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Abstract 
Relativistic diffraction in time wave functions can be used as a basis for causal scattering waves. 
We derive such exact wave function for a beam of Dirac and Klein-Gordon particles. The transient 
Dirac spinors are expressed in terms of integral defined functions which are the relativistic equiv-
alent of the Fresnel integrals. When plotted versus time the exact relativistic densities show tran-
sient oscillations which resemble a diffraction pattern. The Dirac and Klein-Gordon time oscilla-
tions look different, hence relativistic diffraction in time depends strongly on the particle spin. 
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1. Introduction 
Similarities between optics and quantum mechanics have long been recognized. One example of this symmetry 
was obtained by Moshinsky [1] who addressed the following non-relativistic, quantum, 1D shutter problem. 
Consider a monoenergetic beam of free particles moving parallel to the x-axis. For negative times, the beam is 
interrupted at 0x =  by a perfectly absorbing shutter perpendicular to the beam. Suddenly, at time 0t = , the 
shutter is opened, allowing for 0t >  the free time-evolution of the beam of particles. What is the transient 
density observed at a distance x from the shutter? The shutter problem implies solving, as an initial value 
problem, the time-dependent Schrödinger equation with an initial condition given by  

( ) ( ),0 e ,ikxx xψ θ= −                                     (1) 

where ( )xθ  denotes the step function defined as: ( )xθ  = (1 if 0x > ) or (0 if 0x < ). For 0x ≥ , 
Moshinsky proves that the free propagation of the beam has the exact solution given by:  
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( ) ( ) ( ) ( )2, π 2
0

1 1, ; e e d ,
22

x ti kx t i uiM x t k u t
i

ξω θ− + = + 
 ∫                      (2) 

where the integral is the complex Fresnel function: ( ) ( ) ( )2
0

exp π 2 di u u C iS
ξ

ξ ξ≡ +∫  and ξ  is given by  

( ) ( ), πx t m t kt m xξ ≡ − 
. For 0x ≥  the probability density ρ  is then  

( ) ( ) ( ) ( )
2 21 1 1 1, .

2 2 2 2
x t C S tρ ξ ξ θ   = + + +      

                       (3) 

The right-hand side in Equation (3) is similar to the mathematical expression for the light intensity in the 
optical Fresnel diffraction by a straight edge [2]. For a fixed position 1x = , the plot of the probability density 
( )1, tρ  as a function of time is shown in Figure 1. 
These temporal oscillations are a pure quantum phenomenon, and similar oscillations arise at the moment of 

closing and opening gates in nanoscopic circuits [3]. With adequate potentials added to the model, it has been 
used to study transient dynamics of tunneling matter waves [4]-[7], and the transient responses to abrupt changes 
of the interaction potential in semiconductor structures and quantum dots [8] [9]. For a review on the subject see 
[10] [11]. There is, in summary, a strong motivation for a thorough understanding of transient time oscillation in 
beams of matter. 

One of the main problems in physics is to find, for the S matrix of an interaction, restrictions which proceed 
from general principles such as causality [12]. Notice that there is a close relation between diffraction in times 
wave functions and those wave functions which are needed for a causal description. From Equation (2) we see 
that for 0x ≥  the wave function ( ), ;M x t k  is causal and the shutter solution can then be used as a basis  

function for causal scattering. Indeed, for an arbitrary function, ( ) ( )e dikxf x F k k
∞

−∞
≡ ∫ , and assuming an initial  

condition given by: 

( ) ( ) ( ),0 ,x f x xθΨ = −                                 (4) 

then the free time evolution of the initial condition becomes  

( ) ( ) ( ) ( ), , ; d .x t t M x t k F k kθ
∞

−∞
Ψ = ∫                            (5) 

It is evident that if we want a relativistic solution for ( ),x tΨ , we need, instead of ( ), ;M x t k , the 
corresponding relativistic solution to the shutter problem. 

As far as we know nobody has ever reported the exact relativistic solution to the shutter problem. Moshinsky 
worked this problem and gave an approximated answer. In a couple of articles [13] [14], he discussed the shutter 
problem using the Klein-Gordon and the Dirac equations. Using approximated solutions Moshinsky arrives to 
the conclusion that only for the Schrödinger equation the wave function ψ  does resemble the expression that 
appear in the optical theory of diffraction. In his conclusions [13], Moshinsky emphatically denies the existence  

 

 
Figure 1. Probability density for non-relativistic diffraction in time.                  
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of diffraction in time in the relativistic case. In the case of photons this is obviously true, the d’Alembert’s 
solution does not allow such time oscillations. However, for particles with mass different from zero, in full 
disagreement with Moshinsky’s conclusions, we report here that relativistic diffraction in time oscillations is 
indeed present. 

The purpose of the present paper is to derive the exact solutions for the Dirac and Klein-Gordon shutter 
problems. The exact transient Dirac spinors are expressed in terms of integral-defined-functions which are the 
relativistic equivalent of the Fresnel integrals. In partial agreement with Moshinsky’s conclusions we find that 
indeed the relativistic densities do not resemble the mathematical expression for intensity of light that appears in 
the theory of diffraction in Optics. In spite of this, when our exact relativistic densities are plotted versus time, 
the plots show transient oscillations which resemble a diffraction pattern. For this reason in this article we claim 
that impressive diffractions in time oscillations do exist in the relativistic realm. Furthermore, the Dirac and 
Klein-Gordon densities look quite different, which implies that relativistic diffraction in time distinguishes 
between spin 0 and 1/2. 

2. The Dirac Shutter Problem 
Consider, for relativistic particles of spin 1/2, the shutter problem. We want to find out the spinor wave function 
( ) ( )T

1 2 3 4, , , ,z tψ ψ ψ ψ ψ=  which is the solution of the one-dimensional Dirac equation: 

( )
00 01 1 0,

00 0
z

z

I I
I Ii ct i z

σ
µ ψ

σ
     ∂ ∂ + + =     −∂ ∂      

                    (6) 

where zσ  is the 2 2×  Pauli matrix and 1
Cmcµ λ− ≡ ≡  the Compton length. The initial condition corre- 

sponds, for 0t ≤ , to a plane wave to the left of the shutter and zero to the right. Three quantum numbers are 
needed to classify the Dirac free particle solutions, namely, the momentum ≡p k , the positive or negative 
energies ω= ± , where ( )2 1 22c kω µ= + , and helicity S pΛ = ⋅S p . We select the initial condition assuming 
a positive energy ω= +  and a plane wave propagating along the z direction ( )0,0,k=k . As for the initial 
helicity,  

0
,

02
z

S z
z

S
σ

σ
 

Λ = =  
 

                                  (7) 

we choose the initial state with a well defined direction of spin, for instance parallel to the direction of motion, 
1 2zS = + . Then in the shutter problem we have an incident plane wave given by  

( ) ( ) ( ) ( )
T

, 1,0, ,0  e 0 .i kz tkz t N z t
c

ωψ θ
µ ω

− 
= − ≤ + 

                   (8) 

For free particles, the helicity SΛ  is a constant of motion. The initial direction of spin, 1 2zS = , will be 
conserved at all positive times. As a consequence the two components of the wave function ( 2ψ  and 4ψ ) 
which are zero at the initial time will remain zero at all positive times:  

( ) ( ) ( )2 4, , 0. 0 .z t z t tψ ψ= = ≥                              (9) 

In terms of the remaining two components ( )1 3,ψ ψ  the Dirac shutter problem is the solution of the 
equation,  

( )
1

3

1 0 0 1 1 01 1 0,
0 1 1 0 0 1i ct i z

ψ
µ

ψ
       ∂ ∂ + + =       −∂ ∂         

                 (10) 

with the initial condition:  

( )
( ) ( )1

3

,0
e ,

,0
ikzz N

z
z

ψ
θ

ψ γ
   

= −   
  

                             (11) 

where ( )Nk cγ µ ω≡ + . The normalization factor N is chosen as 1N cω µ≡ + ; in this way the probability 
density ρ  and the density current cj  transform initially, as a four-vector ( ) ( )( ), 2 ,c cρ µ ω=j k . 
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We use the Compton length C mcλ ≡   to define dimensionless variables: Czχ λ≡ , Cctτ λ≡ , Ckκ λ≡ , 
and 21C cωλ κΩ ≡ = + . Using these variables we derive in Appendix A the exact solution of the Dirac 
shutter problem. To simplify the notation, for n integer, we denote by nG  the integral-defined complex 
functions  

( ) ( ) ( )
( )

( )
2 2

2 2 2, d e u
nn

ni
n n

J u
G u C iS

u

τ τ

χ

χ
χ τ τ χ

χ
Ω −

−
≡ ≡ + ≥

−
∫                   (12) 

where ( )nJ z  is the Bessel function of the first kind of order n. Notice that 0z =  is a removable singularity 
for ( ) n

nJ z z , hence the functions nG  are analytic. In fact the integrand can be explicitly written analytic by 
eliminating the denominator. Indeed, using repeatedly the recurrence relation for the Bessel functions,  

( ) ( ) ( )1 12 n n nnJ z z J z J z− += +  , we we can write  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 2

2
0 2 42

3
0 2 4 63

1
2
1 3 4
24
1 10 15 6

480

J z
J z J z

z
J z

J z J z J z
z

J z
J z J z J z J z

z

= +  

= + +  

= + + +  

                     (13) 

Clearly the real and imaginary parts of n n nG C iS≡ +  are analytic oscillating functions. 
From Appendix A, for the right side of the shutter 0χ > , we have the exact Dirac shutter solution:  

( )
( ) ( )

( )

( )
( )

( )
( )

( )

1
1

3

2

1 2

1 1

1

1

sin,
2

,

sin 1cos
2

sin
cos

e
2

i

i S
N

S S

N ii C S

Gi i
G

τ χ

τ χψ χ τ γ χθ τ χ κ
ψ χ τ

τ χχ χτ χ

τ χ
τ χ χ

γ

χ
κ

∗
−

  Ω −      − − = −      Ω Ω     
 Ω −   − Ω − − + +    Ω Ω Ω  

 Ω −     − Ω − ± ±      Ω Ω  

  − − ± +   
   





( ) ( )

( )
( )

2 2

20 0

2
1 2

2

1 2

sin cos
2

sin 1cos
2

G
G

u C C

i S S

κ κ

χ

χτ τ χ χ

τ χχ χτ χ

∗

= =

  
+    

+Ω Ω − + Ω − − −      

 Ω −    ± Ω − − + +     Ω Ω Ω    

        (14) 

Notice the function ( )θ τ χ−  which shows the relativistic condition that no wave function exists until 
ct z≥ . This property is missing in the Schrödinger solution. 

3. Dirac Diffraction in Time 
Given the Dirac wave function ( ),z tψ  in Equation (14), we can calculate the probability density ρ  given by  

( ) 22 2
1 3 1 3, ;ρ χ τ κ ψ ψ ψ ρ ρ= = + ≡ +                           (15) 

In Figure 2, for fixed values of 1κ =  ( 0.7v c = ) and 5χ = , we show a typical plot of the Dirac density 
( )ρ τ . Surprisingly we find damped oscillations which resemble the Schrödinger diffraction in time oscillations. 

For this reason we call this plot a relativistic diffraction in time process. However, the Dirac oscillations are 
clearly different from the Schrödinger ones (see Figure 1). For 1ρ  notice the impressive double oscillations 
which are unique to the Dirac theory. 
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Figure 2. Dirac diffraction in time probability densities 

1ρ  and 3ρ .                                               
 
As expected, for a relativistic solution, the Dirac density vanishes for times 0 t z c≤ ≤ . The down oscillation, 

immediately following, t z c= , is also a relativistic property. 

4. The Klein-Gordon Shutter Problem 
For relativistic particles with spin 0, the Klein-Gordon shutter problem is, by definition, the solution ( ),z tψ  of 
the equation:  

( )

2 2
2

2 2 ,
z ct
ψ ψ µ ψ∂ ∂

− =
∂ ∂

                                 (16) 

where 1 C mcµ λ≡ ≡  . The initial conditions correspond to a plane wave to the left of the shutter and zero to 
the right.  

( ) ( ) ( ) ( ), e , 0i kz tz t z tωψ θ−= − ≤                            (17) 

where ( )2 1 22c kω µ= + . Therefore at 0t = , when the shutter is suddenly opened, we have the initial con-  

ditions:  

( ) ( ) ( ) ( )
,0

,0 e , e .ikz ikzz
z z i z

t
ψ

ψ θ ω θ
∂

= − = − −
∂

                     (18) 

Similar to the Dirac problem, in terms of the dimensionless variables: Czχ λ≡ , Cctτ λ≡ , Ckκ λ≡ , and 
21C cωλ κΩ ≡ = + , we find the exact solution of this Klein-Gordon problem in Appendix B. At a fixed 

distance 0χ > , on the right side of the shutter, we have the exact Klein-Gordon shutter solution:  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2 2
02 2

1, ; e d e
2

i i u
J u

u i J u
u

τχ τ τ

χ

χ
ψ χ τ κ θ τ χ χ κ χ

χ
Ω − Ω −

  −  = − − + −  −    

∫         (19) 

or in simplified notation  

( ) ( ) ( ){ }1 0
1, e .
2

i G i Gχ τψ χ τ θ τ χ χ κΩ − ∗ ∗= − − −                        (20) 

The presence of ( )θ τ χ−  means, as expected, that the wave function vanishes for t z c< , where z is the 
distance from shutter to the particle detector. 

Given the Klein-Gordon wave function ( ),ψ χ τ , we have a charge density given by (charge 1q = ),  

( ) ( ) ( ),
, ,Im

ψ χ τ
ρ χ τ ψ χ τ

τ
∗ ∂ 

= −  ∂ 
                            (21) 
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Figure 3. Typical Klein-Gordon diffraction in time for the 
charge density, 5χ = .                                        

 
In Figure 3, for fixed values of 1κ =  and 5χ = , we show a typical plot of the charge density versus time 

for the Klein-Gordon solution. The impressive damped oscillations, shown in Figure 3, clearly resemble the 
optical Fresnel diffraction pattern by an straight edge. The double oscillation which is present in the Dirac 
solution is missing now. 

Notice that the asymptotic behavior of ρ  is not 1, as it occurs in the Schrödinger solution. In the particular 
case of 5χ =  and 1κ =  ( 0.7v c = ) shown in Figure 3, the stationary density is 1.4ρ = , which is the correct 
prediction for the shutter's initial conditions (18). In fact  

( ) ( ) ( ) 2,0
,0 ,0 1Im

ψ χ
ρ χ ψ χ κ

τ
∗ ∂ 

= − = + ∂ 
                        (22) 

Therefore, for 1κ =  the predicted stationary density is 1.4. 

5. Conclusions 
We derived the exact solutions for the Klein-Gordon and the Dirac shutter problems. In agreement with 
Moshinsky we find that the relativistic solutions do not resemble the analytic expression that appears in the 
theory of diffraction in Optics. In spite of this, we prove that when the exact Dirac and Klein-Gordon densities 
are plotted versus time, the following happens: 1) both densities show transient oscillations which in some way 
resemble the optical diffraction pattern; 2) the Dirac density looks quite different from the Klein-Gordon one, 
which implies that transient time oscillations depend strongly on the particle spin. 

For these reasons and in total disagreement with Moshinsky’s conclusions [13], we claim that impressive 
diffractions in time oscillations do exist in the relativistic realm. For spin 0 and 1/2 particles, we prove that 
diffraction in time oscillations exists only for particles of rest mass different from zero; photons do not show 
such time oscillations. 
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Appendix A 
With the help of the dimensionless variables given by: Czχ λ≡ , Cctτ λ≡ , Ckκ λ≡ , and  

21C cωλ κΩ ≡ = + , the Dirac Equation (10) may be rewritten as  

1

3

1 0 0 1 1 0
0,

0 1 1 0 0 1
i

ψ
ψτ χ

       ∂ ∂ + + =       −∂ ∂         
                      (23) 

and the initial condition becomes: 

( ) ( )
( ) ( )1

3

,0
,0 e .

,0
iN κχψ χ

ψ χ θ χ
ψ χ γ
   

≡ = −   
  

                         (24) 

Taking the Laplace transform ( sτ → ) in Equation (23), and denoting  

( ) ( ) ( ) ( )( )T
1 3, , , , ,s s sψ χ τ φ χ φ χ φ χ≡ =   , Equation (23) becomes a matrix differential equation  

( ) ( )d e
d

i
x ys

N
κχγφ σ σ φ θ χ

χ
 

+ + = − 
 

                            (25) 

which holds in the range χ−∞ < < ∞ . Due to the presence of the step function ( )θ χ− , the origin 0χ =  is a 
singular point where we demand that the function ( ), sφ χ  must be continuous. We break the infinite range into 
the ranges ( 0χ ≤ ) and ( 0χ ≥ ). For the left side of the shutter, ( ), sφ χ<  denotes the solution of the dif- 
ferential equation:  

( ) ( )d
e , 0

d
i

x ys
N

κχγφ
σ σ φ χ

χ
<

<
 

+ + = ≤ 
 

                        (26) 

and for the right side, ( ), sφ χ>  denotes the solution of  

( ) ( )d
0, 0 .

d x ysφ
σ σ φ χ

χ
>

>+ + = ≥                            (27) 

Both functions φ<  and φ>  must be bounded (φ<  at −∞ ) and (φ>  at +∞ ), and must be continuous at the 
interface 0χ = . 

Because the matrix  

0
0x y

s i
s

s i
σ σ

− 
+ =  + 

                                (28) 

has eigenvalues given by: 2
1 21sλ λ= + = − , with corresponding orthogonal eigenvectors given by: 

1 2, ,
s i s i

u u
s i s i

   − − −
= =      + +   

                           (29) 

then, taking into account the boundary conditions at ±∞ , we have the general solutions for the matrix dif- 
ferential equations:  

( ) ( )2 1, e 0ss i
s A

s i
χφ χ χ− +

>

 −
= ≥  + 

                         (30) 

( ) ( )
( ) ( )2 1

2 2

1, e e 0s ii s i Ns i
s B

i N s iss i
χ κχκγ

φ χ χ
κ γ

+ +
<

   − − − −
= − ≤     − ++Ω+   

            (31) 

where 2 21 κΩ = + . The constants A and B are fixed from the condition at the interface:  

( ) ( )( ) ( ) ( )( )T T
1 3 1 30, , 0, 0, , 0,s s s sφ φ φ φ< < > >= . We have then a set of two algebraic equations with solutions:  

( )( ) ( )( )2 2

1 1 1 1
2

A i s i N i N s i
s s i s i

κγ κ γ−  
= − − + − + +Ω − + 

              (32) 
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( )( ) ( )( )2 2

1 1 1 1
2

B i N s i i s i N
s s i s i

κ γ κγ−  
= − + − − − +Ω + − 

              (33) 

Substituting Equation (32) into Equation (30) and Equation (33) into Equation (31), we get the solution for 
Dirac shutter problem in the ( , sχ ) space. For 0χ ≥ , where the particle detector is located, we have the solution: 

( )
( ) ( )

2 1
1 2

2 2
3

, e2 1
,

ss i N i Ns is i s
s i N N is s i

χφ χ κγ γ κ
φ χ κ γ κγ

− +
>

>

           − = − − + +            +Ω ±           



          (34) 

Notice the singular points at s i= ± Ω  (simple poles) and s i= ±  (branch points), all of them locate in the 
imaginary axis. Therefore, by the Nyquist stability criterion, the time dependent solution ( ),ψ χ τ  is an 
oscillatory bounded solution. 

To simplify the final notation, we express the inverse Laplace transforms ( s τ→ ) with the help of the 
integral-defined complex functions (τ χ≥ ): 

( ) ( ) ( )
( )

2 2

2 2 2, ; d e 0,1,2,
ni u

n n nn

J u
G u C iS n

u

τ τ

χ

χ
χ τ κ

χ

Ω −
−

≡ ≡ + =
−

∫                 (35) 

Using Laplace Transforms Tables [15] and the convolution theorem we find the following results, valid for 
0χ ≥ ,  

( )
( )2 1

1
12 2

sine s

S
s

χ τ χ χθ τ χ
− +

−
   Ω −     = − − 

Ω Ω+Ω     
                       (36) 

( ) ( ) ( )
( )2 1

1
1 12 2

sin
cos .

se is i i C S
s

χ τ χ
θ τ χ τ χ χ

− +
−
   Ω −     + = − Ω − + − +     Ω Ω+Ω      

          (37) 

Next, we use the relation  
2 21 1

2
2 2 2 2

d e e 1
d

s s

s
s s

χ χ

χ

− + − +

− = +
+Ω +Ω

                              (38) 

to obtain  

( ) ( )
( )2 1 2

1 2
1 22 2

sine 11 cos
2

s

s S S
s

χ τ χχ χθ τ χ τ χ
− +

−
   Ω −    + = − Ω − − + +    Ω Ω Ω+Ω     

          (39) 

Finally, using the identities  
2 21 1 2

2 2 2 2

e e 1s ss i s
s is ss i

χ χ− + − +− +
=

++Ω +Ω+
                             (40) 

and 

( )( ) 2 2 22 2

1 1 1
1

s i
s iss s i

− + = + +Ω − +Ω+Ω +  
                         (41) 

we obtain  

( ) ( ) ( ) ( )

( ) ( )

( )
( )

2 1
1 2

1 22 2 2

2
1 2

2

1 2

e e 0 0
21

sin cos
2

sin 1cos
2

s
is i i G G

s s i

u C C

i S S

χ
τ χθ τ χ χ κ χ κ

χτ τ χ χ

τ χχ χτ χ

− +
− −− ∗ ∗

  −−     = − + + = + =  +Ω Ω − +   

+Ω Ω − + Ω − − −      

 Ω −   + Ω − − + +    Ω Ω Ω  



          (42) 
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Therefore, for 0χ ≥ , the Dirac final solution is given by:  

( )
( ) ( )

2 2

2 2

1 1
1 1 1

2 2 2 2
3

1 1
1 2 1

2 2 2 2

, e e2
,

e e1

s s

s s

i N
s i

i Ns s

i Ns is
N is s s i

χ χ

χ χ

ψ χ τ κγ
ψ χ τ κ γ

γ κ
κγ

− + − +
− −>

>

− + − +
− −

           − = −       +Ω +Ω           
         − + +   +Ω +Ω   ±      





 

 

            (43) 

where each inverse Laplace transform has been previously calculated. We claim that Equation (43) is the exact 
Dirac wave function for the shutter problem, valid for 0χ ≥  and 1Ω ≠  ( 0k ≠ ). 

Appendix B 
In a similar way to the Dirac solution, the Klein-Gordon shutter problem can be written in terms of dimen- 
sionless variables:  

2 2

2 2

ψ ψ ψ
χ τ
∂ ∂

− =
∂ ∂

                                     (44) 

with initial conditions given by:  

( ) ( ) ( ) ( )
,0

,0 e , e .i iiκχ κχψ χ
ψ χ θ χ θ χ

τ
∂

= − = − Ω −
∂

                     (45) 

Taking the Laplace transform ( sτ → ) of Equation (44) we find the differential equations:  

( ) ( ) ( )
2

2
2

d
1 e , 0

d
is s i κχφ

φ χ
χ

<
<− + = − − Ω ≤                         (46) 

and  

( ) ( )
2

2
2

d
1 0. 0

d
sφ

φ χ
χ

>
>− + = ≥                               (47) 

Here both functions φ<  and φ>  must be bounded: (φ<  at ∞− ) and (φ>  at +∞ ). The two functions and 
their first derivatives must be continuous at the interface 0χ = . 

Taking into account the boundary conditions at ±∞ , the solutions of Equations (46) and (47) are:  

( ) ( ) ( )2 1 1, e exp 0ss A i
s i

χφ χ κχ χ+
< = + ≤

+ Ω
                     (48) 

( ) ( )2 1, e 0ss B χφ χ χ− +
> = ≥                              (49) 

where 21 κΩ = + . The constants A and B are fixed from the conditions at the interface: φ<  and φ> , and their 
first derivatives, d dφ χ<  and d dφ χ> , must be continuous at 0χ = . We have then a set of two coupled 
algebraic equations with solutions given by:  

2

1 1 1
2 1

iKA
s i s

 −
= +  + Ω + 

                               (50) 

2

1 1 1
2 1

iKB
s i s

 
= −  + Ω + 

                               (51) 

Substituting Equation (50) into Equation (48) and Equation (51) into Equation (49) we have the solutions: 

( ) ( ) ( )2

2

1 1 1, 1 exp 1 exp ,
2 1

iKs s i
s i s is

φ χ χ κχ<

 −
= + + + +  + Ω + Ω+ 

            (52) 

( ) ( )2

2

1 1, 1 exp 1 .
2 1

iKs s
s i s

φ χ χ>

 
= − − +  + Ω + 

                     (53) 
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Finally, we need to invert the Laplace transforms ( s τ→ ). We find in Laplace Transforms Tables [15] the 
following results valid for 0χ ≥ : 

( )
( ) ( ) ( )

2 1
1 2 2

02

e d e
1

s
i uu J u

s i s

χ
τ τ

χ
θ τ χ χ

− +
− Ω −−

 
  = − −
 + Ω + 

∫                  (54) 

( ) ( ) ( ) ( )2 2 2
1 11

2 2

e e d e
s

i i u
J u

u
s i u

χ ττ χ τ

χ

χ
θ τ χ χ

χ

− +
− Ω − − Ω −−

 −     = − − + Ω  −    
∫                  (55) 

We have then the final solutions, for 0χ ≥ :  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2 2
02 2

1, e d e
2

i i u
J u

u i J u
u

ττ χ τ

χ

χ
ψ χ τ θ τ χ χ κ χ

χ
− Ω − − Ω −

>

  −  = − − + −  −    

∫           (56) 

and for 0χ ≤  we get the incident and reflected wave:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2 2
02 2

1, e e d e
2

i i i u
J u

u i J u
u

τκχ τ χ τ τ

χ

χ
ψ χ τ θ τ χ χ κ χ

χ
−Ω − Ω + − Ω −

< −

  −  = − + + + −  −    

∫       (57) 

We claim that Equations (56) and (57) are the exact Klein-Gordon wave functions for the shutter problem. It’s  

no surprising to find the Bessel functions ( )2 2
0J u χ−  and ( )2 2 2 2

1J u uχ χ− − , they are just the  

Green’s function and its derivative respectively for the Klein-Gordon equation [16]. 
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