e
22π

iq x y

q

gq x y
E
µν −− <∫                 (5.28b) 

Comparing this with Equation (5.20) we see that the two integrals correspond 
to the expressions defining the propagator Dµν . Finally, as in the Dirac case, the 
expressions (5.28a), (5.28b) can be obtained by replacing the integral (5.27) by 
the modified expression  

( )
( )

4

4 2 2
0

d e
2π

iq x y

q

igq
q E i

µν

ε
− −−

− +∫                  (5.29) 

Setting 2 2 2 2 2
0 0qq E q q q− = − =  we therefore obtain the expression for the 

propagator in momentum space  

2

ig
D

q i
µν

µν ε
−

=
+

�                       (5.30) 

as the final result for the photon propagator in the Lorentz-Feynman gauge. 

6. Interacting Fields: The Radiative Electron Mass Shift 

Introduction. 
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Consider an electron in the form of a point charge-e, then the surrounding 
static electric field possesses the energy  

2
3

2 2

1 e d
2 24π

rd r
r r

α = = 
 ∫ ∫                   (6.1) 

with 
2e 1

4π 137
∝= =  the Sommerfeld fine structure constant. Recall that through-  

out this treatise we use natural units setting 1.c= =�  
In order to make the integral in Equation (6.1) finite, a lower cut-off radius 

0 1 Λr =  has to be introduced yielding the value for the energy  

Λ
2
α

=                          (6.2) 

In this way the energy tends linearly towards infinity with the cut-off parame-
ter Λ . Applying in a naïve manner Einstein’s relation 2mc=  or in our units 

m= , we see that the electromagnetic mass of the electron appears as a linearly 
diverging quantity. 

Attempts have been made to improve things by applying the formalism of 
quantum field theory to this problem. In this treatise we present a slightly re-
newed version of these calculations. As a result the linear divergence of the 
semi-classical theory is brought to the form of a logarithmic one however with 
no quantitative solution at the end. 

The propagators. 
Preliminary remark: as is customary in quantum field theory we designate 

vectors and indices in 4 dimensional Minkowski space by ordinary letters and 
l.c. greek letters (e.g. 0,1,2,3µ = ) respectively and the corresponding objects in 3 
dimensional Euclidean space by bold letters and l.c. Latin letters (e.g. 1,2,3i = ), 
respectively. Moreover, summation over repeated indices is assumed and fur-
thermore µγ  are Dirac’s gamma matrices. 

We now consider an electron moving freely through vacuum and define a 
correlation function by the expression  

( ) ( )T x yψ ψΩ Ω                    (6.3) 

where ( )xψ  and ( ) ( )† 0y yψ ψ γ=  are operators replacing in second quan-
tized theory the usual wave functions. 

In expression (6.3) the Dyson operator T  stands for the time ordered product. 
The presence of ground states Ω  instead of zero electron states 0  indi-

cates that we are considering interaction of the moving electron with the sur-
rounding electromagnetic vacuum field. 

The easiest way for evaluating the correlation function (6.3) consists in apply-
ing Feynman rules according to the Feynman diagram of the figure (Figure 3) 
which shows that the electron-vacuum interaction can be conceived as the emis-
sion and reabsorption of a virtual photon visualized by the wavy line. 

The elements of this diagram correspond to Feynman propagators in mo-
mentum space given by the expressions  
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Figure 3. Feynman diagram for evaluating the 
electron correlation function of Equation (6.3). 

 

( ) ( )
2 2 2 2

p k
,   

i m i m
p m i k m i

+ +

− + − + 
                  (6.4) 

for the electron of mass m in momentum state p and k respectively and the 
propagator expression  

( )2

ig

p k i
µν

ε

−

− +
                       (6.5) 

for the photon. 
In this way during the process the total momentum of the system is conserved 

at every step. In addition the expressions 

ei µγ− , ei νγ−                       (6.6) 

describing the electron-photon interaction have to be inserted at the vertices. 
In these expressions the Feynman slash notation abbreviates the sums pµ µγ  

and kµ µγ , whereas gµν  is the metric tensor represented by a 4 dimensional 
diagonal matrix with 00 1g = , 11 . 1etcg = −� . 

Assembling these relations, known as the Feynman rules, we see that the 
above diagram corresponds to the product  

( ) ( ) ( )
( )

( )2
2 2 2 2 2 2 2

p pk
e

i m i mi m ii
p m k m i p mp k i

µ
µγ γ

ε ε

+ ++ −
−

− − + −− +
    (6.7) 

where the relation g ν
µν µγ γ=  has been used. Noticing that in both the Weyl 

and the Dirac representation the sum µ
µγ γ  is equal to 4 times the unit matrix, 

we condense the expression (6.7) into the form 

( ) ( )( ) ( )
22 2 2 2

p pi m i m
i p

p m p m
+ +

− Σ
− −

                 (6.8) 

where the central part is given by the expression  

( ) ( )
( )

( )
( )

4
2

2 4 2 2 2

kd4 e
2π

i mk ii p i
k m i p k iε ε

+ −
− Σ = −

− + − +
∫         (6.9) 

after adding an integration over all possible intermediate 4 momenta. 
The index on 2Σ  indicates that the application of the above diagram 

represents in fact a limitation to second order of a perturbation expansion. An 
extension to all orders under special conditions will be discussed below. 

The integration procedure. 
Before starting the integration in the expression for 2Σ  we use Feynman’s 
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trick based on the identity  

( ){ }
1

20

1 1d
1

x
ab ax b x

=
+ −

∫
 

Comparing with Equation (6.9) we thus write the k  integral in the form 

( ) ( ) ( )( ){ }
41

4 20 2 2 2

d kd
2π 1

k mx
p k i x k m i xε ε

+

 − + + − + − 

∫ ∫       (6.10) 

Following a common procedure we now change variables according to the re-
lation  

q k px= −                         (6.11) 

Then the parenthesis in the denominator of the integrand takes the form  

( )( )2 2 21q x p x m i+ − − +                   (6.12) 

An essential simplification arises if we restrict ourselves to the zero’th order 
contribution in p m−  with  

k q mx= +                        (6.13) 

The integral in (6.10) then reduces to  

( )
( )

( ){ }
41

4 20 22 2

q 1dd
2π 1

m xqx
q m x iε

+ +

− − +
∫ ∫                (6.14) 

Note that the same letter m  matrices as well as scalars recognizable from the 
context. 

Separating the 0q  part from the space part q  and extending the integral 
over q  components from −∞  to +∞ , the q  term in the numerator does 
not contribute and we are left with the expression  

( )
( ) ( ) ( ){ }

3 01

3 20 0 2 20 2 2

d d 1d 1
2π2π 1

q qm x x
q q m x iε

+∞
+

− − − +
∫ ∫ ∫     (6.15) 

where now all matrices are replaced by scalars. 
The evaluation of the second integral is presented in Appendix leading to the 

result  

( )
( )

( )
3 3 21 22 2

30

dd 1 1
8 2π
i qm x x q m x

−
 + + − ∫ ∫            (6.16) 

Setting 3 2d 4π dq q q=  and introducing an upper limit cut-off we replace the 
expression (6.16) by the following integral 

( ) ( )
3 21 22 2 2

2 0 0

1 d 1 d 1
8 2π
i m x x q q q m x

−Λ  + + − ∫ ∫          (6.17) 

Introducing the dimensionless variable q mλ =  we also have  

( ) ( )
3 21 22 2

2 0 0
d 1 d 1

16π
mi m x x xλ λ λ

−Λ  + + − ∫ ∫           (6.18) 

with the limiting expression  
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2 20

3 d 3 log
2 216π 16π

mi im m
m

λ
λ

Λ Λ
=∫               (6.18’) 

where we have assumed that the cut-off value mΛ  is large as compared to unity. 
Plugging this result into Equation (6.9) we thus arrive at the final expression  

2
2 2

3e log
8π

ii m
m
Λ

− Σ = −                    (6.19) 

Renormalization. 
Let us suppose that the change in the correlation function represented by the 

resulting expression (6.19) can be reproduced by renormalizing the mass in the 
free electron propagator, i.e. by adding a correction mδ  to the initial mass. 
Assuming this correction sufficiently small we then consider the expansion  

( )
( )

( )
2 2 2 2 22

p p 21
i m i m m m

p m p mp m m
δ

δ

+ +  
→ + − −− +  

          (6.20) 

Equating the correction term with the expression (6.8) with the expression 
(6.19) for 2Σi−  inserted, we have  

( ) ( ) ( )2
2 2 2 2 2 22 2

p 2 p p3 e log
8π

i m m m i m i mi m
mp m p mp m

δ+ + +− Λ
=

− − − 
    (6.21) 

Approximating on the r.h.s. ( )( )p pm m+ +  by its dominant part  
( )2 pm m+  Equation (6.21) yields the result [7] [8] 

2
2

3 3e log log
2π8π

m m m
m m

δ αΛ Λ
= =              (6.22) 

This is the result derived in the literature by various methods, showing that 
the fully quantized theory reduces the linear convergence of the classical expres-
sion (6.2) to a logarithmic one. 

Discussion. 
There seems to be no indication how to estimate the cut-off parameter .Λ  

Clearly the logarithmic divergence makes the mass shift less sensitive to the val-
ue of this parameter. Moreover it can be argued that a large mass shift should 
show up in experiments. Nevertheless, in order to get a number out of the calcu-
lations, one could for instance consider the fact that the proton mass constitutes 
a natural upper limit on the mass scale of conventional particles. Identifying it 
with Λ  would lead to the result:  

31836 log 0.026
2π

m
m m m

δ αΛ Λ
= = =

 
a number that seems realistic. Naturally this estimation has to be taken merely as 
an example among others that one could imagine. 

However, despite the fact that the true numerical value of the electromagnetic 
electron mass shift is as yet unknown, its correct qualitative evaluation, as re-
viewed in this section undoubtedly constitutes an important fact. 

Zitterbewegung 
The fact that quantum field calculations lead to a logarithmic divergence of 
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the electron self-energy instead of the linear classical result of Equation (6.2), 
can be understood if one takes into account the spread of the electron position 
due to quantum fluctuations [7]. This is equivalent with attributing the electron 
a finite dimension of the order of the Compton wavelength 1m− , whereas clas-
sically the electron is point like. More generally, quantum fluctuations of a par-
ticle position of the order of 1m−  are known as Zitterbewegung. It is this effect 
that we are studying now in the stationary case. 

In order to determine the position x  occupied in the average by the electron 
with respect to some central position 0= , let us consider the propagator product  

( ) ( ) ( ) ( )0 0 0 0 0y y xΨ Ψ − Ψ Ψ             (6.23) 

Interpreting the central part  

( ) ( )0 0y yρ = Ψ − Ψ                   (6.24) 

as a density operator we obtain the desired average by taking a trace represented 
fomally by the expression  

( ) ( ) ( )( )0 0 0P x Tr xρ= Ψ Ψ                (6.24a) 

Writing out explicitly the product of (6.23) we obtain from the defining rela-
tion (5.14) the result 

( )
( )

( )
( ) ( )

3 3

3 3

d 1 d 1p e p e
2 22π 2π

iq x yip y

p q

p qm m
E E

⋅ −− ⋅
  
  − + − +
  
  
∫ ∫    (6.25) 

under the condition  
0 0y x>                        (6.25a) 

Furthermore, the variable x  can be specialized as ( )0,x x=  so that the 
condition (6.25a) becomes 0 0.y >  With these simplifications the product of 
(6.25) reduces to  

( ) ( )
( )

3 3

3 3

d d e e
2 22π 2π

i p q yiq x

p q

p m q m
E E

− + ⋅− ⋅∫ ∫             (6.26) 

The taking of the trace in Equation (6.24a) amounts to integrating over the 
variable y and afterwards replacing the matrix 2m  by the scalar 24m . The re-
sulting delta function ( )p qδ +  then leads to the result  

( )
( )

3 2

3 2

d e
2π

ip x

p

p mP x
E

⋅= ∫                  (6.27) 

The integral of Equation (6.27) is elementary, yielding with 2 2
pE p m= +  

the result  

( )
( ) ( )

2 2π2 cos
2 2 2 2 2 20 0 0

1 d 1 sine sin d 2 d
2π 2π

iprp p m p prP x m p
rp m p m

θ θ θ
∞ ∞

= =
+ +∫ ∫ ∫ (6.28) 

With the last integral on the r.h.s being equal to π e
2

mr− , we obtain for the  

probability the final result  
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( )
21 e

4π
mrmP x

r
−=                    (6.29) 

As a test we integrate over the entire space and find  
2

0
4π e d 1

4π
mrm r r

∞ − =∫                   (6.30) 

thus proving the validity of our probability calculation. 
Clearly a distribution as represented by Equation (6.29) will lead to a softer 

divergence than one of the type ( )xδ  corresponding to the non relativistic 
case. We want however to emphasize that the electron is still regarded as a point 
particle, but one that giggles around some central position producing an appar-
ent spread of its mass. 

7. The Electron-Electron Scattering (M∅ LLER) Amplitude  
and Its Yukawa Analog 

Consider scattering involving two particles and introduce a scattering matrix in 
the form 

1S iT= +                          (7.1) 

where the second term describes the scattering process. 
Assuming that the particles have incident momenta p  and k  respectively 

and outgoing momenta p′  and k ′ , momentum conservation demands that 
matrix elements of iT  satisfy the relation  

( ) ( )4 4, , 2πp k iT p k p k p k iδ′ ′ ′ ′= + − +              (7.2) 

where i  is the scattering amplitude which is of interest here. In the fully 
quantized theory interaction takes place by means of the exchange of a virtual 
particle of momentum q. 

We specialize now to the case of two colliding electrons schematically 
represented by the Feynman diagram below. 

We write the Hamiltonian of the system in the form  

0 intH H H= +                        (7.3) 

where 0H  is the part belonging to the free electrons and intH  that of the inte-
raction during the scattering. In second quantized Dirac theory this latter part is 
given by the expression  

4
int d eH x Aµ

µγ= Ψ Ψ∫                     (7.4) 

with Ψ , Ψ  the electron field operators in the Heisenberg picture and Aµ  
the vector potential operator of the electromagnetic field present in the system. 

The relevant contribution here is the second order term in the perturbation 
expansion of the S  matrix involving the quantity 2

intH . 
Given the interaction Hamiltonian of Equation (7.4) this term contains the 

time-ordered product  

( ) ( ) ( )( ) ( ) ( )4 4e d e d
x y

T i x A x i y A yµ ν
µ νγ γ− Ψ Ψ − Ψ Ψ∫ ∫       (7.5) 
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with T the familiar time ordering operator. Note that a factor 1/2 from the ex-
ponential expansion is left out since it is compensated for by adding identical 
expressions with x  and y  interchanged. In order to evaluate the above prod-
uct we apply Wick’s theorem [1] reducing it to a product of the contracted e-m 
field operators with the remaining factors put into normal order. Thus we write 

( ) ( ) ( ) ( )2 4 4e d d
x y

x yN A x A yµ ν
µ νγ γ − Ψ Ψ Ψ Ψ  ∫          (7.6) 

Substituting into the parenthesis the expressions derived in section (3) for Ψ  
and Ψ  we obtain an operator product of the form  

( ) ( )
( ) ( )

( ) ( )
( )

4 4
†

4 4

4 4
†

4 4

d d 1 1 e e
2 22π 2π

d d 1 1 ( )e e
2 22π 2π

ip x ipx
p p

p p

ik y iky
k k

k k

p p a a u p u p
E E

k k a a u k u k
E E

′ −
′

′

′ −
′

′

′
′

′
′×

∫ ∫

∫ ∫

� �
� �

� �

� �
� �

� �

� �
� � �

� �
� �

        (7.7) 

At this stage we suppress for simplicity spin labels on the operators and func-
tions. 

Putting in the expression (7.7) the operators in normal order we make the re-
placement 

� � � �
† † † †

k kp k ppp ka a a a a a a a′ ′ ′ ′→ �� ��                   (7.8) 

We now take matrix elements between states  
† †2 2 0p k p kpk E E a a=                 (7.9a) 

2 2 0p k p kp k E E a a′ ′ ′ ′′ ′ =                (7.9b) 

Together with the preceding sequence of Equation (7.8) this generates the new 
operator sequence  

� �
† † † †

pp k kkp k pa a a a a a a a′ ′′ ′ ��                     (7.10) 

We now make use of operator commutation relations which yield the equa-
tions 

� ( ) �( )3† 30 2π0ppa a p pδ′ ′
′ ′= −                (7.11) 

similarly for �,  k k′ ′  etc i.e. 4 equations. 
Now after integrating in Equation (7.7) over the variables � �,  ,  ,  p p k k′ ′��  the 

E  and π  factors disappear and we are left with the expression  

( ) ( ) ( ) ( ) ( ) ( )e ei p p x i k k yu p u p u k u kµ νγ γ ′ ′− − − −′ ′           (7.12) 

Going back to Equation (7.6) and recalling that the contraction of vector po-
tential operators is equivalent with the propagator expression  

( ) ( )
( )

( )
4

4 2

d e
2π

iq x yigqA x A y
q i

µν
µ ν

− −−
=

+∫ 
             (7.13) 

we obtain the matrix element in the form  
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( ) ( ) ( ) ( ) ( )
( )

( ) ( )
4

2 4 4
4 2

de d e d e
2π

i p p q x i k k q yigqi u p u p u k u k x y
q i

µνµ νγ γ
ε

′ ′− − + ⋅ − − − ⋅−
′ ′−

+∫ ∫ ∫ (7.14) 

Identifying the ,  x y  integrals as ( )42π  times delta functions so that  
( )p k k′ ′− = − − , the expression (7.14) reduces to  

( ) ( ) ( ) ( ) ( ) ( )
( )

( )4 2 4
22π e

ig
i u p u p u k u k p k p k

p p
µνµ νγ γ δ

−
′ ′ ′ ′− + − +  ′−

(7.15) 

Comparing this expression with the defining relation (7.2) we find for the 
electron-electron scattering amplitude the formal expression  

( ) ( ) ( )
( )

( ) ( )2
2e

ig
i i u p u p u k u k

p p
µνµ νγ γ

−
′ ′= −

′−
          (7.16) 

The non-relativistic limit. 
In the non relativistic limit where it is assumed that the kinetic energy of the 

electrons is small as compared to 2mc , i.e. to m , the spinors derived in section 
3 reduce to the simple form  

u m
β
β
 

=  
 

, ( )† † †,u m β β=                 (7.17) 

with †,  β β  equal to ( )
0

0,1
1
 
 
 

 or ( )
1

1,0
0
 
 
 

. 

Then for 0µ =  we have  
†0 02u u u uγ γ= , † 0i iu u u uγ γ γ=                (7.18) 

with 
20 1γ =  and, in the Weyl representation,  

0 0 1 0 0
1 0 0 0

i i
i

i i

σ σ
γ γ

σ σ
   − 

= × =     −     
 

The products in Equation (7.16) are  

( ) ( ) ( ) ( ) ( )0 ? , 2u p u p u p u p m m
β

γ β β β β
β
 ′ ′ ′ ′ ′= = × = 
 

  (7.19a) 

( ) ( ) ( )† † 0
, 0

0

i
i

iu p u p m
βσ

γ β β
βσ

 −  ′ ′ ′= × × =   
  

      (7.19b) 

Furthermore we have in this approximation with 0p m=  

( ) 22p p p p′ ′− = − −                    (7.20) 

Thus the amplitude of Equation (7.16) reduces to  

( ) ( ) ( )2 † †00
2e 2 2

x y

ig
i i m m

p p
β β β β

−′ ′= −
′−

          (7.21) 

Now clearly, labeling the spins by s  in the x term and by r  in the y  
term, the products †β β′  reduce to the Kronecker symbol s sδ ′  and r rδ ′  re-
spectively, meaning that the spin is conserved during the process. Therefore Ig-
noring the spin labels and setting 00 1g =  we write for the scattering amplitude  
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( )22
2

1e 2m
p p

= −
′−

                  (7.22) 

Consider now the electrostatic potential ( )V x  of the system and its Fourier 
transform defined by the relation  

( ) ( ) ( )3d ei p p xV p p xV x ′− ⋅′− = ∫                (7.23) 

In the case of a Coulomb potential  

( )V x
r

=
                        (7.24) 

An elementary integration yields the result  

( ) 2

4πV p p
p p

′− =
′−

                    (7.25) 

Comparing this result with Equation (7.22) one sees that the amplitude factor 
  is proportional to the Coulomb potential in the p  representation. This 
shows that it is equivalent to the ordinary quantum mechanical solution of the 
scattering problem in the Born approximation. 

For the sake of completeness we indicate the link between the amplitude   
and the differential cross section. In the center of mass frame the following rela-
tion holds: 

( )

2

2

d
dΩ 2m
σ
=
                       (7.26) 

Substituting for   the expression (7.22) we thus obtain  
22

2

d 2 e
dΩ

m
q

σ  
=  
 

                     (7.27) 

Note that this expression is equal to the celebrated Rutherford formula which 
applies to scattering of a particle in a static Coulomb field. 

The Yukawa potential. 
An approach similar to that leading to the Coulomb potential, treated in terms 

of the exchange of a photon between two electrons, has been proposed by Yu-
kawa in 1935 for the interpretation of nuclear forces. Here the interaction takes 
place between heavy particles of mass m , i.e. nucleons, and for the binding the 
photon is replaced by a massive particle of mass mφ  much smaller than m  
called meson. 

The calculation can be deduced from the previous one by replacing the photon  

propagator by the meson propagator 
2 2

i
q m iφ ε− +

 with q  the four momentum  

of the meson and the electro-magnetic interaction ei µγ−  replaced by a quanti-
ty designed as. The result which replaces that of Equation (7.16) is then  

( ) ( ) ( ) ( )
2

2 2

igi u p u p u k u k
q mφ

− ′ ′=
−

              (7.28) 

In the non-relativistic limit one finds  
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( )
2

2
2 2

2g m
p p mφ

=
′− +

  with p p q′− =           (7.29) 

Connecting in this limit the scattering amplitude to the potential ( )V q  in 
the q  representation one has  

( )
2

2 2

gV q
q mφ

−
=

+
                    (7.30) 

with in the x  representation  

( )
( )

3 2

3 2 2

d e
2π

iq xq gV x
q mφ

⋅−
=

+
∫                  (7.31) 

Setting cosq x q r ϑ⋅ = ; 23d 2π sin d dq q qϑ ϑ= , the integral can be done 
easily, leading to the result  

( )
2

e
4π

m rgV r
r

φ−= − .                    (7.32) 

This attractive potential is short ranged as compared with the Coulomb po-
tential. The presence of the exponential factor yields for this range the value  

1 m c
m φ
φ

= � , which is of the order of 1 fm if for mφ  the meson mass is inserted. 

Although the Yukawa model has been replaced since by more evolved con-
cepts, it still provides insight into the nature of nuclear forces. 

8. Vacuum Polarization 

The photon self energy. 
Consider a photon propagating freely in vacuum. If its interaction with the 

vacuum field is taken into account, a situation represented by the Feynman dia-
gram below will be present. During the propagation there will be emis-
sion/absorption of a virtual electron/positron pair at one vertex and afterwards 
the inverse process will occur at the other vertex. 

The difference with respect to the case without interaction involves a tensor 
which in second order will be written as ( )2i qµνΠ  with q  the four momen-
tum of the photon. For this tensor, by applying Feynman rules, in [1] the fol-
lowing expression has been derived: 

( )
( )

( ) ( ) ( )( )
( ) ( )( )

24
2

2 4 22 2 2

d4
2π

k k q k k q g k k q mki q e
k m k q m

ν µµ ν µν
µν

+ + + − ⋅ + −
Π = −

− + −
∫  (8.1) 

Applying, as in the electron case, the Feynman trick and setting afterwards 

l k xq= +                        (8.2) 

one arrives at the expression  

( )
( )

( ) ( )( )
( )( )

2 2 24
2

2 4 2

1

0 2 2 2

2 2 1 1d4e d
2π 1

l l g l x x q q g m x x qli q x
l x x q m

µ ν µν µ ν µν
µν

− − − + + −
Π = −

+ − −
∫ ∫ (8.3) 

where terms linear in l  have been omitted. 
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In [1] a Wick rotation has been applied to this integral with the result  

( )

( ) ( )( )
( )

2 2 2 2
4

2
2 4 22

1

0

1 2 1 1d 24e d
2π

E E
E

E

g l g l x x q q g m x x qli x
l

µν µν µ ν µν

µν
− + − − + + −

Π = −
+ ∆

∫ ∫ (8.4) 

with 

( )2 21m x x q∆ = − −                      (8.5) 

This integral is ultraviolet diverging. It can be simplified by using the tensorial 
relation  

( ) ( ) ( )2 2
2 q q g q q qµν µν µ νΠ = − Π                (8.6) 

involving the scalar quantity ( )2Π q  Comparing for .µ ν≠  Equation’s (8.4) 
and (8.6) we obtain for this quantity the expression 

( )
( )

( )
( )

1
4

2
4 220

2 2 1d
Π 4e d

2π Δ
E

E

x xli q x
l

− −
=

+
∫ ∫               (8.7) 

Assuming now 2 2m q� , making in (8.5) the approximation 2Δ m=  and 
performing the integration over x  we find  

( )
( ) ( )

4
2 2

4 22 2

d4 1e
3 2π

E

E

li q
l m

Π = −
+

∫                (8.8) 

For the integral on the r.h.s. we have, according to [1], the expression 

( ) ( ) ( ) ( )
4 32

4 2 4 202 2 2 2

d 1 2π d
2π 2π

E E
E

E E

l li l
l m l m

∞
=

+ +
∫ ∫            (8.9) 

The remaining integral is logarithmically ultraviolet diverging. Let us calculate 
it however formally as follows:  

( )
( )

2 2 2 2
2 2

2 2 20 2 2
0

1 12d log
2 2

E
E E E

EE

l m m ml l l m
l ml m

∞
∞ + −

= + +
++

∫  

Pauli-Villars regularization. 
The Pauli-Villars regularization consists in making the integral convergent by 

subtracting the same expression but with 2M  replacing 2m  and 2 2M m� . 
This immediately yields  

( )
3 2

2 20 2 2

1d log
2

E
E

E

l Ml
ml m

∞
→

+
∫                 (8.10) 

The integral of Equation (8.9) thus becomes 

( ) ( )
4 2

4 2 2 22 2

d 1 log
16π2π

E

E

l i M
ml m

→
+

∫               (8.11) 

For the quantity of interest we therefore find  

( )
2 2

2
2 2

eΠ log
12π

Mq
m

−
=                    (8.12) 
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Considering M  as a cutoff value, designated from now on as Λ , we finally 
obtain [7] [8]  

( )
2

2
2

e 2log log
3π6π

q
m m

α− Λ Λ
Π = = −                (8.13) 

with 
2e

4π
α =  the fine structure constant. 

Charge renormalization. 
Going back to the electron-electron scattering problem clearly the photon 

self-energy effect just discussed, will manifest itself as a modification of the pho-
ton propagator represented by the wavy line in Figure 4, which therefore has to 
be replaced by the configuration of Figure 5. One then expects that the global 
effect corresponds to the scalar quantity ( )2Π q  which, with the approxima-
tions made, takes a constant value given by Equation (8.13). Designating this 
value by the letter C , then in the case of non-relativistic electron-electron scat-
tering the amplitude is reduced by a factor 1 C− . Obviously this is equivalent to 
a renormalization of the electric charge which is thus diminished by a factor 

1 C− . Due to this effect the vacuum behaves like a polarizable medium capable 
of producing what is known as vacuum polarization. Note that a vacuum con-
taining electron-positron pairs represents an analogy with ordinary dipole pola-
rizable media. 

The amended Coulomb potential 
Having treated the diverging expression in (8.7) by means of a regularization 

procedure, we are now going to extract from this expression a term which is in-
dependent of any cut-off parameter. For this purpose we make the following first 
order expansion:  

( ) ( )
2

2 2 4 22 2 2

1 1 1 21
E

Q
L Ll L Q

 
= → + 

 + ∆ −
            (8.14) 

where we have set  

( )2 2 2 2 2,  1EL l m Q x x q= + = −                 (8.15) 

 

 
Figure 4. Feynman diagram for electron-electron scattering. 

 

 
Figure 5. Feynman diagram representing the creation of a 
virtual electron/positron pair during photon propagation. 
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assuming 2 2Q L�  in accordance with the previous condition 2 2 .m q�  Fo-
cussing on the second term inside the parenthesis in Equation (8.14), which 
yields the non diverging contribution, we replace Equation (8.7) by the expres-
sion  

( ) ( )
2 212 3
2 60 0

e 2Π d 1 d
π E E
i Qi q xx x l l

L
∞

= − −∫ ∫            (8.16) 

where the equivalence 4 2 3
0

d 2π dE E El i l l
∞

→∫ ∫  has been used. 
Expliciting now Q  and El  according to Equation (8.15), we write 

( ) ( )
2 2 2 21 22 2

2 60

eΠ d 1 2d
π m

i q L mi q xx x LL
L

∞ −
= − −∫ ∫         (8.17) 

With the values of the integrals equal respectively to 1
30

 and 2

1
2m

 we thus  

find  

( )
2 2 2

2
2 2 2

e
15π60π

i q i qi q
m m

α
Π = − = −              (8.18) 

which is indeed the value found in the literature. 
Atomic energy level shift 
Consider now the Coulomb potential as given in q  space by Equation (7.25). 

Its modification due to vacuum polarization produces a relative change equal to 

( )2qΠ  so that according to Equation (8.18) we have  

( )
2

2 2

4π 11
15π

qV q
mq
α 

= − 
 


                  (8.19) 

Taking the inverse Fourier transform yields for the amended potential in x  
space the expression  

( ) ( )3
2

4
15

V x x
r m

α δ= +

                   (8.20) 

Applying this potential to electrons inside an atom will lead to a shift of ener-
gy levels obtained by multiplying the correction term with the electron density 
function and space integration. The effect then becomes proportional to ( ) 2

0ψ  
showing that only s levels will be affected. In the case of hydrogen the effect 
represents a small part of the Lamb shift. Larger effects can be predicted in the 
case of muonic atoms, i.e. atoms where the electrons are replaced by µ  mesons 
[9]. 

For numerical values of the expected or measured shifts we are referring to the 
abundant literature on this subject. 

9. Conclusion 

In this treatise we are interested in phenomena involving the presence of what is 
sometimes called the physical vacuum. To deal with these effects, one adopts the 
field viewpoint, which consists of replacing for elementary particles, e.g. elec-
trons, wave functions by operators acting on physical vacuum states. Interac-
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tions between fields defined in this way are then treated according to Feynman’s 
propagator method. The main difficulty affecting this method is the appearance 
of divergencies which are dealt with by means of two specific procedures known 
as regularization and renormalization. The first one consists of making expres-
sions finite by applying e.g. cut-off or Pauli-Villars regularization. The second 
one is a redefinition of physical quantities, e.g. electric charge or mass, in accor-
dance with the finite results previously obtained. In this treatise, we consider 
mainly results for the electron self-energy and the vacuum polarization case. 
Some of our derivations of these results are original and special attention is giv-
en to their interpretation in terms of the underlying physical facts. 
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Appendix 

Evaluation of the integral  

( ) ( ) ( ) ( )

0 0

2 202 22 20 2 2 0 2 2

d d2
1 1

q q

q q m x i q q m x iε ε

+∞ +∞

−∞
= =

   − − − + − − − +      

∫ ∫ (A1) 

Setting ( )22 2 1q m x A+ − =  we write  

( )
0

20

dq
A q A i

+∞

−∞

∂
= −

∂ − +
∫


                  (A2) 

With the change of variables  

( )20 0 1 dd
2

uq u q
u

= =                      (A3) 

The integral in (A2) takes the form  

( )
1 d
2

u
u u A iε− +∫                       (A4) 

where we have deliberately not specified the integration limits. 
Introducing the identity  

( )1 1 πi u A
u A i u A

δ= − −
− + −




 

we ignore the principal value which in a more detailed treatment can be proven 
to yield zero. With the delta function inserted the expression (A4) then reduces 
to  

π 1
2

i
A

−                          (A5) 

Performing the derivation as indicated in Equation (A2) and replacing the in-
termediate parameter A by its value leads to the desired result  

( )
3 222 2π 1

4
i q m x

−
 = + −                   (A6) 
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