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Abstract 
This paper is concerned with the determination of currents and charges in hypercomplex exten-
sions of the Feynman-Dyson derivation of the Maxwell-Faraday equations. We analyze the ap-
pearance of charges and currents in non-Abelian versions of that approach: SU(2), SU(3) and G2. 
The structure constants of G2 Lie algebra are computed explicitly. Finally, we suggest a seven-di- 
mensional treatment of color. 
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1. Introduction 
This paper is a continuation of the discussion on hypercomplex extensions of the Feynman-Dyson derivation of 
the Maxwell-Faraday equations. Usually mathematical proofs have only relatively minor value since for any set 
of mathematical arguments it is possible to present an equally valuable set of contra-arguments; in physics, by 
contrast, the ultimate verification of a statement is its confirmation by experiment and the solution is unique. 

The specific topic of the present discussion is the determination of currents and charges in the suggested 
schemas [1]-[4]. As the defining model we consider the structure of the classical electrodynamics which consists 
of two parts: the first, the “inertial” fields produced by a moving source that is wrapped around the source, and 
the second, the radiated part that consist of the excessive field due to the accelerated motion of the source. 
Equivalently, the solutions may be viewed as a description of the motion of a source under the influence of an 
external field. The role of the inhomogeneous equations in all that is crucial. They define the electromagnetic 
parameters of the source: charge and current. This is not “merely” a definition, for it produces a drastic change 
in the physical content of the theory which leads to reconsideration of the structure of the space-time continuum 
(a change from Galilean to Lorentz group transformations that leave the equations invariant). It also introduces a 
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new type of symmetry—internal local gauge symmetry. 
Thus, charge and the current turn out to be newly conserved quantities. Note that the non-Abelian extension 

of the gauge fields proceeds through the steps described above [3]. Therefore a more detailed analysis of what 
has been done so far is required as well as an explanation of the reasoning behind it.  

2. Mathematical Preliminary. 
Mathematical background for our discussion is necessary. 

Since we are interested in a theory with uniquely determined predictions, it is advisable to use a numeric sys-
tem that allows that to occur: normed division algebras which include the real (1dimensional), complex (2 di-
mensional), quaternion (4 dimensional) and octonion (8 dimensional) algebras that satisfy the definition of qua-
dratic composition algebras: 

( ) ( )2 1 0, real, complex, quaternion, octonionx Tr x x N x x− + = ∀ =  

( ) ( )1, real,x x Tr x Tr x+ ≡ =                                 (1) 

( ) ( ) ( )1, real.xx xx N x N x= ≡ =  

Definitions of trace ( )Tr x  and norm ( )N x  are consistent with those of matrix calculus. 
Note that in contrast with reals, complex and quaternions, octonions are non-associative (but still alternative) 

algebra and therefore can’t be represented by matrices. 
Now we need to introduce multidimensional numeric objects-vectors to extend the usual arithmetic opera-

tions-addition, multiplication by a constant number, and multiplication between them. In so doing, we now gain 
three types of multiplication: 

1) scalar multiplication described by the Jordan product 

( )1
2

⋅ ≡ +A B AB BA  

which maps vector fields into scalars; 
2) vector multiplication described by the Lie bracket product 

( )1
2

× ≡ −A B AB BA  

which maps vector fields into vectors; and 
3) tensor multiplication ⊗A B  which leads to the higher dimensional algebras. 
Surprisingly, vector multiplication does not always satisfy the usually required properties [5] [6]. 
It realized consistently only in n = 1, n = 3 and n = 7 dimensional space according to [7] [8]: 

( )( )( )1 3 7 0n n n n− − − = ,                               (2) 

where n is the dimension of the underlined vector space. 
Bearing in the mind the definition of charge in the following discussion, from now on, by the term multiplica-

tion we mean the Lie bracket product 

( )1
2a b a b b ae e e e e e× = − .                                (3) 

For the quaternions ( 3n = ) the structure constants abcf  may be computed from 

[ ]1 , ; , , 1, 2,3
2a b a b abc ce e e e f e a b c× ≡ = =                          (4) 

where abc abcf ε= , and abcε  is totally antisymmetric Levi-Civita symbol with the only nonzero independent 
components 123 1ε = . Thus we get quaternion multiplication table (see Figure 1), where 2 1; 1,2,3ae a= − = . 
From (1) it follows that ae  are the traceless, antihermition generators of quaternion algebra. We compute the 
quaternion and octonion multiplication tables in order to compare them with the corresponding commutation  
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Figure 1. Quaternion multiplication table. 

 
relation tables and structure constants for the most popular in physical applications Lie algebras. 

For the octonions ( 7n = ) we get octonions multiplication table (see Figure 2), where 2 1; 1,2, ,7ae a= − =  . 
From (1) it follows that ae  are the traceless, antihermition generators of octonian algebra. Then the structure 
constants abcf  may be computed from 

[ ]1 , ; , , 1, ,7
2a b a b abc ce e e e f e a b c× ≡ = =                           (5) 

where abc abcf ε= , and abcε  is the totally antisymmetric analog of the Levi-Civita symbol in seven-dimen- 
sional vector space with only nonzero independent components  

123 246 435 651 572 714 367 1abcf f f f f f f f= = = = = = = =                     (6) 

3. Internal (Local Gauge) Symmetries 
Our knowledge of the physical system is expressed in terms of conserved measurable quantities. The Noether 
theorem provides the connection between them and the symmetry transformations which leave the equations of 
motion invariant. 

Now let us consider the symmetries that play a major role in the description of the fundamental interactions. 
These are rank-one electromagnetic U(1) and its extension, the Weinberg-Salam-Glashow electroweak model 
SU(2) ⊗  U(1). Further, we use the second-rank extension of these-SU(3) of QCD and its close relative, G(2) 
[9]. In all the cases we have dealt with, the continuous Lie groups and algebras associate the transformations in 
the inner space of the particle with quantities measurable by macroscopic devices according to Noether theorem 
[10]. That connection is established by the universal relation 

[ ],a b abc cT T if T=                                     (7) 

where aT  are traceless, hermitian matrices, which we call gauge charges and abcf  are the structure constants 
that uniquely determine the symmetry group.  

3.1. The Lie Algebra of the SU(2) Group 
The group parameters form a three-dimensional vector space. As its base we choose standard Pauli matrices: 

1 2 3

0 1 0 1 01 1 1; ; .
1 0 0 0 12 2 2

i
T T T

i
−     

= = =     −     
                     (8) 

Here and in the following we use the normalization: 

{ } 1 ; , 1, 2,3
2a b abTr T T a bδ+ = =                               (9) 

We use the common normalization convention in order to allow the comparison of vector spaces formed by 
consecutive Lie algebras. Then, structure constants abcf  are computed from (7). It is convenient to present the 
results in the form of a multiplication table (see Figure 3). 

The abc abcf ε=  obtained is a totally anti-symmetric Levi-Civita symbol in three-dimensional vector space 
with only independent nonzero components 123 1f = . 
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Figure 2. Octonions multiplication table.                                                 

 

 
Figure 3. Lie algebra and structure constants of SU(2).                                                 

3.2. The Lie Algebra of the SU(3) Group  
Here we have to deal with eight group parameters. In order to maintain the connection with the Lie algebra of 
the SU(2) group we choose traceless, hermitian Gell-Mann matrices as the base of our vector space: 

1 2 3 4

5 6 7 8

0 1 0 0 0 1 0 0 0 0 1
1 1 1 11 0 0 ; 0 0 ; 0 1 0 ; 0 0 0 ;
2 2 2 2

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0
1 1 1 10 0 0 ; 0 0 1 ; 0 0 ; 0 1 0
2 2 2 2 30 0 0 1 0 0 0 0 0 2

i
T T i T T

i
T T T i T

i i

−       
       = = = − =       
       
       

−      
      = = = − =      
       −      

.






          (10) 

Now from (7) we calculate the structure constants and present the results as a multiplication table (see Figure 
4). 
where  

123 147 516 246 257 345 637 458 678
1 31; ;
2 2

f f f f f f f f f= = = = = = = = =                  (11) 

are non-vanishing, totally anti-symmetric structure constants. 

3.3. The Lie Algebra of the G2 Group 
The general elements of the G2 Lie algebra are described by fourteen parameters. The standard base is given in 
terms of fourteen 7 × 7 traceless hermitian matrices [11]: 
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Figure 4. Lie algebra and structure constants of SU(3).                                                 

 

1

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 0 1 0 0
2 2 0 0 0 1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

T

 
 
 
 
 

= − 
 −
 
 
 
 

, 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
1 0 0 0 0 0 0

2 2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

i
i

T i
i

− 
 
 
 
 

= − 
 
 
 
 
 

 

3

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
2 2 0 0 0 0 1 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

T

 
 − 
 
 

= − 
 
 
 
 
 

, 4

0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 1 0
2 2 0 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0

T

 
 
 
 
 

= − 
 
 

− 
 
 

 

5

0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

i

i
T i

i

− 
 
 
 
 

= − 
 
 
 
 
 

, 6

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0

1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 1 0

0 0 0 0 1 0 0
0 0 0 0 0 0 0

T

 
 
 
 
 

=  
 −
 

− 
 
 

 

7

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0

i
i

T
i

i

 
 − 
 
 

=  
 −
 
 
 
 

, 8

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2 0 0 0 0

1 0 0 0 1 0 0 0
2 6 0 0 0 0 1 0 0

0 0 0 0 0 2 0
0 0 0 0 0 0 0

T

 
 
 
 −
 

= − 
 −
 
 
 
 

          (12) 
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9

0 0 0 0 0 0 2
0 0 0 0 0 1 0
0 0 0 0 1 0 0

1
0 0 0 0 0 0 2

2 6
0 0 1 0 0 0 0
0 1 0 0 0 0 0

2 0 0 2 0 0 0

T

 
 

− 
 
 
 =
 
 
 −
 
 
 

, 10

0 0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0

1
0 0 0 0 0 0 2

2 6
0 0 0 0 0 0
0 0 0 0 0 0

2 0 0 2 0 0 0

i
i

i
T i

i
i

i i

 
 
 
 − 
 = −
 
 
 −
 
 − 

  

11

0 0 0 0 0 1 0

0 0 0 0 0 0 2
0 0 0 1 0 0 0

1 0 0 1 0 0 0 0
2 6

0 0 0 0 0 0 2
1 0 0 0 0 0 0

0 2 0 0 2 0 0

T

 
 
 
 − 

− =
 
 
 
 
 
 

, 12

0 0 0 0 0 0

0 0 0 0 0 0 2
0 0 0 0 0 0

1 0 0 0 0 0 0
2 6

0 0 0 0 0 0 2
0 0 0 0 0 0

0 2 0 0 2 0 0

i

i
i

iT
i

i

i i

− 
 
 
 
 

− =
 

− 
 
 
 − 

 

13

0 0 0 0 1 0 0
0 0 0 1 0 0 0

0 0 0 0 0 0 2
1 0 1 0 0 0 0 0

2 6 1 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 2 0 0 2 0

T

− 
 
 
 
 
 =
 − 
 
 
 
 

, 14

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 2
1 0 0 0 0 0 0

2 6 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 2 0 0 2 0

i
i

i
iT

i

i

i i

 
 − 
 
 
 =
 − 
 −
 
 − 

 

And thus we obtain the corresponding multiplication table (see Figure 5).  
 

 
Figure 5. Lie algebra and structure constants of G2.                                                                    
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where 

123 147 516 246 257 345 637

1093 11123 1291 9414 11011 21012 5913 41013 51014 61411 71214 71113 61213

458 678 9810 81211 81314

1 1; ;
2 2 2

1 ;
2 2

3 1 1; ;
2 2 2 6 6

f f f f f f f

f f f f f f f f f f f f f

f f f f f

= = = = = = =

= = = = = = = = = = = = =

= = = = =

   (13) 

are non-vanishing, totally anti-symmetric structure constants.  
Notice that SU(2) Pauli matrices as well as SU(3) Gell-Mann matrices do not allow some general form that 

can describe all the matrices. I guess that the G2 (T1 to T14) also do not allow to do so.  

4. Equations of Motion of Non-Abelian Waves 
Consider an elementary particle whose motion is parametrized by the external position ; 1, 2,3;jx j =  velocity 

; 1, 2,3;jx j =  and internal gauge charges ; 1, ,aT a n=  , which are the non-Abelian analogs of electromagnetic 
charge; n is the dimension of the vector space formed by those charges. Then the defining commutation relations 
are 

[ ]

, 0

,

,

, 0

j k

j k jk

a b abc c

j a

x x

x x i

T T if T

x T

δ

  = 
  = 

=

  = 



                                      (14) 

where , 1, 2,3j k =  and , , 1, ,a b c n=  . 
In general, the equations of particle motion are Newtonian equations 

( ), ,j jmx F x x t=                                       (15) 

and generalized Wong’s equations [2] 

0; 1,2,3; , , 1, ,b c
a abc j jT gf A T x j a b c n+ = = =


                         (16) 

(in the time axial gauge 0 0A = ). jA  is the vector potentials of the external gauge fields 

; 1, 2,3; , , 1, ,a
j j aA A T j a b c n= = =                              (17) 

Particle motion affected by the generalized Lorentz force 

( ) ( ) ( ), , , ,j j jkl k lF x x t gE x t g x B x tε= +                             (18) 

where  

( ) ( ) ( ) ( ), , and , ,a a
j j a j j aE x t E x t T B x t B x t T≡ ≡                        (19) 

are three-dimensional vectors in outer particle space and n- dimensional vectors in the inner particle space. They 
are the expected solutions of the generalized Yang-Mills [12]-Shaw [13]-Lee [3]-Wong [2] equations 

0a abc b c
j j j jB gf A B∂ + =                                   (20) 

( ) 0
a

a abc b ci
ijk j k j k

B
E gf A E

t
ε

∂
+ ∂ + =

∂
                             (21) 

a abc b c a
i i i iE gf A E ρ∂ + =                                  (22) 

( )
a

a abc b c ai
ijk j k j k i

E
B gf A B j

t
ε

∂
− + ∂ + =

∂
                           (23) 
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In particular, for 1n =  we have Maxwell-Faraday electromagnetic theory; for 3n =  we have the Weinberg- 
Salam-Glashow electroweak model; for 8n =  we have SU(3) QCD and for 14n =  we obtain G2 generaliza-
tion of Yang-Mills theory that may also have some relevance to the unified theory of fundamental interactions. 

However, neither SU(3) nor G2 are based on seven-dimensional space of internal parameters in obvious con-
tradiction to the requirement that 7n =  from [7] and [8]. 

5. Color 
So far we have considered matrices with the real and complex matrix elements. There are numerous ways to ob-
tain hypercomplex extensions of these matrices. The simplest is: 

1 1 1 1

2 2 2 2

3 3 3 3

0 1
;

1 0

0
;

0

1 0
; .

0 1

e i i ie

i
e i i ie

i

e i i ie

σ σ

σ σ

σ σ

 
= − ⋅ = − = 

 
− 

= − ⋅ = − = 
 
 

= − ⋅ = − = − 

                             (24) 

These expressions may be treated as a substitution of 2 2×  matrices containing complex matrix elements by 
1 1×  matrices containing quaternion matrix elements. This treatment is legitimate since quaternions do allow 
for matrix representation while octonions, as stated previously, cannot be represented by matrices. Nevertheless, 
(25) give us an idea of how to introduce a special definition of charges and currents that do satisfy the 7n =  
requirement. Namely, 

; 1, ,7j jT ie j= =                                    (25) 

Then the structure constants are: 123 246 435 651 572 714 367 1abcf f f f f f f f= = = = = = = =  
We assume that these are the color charges and currents in the unified theory of the fundamental interactions. 

Our confidence is based on the discovery made by I. Newton [14]: 
 

Red Orange Yellow Green Blue Indigo Violet 

6. Conclusion 
It looks like a long way to go until the comparison with the experimental results could be obtained within this 
approach. However, definitely it provides an interesting extension of the current version of the quantum field 
theory.  
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