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Abstract 
The problem of embedding the Tsallis, Rényi and generalized Rényi entropies in the framework of 
category theory and their axiomatic foundation is studied. To this end, we construct a special cat-
egory MES related to measured spaces. We prove that both of the Rényi and Tsallis entropies can 
be imbedded in the formalism of category theory by proving that the same basic partition func-
tional that appears in their definitions, as well as in the associated Lebesgue space norms, has 
good algebraic compatibility properties. We prove that this functional is both additive and multip-
licative with respect to the direct product and the disjoint sum (the coproduct) in the category 
MES, so it is a natural candidate for the measure of information or uncertainty. We prove that the 
category MES can be extended to monoidal category, both with respect to the direct product as 
well as to the coproduct. The basic axioms of the original Rényi entropy theory are generalized 
and reformulated in the framework of category MES and we prove that these axioms foresee the 
existence of an universal exponent having the same values for all the objects of the category MES. 
In addition, this universal exponent is the parameter, which appears in the definition of the Tsallis 
and Rényi entropies. It is proved that in a similar manner, the partition functional that appears in 
the definition of the Generalized Rényi entropy is a multiplicative functional with respect to direct 
product and additive with respect to the disjoint sum, but its symmetry group is reduced com-
pared to the case of classical Rényi entropy. 
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1. Introduction 
The discovery of two related generalizations of the classical Shannon entropy [1] is a remarkable coincidence in 
the history of abstract probability theory and statistical physics. A. Rényi introduced a possible generalization [2] 
of the classical Shannon entropy by pure axiomatic extension of the Fadeev axioms [3] [4] that uniquely defined 
the Shannon entropy. On the other hand, the generalized entropy [5] [6] introduced by C. Tsallis was useful to 
extend the classical maximum entropy principle such that the heavy tailed distributions observed in a large scale 
of physical processes [7]-[10], could be derived from (generalized) maximum entropy principles. The interest in 
the study of the generalizations of the Shannon entropy in the recent years is due to the multiple applications of 
the Tsallis and Rényi entropy or the associated Rényi divergence [7] [8] [11] [12]. We also mention that similar 
to the classical H theorem of L. Boltzmann, the generalizations of the Rényi entropy, as well as the original 
Rényi entropy, are Liapunov functions for a large class of stochastic processes described by generalized Fokk-
er-Planck equations, more exactly by Fokker-Planck equation where the drift term and the diffusion tensor are 
itself dependent on some external random variable [13]. We mention that in the case of suitable singular limiting 
procedure, both the Tsallis and Rényi entropies give the same limit: the Shannon entropy. The classical and ge-
neralized Rényi entropies are additive while the Tsallis entropy is not. Despite the Rényi and Tsallis entropies 
give the same results in the case of problems associated to the determination of the probability density function 
from the Maximum Entropy principles, because they are algebraically related by simple formulae, the non- 
additivity of the Tsall is entropy generated many discussions in the physical literature. On the other hand, by 
formulating the basic axioms [2], A. Rényi introduced new concepts (incomplete random variables and incom-
plete distributions) that were not included in the standard terminology of the probability theory. Also the formu-
lation of the Postulate 5’ [2], is not the simplest, mathematically natural. 

Because the measure of information is a basic scientific concept, in this work we develop a formalism in the 
framework of the category theory [14] [15] for the study of generalized entropies. The category theory is the 
branch of mathematics that plays a central role in the logical foundation and synthesis of the whole contempo-
rary mathematics. In particular, the category theory allows avoiding the paradoxes of the classical set theory. 
Category theory has application in informatics [16]. In order to highlight the natural structures related to genera-
lized entropies, we use the central concepts of the modern mathematics. 

The paper is organized as follows. In the Section 2, Subsection 2.1, we define a special category related to 
measurable spaces (referred to as MES), enabling the introduction an associated basic functional Zp (see the 
forthcoming Section for his exact definition). Both the Tsallis and Rényi entropies, as well as the distance in Lp 
spaces, may be expressed in terms of this functional. In the Subsection 2.2, we define the direct product of the 
objects in MES and we prove that the functional Zp satisfies a compatibility relation with respect to this product 
i.e., it is multiplicative. This multiplicative property is equivalent to the additivity of the Rényi entropy. In the Sub-
section 2.3, we define the disjoint sum (or the coproduct) of the objects in MES, and we prove that the functional Zp 
satisfies a compatibility relation with respect to coproduct i.e., it is additive. Note that this property is equivalent to 
one of the postulates characterizing the Rényi entropy. The proofs that both product and coproduct possess a univer-
sal property and that the direct product and coproduct can also be defined for morphisms of the category MES, can 
be found in the Subsection 2.4. In the Subsection 2.5 we show that, by extending the category MES with the intro-
duction of the unit object and the null object, the category MES becomes to a monoidal category. 

Section 3 deals with the axiomatic characterization of the functional Zp. We demonstrate that there exists a 
universal exponent p (the same for all the objects of the category) that characterizes completely the functional Zp 
(hence, also the Tsallis or Rényi entropies) up to an arbitrary multiplicative factor. In Section 4, it is proven that 
the main properties of the Rényi entropy, which are used in the axiomatic and category theoretic formulation, 
can be reformulated in order to be generalized to the case of the generalized Rényi entropy (GRE). The symme-
try properties of GRE are studied in Subsection 4.1. Appendix 1 shows that the Rényi divergence can be ex-
pressed in terms of the Rényi entropy. The proof of the universality (with respect to all the objects of the cate-
gory MES) of the exponent defining the Rényi or Tsallis entropies can be found in Appendix 2. In Appendix 3 
some algebraic results related to the symmetry of GRE are proved. 

2. The Category-Theoretic Properties Related to Rényi and Tsallis Entropies 
2.1. Definitions  
Our definitions include as a particular case the original definition of the generalized entropies [5] [6] and [2]. 
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Our basic construction that will play the role of the object of the category MES is derived from the well known 
concept of measurable space [17] [18]. Guided by statistical ideas, in order to take into account the negligible 
sets we specify also an sub-ideal of the σ-algebra of measurable sets. The objects of the category MES consist of 
triplets ( ): , ,X X XM X=    with X denoting the phase space (for instance, it is a symplectic manifold in the 
case of statistical physics or, in the case of elementary probability models, finite or denumerable set) and X  
is the σ-algebra generated by a family of subsets of X, respectively. We also denote with X X⊂   an ideal of 
the σ-algebra X  having the meaning of negligible sets. Let us now postulate the completeness property. From 

XN ∈  and N N′ ⊂  results XN ′∈ . The morphisms of the category MES with the source XM  and 
range YM  are the measurable maps Φ from X to Y, which are nonsingular, i.e. such that ( )1

Y X
−Φ ⊂  . 

From the completeness property results the ideal property, i.e. if XN ∈  and XA∈  then XA N∩ ∈ . 
Note that it is possible that X  contains only the empty set (as, for example, in the case of atomic spaces). 

Remark 1 At first sight it would be more natural to consider the objects as measure space triplet 
( ), ,X XX µ  containing the measure Xµ , and the morphisms as the measure preserving transformations. 
However, in this case we cannot define direct product or coproduct having universal property.  

We denote with ( )XC M , or with ( ), ,X XC X   , the cone with all σ-finite positive measures over 
( ), ,X XX    that are compatible with X  (i.e., ( ), ,X XC Xµ ∈    iff for all XN ∈  we have 
( ) 0Nµ = ). For a given ( ), ,X X XC Xµ ∈    and 0p > , we denote with ( ),p

X XL M µ  the Banach space 
( 1p ≥ ) or the Fréchet space ( 0 1p< < ) of functions :Xf X →   that are measurable modulo X  and have  
finite norm (pseudo norm, respectively): more precisely, ( ) ( )d

p
X X

X

f x xµ < ∞∫ . In the sequel, we shall denote  

( ) ( ) ( ), , : dp
p X X X X X

X

Z M x xµ ρ ρ µ= ∫                              (1) 

for some non-negative density ( ),p
X X XL Mρ µ∈ . The generalized entropies are defined for probability density 

functions (PDF) satisfying the conditions  

( ) ( )1 , , ;p
X X X X XL M L Mρ µ µ∈ ∩                               (2) 

( ) ( )d 1X X
X

x xρ µ =∫                                       (3) 

where 0p >  and 1p ≠ . The probability ( )P A  can be represented by PDF as follows  

( ) ( ) ( )d ;X X
A

P A x xρ µ= ∫                                   (4) 

( ); ; X X XA X A C Mµ⊂ ∈ ∈                                 (5) 

In this framework, for a given measurable space ( ): , ,X X XM X=    and measure ( )X XC Mµ ∈ , the 
classical Boltzmann-Gibbs-Shannon entropy functional is given by  

( ) ( ) ( )[ , , ] log dcl X X X X X X
X

S M x x xµ ρ ρ ρ µ= −   ∫                       (6) 

which in the case of discrete distribution, X a denumerable set, Xµ  the counting measure, give the popular 
form  

log cl i i
i

S p p= −∑                                     (7) 

For a given measurable space XM , the generalizations of the A. Rényi [2] and C. Tsallis [5] [6] entropies, 
involves the functional ( ), ,p X X XZ M µ ρ  given by Equation (1). The functional pZ  is related to the norm of  
the density ρ in the Banach space for 1p ≥  [18], and to the pseudo-norm [ ]pN ρ  for 0 1p< <  [17] [19], 
through the obvious relations  

( ) ( )
1

d ; 1
pp

X X Xp
X

x x pρ ρ µ
 

= ≥   
 
∫                            (8) 
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[ ] ( ) ( )d ; 0 1
p

p X X XN x x pρ ρ µ
Ω

= < ≤  ∫                           (9) 

These relations give the geometrical interpretation of the generalized entropies (for further information Refs 
to [13]). 

Remark 2 The study of the generalized entropies helps us to better understand the classical entropy. For 
1p ≥ , the functional X pρ  is the classical Lp norm, and for 0 1p< <  the functional [ ]p XN ρ  is the exotic 

Lp-norm [19]. For 1p >  the Lp spaces are reflexive, the Maxent problem is equivalent to the minimal Lp 
distance problem with restrictions [13], or to the minimal ( ), ,p X X XZ M µ ρ . For 0 1p< < , the Lp spaces has, 
in general, trivial duals, the Maxent problem is equivalent to the maximal Lp distance or the maximal 

( ), ,p X X XZ M µ ρ  (see [13]). The case 1p = , which corresponds to the classical Shannon entropy, is just the 
border point between two radically different functional-analytic properties.  

The corresponding generalized entropy ,R pS , proposed by A. Rényi [2], and the entropy, ,T pS , proposed by 
C. Tsallis [5], [6] are given by  

[ ] ( ),
1, , log , ,

1R p X X X p X X XS M Z M
p

µ ρ µ ρ=
−

                         (10) 

[ ] ( ),
1, , 1 , ,

1T p X X X p X X XS M Z M
p

µ ρ µ ρ = − −
                        (11) 

Consider now a measure space ( ), , N n= Ω   with σ-finite measure n, and let us denote with ( )P x , ( )Q x  
two probability densities:  

( ) ( ) ( ) ( )d d 1P x n Q x n
Ω Ω

= =∫ ∫x x  

Note that the Rényi divergence [2] [12]  

( ) ( )11 log d
1

p p
pD P Q P Q n x

p
−

Ω

=
− ∫                            (12) 

is related to the Rényi entropies (see Appendix 1). Note that when X is a finite or denumerable set, if we denote 
with kp  the probabilities of element kx X∈ , the measure Xµ  is the counting measure on the space X (equal 
to the number of elements in a subset), and the family of null sets { }X = ∅  then, from the previous 
Equstions (1), (10), (11) we get the original definitions from Ref. [2] [5] [6]  

[ ],
1, , log

1
q

R q X X X k
k

S M p
q

µ ρ =
− ∑                            (13) 

[ ],
1, , 1

1
q

T q X X X k
k

S M p
q

µ ρ  = − −  
∑                           (14) 

( ), , q
q X X X k

k
Z M pµ ρ = ∑                               (15) 

Remark that, in this particular case, [ ], , ,T q X X XS M µ ρ , as well as ( ), ,q X X XZ M µ ρ , are Lesche stable [20]. 
Note that, from Equations (6), (10) and (11), results  

[ ] [ ] [ ], ,1 1
lim , , lim , , , ,T q X X X R q X X X cl X X Xp p

S M S M S Mµ ρ µ ρ µ ρ
→ →

= =              (16) 

2.2. Direct Product of Measurable Spaces and the Multiplicative Property of Zp[MX, μX, ρX] 
In the framework of the our formalism, the multiplicative property is the counterpart of the Postulate 4 in the 
Rényi theory [2]. In the following we overload the tensor product notation “⊗ ”; its meaning results from the 
nature of the operand. Denote the direct product of two measurable spaces ( ), ,X X XM X=    and  

( ), ,Y Y YM Y=    by X YM M⊗ , defined as follows  

( ), ,X X X Y X YM M X Y ⊗⊗ = × ⊗                               (17) 
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Here X Y×  is the Cartesian product of the phase spaces X and Y, while the σ-algebra X Y⊗   is the 
smallest σ-algebra such that it contains all of the elements of the Cartesian product X Y×  . The null set ideal 

X Y X Y⊗ ⊂ ⊗    is generated by the family ( ) ( )X Y X Y⊗ ∪ ⊗    . Note that if [ ]X XC Mµ ∈  and 
[ ]Y YC Mµ ∈  then their direct product satisfies the condition [ ]X Y X YC M Mµ µ⊗ ∈ ⊗  (we denote it also by 

the same symbol). The measure X Yµ µ⊗  acting on ( )X Y X Y⊗⊗    is defined by extension by denu- 
merable additivity, starting from the product subsets:  

( )( ) ( ) ( )X Y X Y X X Y YA A A Aµ µ µ µ⊗ × =                           (18) 

;X X Y YA A∈ ∈                                      (19) 

Consider now the measures ( )X XC Mµ ∈ , ( )Y YC Mµ ∈ , and the densities  
( ) ( )1, ,p

X X X X XL M d L M dρ µ µ∈ ∩  and ( ) ( )1, ,p
Y Y Y Y YL M d L M dρ µ µ∈ ∩ . The following function is also 

denoted with the same symbol  

( ) ( )1, ,p
X Y X Y X Y X Y X YL M M L M Mρ ρ µ µ µ µ⊗ ∈ × ⊗ ∩ × ⊗                  (20) 

with  

( )( ) ( ) ( ),X Y X Yx y x yρ ρ ρ ρ⊗ =                                (21) 

; x X y Y∈ ∈                                          (22) 

We have the following basic proposition 
Proposition 3 Let Xρ , Yρ  are normalized PDF  

( ) ( ) ( ) ( )d d 1; 0; 0X X Y Y X Y
X Y

x x x yρ µ ρ µ ρ ρ= = ≥ ≥∫ ∫                        (23) 

Then we have  

[ ] [ ] [ ], , , ,  , ,p X Y X Y X Y p X X X p Y Y YZ M M Z M Z Mµ µ ρ ρ µ ρ µ ρ⊗ ⊗ ⊗ =                 (24) 

[ ] [ ] [ ], , ,, , , , , ,R p X Y X Y X Y R p X X X R p Y Y YS M M S M S Mµ µ ρ ρ µ ρ µ ρ⊗ ⊗ ⊗ = +               (25) 

The validity of this statement follows directly from the definitions of the direct product, the Rényi entropy 
and the functional Zp. 

2.3. Coproduct of Measurable Spaces and the Additivity of the Functional Zp[MX, μX, ρX] 
Let us study now the property encoded in the Postulate 5’ related to the Rényi entropy theory (Ref. [2]), trans- 
cribed in the measure theoretic and category language and re -expressed in the term of the functional  

[ ], ,p X X XZ M µ ρ . Also in this case, we overload the notation  , for the disjoint sum from the set theory. Its 
precise meaning will be clear from the nature of the operands. In the following we investigate the functorial 
properties, related to Postulate 5’, of the functional [ ], ,p X XZ M µ ρ , in analogy to Proposition 3. To this end 
we introduce the following 

Definition 4 The coproduct of measurable spaces ( ), ,X X XM X=    and ( ), ,Y Y YM Y=    will be 
denoted by X YM M  and have the following structure  

( ), ,X Y X Y X YM M X Y=                                 (26) 

Here, X Y  is the disjoint sum of the sets X and Y, and X Y   is the smallest σ-algebra that contains 
all of the sets of the form 1 2A A , with 1 XA ∈  and 2 YA ∈ , respectively. Moreover, the new null set ideal 

X Y   is the smallest σ-algebra generated by the family 1 2N N  with  1 XN ∈  and 2 YN ∈ . Let 
the measures ( )X XC Mµ ∈ , ( )Y YC Mµ ∈  and the weights 1 0w ≥ , 2 0w ≥  and 1 2 1w w+ = . The measure 

1 2: X Yw wµ µ µ=   acts on the σ-algebra X Y   and it is defined uniquely as the continuation by denumer- 
able additivity from the property  

( ) ( )1 1 1 1; X XA w A Aµ µ= ∈                                 (27) 

( ) ( )2 2 2 2; Y YA w A Aµ µ= ∈                                 (28) 
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Let ( ) ( )1, ,p
X X X X XL M d L M dρ µ µ∈ ∩  and ( ) ( )1, ,p

Y Y Y Y YL M d L M dρ µ µ∈ ∩  . We define the function 
( ) ( )1

1 2 1 2: , ,p
X Y X Y X Y X Y X YL M M w w L M M w wρ ρ ρ µ µ µ µ= ∈ ∩      as follows  

( ) ( ); if  Xx x x Xρ ρ= ∈  

( ) ( ); if  Yx x x Yρ ρ= ∈  

We restrict our definition of coproduct to finite terms. An example of (denumerable infinite) coproduct is the 
grand canonical ensemble. 

Remark 5 If X Xdρ µ  and Y Ydρ µ  are probability measures, then the measure  
[ ]( )[ ]1 2 1 2X Yx w d w dρ ρ µ µ   is a probability measure if 1 2 1w w+ =  .  

From the previous definition of the direct sum and the functional [ ], ,p X X XZ M µ ρ  the following obvious 
proposition results 

Proposition 6 The reformulation of the Postulate 5’ (Ref. [2]) reads: the functional [ ], ,p X X XZ M µ ρ  is 
additive with respect to the direct sum of measurable spaces  

[ ] [ ]1 2 1 2[ , , ] , , , ,p X Y X Y X Y p X X X p Y Y YZ M M w w w Z M w Z Mµ µ ρ ρ µ ρ µ ρ= +           (29) 

2.4. Universal Properties of the Direct Product and Direct Sum in the Category of  
Measurable Spaces 

In the following we prove that the basic binary operations on measurable spaces, the direct product and the 
direct sum, defined in the previous section, have universality properties in the category of measurable spaces 
MES. 

Consider the direct product X YM M M= ⊗  of measurable spaces ( ), ,X X XM X=    and  
( ), ,Y Y YM Y=   . Observe that the canonical projections :Xp X Y X× → , :Yp X Y Y× → , are measurable 

and induce the morphisms :X X Y XM M Mπ ⊗ →  and :Y X Y YM M Mπ ⊗ →  between the objects of MES. 
We have the following 

Proposition 7 In the category MES the applications :X X Y XM M Mπ ⊗ → , :Y X Y YM M Mπ ⊗ → , which 
are naturally induced by canonical projections :Xp X Y X× →  and :Yp X Y Y× → , are morphisms. 

Proof. The measurability of Xπ  is direct consequence of the fact that the canonical projection maps are 
measurable, in fact the measurability of the canonical projections is an alternative definition of the product of σ 
algebras. The nonsingularity property ( )( 1)

X X X Yp −
×⊂   results from ( )( 1)

X X X Y X Yp −
×= × ⊂    . ■ 

From the previous Proposition 7 results immediately the following Theorem 
Theorem 8 In the category MES, the direct product has the universal property. Let ( ), ,X X XM X=   . 

( ), ,Y Y YM Y=    and ( ), ,Z ZM Z=    measurable spaces that are objects of the category MES, such that 
there exists morphisms ( ),X XHom M Mφ ∈  and ( ),Y YHom M Mφ ∈ . Then there exists an unique morphism 

( ), X YHom M M Mθ ∈ ⊗  such that  
X Xφ π θ=                                           (30) 

Y Yφ π θ=                                           (31) 

where Xπ , Yπ  are the morphism defined in Proposition 7. 
Proof. The morphism θ is induced by the application :T Z X Y→ ×  defined as  

( ) ( )( )( ) : ,X YZ z T z z z X Yφ φ∋ → = ∈ × . and it is unique. In order to prove that θ is a morphism we have to 
prove that T is measurable and it is nonsingular. To prove that :T Z X Y→ ×  is measurable, we recall that it is 
sufficient to prove that, for all XA∈ , YB∈ , we have the property ( )( 1)

ZT A B− × ∈ , a property resulting 
from the measurability of Xφ  and Yφ . Note that to prove the inclusion ( )1

X Y ZT −
× ⊂  , it is sufficient to 

demonstrate for the generating subsets ( )1
X Y ZT − × ⊂    (which follows from the nonsingularity of Xφ  

and ( )1
X Y ZT − × ⊂   ) that this is the consequence of the nonsingularity of Yφ . ■ 

In conclusion the direct product operation has the natural functorial property, so the multiplicative property 
Equation (24) of the functional ( ), ,p X X XZ M µ ρ  appears as an algebraic compatibility property. By simple 
reversal of the arrows, we are lead to the corresponding universality property of the coproduct in the category 
MES. We have the following obvious proposition 

Proposition 9 In the category MES, consider the objects XM , YM . The applications :X X X YM M Mι →   
and :Y Y X YM M Mι →  , induced naturally by the canonical injections :Xi X X Y→  , :Yi Y X Y→  , 
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are morphism in the category MES.  
Proof. The injections Xi , Yi  are measurable. Suppose that 1 2 X YN N ∈   , with 1 XN ∈ ,  
2 YN ∈  (see Definition 4). Then, ( )( 1)

1 2 1Xi N N N− = , ( )( 1)
1 2 2Yi N N N− = , so Xi  and Yi  are nonsingular, 

which completes the proof that Xι , Yι  are morphisms in the category MES. ■ 
By reversing the arrows, in analogy to the Theorem 8, we obtain the following result. 
Theorem 10 In the category MES the direct sum of the objects has the following universality property. Let 

denote with ( ), ,X X XM X=   , ( ), ,Y Y YM Y=    and ( ), ,Z ZM Z=    measurable spaces that are 
objects of the category MES, such that there exists morphisms ( ),X XHom M Mφ ∈  and ( ),Y YHom M Mφ ∈ . 
Then, there exists an unique morphism ( ),X YHom M M Mγ ∈   such that  

X Xγ ι φ=  

Y Yγ ι φ=  

where Xι , Xι  are the morphisms defined in Proposition 9. 
Proof. The morphism γ  is induced by the map :g X Y Z→  defined as follows. If x X∈  then 
( ) ( ): Xg x x Zφ= ∈ , and in the case x Y∈ , then ( ) ( ): Yg x x Zφ= ∈ . The measurability of the map g results 

from the measurability of Xφ  and Yφ . The inclusion ( )( 1)
Z X Yg − ⊂     results from the nonsingularity 

of Xφ  and Yφ . 
In conclusion, the direct sum operation has natural category theoretic properties. Hence, the additivity property 

Equation (29) of the functional ( ), ,p X X XZ M µ ρ  is not an artificial construction. 

2.5. The Monoidal Categories Associated to Product and Coproduct 
We recall the following 

Proposition 11 [15] Let   be a category such that for all objects ( ),A B Ob∈   exists their direct product 
A B⊗ , having the universal property. Then, there exists a covariant functor F from the product category to  , 
× →   , defined as follows. For the object ( ),A B  of ×  , where ,A B  are objects of  , we have  

( )( ), :F A B A B= ⊗  

For the pair of morphisms ( ) ( ) ( )( ), , , ,u v Hom A B A B′ ′∈  with ( ),u Hom A A′∈ , ( ),v Hom B B′∈ , from the 
category ×   there exists an unique morphism w in the category  , ( ),w Hom A B A B′ ′∈ ⊗ ⊗  uniquely 
fixed by the conditions  

( )( ),w F u v=  

A Ap w u p′ =   

B Bp w v p′ =   

We denoted with Ap , Bp  the projections from ( ),Hom A B A⊗ , ( ),Hom A B B⊗ , and Ap ′  are Bp ′  the 
projections from ( ),Hom A B A′ ′ ′⊗ , ( ),Hom A B B′ ′ ′⊗ . The map ( ) ( )( ), ,u v F u v→  has the functorial 
property. 

Let ( ) ( ) ( )( ), , , ,u v Hom A B A B′ ′∈  and ( ) ( ) ( )( ), , ,u v Hom A B A B′ ′ ′ ′ ′′ ′′∈ . Then,  

( )( ) ( )( ) ( )( ) ( ), , , ,F u u v v F u v F u v Hom A B A B′ ′ ′ ′ ′′ ′′= ∈ ⊗ ⊗    

If in the category   we have an unit object, then   is a monoidal category.  
Similarly, by duality arguments, we have the following result for the direct sum (coproduct) 
Proposition 12 [15] Let   be a category such that for all objects A, B from ( )Ob   exists their direct sum 

A B , having the universal property. Then, there exists a covariant functor G from the product category 
× →    defined as follows. For the object (A,B) of ×  , where A, B are objects of   we have  

( )( ), :G A B A B=   

For the pair of morphisms ( ) ( ) ( )( ), , , ,u v Hom A B A B′ ′∈ , with ( ),u Hom A A′∈  and ( ),v Hom B B′∈ , from 
the category ×   there exists an unique morphism w in the category  , ( ),w Hom A B A B′ ′∈    uniquely 
fixed by the conditions  
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( )( ),w G u v=  

A Aw i i u′=   

B Bw i i v′=   

We denoted with Ai , Bi  the canonical injections from ( ),Hom A A B , ( ),Hom B A B , and with Ai ′ , 
Bi ′  the injections from ( ),Hom A A B , ( ),Hom B A B . The association ( ) ( )( ), ,u v G u v→  has the func- 

torial property. Let ( ) ( ) ( )( ), , , ,u v Hom A B A B′ ′∈  and ( ) ( ) ( )( ), , , ,u v Hom A B A B′ ′ ′ ′ ′′ ′′∈  then,  

( )( ) ( )( ) ( )( ) ( ), , , ,G u u v v G u v G u v Hom A B A B′ ′ ′ ′ ′′ ′′= ∈      

If in the category   we have a null object then,   is a monoidal category with respect to direct sum.  
We emphasize that, despite the fact that the construction of the direct sum is dual to the direct product, from 

the previous proposition (12) the functor G is a covariant functor. In the category MES we have an unit object as 
well as the null object. The unit object is denoted with ( )1 1 1: 1, ,M =   , where 1 is the one point set [15], 1  
is the trivial σ-algebra consisting in the one point set 1, ∅ , and { }1 = ∅ , respectively. The (more or less for- 
mal) null object 0M , with respect to the direct sum, is the object generated by the empty set ( )0 : , ,M ∅ ∅= ∅   . 
So we have the following 

Conclusion 13 The category MES is a monoidal category both with respect to the product ⊗  and the 
coproduct  .  

3. Axioms  
We expose another approach, based on category theory, to the problem of the naturalness of the choice of the 
family of functions gα  used in the definition of the entropy [2]. We prove that this problem may be treated if 
we take into account the additivity and the multiplicative properties of the functional pZ . We mention that a 
possible candidate for the generalization of the symmetry Postulate 1 [2] is the requirement of invariance of the 
generalized entropy under measure preserving transformations. Recall that the group generated by finite permu- 
tations is the maximal measure preserving group with respect to the counting measure. The problem is that there 
are plenty of measures such that the measure preserving group is trivial (for instance, the atomic measure for 2 
element set with ( ) ( )1 2µ µ≠ ). To avoid this problem, we observe that Postulate 1 and Postulate 5’ in the 
original Rényi theory [2] can be generalized as follows. For a given measurable function ( )f x  on the mea- 
sured space XM  and ( )XC Mµ ∈ , let us define  

( ) ( )( ), ,  &f Xm M t x x X f x tµ µ  = ∈ ≤                             (32) 

Note that ( ), ,f Xm M tµ  is invariant under measure preserving transformations. In addition  

[ ] ( )
0

, , d , ,p
p X X XZ M t m M tρµ ρ µ

∞

= ∫                               (33) 

Then, the Postulate 1 (the symmetry property) and Postulate 5’ (the additivity property expressed in Propo- 
sition 6) can be generalized as follows. Postulate 1 & Postulate 5’  

[ ] ( ) ( ) ( ) ( )
0

, , d , , dp X X X X X X X XX
X

Z M h t m M t h x xρµ ρ µ ρ µ
∞

= =   ∫ ∫               (34) 

( ) 0; if   0Xh x x> >                                     (35) 

for some Borel measurable function ( )Xh t  with  

( )0 0Xh =                                         (36) 

The last requirement result by considering the case when the support of Xρ  is concentrated on a proper 
subset of X and by using Equation (29). The generalization of the Postulate 2 (the continuity property) is 
straightforward. Be ( )h x  continuos and ( )1 ,X X XL Mρ µ∈ , we get  

( ) ( )1 ,X X Xh x L Mρ µ∈                                   (37) 
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In our settings, the analog of the Postulate 4 (the additivity property) [2] is the multiplicative property given 
by Equation (24) and Proposition 3. By using Equations (24), (34), (36) and (37), and by continuity of the 
functions XYh , Xh , Yh  for all , 0x y ≥ , we obtain the following functional equation (valid almost every- 
where)  

( ) ( ) ( ) ; ,XY X Yh x y h x h y x y= ∈                            (38) 

By arguments similar to the proof of the uniqueness, from Theorem 2 [2]), we get Equation (33) (for details 
see Appendix 2): there exists an universal family of functions, independent of X, parametrized by the positive 
parameter p such that  

( ) p
X Xh x x C=                                    (39) 

( ) p
Y Yh y y C=                                    (40) 

( ) p
XY X Yh z z C C=                                   (41) 

4. The Generalized Rényi Entropy (GRE) 
Remark that all of the definitions of the classical, Rényi, Tsallis entropies contains only set theoretic and mea- 
sure theoretic concepts, no supposition on the auxiliary algebraic or differentiable structure associated to the 
measure space are assumed, so their definitions can be used t, continuos or discrete distributions. In the case of 
discrete measured space the classical definitions of the entropies Equations (7), (13)-(15) are invariant under the 
permutation group of the elements of the discrete set. This invariance encodes the assumption of complete apri-
ory lack of information about the physical system, this absolute ignorance is lifted by the specification of the 
probability density function. On the other hand, consider the case when the measure space has the product 
structure 

( ), : , ,X Y X Y X YS X Y m m= × ⊗ ⊗                               (42) 

such that  

,X Y X YS S S= ⊗                                       (43) 

( ): , ,X X XS X m=                                      (44) 

( ): , ,Y Y YS Y m=                                       (45) 

Suppose that the probability measure on X Y×  is given by  

( ), , ( ) ( ); , X Y X YdP dm dm X Yρ= ∈ ∈x y x y x y                           (46) 

The GRE’s associated are [13]  

( ) ( )
, , , ,

1, , , , : log , , , , ; 1, 2
1

a a
q q X Y q q X Yx y x y

y

S X Y m m N X Y m m a
q

ρ ρ   = =   −
               (47) 

( ) ( ) ( )(1)
, ,, , , , : d d ,

qx
qy

q q X Y X Yx y
X Y

N X Y m m m mρ ρ
 

  =   
 

∫ ∫x y x y                   (48) 

( ) ( ) ( )(2)
, ,, , , , : d ,

qx
qy

q q X Y Y Xx y
Y X

N X Y m m dm mρ ρ
 

  =   
 

∫ ∫y x x y                   (49) 

We remark that in the definitions Equation (48), the role of the variables ( ),x y  can be inverted. The range 
  of entropy parameters is given by  

( ) ( )1 0, 0,= ∞ × ∞  

( ){ }1 \ , 1x y yq q q= =   
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In the limit case 1x yq q= → , we obtain the Shannon entropy. We remark that in the definitions Equation 
(48), the role of the variables ( ),x y  can be inverted. In the following we study the compatibility of the GRE 
with the axioms that define the classical Rényi entropy. 

4.1. Symmetry Properties of GRE 
In order to prove that in the case of the GRE the symmetry group is reduced to some subgroup, we consider only 
a special case: the spaces ,X Y  are finite sets, denoted as { }1X i i N= ≤ ≤ , { }1Y a a A= ≤ ≤ , the measures 

Xm , Ym  are the counting measures and denote ,i ap  the corresponding probabilities. We have 

,
1 1

1
N A

i a
i a

p
= =

=∑∑                                       (50) 

We use the array notation { } ,
, ,

:
N A

i a i a
p = p  In this case, the Rényi entropy is  

( ) ,
1 1

1, log
1

N A
q

R i a
i a

S q p
q = =

=
− ∑∑p                              (51) 

It is invariant under the transformation (see Lemma 16) 

( ), , ,:i a i a T i ap p p′→ =                                    (52) 

( ) ( ), ,R RS q S q ′=p p                                   (53) 

where the transformation ( ) ( ), ,i a T i a→  is an arbitrary permutation of the finite index set with NA elements: 
NAT ∈S . In this case, the permutation group NAS  plays the role of the measure preserving transformations. 

The corresponding GRE’s according to Equations (47)-(49) are the following  

( )( ) ( )
, ,1 2 1 2

2

1 log ; 1,2
1

a a
q q q qS N a

q
= =

−
p                             (54) 

( )
1

(1) 2
, ,1 2

1 1

qN A
q

q q i a
i a

N p
= =

 =   
∑ ∑p                                  (55) 

( )
1

(2) 2
, ,1 2

1 1

qA N
q

q q i a
a i

N p
= =

 =   
∑ ∑p                                  (56) 

Suppose we are in general case, when the indices i, a has completely different physical interpretation. Its is 
clear that the measure of information of such a system cannot be invariant under the permutation group NAS  
with ( )!NA  elements. It is expected to be invariant only on the separate !N  permutation from the group NS  
related to index i and !A  permutation of AS , related to the index a, more exactly the invariance group is 
expected to contain a proper subgroup of NAS , generated by NS  and AS . So we are interested to find some 
subgroups (1,2)

NA⊂S S  of transformations ( ) ( ), ,i a T i a→   such that for all 1 2, ,q qp  we have  

( ) ( )(1) (1)
, ,1 2 1 2q q q qN N′ =p p                                     (57) 

{ } (1)
( , ), ;T i ai a p T′ = ∈Gp                                    (58) 

Similarly we are interested to find the subgroup (2)
NA⊂G S  which consists of the transformations  

( ) ( ), ,i a R i a→  such that 

( ) ( )(2) (2)
, ,1 2 1 2q q q qN N′′ =p p                                     (59) 

{ } (2)
( , ), ; R i ai a p R′′ = ∈Gp                                    (60) 

By using the Corollary 17, we obtain the following conclusion concerning the symmetry group of GRE, com- 
pared to the symmetry group of the classical Rényi or Tsallis entropies. 

Proposition 14 The symmetry group (1)G  of the GRE ( )(1)
,1 2q qS p  is reduced from the full permutation group 

NAS  to the subset of transformations of the form 
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( ) ( ) ( ) ( )( ), , : , ii a T i a h i k a→ =                               (61) 

where ( )i h i→  is a permutation of the { }1, , N  and for each fixed { }1,i A∈  each of the map ( )ia k a→  
is the permutation of the set { }1, A . Similarly for the map ( ) ( ), ,i a R i a→ , we have (2)R∈G  (Equation (60)) 
if and only if it is the form 

( ) ( ) ( ) ( )( ), , : ,ai a R i a u i v a→ =                              (62) 

where the map ( )a v a→  is a permutation of the set { }1, , A  and for each fixed { }1,a A∈  the map 
( )ai u i→  is a permutation of the set { }1, N . The subgroup (1) (2):= ∩H G G  which consists of all NAT ∈S  

that leave invariant both of the entropies ( )(1)
,1 2q qS p  and ( )(2)

,1 2q qS p   

( ) ( )(1) (1)
, ,1 2 1 2q q q qS S=p p                                   (63) 

( ) ( )(2) (2)
, ,1 2 1 2q q q qS S ′=p p                                   (64) 

( ), ,:i j T i jp p′ =                                       (65) 

is the direct product N A= ×H S S  and T ∈H  iff 

( ) ( ) ( ) ( )( ), , : ,i a T i a u i v a→ =                                 (66) 

where ( )i u i→  is a permutation of { }1, N  and ( )a v a→  is a permutation of { }1, , A   
In conclusion, in this particular case, the symmetry group associated to GRE’s (1)

,1 2q qS  (2)
,1 2q qS is reduced to the 

direct product of the transformations that separately preserves the measure Xm  respectively Ym , in accord 
with the different physical interpretation of the variables X and Y. The proof for the more subtle general case 
will be the subject of following studies. 

4.2. The Additivity of GRE, Multiplicative Property of ( )
,

a
q qx y

N  
According to Equations (42)-(49), the additivity of the GRE is equivalent to the multiplicative property of the 
functionals ( )

, ,, , , ,a
q q X Yx y

N X Y m m ρ   . In analogy to the properties from Equations (24), (25) we have a perfect 
correspondence with the classical case [13]. Consider the case when the measured spaces, measures, densities 
entering in the definition of the GRE from Equations (42)-(46) are decomposed as follows 

1 2 1 2 1 2 1 2
; ; ;X X X Y Y YX X X Y Y Y= × = × = ⊗ = ⊗       

( ) ( )1 2 1 2, ; ,= =x x x y y y  

( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2
d d d ; d ( ) d dX X X Y Y Ym m m m m m= =x x x y y y  

( ) ( ) ( )1 1 1 2 2 2, , ,ρ ρ ρ=x y x y x y  

Under these assumptions and with the notations Equations (47) and (49), we have the following functorial 
property with respect to the direct product: 

( ) ( ) ( )
, , , 1 1 , 1 , 2 2 , 21 1 2 2

, , , , , , , , , , , , ; 1, 2a a a
q q X Y q q X Y q q X Yx y x y x y

N X Y m m N X Y m m N X Y m m aρ ρ ρ     = × =       

( ) ( ) ( )
, , , 1 1 , 1 , 2 2 , 21 1 2 2

, , , , , , , , , , , , ; 1, 2a a a
q q X Y q q X Y q q X Yx y x y x y

S X Y m m S X Y m m S X Y m m aρ ρ ρ     = + =       

4.3. Additivity of the Functionals ( )
,

a
q qx y

N  with Respect to the Direct Sum 
It is possible to extend, partially, the additivity property from Proposition 6. Consider the measured space 
defined in Equations (42)-(46) and suppose that the space X and the related objects has the following decom- 
position in direct sum, similar to the Definition 4  

1 2 1 2
; X X XX X X= =                                   (67) 

We define the measure 
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1 21 2
:X X Xw wµ µ µ=                                    (68) 

1 21 2
:X X Xw wµ µ µ=   similar to Equations (27), (28), with 1 2 1w w+ =  and from the densities ( )1 ,ρ x y  de- 

fined in the 1X Y×  and ( )2 ,ρ x y  defined in the 2X Y× , we define the density  

( ) ( ) ( )1 2, , ,ρ ρ ρ= x y x y x y                              (69) 

similar to Definition 4 

( ) ( )1 1, , ; Xρ ρ= ∈x y x y x                               (70) 

( ) ( )2 2, , ; Xρ ρ= ∈x y x y  x                               (71) 

Under previous conditions Equations (67)-(71), we have the following additivity result: 
(1) (1) (1)

, , 1 , 1 , 1 2 , 2 , 21 2
, , , , , , , , , , , ,q q X Y q q X Y q q X Yx y x y x y

N X Y m m w N X Y m m w N X Y m mρ ρ ρ     = +            (72) 

We obtain a similar result for the functional (2)
,q qx y

N  if we consider a decomposition 1 2Y Y Y=  . The 
Equation (72) is the equivalent of the Postulate 5’ from the case of the classical Rényi entropy. At this stage we 
remark another anisotropy effect: the different mathematical properties related to the “outer integral over X” and 
the “inner integral over Y” in the definition Equation (48). 

5. Summary and Conclusions 
We proved that the most natural setting for treating the axiomatic approach to the study of definitions of 
measures of information or uncertainty, is the formalism of measure spaces and of the category theory. The 
Rényi divergence can be reduced to the Rényi entropy in our measure theoretic formalism. Category theory was 
invented for the most difficult, apparently contradictory aspects of the foundation of mathematics. In this respect, 
we introduced a category of measurable spaces MES. We proved that in the category MES existed the direct 
product and the direct sum, having universal properties. We proved that the functional ( ), ,p X X XZ M µ ρ  de- 
fined in Equation (1), which appeared in the definition of both Rényi and Tsallis entropies, had algebraic com- 
patibility properties with respect to direct product and direct sum, as shown in Equations (24) and (29). 

The main conclusions may be summarized as follows: 
1) The natural measure of the quantity of information is the family of functionals ( ), ,p X X XZ M µ ρ  given 

by Equation (1), (defined in the Fréchet space for 0 1p< < , and in the Banach space for 1p > ), and the 
classical Shannon entropy by Equation (6); 

2)The category MES is the natural framework for treating the problems related to the measure of the infor- 
mation, in particular in reformulating the Rényi axioms; 

3) The category MES is a monoidal category with respect to direct product and coproduct and the functional 
( ), ,p X X XZ M µ ρ  has natural compatibility properties with respect to the product (it is multiplicative) and the 

coproduct (it is additive); 
4) Up to a multiplicative constant, it is possible to recover the exact form of the functional ( ), ,p X X XZ M µ ρ  

defining the generalized entropies from a system of axioms that generalize the ones adopted by Rényi [2]. 
5) The GRE [ ](1)

, , , , ,q q X Yx y
S X Y m m ρ  has similar additivity property with respect to the direct product de- 

composition of the spaces X, Y.  
6) The symmetry group of (1)

, ,, , , ,q q X Yx y
S X Y m m ρ    is reduced to a combination of the symmetry group 

related to the measured spaces ( ), XX m  and ( ), YY m  that is a proper subgroup of the full measure preserving 
group of ( ), X YX Y m m× ⊗  that is the symmetry group of the classical Rényi entropy.  

7) The Postulate 5'’of the classical Rényi entropy appears in the case of GRE as the additivity property of the 
functional (1)

, ,, , , ,q q X Yx y
N X Y m m ρ    with respect to direct sum decomposition of the space X. This asymmetry 

with respect to space Y is a new manifestation of the anisotropy. 
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Appendix 
A1. Rényi Divergence and Entropy 
Suppose to have a measurable space ( ), ,mΩ   with a finite or σ-finite measure μ and a normalized PDF 
( )xρ , i.e. ( ) ( ) 1x d xρ µ

Ω

=∫ . Only in this subsection we adopt the following definitions  

( ) ( ) ( ), , :U d x d x
α

ρ µ α ρ µ
Ω

=   ∫                                  (73) 

( ) ( ),
1, log , ,

1RS d U dα ρ µ ρ µ α
α

=
−

                                (74) 

Consider now a measurable space ( ), , N n= Ω   with σ-finite measure n. We also denote with ( )P x , 
( )Q x  two probability densities, satisfying the condition  

( ) ( ) ( ) ( )d d 1P x n x Q x n x
Ω Ω

= =∫ ∫                                  (75) 

The Rényi divergence reads  

( ) ( )11 log d
1

p p
pD P Q P Q n x

p
−

Ω

=
− ∫                                (76) 

;P d Qdn
Q

ρ µ= =  

According to the Equations (73, 74, 76) and normalization Equation (75), we get 

( ) ,
1 log , , ,

1p R p
P PD P Q U Qdn p S Qdn

p Q Q
   

= = −   −    
                        (77) 

A2. Solution of the Functional Equation Equation (38) 
Using Equation (35) with 0ρ ≥ , we note that we can use the double logarithmic scale by performing the 
following change of variables  

( ) ( )( )log expX Xf u h u=                                   (78) 

( ) ( )( )log expY Yf v h v=                                   (79) 

( ) ( )( )log expXY XYf z h z=                                  (80) 

Hence, Equation (38) reads  

( ) ( ) ( )XY X Yf u v f u f v+ = +                                  (81) 

In the particular case 0u =  from Equation (81), we obtain  

( ) ( ) ( )0XY X Yf v f f v= +                                   (82) 

From Equations (81), (82) results  

( ) ( ) ( ) ( )0XY XY X Xf u v f v f u f+ − = −                              (83) 

We select in Equation (83) 0v =   

( ) ( ) ( ) ( )0 0XY XY X Xf u f f u f− = −                               (84) 

 and the following equation results  
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( ) ( ) ( ) ( )0XY XY XY XYf u v f v f u f+ − − = −                            (85) 

Remark t hat putting in Equation (84) 0u v= =  we obtain an identity, so ( )0XYf  is a free parameter .  
Observe that Equation (85) admits the particular constant solution  

( ) ( )(0) 0XY XYf z f≡                                      (86) 

The general solution of corresponding homogenous equation  

( ) ( ) ( ) 0XY XY XYf u v f v f u+ − − =                               (87) 

may be found by using again the continuity of the function ( )XYh ρ  (See also [21] I.3.1, page 8, we do not use 
here the differentiability of ( )XYf u ), i.e.,  

( )  XY XYf z p z=                                       (88) 

Here XYp  is a constant, that, at this stage, still depends on the object XY of the category MES. In the con- 
tinuation we prove that the constant is “universal”, it is the same for all of the objects of the category MES. 

The general solution of the Equation (85) reads  

( ) ( )0  XY XY XYf z f p z= +                                 (89) 

and similarly we have for all of the object of the category MES  

( ) ( )0  X X Xf z f p z= +                                  (90) 

( ) ( )0  Y Y Yf z f p z= +                                  (91) 

By using Equations (81), (89), (90), (91), we get the universal linear slope p  

( ) ( )0X Xf u f pu= +  

( ) ( )0Y Yf v f pv= +  

( ) ( ) ( )0 0 0XY X Yf f f= +  

and, by Equations (78)-(80), up to undetermined multiplicative constants ( )( )exp 0X XC f p= , ( )( )exp 0Y YC f= , 
we find Equations (39)-(41). 

A3. Some Algebraic Result 
Lemma 16 Let 1, , Ma a  positive numbers. If for all x A>  we have  

1 1

M M
x x
j j

j j
a b

= =

=∑ ∑                                       (92) 

where 0jb ≥  then there exists a permutation of the set { }1, , M , ( )j r j→  such that  

( ) ;  1j r jb a j M= ≤ ≤                                  (93) 

Proof. We proceed by induction. For 1M =  clear, suppose that the Lemma is valid for 1M −  and suppose, 
ad absurdum that { } { }1 1max , , max , ,M Ma a b b≠  . Taking the limit x →∞  in Equation (92) we find a con- 
tradiction, so { } { }1 1max , , max , ,M Ma a b b=   which completes the induction step. ■ 

By using the previous Lemma 16 in two successive steps, with 1x q=  respectively 2x q= , we find the 
following  

Corollary 17 Suppose that for all 1 2,q q A>  we have  
1 1

2 2
, ,

1 1 1 1

q qN A N A
q q
i a i a

i a i a
p P

= = = =

   =      
∑ ∑ ∑ ∑                                (94) 
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where , ( , )i a T i aP p= , with ( ) ( ), ,i a T i j→  and NAT ∈S , the permutation group of NA elements is indexed by 
the pair ( ),i a . Then 

( ) ( ) ( )( ), , iT i a h i k a=                                    (95) 

where the map ( )i h i→  is a permutation of the set { }1, , N  and for each fixed { }1, ,i N∈   each of the 
maps ( ) ( )1 , , Aa k a a k a→ →  are permutations of the set { }1, , A . 
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