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Abstract 
Plasma echo theory is revisited to apply it to a semi-bounded plasma. Spatial echoes associated 
with plasma surface wave propagating in a semi-bounded plasma are investigated by calculating 
the second order electric field produced by external charges and satisfying the boundary condi-
tions at the interface. The boundary conditions are two-fold: the specular reflection condition and 
the electric boundary condition. The echo spots are determined in terms of the perpendicular 
coordinate to the interface and the parallel coordinate along which the wave propagates. This im-
proves the earlier works in which only the perpendicular coordinate is determined. In contrast 
with the echo in an infinite medium, echoes in a bounded plasma can occur at various spots. The 
diversity of echo occurrence spots is due to the discontinuity of the electric field at the interface 
that satisfies the specular reflection boundary condition. Physically, the diversity appears to be 
owing to the reflections of the waves from the interface. 
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1. Introduction 
Plasma echoes in an infinite plasma have long been known theoretically [1] [2] as well as experimentally [3]. 
Spatial echoes were theoretically investigated in a static situation where the non-propagating electric field is 
directed perpendicular to the interface of a semi-bounded plasma [4] [5]. If the perpendicular direction is 
designated as the x direction, the electric field E as well as the distribution function f is spatially one- 
dimensional: ( ),E E x t=  and ( ), ,f f x v t= , where 0x >  ( 0x < ) is the plasma (vacuum) region. In this 
case, the corresponding Vlasov equation takes the form of a first order differential equation, and can be solved 
by satisfying the specular reflection boundary condition at the interface 0x = : ( ) ( ), 0 , 0f v f v= −  [6]. This 
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differential equation approach with the specular reflection boundary condition for a semi-bounded plasma has 
been shown to be entirely equivalent with the Fourier transform (with respect to x) under the recipe that the 
( )E x  is extended into the region 0x <  in an odd function manner, ( ) ( )E x E x= − −  [5]. This odd function 

extension of ( )E x  gives rise to a surface term in the Fourier transform of the Poisson equation, which plays a 
significant role in the determination of the echo spots. It appears that this surface term, which the earlier authors 
entirely neglected, gives rise to diversity of echo spots [5]. Physically, the surface term manifests the reflection 
of the electric field at the boundary. 

The echo phenomena is the result of a quadratic interaction of the two primary waves launched by two 
external charges at different locations (spatial echoes) or different times (temporal echoes). In response to the 
external charges, the plasma distribution function ( ), ,f x v t  is modulated with the exponential phase ( )eik x vt− , 
which is derived from the singularity at kvω =  of the linear response function. This term is called the free 
streaming term since x vt=  is the characteristic line of the Vlasov equation for a free particle. This rapidly 
modulating exponential phase makes the ( ), ,f x v t  more and more oscillatory as t or x increases, and con- 
sequently, df v∫  will become vanishingly small due to almost complete phase mixing. Therefore, in the first 
order, the phase mixing obliterates any appreciable effect on the macroscopic variable such as density pertur- 
bation. However, the second order distribution function which is a product of two first order distribution 
functions is not phase-mixed when or where the condition for a constructive interference is met, thereby the 
second order electric field does not vanish, resulting in an echo. It is evident from the expression for the product 
of two free-streaming exponentials ( ) ( )1 1 1 2 2 2e eik x vt ik x vt− −  that a constructive interference can result in at a certain 
time (temporal echo) or a certain spot (spatial echo) such that ( )1 1 2 2 1 1 2 2k x k x v k t k t+ = + . 

In this work, we investigate spatial echoes in a semi-bounded plasma, taking a full account of the boundary 
terms which originate from the oddly continuation of the electric field. This work is an extension of the earlier 
paper by Lee and Lee [5]; the distribution function and the electric field are now spatially two-dimensional, 
allowing for the z-dependance. Therefore, the echoes are associated with the surface wave which is propagating 
in the z-direction. The second order electric field endowed with the additional z-dependance can be Fourier- 
inverted by contour integration with unstraightforward analytic exercise, and delineating the echo condition 
requires extra complexity. The important boundary term is the discontinuity of the perpendicular electric field at 
the interface that is necessary to have the specular reflection boundary condition satisfied [5]. The diversity of 
echo occurrence spots has been experimentally reported [7] and can be explained by this boundary term. The 
identification of the echo spot associated with surface wave appears to be useful in experimental point of view 
[7].  

2. Formulation of the Problem  
We consider a plasma consisting of electrons and stationary ions, the latter forming the uniform background. 
The plasma is assumed to occupy the half-space 0x ≥ . The region 0x <  is assumed to be a vacuum. The 
perturbed electron distribution function ( ), ,f tr v  and the electric field ( ),E tr  will depend on x and z- 
coordinates with the y coordinate ignored since y direction has a translational invariance. We have the nonlinear 
Vlasov equation and the Poisson equation to describe the electrostatic perturbation:  

( ) ( ), , ,  0f e ff t t
t m
∂ ∂ ∂

+ ⋅ − ⋅ =
∂ ∂ ∂

v r v E r
r v

                            (1) 

with ˆ ˆ ˆˆ ˆ ˆ,  ,  x z x zx z v v E E= + = + = +r x z v x z E x z  

( )( )2
04π d ,x zE E e vf x t

x z
ρ

∂ ∂
∇ ⋅ = + = − +

∂ ∂ ∫E                           (2) 

where f is a two-dimensional distribution function, and 0ρ  represents the external charges:  

( ) ( ) ( )( )1
0 1 0 1 0 1, , e 1 2i tx z t k x L k z Sωρ ρ δ δ= − − + →                             (3) 

0k  is introduced to make the argument of the δ-function dimensionless, and 1 2→  means the replica of the 
preceding term with the subscript 1 replaced by subscript 2. We solve the simultaneous Equations (1) and (2) for 
a given ( )0 ,x tρ  as prescribed by Equation (3). In mathematical terms, we have an inhomogeneous system, 
driven by the source term in Equation (3). The responses f and E should be determined by 0ρ . 
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The kinetic equation is supplemented by the kinematic boundary condition which we assume to be the 
specular reflection condition  

( ) ( ), , 0, , , 0,x z x zf v v x z f v v x z= = − =                             (4) 

This specular reflection boundary condition is automatically satisfied by extending the electric field com- 
ponent ( )xE x  in odd function manner into the region 0x < , i.e., ( ) ( )x xE x E x− = − . Assuming that the 
external perturbation is small, we solve Equations (1) and (2) by successive approximation. First, the linear 
solution of Equation (1) will be obtained for f with the boundary condition (4). Substituting this solution in 
Equation (2) yields an integral equation for the electric field which is solved by Fourier transform. Then the 
linear solution will be used to obtain the higher order solutions. We work only up to the second order. The 
higher order distribution function should also satisfy the boundary condition (4). The electric field should satisfy 
the electric boundary conditions: the normal component of the electric displacement ( )xD x  and the tangential 
electric field zE  are continuous across the interface. In this work, the Fourier transform is defined by  

( ) ( ), d d , e ikx i tf k x t f x t ωω
∞ ∞ − +

−∞ −∞
= ∫ ∫  

( ) ( )d d, , e
2π 2π

ikx i tkf x t f k ωω ω
∞ ∞ −

−∞ −∞
= ∫ ∫  

Let us Fourier transform Equations (1)-(3) with respect to t and z to write  

( ) ( )
( )

( ) ( )
2

2
d d, , , , , 0
2π 2π

e ki f f
m

ωω ω ω ω ω
′ ′ ∂′ ′ ′ ′− − ⋅ − − − ⋅ =

∂∫ ∫k v v k E k k v k
v

            (5) 

( ) ( ) ( ) ( )2
0, , 4π , , d ,zi N k e f vω ω ω ρ ω ⋅ + = − + ∫k E k k v k                   (6) 

where  

( ) ( ) ( ), 0 , , 0 , ,z x z x zN k E k E kω ω ω− += −  

is derived from the discontinuity of xE  at 0x = . This N-term is characteristic of a semi-bounded plasma and 
responsible for the diversity of surface wave echoes, as compared with an infinite plasma. The external charges 
are Fourier transformed to  

( ) ( ) 1 1
0 1 12

0

2π, e e 1 2x zik L ik S

k
ρ ω ρ δ ω ω − − = + + → k                        (7) 

Equations (5) and (6) constitute a set of nonlinear simultaneous equations. We solve the set of equations by 
successive approximations in terms of perturbation series:  

( ) ( ) ( ) ( ) ( ) ( )1 2
0, , , , , ,f f f fω ω ω= + + +k v v k v k v   

( ) ( ) ( ) ( ) ( )1 2, , ,ω ω ω= + +E k E k E k   

Breaking down Equations (5) and (6) order by order, we have  

( ) ( ) ( ) ( ) ( )1 1 0d, ,  ,
d
fei f

m
ω ω ω− − ⋅ = ⋅k v k v E k

v
                        (8) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2
0, , 4π , , d ,zi N k e f vω ω ω ρ ω ⋅ + = − + ∫k E k k v k                 (9) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2 1 10

, ,
d d dd , , , ,
d 2π 2π 2π

x z

i f
f k ke e f

m m

ω ω

ωω ω ω ω
∞ ∞ ∞

−∞ −∞ −∞

− − ⋅

′ ′′ ∂′ ′ ′ ′= ⋅ + − − ⋅
∂∫ ∫ ∫

k v k v

E k E k k k v
v v

        (10) 

( ) ( ) ( ) ( )2 2 2, 4π , , di e f vω ω⋅ = − ∫k E k k v                           (11) 

The quantity ( ),zN k ω  in Equation (9) should be determined in terms of the vacuum field from the electric 
field boundary condition: electric displacement ( )xD x  is continuous across the interface 0x = ,  
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( ) ( ) ( ) ( )1 10 0x xD D+ −=                                    (12) 

where ( ) ( )1 0xD −  equals to the vacuum electric field 0E .  

3. Linear Solution  
Equations (8) and (9), and 0∇× =E  give  

( ) ( ) ( ) ( ) ( )1
02, , 4π ,

 , z
i N k

k
ω ω ρ ω

ε ω
= −  

kE k k
k

                       (13) 

( )
02

2
2

d
d, 1  d  p

f

v
k
ω

ε ω
ω

⋅
= +

− ⋅∫
k

vk
k v

                              (14) 

is the dielectric function ( pω  is the plasma frequency). N is determined from the electric boundary condition as 
shown in the following. We need the normal component of electric displacement, ( )xD x  to enforce the  

boundary condition (12). By definition, ( ) ( ) ( )4π, , ,x x x
iD E Jω ω ω

ω
= +k k k  where J is the current:  

( ) ( )2, d   , ,x xJ e v v fω ω= − ∫k k v . We calculate  

( )
0

2
2 24π 4π d d  

j
p j

x x x

fE
vi iJ e v f v vv

ω
ω ω ω ω

∂
∂

= − =
− ⋅∫ ∫ k v

 

where we used Equation (8). The above quantity equals to ( )1 xEε − . Thus we have x xD Eε= . This statement  

can be most easily proved by assuming 0f  a Maxwellian. Use 0
0j

j

f T v f
v m
∂

= −
∂

 and x

x

E
k

⋅ = ⋅E v k v  to write  

for the last term  
2

2
0

4π   dp x
x x

x

vi TJ E f v
m k

ω
ω ω ω

⋅
= −

− ⋅∫
k v

k v
 

Put 1 ω
ω ω

⋅
= − +

− ⋅ − ⋅
k v

k v k v
. Then, (−1)-term vanishes upon integration, and we have  

( )

0
2 2

2 20

022
2 20

2 2

4π d d

 d  d       . . .

p px x
x x x

x x

p
x p x

f
v f vi TJ E v E v

k m k
f

f vE E v q e d
k

ω ω
ω ω ω

ω
ω

ωω

∂
∂

= − =
− ⋅ − ⋅

∂
⋅
∂= − =

− ⋅− ⋅

∫ ∫

∫ ∫

k v k v

k
v

k vk v

 

Using the above result, we obtain  

( ) ( ) ( ) ( ) ( ) ( )1 1
02, ,  , 4π ,x

x x
ikD E N
k

ω ε ω ω ρ ω= = −  k k k k                    (15) 

To invert Equation (15), we write  

( ) ( ) ( )1 1
2

1
1 12 2

0

d 8π, ,  e   e e 1 2
2π

x x zik x ik L ik Sx x
x z

k ikD x k N
k k

ω ρ δ ω ω
∞ − −

−∞

 
= − + + → 

 
∫           (16) 

In the above integral, we take the limit 0x +→ . Evaluating the integral by residue theorem gives  

2 20

elim d  π
xik x

x
x

x x z

kk i
k k+

∞

−∞→
=

+∫  
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Note that we set up the contour encircling the upper half plane since 0x > . When  0zRe k >  (  0zRe k < ), 
the relevant pole located in the upper kx-plane is x zk ik=  ( x zk ik= − ). In either case, the integral is found to be 
πi . Then, Equation (16) takes the form  

( ) ( ) ( ) ( )11
1 1 12

0

4π0 , ,  e , 1 2
2

zik S
x z z

ND k iI L k
k

ω ρ δ ω ω−+ = − − + + →                 (17) 

where ( )
1

1
1 2 2

e, d  πe z
i L

k L
z

z

I L k i
k

ξξξ
ξ

−
∞ ±

−∞
= = −

+∫                       (18) 

where + (−) sign corresponds to  0zRe k <  (  0zRe k > ). The above equality can be easily proven by using the  

contour winding the lower half plane. Taking the limit 0zk →  gives the useful identity 
1ed  π

i L

i
ξ

ξ
ξ

−
∞

−∞
= −∫ ,  

independently of ( )1 0L > . Clearly, this integral manifests the nature of a step function. By equating the 
quantity on the right hand side of Equation (17) to the x-component of the vacuum electric field ( 0E≡ ), we 
obtain  

( ) ( )1
0 1 1 12

0

8π2 e ,  1 2zik S
zN E iI L k

k
ρ δ ω ω −= − − + + →                     (19) 

Using the above equation in Equation (13) gives  

( ) ( ) ( ) ( ) ( ) 11
2

1
0 1 1 12 2

0

8π, 2  e , e  1 2
π ,

xz ik Lik S
z

i iE I L k
k k

ω ρ δ ω ω
ε ω

−−  = − − + + + →  
  

kE k
k

      (20) 

For an infinite plasma without boundary, we have 0N =  in Equation (13), and the plasma electric field is 
given by  

( ) ( ) ( ) ( ) 11
2

1
1 12 2

0

8π, e e  1 2
 ,

xz ik Lik Si
k k

ω ρ δ ω ω
ε ω

−− 
= − + + → 

 

kE k
k

 

Note that in Equation (20), the 0E -term and ( )1, zI L k -term are the boundary terms which are non-existent 
in an infinite plasma. 

In the static situation where the electric field is nonpropagating, we put 0zk =  in Equation (20), and the 
electric field reduces to Equation (23) in Lee and Lee [5]:  

( ) ( ) ( ) ( ) ( )1
2

1
0 1 12

0

2 4π, 1 e  1 2
,

ikLiE k E
k k k

ω ρ δ ω ω
ε ω

− −
= + + + + → 

 
 

4. Second Order Solution and Echo Occurrence  
Next, we deal with the second order equations, Equations (10) and (11). Using Equation (10) in Equation (11) 
yields, owing to the electrostatic nature of ( )2E ,  

( ) ( ) ( ) ( )

2
2 2

2 2
4π,  d  

,
e v

m k
ω

ε ω ω
⋅

=
− ⋅∫

k k QE k
k k v

                      (21) 

where Q  stands for  

( ) ( ) ( ) ( ) ( )1 1d dd, , , , ,
2π 2π 2π

x zk k fωω ω ω ω
∞ ∞ ∞

−∞ −∞ −∞

′ ′′
′ ′ ′ ′= − −∫ ∫ ∫Q k v E k k k v              (22) 

Substituting the first order solutions [Equations (8) and (20)], into the above equations, we can write ( )2E  in 
the form,  

( ) ( )
( ) ( )

( )
( )( ) ( )( )

0
3 2

2
2 2 2 2 2 2

d
d d,   d d d   ,

2π , ,,
z x

f
e v k k AB

m k k
ω ω

ε ω ε ω ωω ε ω ω

′⋅′⋅ −
′ ′ ′= ×

′ ′ ′ ′ ′− ⋅′ ′ ′− ⋅ − − −
∫ ∫ ∫ ∫

kk k kk vE k
k k k vk v k k k k

(23) 



H. J. Lee, M.-J. Lee 
 

 
1405 

( ) ( ) 11
2

0 1 1 12
0

8π2 e , e  1 2
π

xz ik Lik S
z

iA E I L k
k

ρ δ ω ω ′ ′−−  ′ ′= − − + + + → 
 

               (24) 

( ) ( ) ( ) ( ) 11
2

0 1 1 12
0

8π2 e , e  1 2
π

x xz z i k k Li k k S
z z

iB E I L k k
k

ρ δ ω ω ω ′′ − −− −  ′ ′= − − − + − + + → 
 

         (25) 

where I stands for the exponential function as given by Equation (18). Since we don’t know yet which sign 
should be chosen, we keep on using the symbol I. Equation (23) is to be used for investigation of echo 
occurrence. The various cross terms in the product (AB) are the candidates of echo resonances to see if the 
condition for vanishing phase can be met. 

We choose to investigate a cross term which is 1-term in A multiplied by 2-term in B. With this term, the 
t-inversion of Equation (23) can be easily carried out by simply putting 1ω ω′→ −  and 3ω ω→ − :  

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )

3 2

2 1

21

2
2

2 2
3 3

0

2 2
1 12

1 2

d, e e d d  
,

d
d  e

,,

, e , e
π π

z

z

x xx

i t ik S
z x

ik S S

i k k Lik L
z z z

vt k k
k

f

k

i iI L k I L k k

ωβ
ε ω ω

ε ω ωε ω

−

′ −

′− −′−

′ ′=
− + ⋅

′ ⋅′⋅ −
×

′ ′ ′− + ⋅′ ′− − −

  ′ ′× + − +  
  

∫ ∫ ∫
kE k

k k v

kk k k v
k k vk k k k

           (26) 

where  
3

1 2
3 1 2 4 2

0

16π,  e
k m

ρ ρω ω ω β −
= + =                               (27) 

In the above equation, we can assume that the poles associated with the dielectric functions contribute 
negligibly in the dk∫ - or dk ′∫ -integral. [The dominant contribution comes from the free-streaming poles.] 
Also we assume 0f  to be a Maxwellian. Then we have  

0

1
0

1 1

d
d 1

f
m f
T

ω
ω ω

′⋅  
= − − ′ ′+ ⋅ + ⋅ 

k
v

k v k v
 

where 1 can be assumed to contribute nothing to the inversion integral in the following, due to phase mixing. 
Thus, Equation (26) can be further simplified as  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2

22 1 1

2
2 01

2 2
3 3

2 2
2 1 1

1 2

d,  e e d d
,

 
, ,

e , e , e
π π

z

x xz x

i t ik S
z x

i k k Lik S S ik L
z z z

vfmt k k
T k

k
k

i iI L k I L k k

ωβ ω
ε ω ω

ε ω ε ω ω

−

′′ − −− ′−

′ ′=
− + ⋅

′⋅ −
×

′ ′ ′ ′ ′− − − − + ⋅

  ′ ′× + − +  
  

∫ ∫ ∫
kE k

k k v

k k
k k k k k k v

           (28) 

Let us write explicitly the inversion integral of Equation (28) with respect to k:  

( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )

23

2 1

21

2
2 01

2 2 2 2
3 3

2 2
2 1 1

1 2

d e, ,  e   d e d
4π ,

 d  e d  
, ,

 , e , e
π π

x
z

z

x xx

ik x
ik z Si t

z x
x z z

x
x

ik S S
z x

i k k Lik L
z z z

vfmt x z k k
T v k k vk

v

k k
k

i iI L k I L k k

ωβ ω
ε ω ω

ε ω ε ω ω

−

′ −

′− −′−

=
−  +

+ 
 
′⋅ −

′ ′×
′ ′ ′ ′ ′− − − − + ⋅

  ′ ′× + − +  
  

∫ ∫ ∫

∫ ∫

kE
k

k k k

k k k k k k v
       (29) 
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This equation will be examined in view of the possibility of the vanishing phase. 
(1) First, we shall consider the interference of two exponential terms in Equation (29):  

( ) ( )2 2 11 2e e e ex x xx xi k k L ik L Lik L ik L′ ′− − −′− −=  
The important singularities are: the double pole at ( )3x z z xk k v vω= − +  and the simple poles associated 

respectively with 2 0k =  and 2 0k ′ =  and 1 0x x z zk v k vω + + = . We shall consider only these four poles. 
Singularities at 0ε =  are not important. Therefore we can put  

( )
( )2

1
2

′⋅ −
=

′−

k k k
k k

 

and all the ε’s can be taken out of the integral. The residue at the double pole is obtained by taking xk∂ ∂   
2

3Integrand z z
x

x

k vk
v

ω  + × + 
   

 and substituting for ( )3x z z xk k v vω= − + . Here it is sufficient to differentiate  

only the exponential functions because they yield asymptotically dominant result. [Or integrate by parts with 
respect to xk .] Thus let us calculate  

( ) ( )
( )

( )
( ) ( )

( )

2
2

2 1 2 1

2
2

3

2
1

ed e d  

e ed  d  

x
z

z x

ik x L
ik z S

z x
x x z z x

ik S S ik L L

z x
x z z x

i x L
k k

v k k v vk

k k
k k v vk

ω

ω

−
−

′ ′− −

−
Φ =

+ +

′ ′×
′ ′′ + +

∫ ∫

∫ ∫

k

                   (30) 

Then ( )2E  is obtained by 3 2 2
0e di t

xv f vω Φ∫ , suppressing the unessential factor. 

Integral d xk ′∫  can be easily done by picking up the pole at  

1z z
x

x

k vk
v

ω′ +′ = −                                   (31) 

For definiteness we assume 2 1L L> . Then the contour in xk ′ -plane should encircle the upper half xk ′ -plane, 
and in order for the pole to lie in the upper xk ′ -plane, the imaginary part of ( )z z xk v v′  should be negative. 
Now 2k ′  is only a function of zk ′  per Equation (31), and we can write the second part of Equation (30) as  

( ) ( )

( )
( )

2 1 2 1

2 1 1

2
1

1

e ed  d  

π 1 1= e d e  

z x

x

ik S S ik L L

z x
x z z x

i L L v ix z
z z

z z z z x

J k k
k k v vk

v vk H Im k
k k k k v

ω θ

ω

ω

′ ′− −

− − ′

+ −

′ ′ ′≡
′ ′′ + +

  
′ ′− − −  ′ ′ ′ ′− −   

∫ ∫

∫
              (32) 

where  

( )1
2z z xk v iv

v
ω

±′ = − ±                                 (33) 

( )2 1 1 2
z

x

vS S L L
v

θ ′ = − + −                              (34) 

and ( )H x  is a step function; ( ) 1H x =  for 0x >  and ( ) 0H x =  for 0x < . 
The contour in d zk ′∫ -integral depends on the sign of θ ′ : when 0θ ′ >  ( 0θ ′ < ), the contour must wind the  

upper (lower) zk ′ -plane. The location of the poles depends upon the sign of xv . Sorting out the relevant cases, 
we carry out the integral for J ′ :  

( ) ( ) ( ) ( ) ( )1 2 1
2

1

2 π0 : e e ex z zi L L v i k i kx
z x z x

i vJ H v H v H v H vω θ θθ
ω

+ −− ′ ′ ′ ′−  ′ ′> = − − −            (35) 

( ) ( ) ( ) ( ) ( )1 2 1
2

1

2 π0 : e e ex z zi L L v i k i kx
z x z x

i vJ H v H v H v H vω θ θθ
ω

+ −− ′ ′ ′ ′ ′ ′< = − − −             (36) 



H. J. Lee, M.-J. Lee 
 

 
1407 

Next, taking on the first part of the integral in Equation (30) ( )( )d zk∫  , we have two cases: 

1) 2x L<  
In this case, the xk  contour must encircle the lower half plane and the xk -integral does not vanish under the 

provision ( ) 0z z xIm k v v > . Then, the integral can be written as  

( )
( )

( )
( )

2
2

2 3

2
3

3

1

ed e d  

π 1 1 ˆˆe d e  

x
z

x

ik x L
ik z S

z x
x z z x

i x L v ix z zz
z z z

z z z z x x

k k
k k v vk

v k vvk H Im k k
k k k k v v

ω θ

ω

ω
ω

−
−

− −

+ −

≡
+ +

     +
= − − +    − −     

∫ ∫

∫

kJ

x z
        (37) 

where  

( )3
2z z xk v iv

v
ω

± = − ±                                  (38) 

( )2 2
z

x

vz S L x
v

θ = − + −                                (39) 

Analogously to the foregoing calculation in J ′ , the above integral depends on the sign of θ :  

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ − > = − − − J k k           (40) 

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ −

−  < = − − − J k k           (41) 

2) 2x L>  
Repeating a similar analysis, we obtain  

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ −

−  > = − − − J k k          (42) 

( ) ( ) ( ) ( ) ( )2 3
2

3

2 π0 : e e ex z zi L x v i k i kx
z x z z x z

i v H v H v H v H vω θ θθ
ω

+ −−
+ − < = − − − J k k           (43) 

where  

( )ˆ ˆz zk i± ±= +k x z                                  (44) 

Now, we have to multiply J  and J ′ . In doing it, note that ( ) ( ) ( )H x H x H x=  and ( ) ( ) 0H x H x− = . 
Nonzero results surviving the velocity integral are obtained in the following four cases: 

a) 2x L< , 0θ < , 0θ ′ > ; b) 2x L< , 0θ > , 0θ ′ < ; c) 2x L> , 0θ > , 0θ ′ > ; d) 2x L> , 0θ < , 
0θ ′ <  

Let us first consider case a). Using Equations (35) and (41), we obtain  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22
2

0
1 3

0

2π
exp

exp 

x
x z z z z

x

x z z z z

v i x L
H v H v k i i k i k

v

H v H v k i i k i k

θ θ θ
ωω

θ θ θ

+ + −

− − +

−
′ ′Φ = − + +

′ ′ + − + + 

               (45) 

where  

( ) ( )3 1
0 2 1 2

x x

L x L L
v v
ω ωθ = − + −                                (46) 

Using Equations (34), (39), and (46), we can obtain the exponential phases:  

0 z z r ii i k i k iθ θ θ ϕ ϕ− +′ ′ ′+ + = +                                (47) 
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0 z z r ii i k i k iθ θ θ ϕ ϕ+ −′ ′ ′+ + = − +                               (48) 

with  

( ) ( ) ( ) ( )3 2 1 2 1 3 2 1 1 22
1

r x x z zv S z v S S v x L v L L
v

ϕ ω ω ω ω′ = − + − + − + −                (49) 

( ) ( ) ( ) ( )3 2 1 1 2 3 2 1 1 22
1

i z z x xv S z v S S v L x v L L
v

ϕ ω ω ω ω= − + − + − + −                (50) 

Thus Equation (45) can be written in the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22

2

1 3

2
e exp exp ix i

x z z r x z z r
x

v i x L
H v H v H v H v

v
ϕ

π
ϕ ϕ

ωω ′+ −

−
′ Φ = − − + − k k       (51) 

Therefore the velocity integrals in Equation (29) survive the phase mixing when 0iϕ = , that is,  

( ) ( ) ( ) ( )3 2 1 2 1 3 2 1 1 20,  0z S S S L x L Lω ω ω ω− + − = − + − =                   (52) 

or 1 1 2 2 1 1 2 2

1 2 1 2

,  L L S Sx zω ω ω ω
ω ω ω ω

+ +
= =

+ +
                         (53) 

where an echo is given rise to. The electric field ( )2E  can be obtained by velocity integral in the form (see 
Equation (29))  

( ) ( ) ( )0 02

0 0
, , d d e d d er r

x z z x z zt x z v v v v kϕ ϕ∞ ∞′ ′−
+ −−∞ −∞

 = +  ∫ ∫ ∫ ∫E k                   (54) 

where ( )  denotes the obvious integrand. 
Next, let us calculate case (b). Using Equations (36) and (40) gives  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22
2

0
1 3

0

2π
exp

exp

x
x z z z z

x

x z z z z

v i x L
H v H v i i k i k

v

H v H v i i k i k

θ θ θ
ωω

θ θ θ

+ + −

− − +

−
′ ′Φ = − − + +

′ ′ + + + 

k

k

             (55) 

This equation is identical with Equation (45) if ( )xH v  and ( )xH v−  are interchanged in the latter. Thus, 
this case can give rise to an echo at the same spot as predicted by Equation (53). The corresponding electric field 
is obtained by a similar velocity integral to Equation (54) but over different range of xv . 

The cases (a) and (b) predict the same echo spot because they yield the same imaginary phase iϕ . One more 
task: the various inequality conditions set forth to specify the contour in the contour integrations need to be 
checked against the echo coordinate found in Equation (54). Let us consider the inequalities 0θ <  and 0θ ′ >  
postulated in the case (a). Using Equation (52), the inequality 0θ <  can be written in the form  

( )1 2 2 1 0z

x

vS S L L
v

− + − <  

which is the condition 0θ ′ > . Therefore the conditions 0θ <  and 0θ ′ >  imply each other. Also we can 
ascertain that the echo x-coordinate is in accord with the condition 2x L< . So in cases (a) and (b), the premise 
and the result are consistent. For the cases of (c) and (d), we state without repeating a similar algebra that the 
imaginary part of the phase is still obtained by Equation (50) [the real part of the phase is different]. Although 
the echo spot is predicted by the same equation as Equation (53), these cases of (c) and (d) are not acceptable 
because the conditions 0θ >  and 0θ ′ >  or 0θ <  and 0θ ′ <  are contradictory to each other. We have the 
conclusion: an echo occurs where 2x L<  and the echo coordinates are predicted by Equation (53). 

(2) Next, we consider the product of two boundary terms, ( ) ( )1 2, ,z z zI L k I L k k′ ′−  in Equation (29):  

( ) ( ) ( ) [ ]
( )( )

( ) ( ) ( ) ( )

3

2 1

2
2 0

22 2 2
3

1 2 2
1

 expd, , e   d  exp d  

dd e , ,z

xi t
z z x

x x z z x

ik S S x
z z z z

ikvft x z C k ik z S k
v k k k v v

kk I L k I L k k
k

ω

ω

ω
′ −

= −  
+ +

′
′ ′ ′× −

′ ′+ ⋅

∫ ∫ ∫

∫ ∫

kE

k v

           (56) 
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where C is a nonessential constant factor. For definiteness, we assume 2 1 0S S− > . d xk ′∫ -integral and d xk∫ -  

integral can be done easily by picking up the relevant poles, and we can write  

( ) ( )

( ) ( ) ( )

3

2 1

2
2 0 3

23 2

1 22

d, ,  e  exp d  exp

d e , ,z

i t x
z z

x zx

ik S Sz
z z z

vf vt x z ix C ix k ik z S x
v vv k

k I L k I L k k
k

ω ω

′ −

    
= − − −   

    
′

′ ′× −
′

∫ ∫

∫

kE
             (57) 

where  

( )2
12 2 z z

z
x

k v
k k

v
ω ′+

′ ′= +                                   (58) 

3 z z
z

x

k vk x zk
v

ω+
= − +                                    (59) 

The contour of d zk ′∫ -integral should encircle the upper zk ′ -plane. Since the relevant singularity should be 

located in the upper zk ′ -plane, the residue is calculated from z zk k +′ ′=  for 0xv <  and z zk k −′ ′=  for 0xv > .  

zk ±′  are defined in Equation (33). Then the last integral ( d zk ′∫ ) in Equation (57) can be carried out in the form  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1 2
1

2 1 1 2

πd exp , ,

exp , ,

x
z z z z z x

z z z z x z

vk ik S S I L k I L k k H v

ik S S I L k I L k k H v J k

ω + + +

− − −

− ′ ′ ′ ′= − − −  

′ ′ ′− − − ≡   

∫ 

             (60) 

where  

( ) [ ] ( ) [ ] ( )( )1 1 1, π exp expz z z z zI L k i L k H v L k H v± ± ±′ ′ ′= − + − −  (see Equation (18))         (61) 

To carry out ( )d zk∫   in Equation (59), let us assume that 2 0z

x

vz S x
v

ϑ− − ≡ < . 

Now we are ready to evaluate d zk∫ -integral in Equation (59):  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
3

3

e e ed d d  
2

π e e

z z z

z z

ik ik ik
x

z z z z z
z z z z

ik ikx
z z x z z x

ivk k J k k J k
k k k kk

v k J k H v k J k H v

ϑ ϑ ϑ

ϑ ϑ

ω

ω
+ −

+ −

+ + − −

 
= = − − − 

 = − − 

∫ ∫ ∫
k k

k k



             (62) 

Using Equation (60) in Equation (62) yields  

( ) ( ) [ ] ( ) ( ) ( ) ( )

( ) [ ] ( ) ( ) ( ) ( )

2 2

2 1 1 2
1 3

2 1 1 2

πd exp exp , ,

exp exp , ,

x
z z z z z z z x

z z z z z z x

vk k ik ik S S I L k I L k k H v

k ik ik S S I L k I L k k H v

ϑ
ωω

ϑ

+ + − − + −

− − + + − +

 ′ ′ ′= − −  

′ ′ ′+ − − −   

∫ k

k



        (63) 

where we have ( ) ( ) 2
2  z z z z zRe k k Re k k v

v
ω

+ − − +′ ′− = − = − . Therefore, we obtain  

( ) ( ) ( ) ( ) ( )( )2 2 2, π exp expz z z z z z z zI L k k i L k k H v L k k H v+ − + − + −′ ′ ′− = − − + − − −                 (64) 

( ) ( ) ( ) ( ) ( )( )2 2 2, π exp expz z z z z z z zI L k k i L k k H v L k k H v− + − + − +′ ′ ′− = − − + − − −                 (65) 

The above two equations and Equation (61) yield  

( ) ( ) ( ) ( ) ( ) ( )2
1 2 2 1 2 2 1 2, , π exp expz z z z z z z z zI L k I L k k L k L L k H v L k L L k H v− + − + − + − ′ ′ ′ ′− = − + − + − − − −          (66) 
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( ) ( ) ( ) ( ) ( ) ( )2
1 2 2 1 2 2 1 2, , π exp expz z z z z z z z zI L k I L k k L k L L k H v L k L L k H v+ − + − + − + ′ ′ ′ ′− = − + − + − − − −          (67) 

Now we are ready to carry out the velocity integral in Equation (59) by substituting Equation (63) into it. 
Because of the step functions ( )xH v  and ( )zH v , the velocity integral consists of four parts corresponding to 

( ) ( )x zH v H v± ± . Since we are interested in the echo spots, we pay attention only to the exponential phases:  

( ) ( ) ( ) ( ) ( ) ( ) ( )31 2 4e , e , ( ) e , ex z x z x z x zH v H v H v H v H v H v H v H vϕϕ ϕ ϕ− − − −             (68) 

Straightly we can identify:  

( ) ( )3
1 2 1 2 2 1z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ+ − + −′ ′= − + + − − + −                    (69) 

( ) ( )3
2 2 1 2 1 2z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ+ − + −′ ′= − + + − + + −                    (70) 

( ) ( )3
3 2 1 2 1 2z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ− + − +′ ′= − + + − + + −                    (71) 

( ) ( )3
4 2 1 2 2 1z z z z

x

ix ik ik S S L k L L k
v
ωϕ ϑ− + − +′ ′= − + + − − + −                    (72) 

From above, the imaginary phases are obtained as  

( ) ( ) ( )1 3 1 1 2 3 2 2 1 3 1 1 32 2   xz vvIm Im S S z S L L x
v v

ϕ ϕ ω ω ω ω ω ω = = − − − + + − −                (73) 

2 4  Im Imϕ ϕ=  is obtained from 1 Imϕ  by replacing 1 1L L→ −  and 2 2L L→ − . Putting 1,2 0Imϕ = , we 
obtain the echo spots as  

1 1 2 2

3
echo

S Sz ω ω
ω
+

=                                   (74) 

( )2 1 2 1 1

3

2
echo

L L
x

ω ω ω
ω

± +
=



                              (75) 

In Equation (75), echox  corresponding to upper signs and echox  corresponding to lower signs are mutually 
exclusive because if one of them is inside the plasma the other is necessarily is outside the plasma. We add that  

the condition 0ϑ <  amounts to ( )1
1 2

3

z

x

vS S x
v

ω
ω

− < , which poses no problem in as much as we have ample  

liberty in choosing the sign of z xv v .  

5. Discussion  
In Section 3, the plasma electric field was determined in terms of the vacuum electric field. Judicious application 
of the boundary conditions at the interface enables one to determine the plasma electric field entirely in terms of 
the external charges without introducing the vacuum electric field 0E . Inverting Equation (13), we can write  

( ) ( ) ( )1
1 1 12

0

4π0, e ,
2

zik S
x z

ND i I k L
k

ω ρ δ ω ω −= − − +                       (76) 

( ) ( ) ( )1
1 1 12 2

0

d 4π0, e ,
2π

zik Sxz
z z

kkE iN i I k L
k k εω ρ δ ω ω
ε

−= − +∫                   (77) 

where ( ) 1
1 2

d, e xik Lz x
z

k kI k L
kε ε

−= ∫                            (78) 

Next, we turn to the vacuum solution.  

( ) 0, e ez zk x k x
x z zE x k B k E′= − ≡                             (79) 
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where 0E  is the vacuum electric field, the quantity designated by the same symbol 0E  in Equation (19).  

( ), e zk x
z z zE x k iB k′= −                                   (80) 

Continuity of zE  across the interface 0x =  gives that Equation (22) equals to ziB k′− . Also continuity of 
xD  across 0x =  yields that Equation (20) equals to zB k′− . Eliminating B′  between these two equations 

gives N in the form  

( ) ( ) ( )( )1
1 1 1 12

0

2

8π e , , 1 2

d1
π

zik S
z z

x z

I k L iI k L
kN k k

k

ερ δ ω ω

ε

−+ − + →
=

+ ∫
                   (81) 

Substituting the above equation into Equation (13) yields  

( ) ( ) ( ) 1
1

2
1

1 12 2
0

2

, π e8π, e d1
π

x
z

ik L
ik S z

x z

iI k Li
k kk k

k

ω ρ δ ω ω
ε

ε

−
− − −

= +
+ ∫

kE k                   (82) 

Equation (82) should be compared with Equation (20). Eliminating the vacuum field introduces the  

denominator 2
d1
π

x zk k
k ε

+ ∫  in Equation (82). In fact, the relation  

2
d1 0
π

x zk k
k ε

+ =∫                                      (83) 

is the electrostatic dispersion relation of the surface wave in a semi-bounded plasma [10]. 
In the investigation of echo occurrence, 0E  in Equation (20) can be discarded because echoes are given rise 

to by interference of influences of the external charges. This amounts to saying that the denominator  

2
d1
π

x zk k
k ε

 + 
 ∫  doesn’t play any role in the determination of echo locations. 

Equations (53) and (74) and (75) are the main results of this work in locating the echo spots associated with 
the surface wave in a semi-bounded plasma launched by the oscillating external charges at ( ) ( )1 1, ,x z L S=  and 
( )2 2,L S . In the static situation, the z-coordinate is irrelevant. The echo spot given by Equation (53) corresponds 
to echox  in Equation (45) in Lee and Lee [5]. The echo spot given by Equations (74) and (75) is surface 
wave-proper. Our search for the echo spots are not exhaustive; we put aside many other product terms in (AB) 
in Equations (24) and (25). It appears that we have diversity of echoes in a bounded plasma, which was also 
experimentally reported [7]. The diversity seems to be due to reflections of the wave at the interface. 

In reality, bounded plasmas are usual rather than exceptional. Important literatures to get acquainted with this 
field are References [8] and [9], among others. Surface wave dispersion relation in a plasma slab is derived in 
Ref. [10]. An exact nonlinear solution of a surface wave excited by external charges is obtained in Ref. [11]. 
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