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Abstract 
The metrics of gravitational and cosmological models are brought into canonical 
form in comoving coordinates. The FWR curvature parameter k  is read from this 
and it is shown that 0k =  does not correlate to a flat model, but for a spatially 
positively curved geometry in which reference systems which are in free fall exist. 
This also corresponds to Einstein’s elevator principle. Moreover, we will show that 
our subluminal cosmos is associated with the hR = ct  model of Melia, assuming 
that 0k =  is related to a free-falling system in the sense described above. 
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1. Introduction 

One of the main features of general relativity is the identification of the gravitational 
forces with the effect of the curvature of space on observers, but also the possibility of 
“transforming away” the gravitational effect, that is to keep an observer without force 
by an appropriate choice of a reference system. This does not mean that one can elimi-
nate the curvature of space by an observer transformation, but only that one can annul 
the effect of the curvature of space for certain observers. This is the case for a freely 
falling observer in the Schwarzschild field of a stellar object. Such an effect can also be 
expected for cosmological models which expand in free fall. 

The effect has become known in the literature as Einstein’s elevator. We will recall 
this effect for the case of the Schwarzschild field, but we will also show that it is useful 
to consider it for cosmological models with position-independent spatial curvature and 
obeying the cosmological principle. We will discuss the elevator principle when refer-
ring to the de Sitter cosmos and to a subluminal model. We will resort to earlier results 
[1] [2] and we will discuss the problems from the perspective of Einstein’s elevator 
principle outlined in detail therein. In modern research, Einstein’s elevator is denoted 
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as “Week Einstein Equivalence Principle” (WEEP). Kopeikin [3] [4] [5] has recently 
treated the problem of WEEP in connection with cosmological FRW metrics. He has 
shown that the cosmological expansion could be detected in local gravitational experi-
ments. 

The introduction of the elevator principle will be crucial for the structure of the un-
iverse. It determines whether a metric with the curvature parameter 0k =  is flat or 
positively curved and whether the universe is expanding in free fall. 

2. Einstein’s Elevator 

The line element of the Schwarzschild field in the standard form is 

2 2 2 2 21 2d d d 1 d21

Ms r r tM r
r

 = + Ω − − 
 −

                (2.1) 

with r  as the radial coordinate and Ω  as the solid angle. We want to bring this line 
element into the canonical form, in which the FRW1-curvature parameter k  occurs. It 
is said that the curvature properties of the model are attributed to k . This method was 
first used in cosmology. Later, it was introduced by McVittie [6] for collapsing gravity 
models. Based on the Schwarzschild model we will examine what the FRW method is 
able to accomplish and we will use this knowledge for cosmology. 

To bring the Schwarzschild metric into the canonical form, we should remember that 
the radius of curvature ρ  of the Schwarzschild parabola is twice as long as its exten-
sion ( )r=R R to the directrix of the Schwarzschild parabola 

322 ,
2

r rr
M M

ρ = = =R R .                     (2.2) 

Thus we have 

2M r
r

=
R

                             (2.3) 

and the Schwarzschild metric in canonical form 
2

2 2 2 2 2
2 2

2

1d d d 1 d
1

rs r r t
r

 
= + Ω − − 

 −
R

R

.                (2.4) 

It is now similar to the de Sitter metric which we will discuss in the next Section. By 
comparison with the FRW standard form 

2 2 2 2 2
2

2

1d d d d
1

s r r T
rk

= + Ω −
−

R

                   (2.5) 

we find 1k = . Flamm’s paraboloid appears positively curved in the canonical repre-
sentation of the metric (2.4). But in contrast to the FWR definition Flamm’s paraboloid 
is open and infinite. Since already deviations from the usual interpretation of the quan-

 

 

1Friedman-Robertson-Walker. 
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tity k  occur in the Schwarzschild model, we will from now on denote k  as the form 
parameter of the model. 

From (2.1) or (2.4) we calculate the components of the Ricci-rotation coefficients2. 
The radial and the two lateral components are 

2 2

1 1,0,0,0 , , 0,0,0 , , cot , 0,0

2 , 1 1 2 1

m m m
a aU v B C
r r r

v M r r a M r r

α ϑ
ρ

α

     = − = =     
    

= − = − = = − = −R R

.       (2.6) 

The geometric quantity U  is the negative of the physical quantity, the force of 
gravity. 

Lemaître has found a coordinate transformation associated with a freely falling ob-
server. The metric in these coordinates is 

2 2 2 2 2 2d d ' d d ' , rs r t = + Ω − = K R K
R

.                (2.7) 

Herein K  is referred to as scale factor as it is done in the cosmological models. The 
line element is of type 0k = . According to the FRW classification the model would be 
referred to as flat. If one calculates from this metric the Ricci-rotation coefficients one 
has 

1 1 1' 0,0,0, , , 0,0, , , cot , 0,m m m
i i iU B C

r r r
ϑ

ρ′ ′ ′
     = − = =     

     R R
.      (2.8) 

It is noteworthy that the space-like components of the lateral field quantities 

'
1 1 1,0,0 , , cot , 0 , ' 1', 2 ',3 'B C
r r rα α ϑ α′

   = = =   
   

             (2.9) 

are precisely those that one would expect for a flat geometry in polar coordinates. But it 
would be premature to call the geometry flat. The basic geometric structure of a model 
cannot be modified by a coordinate transformation. We want to get to the bottom of 
the matter. 

From the coordinate transformation i ix x ′→  of Lemaître the matrix of the coordi-
nate transformation can be determined with ' '

|
i i
i ixΛ = . Since for the two systems, the 

tetrads can be read from (2.1) and (2.7) and one can calculate the associated Lorentz 
transformation of this coordinate transformation with '' '

'
m im i

im i m
L e e= Λ : 

' 1 2 2, 1 ,
1

m
m

i v
M ML v
r r

i v

α α

α

α α

 
 
 = = − = −
 
 
− 

.           (2.10) 

For the lateral field quantities one obtains with 

' ' ' ',m m
m m m m m mB L B C L C= =                       (2.11) 

 

 

2Details for the calculation with the tetrad method can be found in papers published about 1900 by Ricci, Bi-
anchi, Levi-Cività, furthermore by Treder [7], Liebscher and Treder [8], and also in our paper [9]. Wanas 
[10] [11] has treated new cosmological models with the help of tetrads. 
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from (2.6) first the components 

' '
1 1 1,0,0, , , cot , 0,m m

i iB a C a
r r r

α α ϑ   = =   
   R R

,           (2.12) 

which a free falling observer would measure. However, since the velocity of a freely 
falling object in the Schwarzschild field is coupled to the angle of ascent η  of the 
Schwarzschild parabola via 

sin , sinrr vη η= = − = −R
R

 

one has for the Lorentz factor and the metric factor according to (2.6) 

1aα = .                              (2.13) 

This means that the geometric quantity a  is supplemented with the kinematic 
quantity α  to 1. Thus, the parameter a  for the curvature of space in (2.8) is just 
hidden. 

Special attention should be paid to the conversion 'm mU U ′→ . The radial field 
quantities are also components of the Ricci-rotation coefficients, but they transform 
inhomogeneously. Since the free fall takes place in the [1] [4]—slice of the space the 
inhomogeneous transformation law is limited to the radial field quantities [1] and the 
transformation formula is reduced to 

2 2
' ' 1' |4 ' 4 ' |1'' ' , ' , 'm

m m m mU L U L L i v L i vα α′ = + = = − .           (2.14) 

The 'L -terms are calculated using 2v M r= − . Finally, one obtains in accordance 
with (2.8) 

'
1 , 0,0,0 ' 0,0,0,m m

iU v Uα
ρ ρ

   
= − → = −   
   

.            (2.15) 

We recognize that in the freely falling system the spatial components of the U -field 
are all zero. In detail, one has 

1' 1' 1'' ' 0U U L= + = .                        (2.16) 

This means that the gravitational force 1'U  is canceled by the dynamic term 1''L , i.e. 
by the counter force. This is the principle of Einstein’s elevator. Observers who are in a 
free-falling elevator are not subjected to gravitational forces, they hover. Since these 
observers do not experience any gravitational forces, they might think that space is flat. 
Thus, 

' ' '' 'm
m m m mU L U L= +  

is Einstein’s elevator equation and 

' '
| ' ' 2

1' ' 's s
s sU U U+ = −

R
                      (2.17) 

the Friedman equation for free fall in the Schwarzschild field in tetrad form. 
Although the metric which relates to the free fall is of the type 0k =  and the space- 

like part of this metric appears flat and the field quantities appear flat as well, the 3-di- 
mensional space is nevertheless curved and is represented by Flamm’s paraboloid. The 
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apparent flatness of the space is due to the effect of Einstein’s elevator. The quantity k , 
common in cosmology, cannot be related to the curvature of space, it describes the 
form of the metric. 0k =  indicates that the metric relates to a freely falling system. 

We have dealt with the problem so minutely because in cosmological models the 
problem is the same and the formal treatment does not differ much from what has just 
been put forward. 

3. Einstein’s Elevator and the Cosmos of de Sitter 

By de Sitter [12] [13] [14] [15] was proposed a cosmological model with the line ele-
ment 

2 2 2 2 2 2 2 2 2
2

1d d d sin d cos d
cos

s r r r tϑ ϑ ϕ η
η

= + + − .            (3.1) 

It is the line element on a pseudo-hyper sphere with the time-independent radius 0R . 
The space is positively curved and closed. With 

0 sinr η= R                               (3.2) 

it can be brought into the canonical form 
2

2 2 2 2 2 2 2 2
2 2

0
2
0

1d d d sin d 1 d
1

rs r r r t
r

ϑ ϑ ϕ
 

= + + − − 
 −

R
R

.           (3.3) 

We read from this metric 1k = . We calculate the Ricci-rotation coefficients from 
(3.3) and we find the following field quantities 

0

1 1,0,0,0 , , 0,0,0 , , cot , 0,0m m m
a aU v B C
r r r

α ϑ
     = − = =     

    R
       (3.4) 

with the definitions 
2 2

0 0cos 1 1 , sina r v rη α η= = − = = =R R .             (3.5) 

B  and C  are the typical lateral field quantities for a spherical geometry. The quan-
tity 1U  is a force acting at any point and wants to pull apart neighboring points. 

By Lemaître [16] [17] a coordinate transformation has been found which transforms 
the metric (3.1) into the expanding metric 

2 2 2 2 2 2 2 2 2d ' ' d ' sin d d 'ds e r r r tψ ϑ ϑ ϕ′  = + + −  .             (3.6) 

Therein 'eψ = K  is the position-independent but time-dependent scale factor and 
{ }', , , 'r tϑ ϕ  the coordinates comoving with the expansion. The following relations ap-
ply: 

0 | '
0

1', ' ', 0,0,0,m
ir r t ψ

 
= = = − 

 
K R K

K R
.             (3.7) 

From the metric (3.6) we derive the field quantities 

' ' '
0 0 0

1 1 1' 0,0,0, , , 0,0, , , cot , 0,m m m
i i iU B C

r r r
ϑ

     
= − = − = −     
     R R R

   (3.8) 



R. Burghardt 
 

2352 

which differ from those of the freely falling Schwarzschild system only in the time-like 
components, i.e. the tidal forces. The Schwarzschild geometry is parabolic, the dS geo-
metry spherical. The Schwarzschild reference system contracts, the dS reference system 
expands. The geometry only seems to be flat. The same arguments as in the Schwarz-
schild geometry speak against the flatness of space, if the metric is written in the ex-
panding form (3.6). 

The field quantities in (3.8) could also have been derived with the Lorentz transfor-
mation 

'

1
1

m
m

i v

L

i v

α α

α α

− 
 
 =
 
 
 

,                      (3.9) 

whereby for the variables U  the inhomogeneous transformation law 

' ' ' 1' 1' 1'' ' , ' ' 0m
m m m mU L U L U U L= + = + =                 (3.10) 

applies. We also find just like in (2.15) 

'
0 0

1 ,0,0,0 ' 0,0,0,m m
iU v Uα

   
= − → = −   
   R R

.          (3.11) 

(3.10) is the Einstein elevator equation for the dS-Universe. The reference system estab-
lished with the Lorentz transformation (3.9) expands in freefall. The form parameter 
read from the metric (3.6) is 0k = . Here k  again stands for the form of a metric 
which is determined by a freely falling coordinate system and does not imply any 
statements about the curvature of space. 

4. Einstein’s Elevator and the Rh = ct Model 

In a previous paper [2] we have presented a cosmological model which is an exact solu-
tion of Einstein’s field equations and in which the stress-energy-momentum tensor in-
cludes pressure and density of matter 

02 2
1 3,pκ κ µ= − =

R R
.                      (4.1) 

The model is based on the de Sitter universe. The geometry is a pseudo-hyper sphere 
and its radius a function of time. Thus, the model expands and is positively curved and 
closed. The equator of the pseudo-hyper sphere is the cosmic horizon. For galaxies 
drifting apart due to expansion, the highest attainable velocity is the velocity on the ho-
rizon, namely the velocity of light. The model is subluminal; there are no superluminal 
values for the recession velocities of galaxies. 

Since this subluminal model is an extension of the dS cosmos, we will start from the 
dS metric as seed metric, but the radius of curvature of the pseudo-hyper sphere will be 
time-dependent. Thus, a new quantity enters into the theory 

' | ' |4' |4'
1 1 10,0,0, ,m m

i = = = − 
 

F R R R
R R R R

.               (4.2) 
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Again, the system { }', 'r t  is comoving with the expansion of the cosmos. The field 
quantities for this system are analogous to (3.8) 

' ' '
1 1 1' 0,0,0, , , 0,0, , , cot , 0,m m m

i i iU B C
r r r

ϑ     = − = − = −     
     R R R

.     (4.3) 

All three field quantities seem to be flat. Since the subluminal cosmos expands in 
freefall, the supposed flatness of space is due to the elevator effect. 

One obtains the field quantities of the non-comoving system with a Lorentz trans-
formation of the type (3.9). The relative velocity and the Lorentz factor are defined in 
the same way as in the dS cosmos 

2 21 1 ,r v rα = − =R R .                       (4.4) 

For the lateral field quantities B  and C  one obtains the expressions of the dS 
model, but for the radial field quantities the elevator equation is again responsible. In 
calculating the Lorentz term it has to be taken into account that v  in (4.4) is now a 
function of time. With the elevator equation 

'm m mU U L= +                              (4.5) 

and the Lorentz term 

{ } 2 1,0,0,mL i v iα α α= −
R

                        (4.6) 

one now gets 

{ }2 2
4 1

1ˆ ˆ, ,0,0,0 , ,0,0,m m m m mU U f U v f i v i vα α α = + = − = − 
 

F F
R

.       (4.7) 

Therein Û  is the dS expression for the radial forces, and f  is an additional term 
which stems from the time dependence of the radius of curvature of the pseudo-hyper 
sphere. With const=R . one retrieves the dS model. 

The Friedman equation for the subluminal model 
' '
| ' '' ' ' 0s s
s sU U U+ =                           (4.8) 

is a subequation of Einstein’s field equations. With 4 'i T′∂ = ∂ ∂  and the proper time 
'T  of the comoving observer one has 

1 1 0, 1, 0− = = =  R R R
R R

.                    (4.9) 

The expansion in this model is constant. In a cosmos expanding in freefall comoving 
observers are not exposed to acceleration according to Einstein’s elevator principle. 

Let us consider this interesting result from a different perspective. If an observer does 
not perform an individual motion one has const .η = , η  being the angle of ascent of 
the pseudo-hyper sphere. Differentiation of sinr η= R  leads to the Hubble equation 

1r r Hr= = R
R

.                          (4.10) 

At the equator ( )r = R  of the pseudo-hyper sphere one has 1r = = R  or in 
physical units 
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v r c= = ,                             (4.11) 

whereby the definition of the velocity sinv r η= =R  has been taken into considera-
tion. The expansion-related recession velocity of galaxies has the highest attainable val-
ue, the velocity of light at the equator. A galactic island formation is not possible in this 
model. This model has a horizon at 

'hr cT= .                              (4.12) 

No signal beyond the horizon can reach an observer at 0η = . Since all points on the 
hypersphere are equivalent, any observer at an arbitrary position in the universe has his 
individual horizon. 

If one completely evaluates Einstein’s field equations, one has for the pressure, the 
matter density, and the equation of state of the cosmos 

0 02 2
1 3 1, ,

3
p pκ κµ µ= − = = −

R R
.                  (4.13) 

Remarkably, these results are identical with those that Melia [18]-[25] derived from a 
model which he calls hR ct=  model3. Melia derives his model in the comoving coor-
dinate system, the underlying metric is of type 0k =  and is flat in accordance with the 
commonly accepted view. However, we are of the opinion that in the model of Melia 
also the elevator principle comes into effect. Due to 4'4' 1g =  it is apparent from the 
metric of Melia 

2 2 2 2 2 2d d ' ' d d 's r r t = + Ω − K                     (4.14) 

that the universe described by this metric expands in freefall. Here, the scale factor is 
proportional to the cosmic time 't  according to the linear expansion of the universe. 
Therefore we put 

0

't
=K

R
                               (4.15) 

with 0R  as a constant factor that can be put to 1 without loss of generality. From the 
above line element we read the 4-bein system 

4'1' '2 ' 3
1' 2 ' 2 ' 4 ', ' , 'sin sin , 1e e r r e r r eϑ ϑ= = = = = =K K K           (4.16) 

and we calculate from this the components of the Ricci-rotation coefficients 

' ' '
1 1 1' 0,0,0, , , 0,0, , , cot , 0,m m m

i i iU B C
r r r

ϑ     = − = − = −     
     R R R

.    (4.17) 

However, these quantities are identical with those of (4.3) which we have derived for 
our subluminal model. Thus, despite 0k =  it should be clear that Melia’s model is not 
flat, but its basis is a pseudo-hyper sphere, i.e. the space-like part a positively curved 
closed space. This interpretation is convenient for the model because it avoids the need 
for explanation why an infinite homogeneous cosmos contains infinitely many stars 
and when and how an infinite number of stars have been created. Due to the identity of 

 

 

3Melia’s expression coincides with (4.12). Melia’s coordinate time t  corresponds to the proper time of the 
freely falling comoving system. This is referred to by us as 'T . 
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both models our subluminal model undergoes a substantial support. Finally, Melia has 
shown [18]-[25] that the data found by observation are better matched to his model 
than to the standard model of cosmology. What is valid for the model of Melia, is also 
valid for our subluminal model. Five parameters must be adjusted for the standard 
model, so that the model fairly reproduces the observed data. This procedure, however, 
has certain arbitrariness. This relative freedom in the adjusting data is a consequence of 
the structure of the standard model: Starting from the pressure-free Friedman cosmos 
pressure is inserted by hand into the theory. The model thus obtained is not an exact 
solution of Einstein’s field equations, leaving open the way for manipulation. 

On the other hand the model of Melia is complemented by a full covariant field 
structure by our subluminal model. We have formulated the problem with field quanti-
ties which are closely related to the geometrical quantities and quite clearly reflect the 
prevailing conditions in the underlying pseudo-hyper sphere. We do not limit ourselves 
to discuss the Friedman equation, but we have presented the field equations and their 
subequations in a clear structure in both reference systems, the comoving and non- 
comoving systems. By this method one gains a deeper insight both into the physical 
and in the geometrical structures. 

5. Conclusions 

The standard model of cosmology allows galaxies to recede faster than light and make 
galactic island formation possible, i.e. without any causal connection and any exchange 
of information between galaxies. The standard model allows the fundamental laws of 
special and general relativity to be invalidated. The standard model is not an exact solu-
tion of Einstein’s field equations: into the pressure-free Friedman cosmos pressure is 
inserted by hand. We have therefore raised the question as to whether it is possible to 
formulate a model that is an exact solution of Einstein’s field equations, includes pres-
sure, and respects the laws of special and general relativity. We have found the sublu-
minal model, initially only with the intention to show the theoretical possibility of such 
a model without regard to conformity with astrophysical data. 

Surprisingly, some of our results have been consistent with those of the hR ct=  mo- 
del of Melia. This model describes a flat and open cosmos with 0k = , while our sub-
luminal model describes a positively curved and closed cosmos with 1k = . We have 
been able to show that the flatness of the Melia cosmos is only apparent, i.e. is caused 
by Einstein’s elevator effect. Thus, both universes are identical and our subluminal 
model is supported by Melia’s data, so ours is no longer a gedanken experiment, but a 
candidate for a model which can describe Nature sufficiently well. The introduction of 
Einstein’s elevator principle into cosmology turns out to be important. Its legitimacy 
decides, whether we are living in an infinitely large universe with an infinite amount of 
stars or in a finite universe with a finite amount of stars. 
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