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Abstract 
We provide a simple way for calculating the entropy of a Schwarzschild black hole 
from the entropy of its Hawking radiation. To this end, we show that if a thermody-
namic system loses its energy only through the black body radiation, its loss of en-
tropy is always 3/4 of the entropy of the emitted radiation. This proposition enables 
us to relate the entropy of an evaporating black hole to the entropy of its Hawking 
radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in 
the full period of evaporation of the black hole, we find the Bekenstein-Hawking en-
tropy of the initial black hole. 
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1. Introduction 

In the early 70’s, based on some thermodynamic analyses, it was shown that black holes 
(BHs) possess nonzero entropy [1] [2]. Soon after, in spite of lacking knowledge about 
the nature of these probable statistical systems, and by a semi-classical calculation, their 
temperature was also calculated [3], which is known as Hawking temperature. The me-
thod, which has been implicitly used for calculation of this temperature, was based on 
the following idea: instead of investigating the black hole as a thermodynamic system 
(for which the underlying statistical substrate is unknown), we can investigate its black 
body radiation to find its temperature. This method is somehow similar to finding the 
surface temperature of the Sun by measuring the temperature of the sunshine as its 
black body radiation. 

In spite of these seminal achievements, and after more than four decades since the 
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realization of BHs as thermodynamic systems, the question about microscopic origin of 
the BH entropy has not given a well-established answer. Nonetheless, there have been 
interesting progresses towards answering this question, which have employed somehow 
different approaches. The first derivation of BH entropy has been in the context of Euc-
lidean canonical [4] (and later microcanonical [5]) functional formulation for quantum 
gravity. Another famous approach presented in the subject’s literature is trying to pro-
vide the missing microscopic description by utilizing the string theory [6]. A different 
approach is studying BHs in the semi-classical regime, while trying to describe their 
entropy from the statistics of the quantum fields residing around them [7]. Parallel to 
this line of research, there have been attempts to relate entanglement entropy associated 
to a subset of the Hilbert space of these quantum fields, to the entropy of the back-
ground BHs [8]-[10]. Another related approach, which is based on calculation of en-
tanglement entropy for some conformal quantum fields residing on boundaries of the 
spacetime, has drawn attentions to the holographic description for the BH entropy [11] 
[12]. Yet, some recent studies based on building classical (and hopefully quantum) co-
variant phase space for (extremal) BHs, have been carried out in order to realize the BH 
entropy [13] [14] [15]. The list continues, e.g. by the fuzzball proposal [16], modelling 
the BH horizon with some fluids [17], etc. For a nice overall review see Ref. [18], and 
for reviews focusing on some of the approaches mentioned above see Refs. [19]-[23]. 

In this paper, we calculate the entropy of a Schwarzschild BH, based on the same 
method which Hawking used to calculate the temperature of this BH. To be more spe-
cific, we will focus on the physics of the emitted radiation, in order to find the entropy 
of the BH. For convenience, we use the 1c= = . 

2. Black Hole Entropy from the Hawking Radiation 

In order to provide intuitions for the reader, we first consider an unknown thermody-
namic system, which our knowledge about it is only through its black body radiation. 
We want to find the temperature and the entropy of such a system. However, finding 
the temperature is an easy job by studying the spectrum of its thermal radiation. On the 
other hand, finding the entropy is composed of two steps: 1) relating the entropy loss of 
the system and the entropy carried outside by the radiation 2) finding the entropy of 
the black body radiation emitted from the beginning of the process of radiation till the 
end of it. The latter would be the state at which all possible internal energy that the sys-
tem can radiate is finished. This can be assumed to be the state with zero entropy. 
Therefore, by the second step, we find the entropy of the overall radiation; and then by 
the first step, the initial entropy of the system can be found. 

The first step of the two above can be taken by considering the proposition below, 
which is a general and interesting one1, enabling us to relate the entropy loss of a black 
body to the entropy of its black body radiation:  

Proposition 1. If a thermodynamic system at equilibrium loses its internal energy 
only through its black body radiation into the vacuum, then its loss of entropy is  

 

 

1To our knowledge, this proposition has not been well-appreciated in the literature. 
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(approximately) 3
4

 of the entropy of the emitted radiation2.  

Proof. Let us denote the internal energy, temperature, and entropy of our thermody-
namic system by U, T, and S respectively. Consider that the system loses an infinitesimal 
amount of internal energy Uδ  and entropy Sδ  through black body radiation. Ac-
cording to the first law of thermodynamics, and by the assumption of the proposition,  

.U T Sδ δ=                              (1) 

On the other hand, we consider the black body radiation emitted in the vicinity of 
the surface of the thermodynamic system, (approximately) as a canonical ensemble of 
photon3 gas at thermal equilibrium with the system. The internal energy, temperature 
and entropy of this photon gas can be denoted by Uδ  , T , and Sδ   respectively. By 
the standard statistical mechanics of photon gases (see e.g. exercise 23.6 in Ref. [24]), 
these quantities are related by  

4 .
3

US
T
δδ =






                             (2) 

In the equilibrium, T T= . Moreover, by the conservation of energy U Uδ δ= −  . 

Putting them into Equation (1) and Equation (2), then 
3
4

S Sδ δ= −  . Letting a finite  

amount of radiation to be emitted, the equilibrium temperature gradually varies; but 
this relation for the entropy variations remains always valid. So, denoting the entropy 
loss of the system during the radiation process by S∆  and the entropy of the emitted 
radiation by S∆  , we will have, by the extensivity of the entropies,  

3 .
4

S S∆ = − ∆                              (3) 

 

In Proposition 1, the factor 4/3 is an approximated factor. The approximation can 
originate from different issues: 1) The black body radiation around the surface of an 
object has some preferred directions of propagation. Hence, considering it as a perfect 
canonical ensemble is an approximation. 2) Interactions between these particles are ig-
nored. 3) It has been explicitly assumed that the radiation propagates into the vacuum, 
while one can consider an ambient matter. 4) The particles in the radiation are consi-
dered to be massless. Among the four approximations above, the first and second ones 
would be cancelled out from the analysis together with the factor 4/3, as will be de-
scribed later. Hence, they are irrelevant to the analysis. Nonetheless, details of these ap-
proximations can be found in Refs. [25] [26] [27]. The third approximation, i.e. propa-
gation into the vacuum, would be an acceptable approximation, because we will study 
evaporation of a Schwarzschild black hole into the vacuum. The last approximation, 
which is the radiation of the massless particles, is justified during the process of evapo-
ration, as long as the BH temperature is lower than the energy scales of the massive 

 

 

2In ( )1,d  dimensional spacetime, the factor would be ( )1d d + . 
3In the proof, the photon gas can be replace by (arbitrary combination of) other bosonic massless gases. It is 
because of cancellation of the spin degrees of freedom from both sides of Equation (2). 
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particles. For the usual black holes with M M≈


, the temperature is approximately 
7

H 10 KT −≈  which is well below the mass scales of the known massive particles. How-
ever, this approximation might break at the last moments of the evaporation. We will 
show that the result of the analysis would be insensitive to this breakdown. 

Another important, but relevant hidden assumption in Proposition 1 is the flatness 
of the background metric; in the derivation of the relation (2) for canonical photon 
gases, mode expansions in flat spacetime has been used. Hence, in order to make the 
proposition applicable for the BH thermodynamic system, we assume that in the 
process of evaporation of a Schwarzschild BH, propagation of Hawking radiation is an 
adiabatic process. In other words, entropy of the Hawking radiation does not change by 
its propagation towards the infinity. Notice that this assumption is not in contradiction 
with the increase in the entropy through the emission process at the moment of crea-
tion of the radiation. Therefore, we can perform the calculations at spatial infinity, and 
then equate the resulted entropy with the BH entropy. So, the first step in calculation of 
the entropy for our BH is taken. 

The second step is to calculate the entropy of the Hawking radiation emitted during 
the whole process of evaporation of the BH. Consider a Schwarzschild BH with the ini-
tial mass 0M  which evaporates until its mass vanishes. Besides, consider a distant ob-
server who resides at spatial infinity. The Hawking radiation reaches her at the Hawking  

temperature which is related to the remaining mass M of the black hole by H
1

8π
T

GM
=   

[3] in which G is the Newton constant. Therefore, she will receive the Hawking radia-
tion until the end of the evaporation of the BH, while the temperature of the radiation 
raises proportional to the inverse of the remaining mass of the BH. In order to calculate 
the entropy of the whole of Hawking radiation, we can first calculate the infinitesimal 
entropy of radiation within a spherical thin shell concentric with the BH, and passing 
through the position of the observer. Therefore, by adding up the entropy of such shells 
of radiation, as time passes from receiving the first radiation till the time of receiving 
the last radiation by the observer, we can find the whole entropy. 

In order to find the entropy in the thin shell mentioned above, let us study the 
Hawking radiation within it. At the time when the Hawking temperature of the radia-
tion within the shell is some HT , we can use the standard formula for the entropy of a 
photon gas which is  

H

4 ,
3

US
T
δδ =


                             (4) 

in which Uδ   is the energy of the Hawking radiation inside the shell. One needs to in-
tegrate over all Hawking radiation passing through the shell in the period of time be-
tween receiving the first piece of radiation till the last piece of that. This integration can be 
done by paying attention to the conservation of energy, U Mδ δ= − . Therefore, the en-
tropy of the whole of Hawking radiation emitted during the BH evaporation process is  

( ) ( ) ( )0

0

2 2
0

H

4 4 48π 4π .
3 3 3

M

M

MS GM M GM
T
δ δ= − = = +∫ ∫




           (5) 
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The   denotes the energy scale at which the semi-classical approximations break 
down. For the usual black holes it satisfies 0M . Therefore, the contribution to the 
entropy from the last term in the equation above would be negligible and can be 
dropped. Moreover, it confirms the irrelevance of the radiation of the massive particles 
to the final result, which can be emitted at the last moments of the evaporation. Using 
Proposition 1, entropy of the initial BH, being 3/4 of the entropy of the radiation, can 
be found to be  

( )2
04π 23 ,

4 4 4
GM AS S
G G

= = =                      (6) 

in which 24π sA r=  (with 02sr GM=  being the Schwarzschild radius) is the area of 
the horizon of the initial BH. This result is exactly the Bekenstein-Hawking entropy of 
the initial BH. 

3. Remarks and Conclusion 

At the end, the following remarks are necessary to be mentioned.  
• In Ref. [25], W. H. Zurek had provided almost similar calculations to find the en-

tropy of Hawking radiation emitted from an evaporated BH; he assumes the entropy  

of BH to be 
4
AS
G

= . Then, using the Hawking temperature H
1

8π
T

GM
= , and dy- 

namical properties of photon gases, he finds the entropy of Hawking radiation to be 
approximately 4/3 of the entropy of initial BH. In spite of his splendid work, he does 
not well appreciate that this increasing of the entropy via black body radiation by a 
factor of 4/3  is true for any thermodynamic system, and is not a peculiar property 
of the BHs. This issue has been proved in Proposition 1, and adopted to the BH 
background via adibaticity of propagations plus performing calculations at asymp-
totic flat region. Hence in this context, Zurek’s work can be considered as a firm 
check of the Proposition 1. On the other hand, in the analysis presented here, the 
entropy of Hawking radiation was first calculated by considering its temperature at  

infinity to be H
1

8π
T

GM
= , in addition to invoking the statistical mechanics of 

photon gases. Then, by the crucial usage of Proposition 1, the peculiar Hawking 
temperature in terms of the energy M, and very non-trivial relation between the 
energy M and the geometric area of the horizon, the entropy of the BH was found to 

be 
4
AS
G

= .  

• As it was advertised before, the factor appearing in the Equation (4) is the same fac-
tor in Proposition 1, with exactly the same approximations about directional motion 
of interacting particles. Hence, this factor cancels out of the analysis, justifying irre-
levance of studying these approximations in details. This cancellation clarifies the 
difference of our analysis with Zurek’s analysis: if one wants to calculate the entropy 
of the black body radiation from the assumed entropy loss of the object, then this 
factor and approximations in its derivation would play a crucial role. It is simply 
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because the entropy of the radiation would be eventually the entropy loss of the ob-
ject multiplied by this factor. In contrast, if one calculates the entropy of the radia-
tion by studying its statistical mechanics, and wants to find the entropy loss of the 
object using her results, then this factor cancels out. Explaining in another way, the 
goal of the former work has been elaborating the entropy of the Hawking radiation, 
which would not result to a clear-cut outcome. In contrast, the aim of the analysis 
here is the entropy of the BH, which yields the area of it as an accurate result. If we 
pay enough attention to this subtle but very important issue, then the difference 
between the two works would become clear, and the irrelevance of accurate deter-
mination of the factor 4/3 would be justified. We strongly encourage the reader to 
contemplate this issue, in order to find the logic behind this document. However, 
the independence of the analysis from the specific choice of this factor is a positive 
aspect of the analysis; it makes the analysis to be applicable when one goes beyond 
the approximation of canonical non-interacting photon emission.  

• One might be skeptical about triviality of the analysis, because by invoking the 

Hawking temperature H
1

8π
T

GM
=  and assuming the first law to hold for the  

black hole, one can integrate the black hole entropy to find the final result. None-
theless, the proposed derivation of Bekenstein-Hawking entropy in this paper is 
nontrivial. It is because of nontriviality of physical steps for calculating the entropy 
of the whole radiation, relating it to the entropy of BH, and finally using the peculiar 
temperature of Hawking radiation accompanied by geometrical nontrivial relation 
between energy and surface area of the BH. Moreover, the analysis sheds light on 
similar approaches such as the brick-wall model [7]. Specifically, integrating entro-
pies over spacelike volumes, which leads to divergent result around the horizon, is 
replaced by an integration over timelike volume at spatial infinity.  

• The analysis shows that invoking the statistical mechanics of the quantum fields 
around a BH to describe its microstates, eventually would lead to the analysis pre-
sented here.  

• It can be easily checked that considering the gray body factor for the BHs would not 
alter our analysis, because Equation (4) remains unchanged.  

• At the end, we mention that the analysis presented here has been motivated by 
studying number of photons vs. the entropy of Hawking radiation elaborated in Ref. 
[28].  

To conclude, we emphasized that one can find the entropy of a black body object 
solely from studying its radiation, if its temperature is known during the time interval 
of the complete evaporation. Based on this issue, we promoted a method to derive the 
Bekenstein-Hawking entropy of a Schwarzschild black hole by analyzing the statistical 
mechanics of its Hawking radiation at infinity. The main inputs of the calculation, in 
addition to the Hawking temperature, were adiabatic propagation, conservation of the 
energy, and the specific constraint between the mass and radius of the black hole. Not 
surprisingly, the final result matches the area law of the black hole entropy in General 
Relativity. 
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