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Abstract 
As a topic of “quantum color dynamics”, we study various mass generation of colored particles and 
gluonic dressing effect in a non-perturbative manner, using the Schwinger-Dyson (SD) formalism 
in (scalar) QCD. First, we review dynamical quark-mass generation in QCD in the SD approach as a 
typical fermion-mass generation via spontaneous chiral-symmetry breaking. Second, using the SD 
formalism for scalar QCD, we investigate the scalar diquark, a bound-state-like object of two 
quarks, and its mass generation, which is clearly non-chiral-origin. Here, the scalar diquark is 
treated as an extended colored scalar field, like a meson in effective hadron models, and its effec-
tive size R is introduced as a form factor. As a diagrammatical difference, the SD equation for the 
scalar diquark has an additional 4-point interaction term, in comparison with the single quark 
case. The diquark size R is taken to be smaller than a hadron, R ~ 1 fm, and larger than a constitu-
ent quark, R ~ 0.3 fm. We find that the compact diquark with R ~ 0.3 fm has a large effective mass 
of about 900 MeV, and therefore such a compact diquark is not acceptable in effective models for 
hadrons. We also consider the artificial removal of 3- and 4-point interaction, respectively, to see 
the role of each term, and find that the 4-point interaction plays the dominant role of the diquark 
self-energy. From the above two different cases, quarks and diquarks, we guess that the mass gen-
eration of colored particles is a general result of non-perturbative gluonic dressing effect. 
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1. Introduction 
Quantum chromodynamics (QCD) is the fundamental gauge theory of the strong interaction, and it is a long 
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important problem to describe hadron structure and properties based on QCD. Quarks and gluons, the basic 
ingredients of QCD, strongly interact with each other in an infrared region, and they are confined in hadrons. 
Then, due to their non-perturbative properties, it is fairly difficult to describe hadrons directly from QCD. Also, 
the non-perturbative dynamics in QCD directly relates to the other important physical subject of “mass 
generation.” 

The origin of mass is one of the most fundamental issues in physics. One famous category of mass generation 
is the Yukawa interaction with the Higgs field. However, even besides the dark sector, the Higgs-origin mass is 
only about 1% of the total mass in our universe, where dominant massive particles are nuclei (u,d quarks) and 
electrons. Actually, the Higgs interaction only gives the electron mass (about 0.5MeV) and a small current quark 
mass (a few MeV) for u,d quarks [1]. In contrast, about 99% of mass of matter in our universe are created by the  
strong interaction, apart from the dark sector. In fact, a large constituent quark mass of ( )300 - 400 MeVqM =  
arises from non-perturbative dynamics in QCD. Thus, QCD gives another category of mass generation. 

Such a dynamical fermion-mass generation in the strong interaction was first pointed out by Y. Nambu et al. 
[2] in 1961 in the context of spontaneous chiral-symmetry breaking. The QCD-based quantitative analysis of 
dynamical fermion mass generation was performed by Higashijima and Miransky in 1980’s [3] [4] using the 
Schwinger-Dyson formalism. Thus, light u,d-quarks are considered to acquire a large constituent quark mass of 
about 300 - 400 MeV, in accordance with spontaneous chiral-symmetry breaking. 

Even without chiral symmetry breaking, however, it is likely that QCD has several dynamical mass 
generation mechanism. For example, while the charm quark has no chiral symmetry, some difference seems to  
appear between current and constituent masses for charm quarks: the current mass is 1.2cm   GeV at renor- 
malization point 2 GeVµ =  [1], and the constituent charm quark mass is 1.6 GeVcM   in the quark model.  
The gluon is more drastic case. While the gluon mass is zero in perturbation QCD, the non-perturbative effect of 
the self-interaction of gluons seems to generate a large effective mass of 0.6 GeV [5]-[7], and the lowest 
glueball mass is about 1.6GeV [8] [9]. Furthermore, the dynamical mass generation for scalar-quark have been 
studied in the lattice scalar-QCD calculation [10]. Thus, we deduce that “quantum color dynamics” generally 
accompanies a large mass generation, due to the strong interaction. 

Next, let us consider compositeness of hadrons in terms of quarks. As an infrared effective theory, the 
constituent quark model has been successful for the description of the hadron spectroscopy. The constituent  
quark belongs to the fundamental representation c3  in the ( )SU 3  color group, and many hadrons can be  
classified as the color-singlet ( c1 ) bound states of some quarks and antiquarks. In this picture, ordinary mesons 
and baryons are identified as quark-antiquark and three-quark systems, respectively. However, besides the 
ordinary baryons and mesons, QCD allows the existence of other color-singlet states, such as glueballs, hybrids 
and multi-quark states, called exotic hadrons. Recent experiments have reported the candidates for these exotic 
states [1]. The heavy hadrons, which includes one or more heavy (anti)quarks, are also recent hot topics in 
hadron physics [1] [11] [12]. For example, very recently, LHCb has reported the discovery of two charmed 
pentaquarks, Pc

+  (4380) and Pc
+  (4450), from a careful analysis of the decay product in the high-energy 

process, and this report seems to activate the multi-quark physics again [13]. 
In the theoretical study of these states, the diquark picture [14] [15] has been discussed as an important 

effective degree of freedom. The diquark is composed of two quarks with strong correlation, where the  
one-gluon-exchange interaction between two quarks is attractive in the color anti-triplet c3  channel [16] [17], 
of which color is the same as an anti-quark. In ( )SU 3  flavor case, the flavor-antisymmetric and spin-singlet  
with even parity is the most attractive channel in diquark, which is called scalar diquark. If the diquark 
correlation is developed in a hadron, this scalar diquark channel would be favored. The diquark correlation in a 
hadron is discussed in various situations, such as tetra-quarks, heavy baryons and other exotic states [18] [19]. 
The tetra-quark states as the bound state of the diquark/antidiquark is suggested in early day [20], and X(3872) 
[21] and X(1576) [22] are considered as tetra-quark states. Light flavor mesons as tetra-quark [23]-[32] and 
mixing with qq  state [33]-[35] are discussed. There are various studies the heavy baryons focused on diquark 
[36]-[40], e.g., single heavy quark/light diquark ( Qqq ) picture [41]-[45]. The other exotic states including heavy 
quark(s) are studied [46]-[52]. The ordinary baryon properties focused on the diquarks have been also discussed 
[53]-[57]. The diquark correlation is found in the lattice QCD simulation [58]-[61]. It is also considered that the 
diquark condensation is occurred in an extremely high density system, called the color superconductivity [62]. 
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We note that diquark properties strongly depend on the color number cN . If we consider the two-color QCD, 
the diquarks compose the color singlet (baryons). The strength of correlation between two quarks is same as 
quark/antiquark channel, and the (diquark-)baryons correspond to the mesons. This fact is known as the Pauli-  
Gürsey symmetry. The quark-hadron matter in two-color system is investigated [63]-[69]. For the 4cN =  case, 
the diquarks belong to c6  or c10 . As an interesting fact for the case, the diquark contents must be different 
between baryons and tetra-quarks. In fact, the diquark qq  in an 4cN =  baryon qqqq  belongs to c6 , which 
is self-adjoint. On the other hand, the diquark in a tetra-quark qqqq  belongs to c10 . From this viewpoint, the 

3cN =  case is rather special, because the diquarks belong to the same color c3  in both cases of baryon qqq  
and tetra-quark qqqq . 

The properties of diquarks such as the mass and size are not understood well, although the diquarks have been 
discussed as important object of hadron physics. While the diquark is made by two quarks with gluonic 
interaction, it still strongly interacts with gluons additionally because of its non-zero color charge. Therefore, 
such dressing effect of gluons for diquark should be considered in a non-perturbative way. The dynamics of 
diquark and gluons may affect the structure of hadrons. In the quark-hadron physics, the Schwinger-Dyson (SD) 
formalism is often used to evaluate the non-perturbative effect based on QCD [3] [4] [70]-[78]. In this paper, we 
apply the SD formalism to scalar diquark to investigate the effective mass of scalar diquark, which reflects a 
non-perturbative dressing effect by gluons. The scalar diquark is treated as an extended field like a meson in 
effective hadron models, and interacts with the gluons [10] [42]. 

For the argument of the scalar diquark, it would be important to consider its effective size. For, point scalar 
particles generally have large radiative corrections even in the perturbation theory [79] [80]. As an example, in 
the framework of the grand unified theory (GUT), the Higgs scalar field suffers from a large radiative correction 
of the GUT energy scale, and therefore severe “fine-tuning” is inevitably required to realize the low-lying Higgs 
mass of about 126 GeV [81], which leads to the notorious hierarchy problem [79] [80]. The Higgs propagator 
with radiative correction has been investigated by setting the mass renormalization condition to reproduce 126 
GeV [82]-[84]. A similar large radiative correction also appears for point-like scalar-quarks, which correspond 
to compact scalar diquarks, in scalar lattice QCD calculations [10]. In fact, the point-like scalar-quark  
interacting with gluons acquires a large extra mass of about 1.5 GeV at the cutoff 1 1 GeVa−

 , where a is the  
lattice spacing. Such a large-mass acquirement would be problematic in describing hadrons with scalar diquarks. 
However, since it is a bound-state-like object inside a hadron, the diquark must have an effective size. This 
effect gives a natural UV cutoff of the theory, and reduces the large radiative correction. Then, we take account 
of the effective size and investigate the mass of the scalar diquark inside a hadron within the SD formalism. 

This paper is organized as follows. In Section 2, we review the SD formalism for the light quark, as the 
typical fermion mass generation in QCD. In Section 3, we investigate the SD equation for the scalar diquark, 
where a simple form factor is introduced for the possible size of diquark. In Section 4, we present the numerical 
result of the diquark self-energy with the dependence of the bare mass and size of diquark, and briefly discuss 
the dynamical mass generation for the scalar diquark in the SD formalism. Section 5 is devoted to conclusion 
and discussion. 

2. Dynamical Mass Generation of Quarks in QCD  
The chiral symmetry is a fundamental symmetry in the light-quark sector of QCD, and it is an exact global 
symmetry in the chiral limit. In the low-energy region of QCD, spontaneous chiral-symmetry breaking takes 
place, which generates a large effective mass of light quarks. Actually, in the theoretical analysis with the 
Schwinger-Dyson (SD) formalism in QCD, a large self-energy generation of quarks is demonstrated in an 
infrared region, which breaks the chiral symmetry in the physically stable vacuum [3] [4]. In this section, as the 
standard fermionic mass generation in QCD, we briefly review the quark mass generation in the SD formalism 
for QCD in the Landau gauge, which is frequently used. This review part gives a important basis for the 
non-perturbative QCD physics, and is also useful to set up the formalism for the scalar diquark case in Section 3. 

As a merit of the Lorentz-covariant gauge like the Landau gauge, the dressed quark propagator is generally 

described as ( ) ( ) ( )( ) 12 2 2= qS p iZ p p p
−

− Σ/  with the wave function renormalization ( )2Z p  and the 
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self-energy of quark ( )2
q pΣ . The general and exact SD equation for the quark propagation is diagrammatically  

expressed in Figure 1. In principle, the quark propagator is exactly obtained by solving this equation, if the 
exact form of the gluon propagator and the quark-gluon vertex are given. Here, the kernel in the SD equation  
depicted in Figure 1 is expressed by the product of the quark-gluon vertex ( ),a p kµΓ  and the gluon dressing 

function ( )( )2
gZ p k−  [85],  

( )( ) ( )
2

2 , ,
4π g a b
g Z p k T p kµ νγ− Γ                                 (1) 

where aT  ( 21, 2, , 1ca N= − ) denotes the generator of the SU(Nc) color group. 
In the most SD studies for quarks, one takes the rainbow-ladder approximation with the renormalization- 

group improvement of the quark-gluon vertex at the one-loop level. Note that, owing to the iterative structure of 
the SD equation, a simplified full-order treatment on the coupling sα  can be achieved, even with the use of the 
one-loop level vertex and so on. In actual, by the diagrammatical expansion, one can easily confirm the 
inclusion of infinite order of the coupling sα , and the non-perturbative effect of gluons is thus included in this 
formalism. Recall that any nontrivial vacuum cannot be expressed by the perturbation theory. 

Here, we briefly mention the treatment of quark confinement in the SD approach. In most works of the SD 
approach, the confinement effect is ignored, which seems problematic for the study of QCD. On this point, 
several recent studies, both analytical works [86] and lattice QCD simulations [87], have suggested that chiral 
symmetry breaking and quark confinement are not directly correlated in QCD. If this is the case, even without 
confinement, one may be able to discuss chiral symmetry breaking in QCD, as is the SD approach. 

At the one-loop level of renormalization-group improvement, the SD kernel is approximated as  

( )( ) ( ) ( )( )
2

2 2, ,
4π g a b s a b
g Z p k T p k p k T Tµ ν µ νγ α γ γ− Γ → −                    (2) 

and the Landau-gauge gluon propagator is given as  

( )2
2 2
1 .ab abp p

D p g
p p

µ ν
µν µν δ

 −
= − 

 
                            (3) 

Then, by taking Dirac trace or the trace after multiplying p/ , the SD equation for the quark is expressed by 
the coupled integral equations:  

( )
( )

( ) ( )( ) ( ) ( )
( )( ) ( )

2 2 22
2 4

3 22 2 2 2

3
d ,

4π
s qq

q
q

p k Z k kp iC
m k

Z p k k p k

α − ΣΣ
= +

− Σ −
∫

3
                  (4) 

( )
( ) ( )( ) ( )

( ) ( )
( )
( ) ( )

2 2 2 2 2
2 4
3 2 2 4 42 2 2 2

21 3 21 d ,
4π

s

q

p k Z kiC p kp k p kk
pZ p k k p k p k p k

α −  ⋅⋅ = + + −
 − Σ − − − 

∫
3

          (5) 

with the bare quark mass qm  and the Casimir operator ( ) 8
2 1 4 3a a

aC T T
=

= =∑3  in the SU(3) color case.  
We use one-loop level renormalization-group-improved coupling in the case of 3cN =  and 3fN = ,  

 

 

Figure 1. The Schwinger-Dyson equation for the quark field. The shaded blob denotes the self-energy of the quark ( )2
q pΣ , 

the black dot the bare quark-gluon vertex, the shaded triangle the dressed vertex ( ),a p kµΓ , the solid line the quark 
propagator and the curly line the gluon propagator.                                                              
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( ) ( ) ( ) ( )

( ) ( )

2 2
IR2 22 2

QCD2

2 2
IR2 2

IR QCD

1
ln12π ,

14π 11 2
ln

E
EE

s E
c f

E

p p
pg p

p
N N p p

p

α

 ≥ Λ= = −  ≤
 Λ

                 (6) 

with an infrared regularization of a simple cut at IR 640 MeVp   which leads to ( )2 2
IR QCDln 1 2p Λ = , and the 

QCD scale parameter QCD 500 MeVΛ =  [4] [73] [77]. The subscript E, such as Ep , denotes the value in 
Euclidean space. The infrared regularization has been introduced to avoid the divergent pole at QCDp = Λ . The 
behavior of the coupling is shown in Figure 2 in the Euclidean space. All the figures for the numerical results 
will be in the Euclidean space. 

The Higashijima-Miransky approximation is to take the larger value of the argument (Euclidean momenta) in 
the coupling as ( )( ) ( )( )2 2 2max ,s E E s E Ep k p kα α− ≈ , and this approximation is also frequently used in the SD 

approach for quarks, because ( )2 1EZ p =  is analytically obtained in the Landau gauge and the computation 

becomes quite simplified for the quark self-energy ( )2
q EpΣ :  

( ) ( ) ( )
( )

( ) ( )
( )

UV
2 3 2 2 2

2
2 2 2 2 2 2 20

2 2d d ,
ππ

E

E

ps E E q E E s E q E
q E q E Ep

E E q E E q E

p k k k k k
p m k k

p k p k k

α αΛΣ Σ
Σ = + +

+ Σ + Σ∫ ∫            (7) 

where the Wick rotation has been taken. (For the detail, see, e.g., Appendix in Ref. [73].) The result of the SD 
equation is shown in Figure 3 in the chiral limit 0qm = . There is a small cusp structure at IRp  due to the 

coupling behavior Equation (6). The ultraviolet cutoff UVΛ  is taken as 5 GeV. The self-energy ( )2
q EpΣ  is  

 

 

Figure 2. The behavior of the running coupling of our model ( )2
s pα  as a function of the momentum p in the Euclidean 

space. The thin line is the one-loop renormalization group improved running coupling. We introduce a simple cut at IRp  as 
an infrared regularization.                                                                                    

 

 

Figure 3. The quark self-energy ( )2
q pΣ  as a function of the momentum p in the chiral limit. The self-energy is large in 

the low momentum region and goes to zero monotonously with the momentum.                                           
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unchanged even the cutoff is taken 10 GeV. The quark mass is large at the infrared region and monotonously 
goes to zero with the momentum, which reflects spontaneous chiral-symmetry breaking [2]-[4] [88].  

The scale parameter QCDΛ  is chosen to reproduce chiral properties for quarks in the SD formalism with the 
Higashijima-Miransky approximation in the Landau gauge, while the ordinary QCD scale parameter is around 

QCD ~ 200 - 300 MeVΛ . The self-energy leads to the pion decay constant with the Pagels-Stokar approximation 
[89]:  

( )
( )

( ) ( )
3 2

2 2 2
2 20 2 2 2

dd ,
4 d2π

E q Ec E
E q E q E

EE q E

k kN kf k k k
kk k

π
∞ Σ  

= Σ − Σ 
   + Σ 

∫                 (8) 

and the (unrenormalized) chiral condensate:  

( )
( )

UV

UV

3 2

2 2 2 20
d .

2π
E q Ec

E
E q E

k kNqq k
k k

Λ

Λ

Σ
= −

+ Σ∫                           (9) 

Since the pion decay constant is a physical value, its renormalization is not required and it does not depend on 
the ultraviolet cutoff UVΛ . Hence, the upper limit of the integration has been taken as UVΛ →∞ . On the other 
hand, the chiral condensate depends on the renormalization point. We adopt a standard renormalization point  

2 GeVµ =  [1], and consider the chiral condensate 
2 GeVqq

µ=
 according to the renormalization-group 

formula [73] [74] [77]:  

( )
( )

( )2
2

0

UV

3
2 16π

2 GeV 2
,

cC N

s

s

qq qq
β

µ

α

α µ= Λ

 Λ
 =
 
 

                        (10) 

with 
( )2
2

0

3
4 9

16π
cC N

β
=  and 0 2

11 2
48π
c fN N

β
−

=  corresponding to the lowest coefficient of the β  function of 

the renormalization group. Taking the scale parameter QCDΛ  as 500 MeV and the ultraviolet cutoff UVΛ  as 5 

GeV, the pion decay constant and the chiral condensate are fixed as 90 MeVfπ   and 1 3

2 GeV 242 MeVqq
µ=

− 
,  

respectively. We have numerically checked that they are stable against the variation of the ultraviolet cutoff 
UVΛ . The SD formalism with the approximations in the Landau gauge reproduces these chiral properties well. 

3. The Schwinger-Dyson Equation for the Scalar Diquark  
In this section, we investigate the scalar diquark, i.e., an extended colored scalar object, and its mass generation, 
using the Schwinger-Dyson (SD) formalism. 

Diquark is a bound-state-like object of two quarks and decomposed into color anti-triplet c3  and sextet c6  
and flavor anti-triplet f3  and sextet f6  in SU(3) flavor case. The most attractive channel for diquark is the 

color and flavor anti-triplet ,c f3  and spin singlet with even parity 0+  by one gluon exchange [16] [17] and by 
instanton interactions [90] [91], which is called scalar diquark. If the diquark correlation is developed in a 
hadron such as a heavy baryon ( Qqq ), this scalar diquark channel would be favored. We consider the scalar  
diquark as an effective degree of freedom with a peculiar size, assuming it to be an extended scalar field ( )xφ  
[10] [42] like a meson in the effective hadron models. The scalar diquark is composed of two quarks with the 
gluonic interaction, and still affected by non-perturbative gluonic effects since it has non-zero color charge as 
shown Figure 4. The dynamics of the scalar diquark field φ  is expected to be described by the gauge-invariant 
scalar-QCD-type Lagrangian:  

( ) ( )† 2a b
a bigA T igA T mµ µ

µ µ φφ φ   = ∂ + ∂ + −    † ,φ φ                       (11) 

where the bare diquark mass mφ  and the gauge field aAµ  (gluon) with the generator aT  have been introduc- 
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(a)                                     (b) 

Figure 4. The two types of gluonic interaction for a diquark: (a) inter-two-quarks gluonic interaction 
to form a diquark and (b) gluonic dressing for the diquark due to its non-zero color charge. The single 
line denotes a quark, the double line a diquark and the curly line a gluon.                            

 
ed. We note that the scalar diquark has the 4-point interaction term of 2 2Aφ  type, which is different from the 
quark. In general, such gauged scalar fields accompany the 4-point interaction [79] [82]-[84] [92].  

Since the diquark is a bound-state-like object confined in a hadron, it must have an effective size and its size 
should be smaller than the hadron. In order to include the size effect of diquark, we introduce a simple “form 
factor” in the four-dimensional Euclidean space as  

( )
2

2
2 2 ,E
E

f p
p

ν

Λ

 Λ
=  + Λ 

                                (12) 

where the momentum cutoff Λ  corresponds to the inverse of the diquark size R. In this paper, we set 1R −≡ Λ . 
Since the radiative correction for the scalar particle is generally large, this form factor has also a role of the 
convergence factor. As for the form factor ( )2

Ef pΛ , it has the roles of introducing an effective size and 

convergence of the SD equation, so one can use arbitrary function such as the step function ( )2 2
Epθ Λ − , the 

exponential function ( )2 2exp Ep− Λ  and so on. In this study, we take Equation (12) with 2ν =  to simple 
analysis and the convergence of the SD equation. The size effect of the diquark can be included in the vertex as 

( ) ( ) ( )2 2 2
s sp p f pα α Λ→ . 

While the scalar QCD Lagrangian (11) is renormalizable, this theory is an effective cutoff theory with an UV 
cutoff parameter Λ , which corresponds to the inverse size of the scalar diquark. Here, the scalar diquark cannot 
be observed as an isolated object, and has no characteristic symmetry, such as the chiral symmetry, so that it is 
difficult to set the renormalization condition. Instead, we introduce an effective size 1R −= Λ  of the diquark, 
which leads to a natural UV cutoff in the theory. As we will see later, the effective size of diquark will play an 
important role for the convergent of loop integrations, and therefore we will not take the limit of Λ →∞  
( 0R → ). In fact, the extended diquark is treated as the effective degrees of freedom appearing in the QCD 
system of quarks and gluons, and hence, also for the scalar diquark, we basically use the same framework as the  
single quark case, presented in the previous section. For instance, we will use the same running coupling ( )2

s Epα  in 
Equation (6) for the argument of diquarks. 

We now describe the SD equation for the scalar diquark, as shown in Figure 5. For the self-energy diagram, 
we include the first order of the coupling sα  at the one-loop level, like the improved ladder QCD [3] [4] [73] 
[74]. Note however that, due to the iterative calculation, this formalism includes infinite order of the coupling 

sα  and describes non-perturbative effects. It is also notable that the same form of the running coupling for the 
quark/gluon coupling can be used even for the scalar diquark/gluon [93] [94]. (In particular, in the heavy mass 
limit of colored particles, the QCD interaction depends only on their color.) Since the scalar diquark corresponds 
to an antiquark in terms of the color representation, we may use the same form of the running coupling even for 
the scalar diquark case. Then, the SD equation for the scalar diquark is diagrammatically expressed as Figure 5 
and is written by  

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( )

( )
( )

UV

UV

2 2
22 2 2 4

3 20

2 2 22 2
2 4

3 42 2 20

3
d

2π

d .
π

s E E
E E

E

s E E E E E E E E
E

E E E E

k f kC
p m k

k

p k f p kC p k p k
k

k k p k

φ

α

α

Λ Λ

ΛΛ

Σ = +

− − − ⋅
−

+ Σ −

∫

∫

3

3
           (13) 
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Figure 5. The Schwinger-Dyson equation for the scalar diquark. The shaded blob is the self-energy ( )2pΣ , 

the dashed line denotes the scalar diquark propagator and the curly line the gluon propagator. The last term 
arisig from 4-point interaction is the peculiar term in gauged scalar theories, and it does not appear in the 
single quark case in QCD.                                                                         

 
In the right-hand side of Equation (13), the second term arises from the 4-point vertex and the third term is 

lead from the 3-point vertex, as shown in Figure 5. Here, we do not consider the wave functional renor- 
malization, as is often assumed for the quark field in the Landau gauge. Similarly in the single quark case, we 
adopt the Higashijima-Miransky approximation ( )( ) ( )( )2 2 2max ,s E E s E Ep k p kα α− ≈  for the 3-point vertex, 

and finally obtain the SD equation for the self-energy ( )2 2
EpΣ  of the scalar diquark:  

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

UV

UV

2 2 5
2 2 2 2 2

2 2 2 20 0

2 22

2 2 2

24 d d
π π

2 d .
π

E

E

ps E E E
E E E s E E E

E E E

s E E EE
Ep

E E

p f p kp m k k k f k k
p k k

k f k kp k
k k

φ

α
α

α

Λ Λ
Λ

Λ Λ

Σ = + −
+ Σ

−
+ Σ

∫ ∫

∫

        (14) 

4. Numerical Results and Discussion 
4.1. The Parameter Setting  
The bare mass mφ  and cutoff Λ  (inverse of the size R) are free parameters of the diquark theory. In this 
subsection, we consider the possible range of these parameters from the physical viewpoint. 

The diquark is originally made of two consistent quarks, and the color-Coulomb interaction is one of the main 
attractive forces. We here estimate the color-Coulomb interaction between the two massive quarks from the  
three-quark (3Q) potential [99], or generally from the mult-quark potential such as 4Q( QQQQ ) and 5Q( 4QQ ) 
potentials [100]. In SU(3) lattice QCD, the 3Q potential among the three quarks located at ( )1, 2,3ir i =  is well 
reproduced by  

3Q
3Q min ,

i j i j

A
V Lσ

<

= − +
−

∑ r r
                                 (15) 

with the color-Coulomb coefficient ( )3Q QQ 2 0.12 1A A  , the string tension 0.89 GeV fmσ   and the 

minimal flux-tube length minL  [99]. Since the color-Coulomb potential energy between two quarks is 3QA R  
for the inter-quark distance R, the potential energy is estimated as 3Q 24 - 80 MeVA R   for the typical range 
of 0.3 -1 fmR = , and its value is not so large in comparison with the two-quark mass of about 600 MeV. [Note 
also that similar estimation also leads to a small value of the diquark-diquark interaction, which gives a reason 

of the absence of ( )2†φ φ  in the diquark Lagrangian (11).] The same result can be obtained from the 
multi-quark potential [100], because the color-Coulomb coefficient is the same for two quarks in the diquark, 
i.e., ( )Q QQ 2 0.12 1nA A   for n = 3, 4, 5. Therefore, the bare mass of diquark is expected to be simply 
considered as the twice of the quark mass. 

In this paper, we consider two cases of the bare diquark mass. One is twice of constituent quark mass, i.e., 
600 MeVmφ = . The other is twice of the running quark self-energy, i.e., ( ) ( )2 22E q Em p pφ = Σ , where ( )2

q EpΣ   

is determined by the SD equation for single quark Equation (7). This means that the diquark is constructed by 
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the two dressing quarks. The constant bare mass case is based on the constituent quark model like picture and 
the running bare mass case is the SD formalism with omitting the effect of the gluonic attraction force between 
two quarks. The diquark should be dressed by gluon furthermore because of its non-zero color charge. 

The cutoff Λ  corresponds to the diquark size in a hadron, R, i.e., 1R−Λ ≡ , so the diquark should be smaller 
than the hadron. We also consider two cases of the size. One is the typical size of a baryon, 1 fmR = , i.e., 

200 MeVΛ = , which gives the upper limit of the size (the lower limit of the cutoff). The diquark covers the 
baryon in this case. The second is the typical size of a constituent quark, 0.3 fmR  , i.e., 600 MeVΛ = , 
which gives the lower limit of the size (the upper limit of the cutoff). 

4.2. The Constant Bare Mass Case 

We first show in Figure 6 the case of the constant bare mass 600 MeVmφ =  with dependence on the cutoff 

Λ . The diquark self-energy ( )2pΣ  is always larger than the bare mass mφ  and almost constant except for a 
small bump structure in an infrared region. The value of the self-energy is strongly depends on the cutoff Λ , 
e.g., the “compact diquark” with 0.3 fmR   has a large mass.  

The scalar QCD includes both 3-point and 4-point interactions, and the existence of 4-point interaction is 
diagrammatically different from the ordinary QCD. To see the role of each interaction, we consider the 
calculation of the artificial removal of 3-point interaction and 4-point interaction, respectively. In fact, we 
investigate the two cases: (a) removal of 4-point interaction and (b) removal of 3-point interaction. The result is 
shown in Figure 7 in the case of 200 MeVΛ = . The bump structure appears in the case without the 4-point 
interaction term as shown in Figure 7(a). Although the diagrammatic expression of the SD equation for the scalar  

 

 
(a)                                            (b) 

Figure 6. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the constant bare mass case of 

600 MeVmφ =  with (a) 200 MeVΛ = , i.e., 1 fmR =  and (b) 600 MeVΛ = , i.e., 0.3 fmR  . In both cases, there 

appears a small bump structure, which is displayed in the small window. In the left figure, the original bare mass mφ  is 
plotted for comparison.                                                                                    

 

 
(a)                                            (b) 

Figure 7. The self-energy ( )2pΣ  in the case of (a) without 4-point interaction and (b) without 3-point interaction as the 

function of the momentum p. Here, 200 MeVΛ =  is taken. In the right figure, the original bare mass mφ  is plotted for 
comparison.                                                                                             
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diquark without 4-point interaction term is analogous to the quark SD equation, the behavior is completely  
different from the quark case. The diquark self-energy ( )2

EpΣ  starts from the bare mass 600 MeVmφ =  at zero 
momentum, then decreases at low momentum and rises up to the original value 600 MeV. On the other hand, the 
quark self-energy ( )2

q EpΣ  starts from a large value and goes to zero monotonously with the momentum. The  

SD equation without 3-point interaction just rises the self-energy and keeps constant. The strong dependence of 
the cutoff Λ  (or the size R) mainly comes from the 4-point interaction term.  

4.3. The Running Bare Mass Case  

We show in Figure 8 the case of the running bare mass ( ) ( )2 22E q Em p pφ = Σ  with dependence on the cutoff 

Λ . The diquark self-energy ( )2
EpΣ  also strongly depends on the cutoff Λ . In the low-momentum region, the 

behavior of ( )2
EpΣ  reflects the running property of the bare mass, especially in the 200 MeVΛ =  case, the 

gluonic effect seems to be small, because of ( ) ( )2 22E q Ep pΣ ≈ Σ . In the high-momentum region, the diquark 

self-energy keeps a large value, while the bare mass ( )2
Em pφ  goes to zero. This suggests the mass generation 

of the scalar diquark by gluonic radiative correction.  

4.4. Discussion on the Scalar Diquark Property  
In this subsection, we discuss the mass and the size of the scalar diquark, with comparing to the chiral quark. 
One of the most important properties of single quark SD equation (7) is the existence of the trivial solution 

0qΣ =  in the chiral limit 0qm → . In fact, the quark mass remains to be zero due to the chiral symmetry in the 
perturbative treatment, and the quark mass generation, i.e., chiral symmetry breaking, is realized by the 
non-perturbative gluonic interaction [3] [4]. Such arguments can be done even in the limit of UVΛ →∞ , which 
is consistent with the point quark as an elementary particle. 

On the other hand, the SD equation (13) for scalar diquark has no trivial solution and is a highly non-linear 
equation, even in the zero bare mass limit 0mφ → . For example, the 4-point interaction term gives a strong 
dependence of the UV cutoff Λ . This is similar to the framework of GUT, where the Higgs scalar field suffers 
from a large radiative correction of the GUT energy scale. 

Actually, the scalar diquark self-energy ( )2pΣ  strongly depends on the diquark size 1R −≡ Λ  in both cases 
of the bare mass. In an extreme case of the point-like limit 0R → , i.e., Λ →∞ , the diquark effective mass 
diverges. This suggests that the simple treatment of point-like diquarks is somehow dangerous in hadron models 
and the diquark must have an effective size. 

As a quantitative argument, our calculations show that the “compact diquark” with 0.3 fmR   has a large 
effective mass in both cases, and does not seem to be acceptable in effective models for hadrons. In fact, the 
appropriate diquark is not so compact as 0.3 fmR   but is fairly extended as ~ 1 fmR . 

 

 
(a)                                           (b) 

Figure 8. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the running bare mass case with (a) 

200 MeVΛ =  ( 1 fmR = ) and (b) 600 MeVΛ =  ( 0.3 fmR  ). The bare mass ( ) ( )2 qm p pφ = Σ  is also plotted with the 
dotted line for comparison.                                                                                   
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4.5. Mass Generation for Colored Scalar Particle 

Finally, we consider the zero bare-mass case of diquark, 0mφ ≡ . Even for a finite mass of quark, the bare mass 
of diquark can be zero, if the attraction between two quarks extremely strong. The result is shown in Figure 9 
for the two cases: (a) 200 MeVΛ =  and (b) 600 MeVΛ =  on the cutoff. The self-energy ( )2

EpΣ  is always  

finite and takes a large value even for 0mφ ≡ . The mass generation mechanism in QCD is usually considered in 
the context of spontaneous chiral-symmetry breaking. On the other hand, our scalar diquark theory is composed  
of an effective scalar diquark field ( )xφ  and does not have the chiral symmetry explicitly, although the  
original diquark is constructed by two chiral quarks. Nevertheless, the effective mass of diquark emerges by the 
non-perturbative gluonic effect. In fact, the mechanism of dynamical mass generation seems to work in the  
scalar diquark theory, even without chiral symmetry breaking. If we take 1 GeVΛ = , the diquark self-energy is 

~ 950 MeVΣ . This result seems to be consistent with the lattice QCD result on the colored scalar particle [10]. 

5. Conclusion and Discussion  
We have studied various mass generation of colored particles and gluonic dressing effect in a non-perturbative 
manner, using the Schwinger-Dyson (SD) formalism in QCD. First, we have briefly reviewed dynamical 
quark-mass generation in QCD in the SD approach as a typical fermion-mass generation via spontaneous 
chiral-symmetry breaking. Second, using the SD formalism for scalar QCD, we have investigated the scalar 
diquark, a bound-state-like object of two quarks, and its mass generation, which is clearly non-chiral-origin. 
Considering the possible size of the diquark inside a hadron, the effect of diquark size R is introduced as a cutoff  
parameter 1R−Λ =  in the form factor, as is used in effective theories. 

The basic technology of scalar SD formalism is imported from the single quark case, such as the running 
coupling, the approximations and so on. Since the diquark is located in and construct of a hadron, the size 
should be smaller than the hadron ( ~ 1 fmR ) and larger than the constituent quark ( ~ 0.3 fmR ). The size 
(cutoff) dependence of self-energy have been investigated. We have considered the two cases of the constant  
bare mass 600 MeVmφ =  and the running bare mass ( ) ( )2 22E q Em p pφ = Σ . The diquark self-energy strongly 

depends on the size 1R −= Λ  in both cases, especially the small diquark ( 0.3 fmR  ) has a large effective 
mass by the gluonic dressing effect. 

We find that the effective diquark mass is finite and large even for the zero bare-mass case, and the value 
strongly depends on the size R, which is an example of dynamical mass generation by the gluonic effect, without 
chiral symmetry breaking. The mass difference between current and constituent charm quark mass and the large 
glueball mass are also examples of this type of mass generation. In this sense, spontaneous chiral-symmetry 
breaking may be a special case of massless (or small mass) fermion. As was conjectured in Ref. [10], it would 
be a general property of strong interacting theory that all colored particles acquire a large effective mass by the 
dressing effect, as shown in Figure 10.  

 

 
(a)                                                (b) 

Figure 9. The scalar diquark self-energy ( )2pΣ  as a function of the momentum p in the massless case of 0mφ = : (a) 

200 MeVΛ =  ( 1 fmR = ) and (b) 600 MeVΛ =  ( 0.3 fmR  ). The self-energy ( )2pΣ  is finite in both cases.                    
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Figure 10. The schematic picture for dynamical mass generation of the colored particle. The colored particle 
(solid line) interacting with the gluons (curly line). The effective mass emerges by the non-perturbative 
interaction even without the chiral symmetry.                                                           

 
In this study, we have mainly investigated the diquark properties, and have not calculated physical quantities. 

It is however desired to describe the color-singlet states such as heavy baryon Qqq  based on the scalar theory. 
One of description of diquark based on QCD is the Bethe-Salpeter (BS) formalism for two quarks [95]-[98]. 
However, the treatment of the scalar diquark as an explicit degree of freedom ( )xφ  is a good approximation 
for the structure of the heavy baryons. The constituent scalar-quark(diquark)/quark picture in the scalar lattice 
QCD [10] and the structure of hΛ  ( , ,h s c b=  quarks) with explicit diquark degree of freedom using QCD 
sum rule [42] have been discussed. The description of the heavy baryon as heavy quark/diquark ( Qφ ) using the 
BS equation will be investigated as our future work. 

The tetra-quark states qqqq  may include diquark/antidiquark components. Although the two mesons 
molecular states may dominate in the tetra-quark due to the strong correlation between quark and antiquark, the 
diquark/antidiquark would be also important components [21]-[25]. The tetra-quark states would be described as 
the linear combination of two mesons and diquark/antidiquark states based on the BS formalism. The structure 
of sigma meson (light scalar mesons) is also applicable subject. The sigma meson is considered as a chiral 
partner of the pion in the context of the chiral symmetry, which structure is quark/antiquark bound state. The 
possibility of the light scalar mesons as four-quark states have been discussed [20] [23]-[35]. The structure of 
the sigma meson (light scalar mesons) can be described as the linear combination of quark/antiquark, 
diquark/antidiquark and two mesons in the context of the BS formalism. 
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