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Abstract 
The objective of this work is to understand how the characteristics of relativistic MHD turbulence 
may differ from those of nonrelativistic MHD turbulence. We accomplish this by studying the ideal 
invariants in the relativistic case and comparing them to what we know of nonrelativistic turbu-
lence. Although much work has been done to understand the dynamics of nonrelativistic systems 
(mostly for ideal incompressible fluids), there is minimal literature explicitly describing the dy-
namics of relativistic MHD turbulence using numerical simulations. Many researchers simply as-
sume that relativistic turbulence has the same invariants and obeys the same dynamics as non- 
relativistic systems. Our results show that this assumption may be incorrect. 
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1. Introduction 
Many studies in numerical relativity and high-energy astrophysics depend on the dynamics of relativistic plas-
mas. These include phenomena such as primordial turbulence, neutron stars, active galactic nuclei, and accretion 
disks near black holes [1]-[8]. Unfortunately, we do not know if the results of these studies are accurate because 
of approximations such as the use of nonrelativistic fluid dynamics and the lack of a standard model to describe 
the dynamics of relativistic turbulence. In particular, very little is understood about the turbulent dynamics of a 
relativistic plasma or its effect on the evolution of magnetic fields. This can only effectively be studied through 
direct numerical simulation of the relativistic magnetofluid. 

In the following report we will first discuss what is currently known about the dynamics of nonrelativistic 
MHD systems. We introduce the standard incompressible and compressible nonrelativistic MHD evolution equ-
ations as well as the ideal invariants for those systems. In Section 4, we will introduce the relativistic MHD equ-
ations and the relativistic equivalents of the nonrelativistic ideal MHD invariants. We then describe our numeri-
cal experiment and present our results for a relativistic MHD code. We conclude by discussing the similarities 
and differences between the different systems. 

http://www.scirp.org/journal/jmp
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2. Nonrelativistic Incompressible MHD 
Work by Shebalin [9]-[14], on ideal homogeneous incompressible MHD turbulence best demonstrates how the 
dynamics of a magnetofluid can differ from that of a hydrodynamic fluid. Plasma can be accurately modeled as 
a fluid made up of charged particles that are therefore affected by magnetic fields as well as particle-particle in-
teractions. Because of this, the magnetic field becomes a dynamic variable in addition to density, pressure and 
the velocity of particles. For example, In MHD turbulence, an equipartition occurs and we expect kinetic and 
magnetic energy fluctuations to become roughly equal. Shebalin modeled the magnetofluid as a homogenous 
system where the same statistics are considered valid everywhere in the computational domain. He utilized pe-
riodic boundary conditions and spectral methods in order to study how the dynamics of different scales inte-
racted without the addition of boundary errors. Much of his work focused on an ideal MHD system, where the 
magnetic and fluid dissipation terms were excluded. Below are the evolution equations used by Shebalin to de-
scribe the incompressible MHD system. 

0⋅ =∇ v                                                   (1a) 

( ) ( )1
4π

v p
t

ρ ρ∂
= − ⋅∇ − − × ×

∂
v v B B∇ ∇                         (1b) 

( )= .
t

∂
× ×

∂
∇

B v B                                            (1c) 

By varying the mean magnetic field ( 0B ) and angular velocity ( 0Ω ) of the system, Shebalin was able to de-
fine five different cases with different invariants as shown in Table 1. In such a system there could be as many 
as 3 ideal invariants; energy (E), and the psuedoscalars cross helicity ( CH ) and magnetic helicity ( MH ). In ad-
dition, the invariant parallel helicity, P C MH H Hσ= −  ( )0 0Bσ = Ω , can be formed from a linear combina-
tion of cross and magnetic helicity. In a hydrodynamic fluid the ideal invariants are only energy and kinetic he-
licity. 

For an incompressible fluid u(k, t) is the Fourier coefficient of turbulent velocity and b(k, t) is the Fourier 
coefficient of the turbulent magnetic field. The energy, cross helicity and magnetic helicity can be expressed in 
terms of these as: 
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A cubic computational domain with N grid points in each direction is assumed. The statistical mechanics of 
the system is defined by the Gaussian canonical probability density function (PDF): 

( )1 exp C MD E H H
Z

α β γ= − − −                                (3a) 

 
Table 1. Invariants for ideal incompressible MHD. 

Case Mean field Angular velocity Invariants 

I 0 0 , ,C ME H H  

II 0 0B ≠  0 , CE H  

III 0 0 0Ω ≠  , ME H  

IV 0 0B ≠  0 0BσΩ =  , PE H  

V 0 0B ≠  0 0Ω ≠  ( 0 0 0B ×Ω ≠ ) E 
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( )exp dC MZ E H Hα β γ
Γ

= − − − Γ∫                             (3b) 
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1ˆ d ,   d .
T

D t
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Φ = Φ Γ Φ = Φ∫ ∫                                   (3c) 

where Z is the partition function and dΓ  is the phase space volume. Φ̂  shows how to calculate the ensemble  
averages using the PDF while Φ  is the time average. If Φ̂ = Φ , the system is said to be ergodic but if Φ̂ ≠ Φ ,  
it is non-ergodic. Here α , β  and γ  are inverse temperatures. The ensemble average magnetic energy ( ˆ

ME ) 
is always greater than or equal to ensemble average kinetic energy ( ˆ

KE ), and the inverse temperature terms can  
be found as a function of ˆ

ME φ= . 
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Phase portraits resulting from computer simulations of Shebalin’s five cases show that coherent structures 
formed in many systems where the magnetofluid was experiencing turbulence [9]-[14]. Coherent structure oc-
curs when time-averaged physical variables in MHD turbulence have large mean values, rather than the zero 
mean values expected from theoretical ensemble predictions. MHD turbulence thus has broken ergodicity, 
which can be explained by finding the eigenmodes of the system. One out of the four eigenvalues associated 
with each of the lowest wavenumbers will be very much smaller than the others; the eigenvariables associated 
with these very small eigenvalues grow to have very large energies compared to other eigenvariables; when this 
happens, an almost force-free state occurs in which large-energy eigenmodes are quasistationary while low- 
energy eigenmodes remain turbulent; thus, the predicted ergodicity has been dynamically broken. This is ob-
served to occur even in dissipative systems because broken ergodicity in MHD turbulence manifests itself at the 
smallest wavenumbers (largest length scales) where dissipation is negligible, resulting in the ideal spectrum. In 
the case of ideal hydrodynamic turbulence, broken ergodicity can occur in a finite model system, but only at the 
largest wavenumbers (smallest scales). When dissipation is added, the large wavenumber modes are most af-
fected and their energy quickly decays away, so that broken ergodicity plays no role in decaying hydrodynamic 
turbulence. 

3. Nonrelativistic Compressible MHD 
Compressible MHD systems have not been studied as much as incompressible systems so here we will focus 
primarily on their invariants. We will assume that both incompressible and compressible systems share the same 
statistical mechanics and dynamics whenever the same invariants apply. In a nonrelativistic compressible MHD 
system; Energy and the Incompressible form of Cross Helicity are always conserved for a nondissipative system 
[15]-[17] (see Table 2). Compressible Cross Helicity, C CH Hρ= , is not an ideal invariant in compressible 
MHD [15]. In the absence of a mean magnetic field and dissipation, Magnetic Helicity is also conserved [18]- 
[31]. The authors were unable to identify any literature showing the relationship between net angular velocity 
and ideal compressible MHD invariants. 

Given that our relativistic system is by default a compressible system, we naively expect to see that the same 
ideal invariants will apply for the relativistic system as the nonrelativistic compressible system. The equations 
for ideal compressible MHD are similar to those of the incompressible system with the exception of the first eq-
uation. 

( )
t
ρ ρ∂
= − ⋅

∂
∇ v                                    (5a) 
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Table 2. Invariants for ideal compressible MHD. 

Case Mean field Invariants 

I 0 , ,C ME H H  

II 0 0B ≠  , CE H  

 

( ) ( )1
4π

v p
t

ρ ρ∂
= − ⋅∇ − − × ×
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v v B B∇ ∇                            (5b) 
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∂
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4. Relativistic MHD Systems 
The fluid and electromagnetic components of the relativistic MHD equations are developed from several 
well-known equations [32]. They include the conservation of particle number, the continuity equation, the con-
servation of energy-momentum, the magnetic constraint equation and the magnetic induction equation. For a 
system consisting of a perfect fluid and an electromagnetic field, the ideal MHD stress-energy tensor is given by 
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Here, P is the fluid pressure, 0ρ  is density, iB  is magnetic field, uµ  is four-velocity, h is the enthalpy, ε  
is specific internal energy, and 2b  is the magnitude of the magnetic vector field squared. We define pressure in  

terms of the energy density using the Γ  law equation of state with, 
5
3

Γ = . ( )1P ρ= Γ −   at most energies  

and P ρΓ∝   at extremely low energies. The evolution equations where given by Duez as [32]: 

( )* *
j

t j vρ ρ∂ = −∂                                            (7a) 

( )2 0
*

i i
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( ).i j i i j
t jB v B v B∂ = −∂ −                                        (7d) 

Here, *ρ  is conserved mass density, τ  relates to energy density, iS  is momentum density, iB  is related 
to the magnetic field and s is the source term. ijγ  is the three metric and α  is a lapse term related to the time 
evolution of the simulation. The determinate of the three metric and lapse are both set to unity because we are 
using the Minkowski metric and Geodesic slicing conditions. 
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0
* 0uρ α γ ρ=                                                 (8a) 

2 00
*Tτ α γ ρ= −                                              (8b) 

( )0 0 2 0
*i i i iS T h u b u b bα γ ρ α γ α γ= = + −                        (8c) 

j jB Bγ=                                                   (8d) 

Notice that unlike the nonrelativistic system, we use the stress-energy tensor within the evolution equations so 
that 4-momentum conservation is built into the system. This results in a set of equations that look very different 
from that of the nonrelativistic system. According to work by Yoshida [33] [34], in addition to 4-momentum, 
relativistic systems are expected to conserve a quantity called Relativistic Helicity. It is defined below using the 
canonical 4-momentum density,  , of the system. 

( ) ( ) ( )( )0 0 0,κ = ⋅ ∇× ∇× + × ∇ + ∂                              (9) 

Here the canonical 4-momentum density ( )0 ,=    is a combination of mechanical and electromagnetic 
momentum densities. The conservation of Relativistic Helicity is then effectively, 3d 0xµ

µκ∂ =∫ . The canoni-
cal 4-momentum can be expressed as the sum of mechanical and electromagnetic momentum, P eµ µ µ= +  . If 
we ignore the electromagnetic fields, we recover a relativistic version of Cross Helicity Density, Cκ . If we set 
the particle’s mechanical momentum to zero, we recover a relativistic version of Magnetic Helicity Density, 

Mκ . 

5. Methodology 
For this numerical experiment, we calculate Energy Density (E), Relativistic Helicity Density (κ ), Cross Helic-
ity Density ( Cκ ), and Magnetic Helicity Density ( Mκ ), numerically using the code described later in this sec-
tion. These variables are defined as shown below. 

( )00 3dE T x= ∫ x                                                (10a) 

0 * 0P hu Pρ= −                                                  (10b) 

*i iP huρ=                                                     (10c) 

( ) ( )( ) ( )( )( )* * 0,S S S S Sκ τ ρ τ ρ= ⋅ ∇× + ∇× + × ∇ + + ∂                     (10d) 

( )0,C P B P B Pκ = ⋅ − ×                                          (10e) 

( )0,Mκ = ⋅ − ×                                              (10f) 

Here the magnetic field is related to the vector potential by the equation, = ∇×  . The electric field is de-
fined using the MHD conditions, v= ×  . We can test to see if the Helicities are invariant by comparing nu-
merically calculated time derivatives of 0κ  to their predicted value at each time-step using the equation 

0
0 0i

iκ κ∂ + ∂ = . We normalize the result using the L2 norm of the calculated divergence so all results are on the 
same relative scale. We then integrate the result over the volume of our computational domain. If the normalized 
error is dominated by the truncation and round-off errors, we can assume that the system is invariant. For the 
normalized error in energy we simply look at the difference in energy at two different time levels divided by the 
total energy at that time level. 
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E t
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In order to study the invariants of the relativistic MHD equations, we used a code called FixedCosmo which 
was originally written by one of us [4] to study the dynamics of primordial plasma turbulence. This code was 
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developed using the open source Cactus framework (www.cactuscode.org). Cactus was originally developed to 
perform numerical relativistic simulations of colliding black holes but it’s modular design has since allowed it to 
be used for a variety of Physics, Engineering and Computer Science applications. It is currently being main-
tained by the Center for Computation and Technology at Louisiana Sate University. Cactus codes are composed 
of a flesh (which provides the framework) and the thorns (which provide the physics). FixedCosmo is a collec-
tion of thorns. It uses the form of the Relativistic MHD equations described by Duez [32] and is written in a 
combination of F77, F90, C and C++. This code is parallelized and capable of using several different differenc-
ing methods such as second order finite differencing, fourth order finite differencing and spectral differencing. 
Although the code is capable of utilizing artificial viscosity and HRSC, neither was used for this project. 

Because the objective of this study is to test the ideal relativistic MHD system, we complete a series of runs in 
a “high-energy” regime. The parameters used approximate that of the early universe around the electroweak 
scale. This is done so we can apply the results to any relativistic MHD system. Table 3 shows a matrix of the 
test runs. 

Each data run utilized Fourier spectral differencing on a grid with 64 × 64 × 64 internal data points. We ran 
these simulations for about 7500 iterations or over 10−9 s of physical time. The electron oscillation time for the 
“high energy” regime is about 341.1 10−×  s so the simulations appear to have run long enough to witness the 
full dynamics of the system. The simulation domains where all set to 4 m × 4 m × 4 m. Also, the code utilizes 
geometerized units ( 1c G= = = ) so parameters where translated from SI units to units of length for the use of 
the calculations and then back to SI units for the output. Time is therefore translated into seconds by dividing the 
output time by the speed of light. 

6. Results 
Truncation errors were found by doubling the resolution and measuring the change in the observed total errors. 
By assuming that the Euler Method, used to calculate 0

0κ∂ , is first order and that the numerical errors and var-
iations from exactly conserved values are additive, the truncation errors can be calculated from 

( )2 .truncation LR HRE E E= −                              (12) 

If the truncation errors are within an order of magnitude of the normalized errors, we can conclude that the 
system is invariant. We also found it impossible to completely eliminate the mean magnetic field and mean an-
gular momentum in all cases. A mean magnetic field (on the order of 1% of the maximum field) remained in 
every case. Also, each case seemed to have a small angular velocity, also less than 1% of the fluid velocities 
within the simulation. The authors feel that these residual quantities where not enough to significantly disrupt 
the system and could be safely ignored. 
 
Table 3. High energy numerical simulations. 

Variables Case 1 Case 2 Case 3 Case 4 Case 5 

Max velocity (c) 0.25 0.25 0.25 0.25 0.25 

xΩ  (c) 0 0 0 0 0 

yΩ  (c) 0 0 0 0 0 

zΩ  (c) 0 0 0.35 0.35 0.35 

Init temperature (K) 2.8e15 2.8e15 2.8e15 2.8e15 2.8e15 

Init density (kg/m3) 9.7e29 9.7e29 9.7e29 9.7e29 9.7e29 

Max magnetic field (G) 1.0e13 1.0e13 1.0e13 1.0e13 1.0e13 

xB  (G) 0 2.0e13 0 0 2.0e13 

yB  (G) 0 0 0 0 0 

zB  (G) 0 0 0 2.0e13 0 

http://www.cactuscode.org/


D. Garrison, P. Nguyen 
 

 
287 

Table 4. High energy simulation results. 

Mean magnitude of errors E κ  Cκ  Mκ  

Case 1 1.8e−9 2.8e−14 9.6e−5 1.0e−2 

Case 2 1.8e−9 2.8e−14 9.7e−5 2.8e−2 

Case 3 8.1e−10 0.0 6.6e−5 7.1e−3 

Case 4 7.7e−10 0.0 6.0e−5 1.9e−2 

Case 5 7.8e−10 0.0 6.6e−5 1.8e−2 

Truncation errors 2.1e−9 2.2e−14 2.9e−5 2.0e−3 

 
The results in Table 4 were calculated by averaging the absolute values of normalized errors. As one can see, 

Energy and Relativistic Helicity appear to be conserved in every case given that the normalized error appears to 
be dominated by truncation errors for both. Cross Helicity may be conserved in every case since the calculated 
truncation error appears to be within an order of normalized errors in every case. Magnetic Helicity does not 
appear to be conserved in any of the cases. Normalized Errors for Cross Helicity Conservation appear smaller in 
cases where a large mean angular velocity is present. Deviations in Magnetic Helicity Conservation are smallest 
in the absence of a large mean magnetic field. 

7. Discussion 
Our results show that in the high-energy Relativistic MHD regime only Energy and Relativistic Helicity are 
clearly conserved. We are not able to conclusively prove Cross Helicity conservation. Magnetic Helicity con-
servation is questionable in this system. This is not an unexpected result but it does raise several interesting 
questions which lie beyond the scope of this article. Does the potential lack of Cross and Magnetic Helicity 
Conservation effect the dynamics of the relativistic system when it comes to phenomena such as inverse Energy 
Cascade or the Kolmogorov Energy Spectrum? How do magnetic dynamos in relativistic MHD systems func-
tion? Are there any other overlooked dynamics in relativistic MHD systems? These are all questions which we 
hope to address in future numerical studies. 
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