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Abstract 
There are at least two valid approaches to the thermodynamics of electrons in metals. One takes a 
microscopic view, based on models of electrons in metals and superconductor and uses statistical 
mechanics to calculate the total thermodynamic functions for the model-based system. Another 
uses partial molar quantities, which is a rigorous thermodynamic method to analyze systems with 
components that can cross phase boundaries and is particularly useful when applied to a system 
composed of interacting components. Partial molar quantities have not been widely used in the 
field of solid state physics. The present paper will explore the application of partial molar elec-
tronic entropy and partial molar electronic heat capacity to electrons in metals and superconduc-
tors. This provides information that is complementary information from other approaches to the 
thermodynamics of electrons in metals and superconductors and can provide additional insight 
into the properties of those materials. Furthermore, the application of partial molar quantities to 
electrons in metals and superconductors has direct relevance to long-standing problems in other 
fields, such as the thermodynamics of ions in solution and the thermodynamics of biological ener-
gy transformations. A unifying principle between reversible and irreversible thermodynamics is 
also discussed, including how this relates to the completeness of thermodynamic theory. 
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1. Introduction 
Entropy and heat capacity measurements have long played an important role in providing insight into the elec-
tronic structure of metals and superconductors [1] [2]. There are at least two valid approaches to the thermody-
namics of electrons in metals. One takes a microscopic view, based on models of electrons in metals and super-
conductor and uses statistical mechanics to calculate the total thermodynamic functions for the model-based 
system. The simplest model is the Sommerfeld model, which is based on the properties of a degenerate free 
electron gas. Beyond this there is a hierarchy of increasingly sophisticated models of increasing realism, usually 
based on concepts from the band theory of solids. An important property of this approach is that it is entirely 
model-dependent. Furthermore, parsing of the entropy between interacting components of a system (e.g. elec-
trons interacting with the lattice of a metal) tends to be somewhat heuristic or even a bit arbitrary. 

Another approach uses partial molar quantities. This is a rigorous thermodynamic method to treat systems 
with components that can cross phase boundaries. It is widely used in classical chemical thermodynamics, espe-
cially in the analysis of the thermodynamics of solutions. However, partial molar methods can be applied to any 
system wherein components can be added to or removed from a phase (at least in infinitesimal amounts), which 
would therefore apply to metals and superconductors. Being a purely thermodynamic approach, it is based on 
macroscopic thermodynamic functions and does not depend on any microscopic models for its validity. Howev-
er, it can sometimes be profitably applied to microscopic models to provide additional insight into the properties 
of systems under study. One of the features of the partial molar approach to thermodynamics is that it provides 
an unambiguous way to parse extensive thermodynamic functions, such as the entropy of a system of interacting 
components into contributions from each component. 

2. Partial Molar Quantities 
A partial molar quantity is based on the idea that an extensive thermodynamic variable may change upon the ad-
dition or removal of an infinitesimal amount of one of the components of the system. For example, if d in  is a 
small quantity of component i added to a system then the partial molar entropy of that component of the system 
is given by 

,
i

i T P

SS
n

 ∂
=  ∂ 

                                      (1) 

where iS  is the partial molar entropy of component i, S is the total entropy of the system, and the subscripts T 
and P denote constant temperature and external pressure. It is also to be understood that in Equation (1), and 
other equations in the paper unless otherwise stated, the composition of all of the components are held constant 
except for component i. 

Among chemists partial molar quantities are normally specified in terms of moles, hence the word “molar” in 
the term “partial molar”. (In some of the earlier literature these quantities have also been referred to as “partial 
molal” quantities.) However, in this paper it is sometimes more convenient to express partial molar quantities in 
terms of number of particles (e.g. electrons), and the partial molar quantities in the present paper are based on 
this view unless otherwise specified.  

In general, partial molar quantities are useful for systems of variable compositions, systems in which compo-
nents can cross phase boundaries, and systems composed of interacting components. Metals and superconduc-
tors possess all of these properties, given the fact that it is possible to add or remove infinitesimal numbers of 
electrons from a sample of metal or superconductor, electrons can be transferred across phase boundaries, and 
electrons interact strongly with the lattice. 

One of the properties of partial molar quantities is that they provide a rigorous and systematic way to split an 
extensive thermodynamic function of a system containing interacting components into contributions from each 
component. For example, in solution phase chemistry the total entropy of an aqueous sucrose solution would be 
the sum of two terms: 

1 1 2 2S n S n S= +                                      (2) 

where 1n  is the number of moles (or molecules) of water in the solution, 1S  is the partial molar entropy of 
water in the solution, 2n  is the number of moles (or molecules) of sucrose in the solution, and 2S  is the par-
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tial molar entropy of sucrose in the solution. The term 1 1n S  is the contribution of component 1 to the total en-
tropy, and 2 2n S  is the contribution of component 2. Though a sucrose solution was used for purposes of illu-
stration, this equation applies to any two-component system whose components can cross phase boundaries. An 
analogous equation can be extended to any number of components of a complex mixture, one term in the sum 
for each component [3]. 

By analogy to solution-phase thermodynamics, the entropy of a metal can be treated in terms of partial molar 
quantities, where 1n  in Equation (2) would be the number of electrons, 1S  would be the partial molar entropy 
of electrons in the metal, 2n  would be the number of lattice elements (e.g. lattice ions or volume elements, de-
pending on the material or model), and 2S  would be the partial molar entropy of lattice elements. Similarly, the 
entropy of an alloy is treatable as a multi-component system by extending the sum to include additional terms 
representing the various components in the alloy, including the various types of lattice ions that may be present 
as well as conduction electrons. 

The partial molar method of splitting a thermodynamic function into contributions from the components of a 
system implicitly takes into account any interactions between the system components. Furthermore, it is not 
even necessary to know what those interactions are. However, if one has a good microscopic model of the sys-
tem then it may sometimes be useful to calculate the partial molar quantities of the system based on the proper-
ties of the model, including the interactions between the components, and much of this paper is devoted to ana-
lyzing the thermodynamic properties of microscopic models using partial molar quantities.   

A second property of partial molar quantities is that even though an extensive property of a system such as 
entropy or volume may be constrained by physical considerations to be positive, one or more of the partial molar 
quantities of a system may be positive, zero, or even negative, as long as the sum of the terms, e.g. in Equation 
(2), is positive. For example, the partial molar volume of MgSO4 in dilute aqueous solution is negative [4], and 
the partial molar entropy of aqueous Mg3(PO4)2 in its standard state is negative with the rather astounding nega-
tive value of 1 1831.8 J K mol− −− ⋅ ⋅  [5]. 

Partial molar quantities have not been widely used in the field of solid state physics. One exception is the 
Fermi level, which is the statistical mechanical equivalent of the partial molar Gibbs free energy.The present 
paper will explore the application of partial molar methods to electrons in metals and superconductors, in partic-
ular the partial molar entropy and the partial molar heat capacity. The information one can glean from this is 
complementary to other approaches to studying the thermodynamics of metals and superconductors and can 
provide additional insight into the thermodynamic properties and electronic structures of those materials. Fur-
thermore, the application of partial molar quantities to solid state physics has direct relevance to long-standing 
problems in other fields, such as the thermodynamics of ions in solution and the thermodynamics of biological 
energy transformations. 

3. Dense Electron Systems in the Low-Temperature Limit 
It is well known concept that in the low-temperature limit the total electronic entropy of a normal metal is 

( ),total 1eS K g Tε=                                      (3) 

where the purposes of this presentation 1K  can be considered an arbitrary constant. This equation assumes that 
electrons can be reasonably treated as if they are in some sense non-interacting. The total low-temperature elec-
tronic heat capacity is given by   

( ),total
,total 1

e
e

S
C T K g T

T
ε

∂
= =

∂
                              (4) 

which, for a material following Equation (3),is the same as the low-temperature total electronic heat capacity. 
Using the definition presented in Equation (1), the partial molar electronic entropy is 

( )( ) ( )1,total
1

, ,,

.e
e

e e eT P T PT P

K g TS g
S K T

n n n
ε ε ∂∂ ∂  

= = =      ∂ ∂ ∂    
                 (5) 

In these expressions the total external pressure is held constant, as indicated in the subscripts. However, un-
less otherwise indicated, for simplicity let us consider that the volume is also constant, and one could therefore 
just as well replace P with V in the subscripts above, signifying constant volume. 
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Making use of the chain rule and the following relations 

( )en g ε
ε

∂
=

∂
                                      (6) 

and 

( )
1
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e

ng
n
εε
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−
− ∂ ∂ = = ∂ ∂ 

                                 (7) 

Equation (5) becomes 

( ) ( ) ( )
( )

( ) ( )( )1
1 1 1

, , , , ,

ln
.e

e eT P T P T P T P T P

gg g g gK TS K T K T K T
n n g

εε ε ε ε
ε ε ε ε

 ∂∂ ∂ ∂ ∂       
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   (8) 

From equation (2) the partial molar entropy contributes  

( )
( )1

,
e e e

T P

gK Tn S n
g

ε
ε ε

∂ 
=  ∂ 

                              (9) 

to the total entropy of the system. 
Making use of 

( )
0

den g
ε

ε
ε ε= ∫                                   (10) 

Equation (9) becomes 

( )
( )

( )
( ) ( )

0

1 1

, ,

d .e e e
T P T P

g gK T K Tn S n g
g g

ε

ε

ε ε
ε ε

ε ε ε ε
∂ ∂   

= =   ∂ ∂   
∫                 (11) 

Comparing the total electronic entropy (Equation (3)) to the partial molar entropy’s contribution to the total 
(Equation (11)), one concludes that the total electronic entropy provides information on the density of states in 
the vicinity of the Fermi level, whereas the partial molar electronic entropy, when used in conjunction with in-
formation from the total electronic entropy, also provides information on the slope of the density of states curve 
in the vicinity of the Fermi level. Thus, if the partial molar entropy can be measured or otherwise determined it 
can provide additional insight into the electronic structure, the form of the density of states function in the vicin-
ity of the Fermi level, and the thermodynamics of metals. 

4. Sommerfeld Model 
The Sommerfeld model is perhaps the simplest conceptual model that captures many of the essential thermody-
namic features of electrons in metals. In the Sommerfeld model non-interacting Fermions are confined to rigid 
box of constant volume. Let us compare the total electronic entropy to the partial molar contribution to the en-
tropy in this model. Given that the density of states in the Sommerfeld model is given by 

( ) 1 2
2g Kε ε=                                      (12) 

where 2K  is a constant that for our purposes can be considered to be arbitrary, the total electronic entropy be-
comes 

( ) 1 2 1 2
, ,total 1 1 2 3e SS K g T K K T K Tε ε ε= = =                         (13) 

where the subscript S specifies “Sommerfeld model”. The contribution of the partial molar electronic heat ca-
pacity to the total heat capacity becomes 

( ) ( ) ( )
0

1 2 1 2
2 2 1 21 1

, 21 2 1 2
2 2

, ,

d .e e S e
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K KK T K Tn S n K
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ε

ε

ε ε
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ε εε ε

   ∂ ∂
   = =
   ∂ ∂   

∫          (14) 

Performing the derivatives and integrals this equation becomes 
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1 2
, 3 , ,

1 1 .
3 3e e S e S totaln S K T Sε= =                               (15) 

From this we see that the partial molar electronic entropy’s contribution to the total electronic entropy does 
not necessarily equal the total electronic entropy. In fact, in the Sommerfeld model the partial molar entropy 
contributes only one third of the total. 

One can conclude the same thing by considering the temperature coefficient of the Fermi level. The Fermi 
level ( fε ) is the statistical mechanical equivalent of the partial molar Gibbs free energy of a Fermi gas. Let ,f Sε  
represent the Fermi level in the Sommerfeld model. For a degenerate free electron Fermi gas it is given by the 
following expression [6]: 

2
2

, 0,
0,

π1
12f S f S

f S

kTε ε
ε

  
 = − +     

                              (16) 

where 0,f Sε  is the zero-temperature Fermi level and k is Boltzmann’s constant. From elementary chemical 
thermodynamics the partial molar entropy can be calculated by an indirect method, i.e. by the negative of the 
temperature coefficient of the partial molar Gibbs free energy: 

( )2
,

,
0,

π
.

6
f S

e S
f S
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S T
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ε

ε
∂

= − =
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                                 (17) 

The total entropy is given by  

( )2

,
0,

π
.

2e S e
f S

k
S n T

ε
=                                      (18) 

The partial molar entropy is given by the following the following direct calculation 

( )2
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0,

π
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e S

e f S
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S T

n ε
∂

= =
∂

                                   (19) 

and the partial molar contribution to the total entropy is given by  

( )2
,

,
0,

π
.

6
e S

e e S e e
e f S

S k
n S n n T

n ε
∂

= =
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                                (20) 

From these equations one can see by inspection that 

,
, 3

e S
e e S

S
n S =                                          (21) 

which is the same result as Equation (15). 
Where is the “missing” two thirds of electronic entropy? Considering that the Sommerfeld model contains 

only two components, electrons and lattice, the missing two thirds must be assigned to the lattice! More specifi-
cally, in the Sommerfeld model partial molar lattice entropy contributes two thirds of the total electronic entropy, 
and the partial molar electronic entropy contributes one third of the total electronic entropy. 

This result may seem counterintuitive. In the Sommerfeld model there are no modes of motion of the lattice 
which can absorb thermal energy, so naively one might expect that it cannot contribute to the entropy. However, 
one must keep in mind what is meant by “non-interacting” in the Sommerfeld model. Although it is true that 
electrons do not interact with each other, they do interact strongly with the lattice because the lattice confines the 
electrons. This interaction causes the partial molar entropy of the lattice to contribute to the total electronic en-
tropy in the sense defined by Equation (2). 

In the Sommerfeld model the “lattice” can be thought of as empty space terminated by walls. The partial mo-
lar lattice entropy is the change in entropy upon the addition of a volume element. If the volume of the system is 
incremented by a volume element the electron gas becomes more dilute, hence the entropy increases, and this 
accounts for the fact that the partial molar lattice entropy contributes two thirds of the total entropy in the Som-
merfeld model, even though the lattice has no modes of motion itself. 
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Dividing the entropy in this manner into contributions from the components of the system might seem to be 
just a mathematical formality, but it is much more than this. Because the partial molar entropy determines how 
the entropy of a system changes when one component is added to the system it tells us how the entropy of a 
metal changes when adding an electron as well as how the entropy changes when adding a lattice component. 
This in turn tells us the entropy of a process wherein an electron is transferred between two metals. 

5. Band Theory 
Things become more interesting when we consider the electronic entropy from the point of view of a band 
theory, which begins to better approximate the properties of real metals than does the Sommerfeld model. It will 
be shown that in band theory not only can partial molar electronic entropy be different from the total electronic 
entropy, but it can even be negative. 

 Assume the following: Conduction band electrons interact with a fixed periodic pseudopotential representing 
the lattice, i.e. nuclei and core electrons. There is no direct electron-electron interaction. The density of states 
function, ( )g ε , is independent of the number of electrons in a band, i.e. neither the filled nor empty energy 
levels are perturbed by the addition of a small number of additional electrons. The electron density is high 
enough and the temperature is low enough that the thermodynamics of the system behaves as a strong-
ly-degenerate nearly free electron gas. Also, the Debye heat capacity will be ignored in this section. 

In general, from a statistical mechanical perspective the conduction band of a metal can be characterized in 
terms of a density of states function, separated from above and below by band gaps. The density of states func-
tion is zero at the low-energy edge of the band, climbs to at least one maximum, and then decreases to zero at 
the high-energy edge or the band. This implies that there is at least one region of positive slope, one region of 
negative slope, and one point of zero slope on the ε  vs. ( )g ε  curve. These simple facts have profound im-
plications for the nature of partial molar electronic entropies. 

Consider the mathematical properties implied by the facts just cited as applied to Equation (8), repeated here 
as Equation (22):  

( )
( )1

,
,

.e B
T P

gK TS
g

ε
ε ε

∂ 
=  ∂ 

                                (22) 

The right hand side can be broken into three factors 

, 1 2e BS F F T=                                       (23) 

where 1F  depends on the density of states, 

( )
1

1
KF

g ε
=                                        (24) 

and F2 is the slope of the density of states curve 

( )
2

,

.
T P

g
F

ε
ε

∂ 
=  ∂ 

                                    (25) 

The density of states is physically constrained to be non-negative at every point within a band, implying that 
( )g ε  is everywhere non-negative and 1F  must therefore be non-negative at every point on the ( )g ε  curve. 

However, as noted above the slope of the curve may be positive, negative, or zero, implying that 2F  may be 
positive negative, or zero. This in turn implies that the partial molar electronic entropy (Equation (23)) may be 
positive, negative or zero. 

This is illustrated in Figure 1 through Figure 3 which show the density of states curves for the conduction 
band for three idealized cases. For the purposes of this discussion, which is to illustrate the general features of 
partial molar electronic entropies in comparison to total electronic entropies, it is sufficient that the units in these 
figures to be arbitrary units. It is also not necessary that these conceptual models of bands be completely realistic, 
but only that the slopes in the density of states curve has the feature of having one or more regions each of posi-
tive, negative, and zero slope. The area under each curve (which gives the maximum possible electrons in the 
band) is the same for each curve, and in Figure 1 and Figure 2 the band is half full, as indicated by the darkened 
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regions. The y-axis of each curve represents the density of states, and the x-axis represents energy. At the Fermi 
level the density of states is the same for Figure 1 and Figure 2. The shapes of the density of states curves in 
Figure 1 and Figure 3 are the same, and the shape of the curve in Figure 2 is the mirror image of the shape of 
the curves in Figure 1 and Figure 3. 
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Figure 1. Density of states curve for hypothetical band #1, 
half filled. Slope is positive at the Fermi level. 
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Figure 2. Density of states curve for hypothetical band #2, 
half filled. Slope is negative at the Fermi level. 
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Figure 3. Density of states curve for a hypothetical band #1, 
nearly filled. Slope is strongly negative at the Fermi level. 
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The total electronic heat capacity for Figure 1 and Figure 2 is 

( ),total 1 10.7887 .eS K g T K Tε= =                                (26) 

The contribution of the partial molar electronic entropy to the total electronic entropy in Figure 1 is 

( )
( ) ( )

0

1

,

d 0.2245 .e e
T P

gK Tn S g T
g

ε

ε

ε
ε ε

ε ε
∂ 

= = ∂ 
∫                         (27) 

The partial molar electronic heat capacity contributes only 28.46% of the total electronic heat capacity. 
The contribution of the partial molar electronic heat capacity to the total electronic heat capacity in Figure 2 

is 

0.2245 .e en S T= −                                     (28) 

The partial molar contribution to the total is −28.46% in this case, i.e. a negative contribution. 
Figure 3 represents an extreme case. The density of states curve is the same as for Figure 1, but in this case 

the band is nearly full. The slope of the density of states curve is a large negative value, implying a compara-
tively large negative value for the partial molar electronic heat capacity. This example would also be expected to 
show a negative effective electron mass [7]. It is also possible for the partial molar electronic entropy to be zero. 
This would happen if the slope of the density of states curve were zero at the Fermi level. 

Figure 4 shows a somewhat more realistic band shape [8]. Noted on the figure are three possible locations for 
the Fermi level. The three levels are not far apart on the density of states curve, but the partial molar electronic 
entropies will be very different for each of the three cases. For 1fε , the partial molar entropy will be positive 
and comparatively large because the slope is positive and the magnitude of the slope is comparatively large. For 

3fε  the partial molar entropy will be negative with a comparatively large magnitude. For 2fε , the Fermi level 
in on the cusp of the curve. The total electronic entropy would be a maximum at that point because the density 
of states curve is at a maximum, but the partial molar entropy would be very sensitive to the exact placement of 
the Fermi level and therefore difficult to predict. This is because it is at the cusp of the curve where the slope 
abruptly changes from a comparatively large positive value to a comparatively large negative value. However, if 

2fε  is perfectly centered on the cusp (at a point of zero slope) then the partial molar electronic entropy will be 
zero. Density of states curves for real metals can be much more complicated than those in the illustrations in this 
paper, in some cases with multiple maxima and minima [9], and the partial molar entropies will depend on ex-
actly where the Fermi level would fall on these complicated structures. 

Thus, we see that both positive and negative values for the partial molar electronic entropy are consistent with 
band theory, and these values depend on the properties of the density of states curve in the vicinity of the zero- 
temperature Fermi level. Consequently, partial molar electronic heat capacities can tell us a significant amount 
of information about the shape of the conduction band of a metal in the vicinity of the Fermi level. 
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Figure 4. A conduction band of a somewhat more realistic 
shape than the bands in Figures 1-3. Three possible positions 
of the Fermi level are shown. 
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6. Debye Heat Capacity 
We conventionally think of the low temperature electronic heat capacity and entropy as being simply propor-
tional to T, e.g. Equation (3). However, Equation (3) is only the lowest term in a power series expansion of the 
total electronic entropy, and higher order terms, including one proportional to 3T  also exist. This would apply 
to both the total electronic heat capacity and the partial molar electronic heat capacity, though not necessarily 
equally. Thus, although we often ascribe any 3T  term in the total heat capacity to Debye heat capacity, part of 
the 3T  term comes from the series expansion of the Fermi-Dirac distribution and is therefore at least partly 
electronic in nature. However, given the assumption that the electron system in a metal is strongly degenerate, it 
is reasonable to assume that these higher order terms in this series expansion are negligible compared to the term 
linear in T and can be ignored. 

However, there is another effect that can also lead to a 3T  term in the partial molar electronic heat capacity, 
and this arises from the role of electrons in the Debye theory. The Debye heat capacity, DC , at low temperature 
is given by [10] 

3412 π
5D

D

Nk TC
T
 

= + 
 

                                   (29) 

where N is the number of lattice elements and DT  is the Debye temperature characteristic of the metal. The 
low-temperature the Debye entropy is, by integration 

34
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0

4 πd .
3 5 3

T D D
D D

D

C CNk TS T C T
T

−  
= = = + = + 

 
∫                       (30) 

The partial molar electronic Debye heat capacity at low temperature is 
34

,
36 π 3 .

5
D D D D D D

e D
e D e D e D D e

C C T T C TNk TC
n T n T n T T n
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= = = + = − +          ∂ ∂ ∂ ∂ ∂          
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The partial molar electronic Debye entropy at low temperature is, by integration, 
34

,
, 0
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In the rest of this paper, the higher order terms will be dropped from the low-temperature limiting expressions 
unless otherwise indicated. From this equation one sees that (unless 0D eT n∂ ∂ = ) the partial molar electronic 
entropy contains a term proportional to 3T  arising from the dependence of Debye heat capacity on the number 
of electrons. 

Shifting attention to the high-temperature limit, the Debye heat capacity is given by 
213 1 .
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The partial molar heat capacity in the high-temperature limit is therefore 
2

3
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= + ∂ ∂ 
                                (34) 

The higher order terms will be dropped from this expression in the rest of the paper unless otherwise indicated 
From this equation, one can see that at high temperature the Debye heat capacity contributes to the partial 

molar electronic heat capacity through a term proportional to 2T − , which asymptotically approaches zero in the 
limit of high temperature. 

The word “electronic” in the phrases “partial molar electronic Debye heat capacity” and “partial molar elec-
tronic Debye entropy” is not meant to conceptually substitute electronic motion for vibrational motion in the 
Debye theory, but rather to recognize that the Debye heat capacity must vary as electrons are added to or re-
moved from the metal. 
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That the Debye heat capacity could contribute to the partial molar electronic heat capacity may seem coun-
ter-intuitive at first. However, on must keep in mind that the density and elastic constants of a metal depend on 
the electronic structure of the metal. When an electron is added to a metal it enters the conduction band. De-
pending on the electronic structure of the metal the added electron may go into an energy level that is, using a 
chemists’ conceptual picture, either bonding or anti-bonding in character. (As a special case it may also be neu-
tral with respect to bonding properties.) This could affect the crystal in two ways: changing the average intera-
tomic distance (hence the density) and/or changing the elastic constants of the material. These parameters de-
termine phonon spectrum of the material, which in turn determines the Debye temperature. Adding or removing 
electrons from the material will therefore alter these parameters, hence changing the heat capacity and entropy. 
One must conclude that in general the Debye heat capacity contributes to the partial molar entropy of the ma-
terial. This condition would only be violated in cases where there is an accidental cancellation of terms. 

The effect of electronic structure on the phonon spectrum can be considered a form of electron-phonon inte-
raction. Usually electron-phonon interactions are treated in terms of scattering theory, but as we see here one can 
also learn something about electron-phonon interactions from the equilibrium thermodynamic properties of the 
system, specifically the partial molar electronic Debye entropy. One limitation of this model as applied to real 
metals is that the Debye temperature is not a temperature-independent quantity, so the treatment given here 
should be considered only a first approximation. 

What magnitude might one expect from this effect? Without additional information from experimental or 
theoretical studies it is hard to predict. However, Let us break down the factors in the partial molar electronic 
Debye heat capacity and entropy to see what can be learned from their functional forms. In the low-temperature 
limit (Equations (31) and (32)) we have 
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                                  (36) 

These are just rescaled versions of the Debye heat capacity and the Debye entropy. Both are rescaled by 1
DT −  

and D eT n∂ ∂ . One of these scale factors, 1
DT − , is straightforward. It is simply 

m
D

hT
k
ν

=                                       (37) 

where h is Planck’s constant, k is Boltzmann’s constant, and mν  is the Debye cutoff frequency. 
To calculate D eT n∂ ∂  we start with the definition of DT , and the factor D eT n∂ ∂  becomes 
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                                   (38) 

The cutoff frequency in Debye theory is defined by 
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Therefore using these relations and differentiating using the chain rule we have 
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                     (40) 

where N is the number of lattice sites in the crystal, V is the volume of the crystal, La  is the longitudinal speed 
of sound, and Ta  is the transverse speed of sound. Therefore  
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and 
3

3 4 4
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                        (42) 

The longitudinal speed of sound depends on the bulk modulus, the shear modulus, and the density. The trans-
verse speed of sound depends on shear modulus and the density. Therefore, L ea n∂ ∂  and T ea n∂ ∂  in these 
equations can be replaced by 
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where Bµ  is the bulk modulus, Sµ  is the shear modulus, and ρ  is the density. The longitudinal and trans-
verse speeds of sound are given by 
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and 
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                                    (46) 

respectively, so the partial derivatives L Ba µ∂ ∂ , L Sa µ∂ ∂ , L La a∂ ∂ , T Sa µ∂ ∂  and Ta ρ∂ ∂  are calcula-
ble from using macroscopic measurements. The partial derivatives B enµ∂ ∂ , S enµ∂ ∂ , enρ∂ ∂ , S enµ∂ ∂ , 
and enρ∂ ∂  are accessible via electronic structure calculations, at least in principle. It might be expected that 
these will be relatively small numbers, so the partial molar electronic Debye heat capacity and entropy may be a 
small fraction of the total Debye heat capacity and entropy. However, even a small fraction of the Debye heat 
capacity may represent a fairly large contribution to the partial molar electronic heat capacity, given the fact that 
the electronic heat capacity is quite small for metals, especially at moderately low and low temperatures. 

7. Superconductors 
A two-fluid conceptual model is often applied to superconductors. Usually this is applied to explain the property 
of zero DC resistance [2] [11]. However, let us consider the thermal properties of superconductors from the 
point of view of a two-fluid model. Electrons in a superconductor are grouped into two categories: normal elec-
trons and superconducting electrons. In BCS theory superconducting electrons exist as a Bose condensate of 
Cooper pairs resulting from electron-phonon interactions. Below the superconducting transition temperature 
both normal and superconducting electrons coexist in the same sample. 

To use an analogy, one might compare a superconductor to a system composed of a sealed vessel containing a 
small amount of vapor and a condensate of the vapor. Above a certain temperature (the dew point) only the va-
por exists, but below the dew point both phases coexist within the sealed vessel. Below the dew point the num-
ber density of the vapor is determined by vapor pressure of the condensate. In this analogy, the dew point cor-
responds to the critical temperature for the normal/superconductor transition. 

Starting from a temperature above the dew point, as the temperature drops the system eventually reaches the 
dew point and a condensed phase begins to form, and as the temperature drops still further a greater fraction of 
the material will leave the vapor and enter the condensed phase. At 0T =  all of the material exists as a con-
densate. In a superconductor this behavior would be analogous to a greater fraction of conduction electrons ex-
isting in the Bose condensate as temperature is lowered. 

If one were unaware of the fact that two phases may exist inside of the sealed container, and if one were to 
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perform a heat capacity measurement on the system one would observe a discontinuity at the dew point. Above 
the dew point the heat capacity is that of the vapor alone. Just below the dew point the apparent heat capacity is 
dominated by the latent heat for the phase transition between vapor and condensate, i.e. as one cools the temper-
ature there is a condensation of vapor, and the latent heat is given up, which implies that to reduce the tempera-
ture an “unexpectedly” large amount of heat removal would be required. Thus, immediately below the transition 
temperature the apparent heat capacity is greater than that of the vapor. This qualitatively resembles the temper-
ature vs. heat capacity curve for a superconductor. 

As the temperature approaches zero the number density of the vapor drops in exponential-like fashion. This is 
because the concentration of the vapor pressure drops in exponential-like fashion; hence there are fewer vapor 
molecules to condense as the temperature drops. This qualitatively resembles the drop in number density of 
normal electrons in a superconductor as temperature is reduced toward zero. 

At very low temperature there is not much vapor left, so the heat capacity of the vapor is negligible. Further-
more, because there is little vapor left to condense latent heat available by condensation is also negligible. At 
that point the apparent heat capacity of the system is largely dominated by the heat capacity of the condensed 
phase.  For a superconductor the condensate is highly ordered Bose condensate, which has a heat capacity of 
zero. As the temperatures approaches zero the heat capacity of a superconductor approaches zero with a zero 
slope. 

There is nothing very startling in this analogy so far, but what if we were to extend the analogy? In the 
dew-in-can analogy, below the dew point the number density of the gas is fixed by the vapor pressure of the gas, 
and adding an additional quantity of condensate will not change the number density of the gas but rather all 
added molecules enter the condensed phase. Furthermore, if we assume that the volume of condensate is small 
compared to the volume of the vessel then the total number of vapor molecules will be essentially unchanged if 
a small amount of condensate is added. 

What if a superconductor were to behave the same way? In other words, at a given temperature the normal 
electrons would exist in equilibrium with the Bose condensate. The idea of an equilibrium between a gas-like 
state (normal electrons) and a liquid-like state (Bose condensate) was discussed briefly by Kittel [2]. Pursuing 
this line of thought further, let us assume that the number density of normal electrons would be fixed by a 
something analogous to a vapor pressure, regardless of how many electrons would be in the Bose condensate. In 
this case, if electrons were to cross the phase boundary and enter the superconductor they would all go into the 
Bose condensate, leaving the number of normal electrons unaltered. Since the Bose condensate is a state of zero 
entropy, adding electrons would not change the entropy of the system. This would imply that the partial molar 
electronic entropy of a superconductor would be zero, and by implication the partial molar heat capacity would 
also be zero. 

Thus, in this conceptual model for a superconductor there would be a non-zero total electronic heat capacity 
and a non-zero total electronic entropy, but the partial molar electronic heat capacity and partial molar electronic 
entropy would both be zero. This also relates to the Fermi level. The temperature coefficient of the partial molar 
Gibbs free energy (the Fermi level for electrons) is equal to the negative of the partial molar entropy. Therefore, 
if, as suggested here, the partial molar electronic entropy of a superconductor is zero it would also imply that the 
Fermi level of a superconductor is independent of temperature. It would be interesting to see if this prediction 
can be reproduced in BCS theory. 

In the discussion of superconductors it is important to re-emphasize the underlying concept that superconduc-
tivity has its origin in electron-lattice interactions, in this case via electron-phonon interactions. Therefore, one 
needs to keep in mind that the partial molar electronic heat capacity and entropy will depend on those interac-
tions, and “unexpected” results may occur. In this case the “unexpected” result is that the electronic entropy is 
zero, even at non-zero temperature, despite the existence of normal electrons in the material at finite temperature, 
provided that one defines “electronic entropy” as “partial molar electronic entropy”. 

8. Determining Partial Molar Electronic Entropies and Heat Capacities 
As has been mentioned already, partial molar electronic heat entropies and heat capacities are accessible through 
electronic structure calculations, at least in principle. This assumes that one would calculate not only the density 
of electronic states at the equilibrium interatomic distances, but also the elastic constants of the material. How-
ever, accurate calculations are likely to be difficult, and in any case science is ultimately an empirical enterprise, 
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which brings up the question of how one might experimentally measure partial molar electronic entropies and 
heat capacities. 

Appealing directly to the definition of the partial molar quantities, one way to measure the partial molar elec-
tronic heat capacity of a metal would be to perform two heat capacity measurements on the same sample, one 
before and one after the addition or removal of a small number of electrons. The partial molar heat capacity 
would be the difference divided by the number of electrons added or removed. The partial molar entropy could 
in turn be calculated by integration. However, as a practical matter one cannot add or remove enough electrons 
to make a noticeable difference in the heat capacity. Therefore, one must search for alternative approaches for 
experimental measurements. 

One alternative approach is through the measurement of thermoelectric coefficients [12]-[15]. Using the laws 
of reversible and irreversible thermodynamics one can show that the absolute thermoelectric power and the par-
tial molar electronic entropy are related by the following equation: 

( )eS A Tσ= − +                                       (47) 

where   is Faraday’s constant, σ  is the absolute Seebeck coefficient, also known as the absolute thermoe-
lectric power, and ( )A T  is a universal function of temperature, i.e. the same for all materials [12]-[15]. Be-
cause Equation (47) can be derived from macroscopic thermodynamics its validity is independent of any micro-
scopic models. Also because it is derived from macroscopic thermodynamics and contains only thermodynamic 
functions it is a thermodynamic relationship. This of course assumes that ( )A T  can be classed as a thermody-
namic function, but since it arises from a thermodynamic analysis it seems reasonable to characterize it as a 
thermodynamic function, even if we do not know what its value is. We do know however that it must have the 
same dimensionality as entropy.  

It is impossible to evaluate ( )A T  using the known laws of thermodynamics, whether equilibrium or non- 
equilibrium and whether used alone or in combination. However, considering that ( )A T  is a universal function 
it is only necessary to determine it for a single material, so one might as well take the easiest approach possible. 
Therefore, let us step outside of the realm of macroscopic thermodynamics and evaluate ( )A T  using statistical 
mechanics applied to one or more specific and simple microscopic models. Using this approach one can con-
clude that 

( ) 0.A T =                                         (48) 

The reason that Equation (48) is valid is that both the electronic entropy and the thermoelectric power both 
approach zero as the density of a degenerate free electron gas approaches infinity [13]. 

From Equations (47) and (48) we conclude that, 

eS σ= −                                        (49) 

or in other words, the absolute thermoelectric power is essentially equivalent to the partial molar electronic en-
tropy of a conductor. Tykodi has reached the same conclusion using other methods [15]. Since partial molar ca-
pacity is related to partial molar entropy by the expression  

SC T
T
∂

=
∂

                                       (50) 

and the Thomson coefficient, τ, is related to absolute thermoelectric power by the same equation 

.T
T
στ ∂

=
∂

                                       (51) 

by differentiating Equations (49) and substituting Equations (50) and (51) into the result we have  

eC τ= −                                       (52) 

or in other words, the Thomson coefficient is essentially equivalent to the partial molar electronic heat capacity 
of a conductor. 

Equivalence between thermoelectric coefficients and equilibrium thermodynamic quantities was first pro-
posed by William Thomson more than a century and a half ago, who suggested that the Thomson coefficient 
might be considered the specific heat of electricity. In more modern form, when framed in terms of partial molar 
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quantities, Thomson’s conjecture is given by Equation (52).  
Thomson’s conjecture, along with Equation (49) to which it is closely related, has been extremely controver-

sial ever since he proposed it. There are two basic objections to this idea. One is that it is impossible to prove 
using the laws of thermodynamics. The other is that it would imply the existence of negative electronic entropies 
and heat capacities, since the thermoelectric coefficients may be of either sign [16]. 

Considering the second objection, it fails to take into account that a proper statement of the relationship be-
tween thermoelectric coefficients and their analogous equilibrium thermodynamic functions must be framed in 
terms of partial molar quantities, and partial molar quantities are not constrained to be non-negative quantities. 
In fact, it is known that partial molar entropies can be negative. This was pointed out earlier in this paper, i.e. the 
partial molar entropy of aqueous Mg3(PO4)2 in its standard state is extremely negative. Furthermore, as also 
pointed out earlier in this paper, negative partial molar entropies are consistent with the band theory of solids. 

Considering the first objection, it is logically unsound because a failure to prove something is not equivalent 
to disproving it. While it is true that Equations (49) and (52) have never been proven using the laws of reversible 
and irreversible thermodynamics, and one can even concede that it is very likely impossible to prove the rela-
tionships within the existing laws of thermodynamics, it is equally true that the relationships have never been 
disproven using the existing laws of thermodynamics, nor by any other method for that matter. Therefore, the 
matter cannot be settled under a “failure to prove” objection. 

In this respect the situation can be thought of as analogous the state of affairs in the early days of thermody-
namics. Before the acceptance of the second law it would have been impossible to prove or disprove it using the 
then-existing laws of thermodynamics. In fact, if it were possible to do so then the second law would be at theo-
rem rather than an independent law. The same applies to the third law of thermodynamics. 

With respect to the problem at hand, one way to settle the matter is to step outside of the laws of thermody-
namics and apply microscopic theory to the problem. Using this approach it is possible to validate the relation-
ships given in Equations (49) and (52) [13] [14]. As already discussed, it is only necessary to do this for just one 
material to validate it for all cases. 

Equations (49) and (52) are relationships between macroscopic thermodynamic quantities. They connect the 
two theories of equilibrium and non-equilibrium thermodynamics by equating certain quantities in these two 
theories, therefore uniting the two in ways not possible before. Furthermore, since the relationships cannot be 
proven within existing thermodynamic theory, if they are valid then their existence necessarily implies the exis-
tence of a previously unrecognized law or principle of thermodynamic theory. Otherwise it would be possible to 
prove or disprove the relationships using the existing laws of thermodynamics. 

Another alternative approach to measuring eS  might be to use an electron gun and an electron monochro- 
meter. The scheme would be to bombard a sample of a metal with a low energy electron beam of very low cur-
rent. For practical reasons this would be carried out in vacuum. The energy of the electron beam would be se-
lected at high resolution, and the kinetic energy would be scanned to simulate a thermal distribution of energies. 
The heat released in this process would be measured at each kinetic energy of the electron beam using a calori-
meter. Because the electron beam is energy resolved and designed to simulate thermal energies it might, in prin-
ciple, be possible to deconvolute the partial molar electronic entropy from the data by calculation to simulating 
an equilibrium process for transfer of electrons between a hypothetical electron gas of known properties and the 
metal. However, it may be difficult for this scheme to be carried out with enough precision and accuracy to be 
practical. 

9. Applications and Discussion 
Partial molar electronic entropies can be used to determine the electric field inside of a conductor placed in a 
thermal gradient [14]. Domenicali has shown that there is a relationship between the temperature coefficient of 
the electrochemical potential and the electric field existing within a conductor placed in a temperature gradient 
[17]. The key equation is 

*1 f
e

TS
x T X

εφ ∂ ∂ ∂
= + ∂ ∂ ∂ 

                                  (53) 

where φ  is the electrostatic potential, and *
eS  is the “transported entropy” defined by 

* .eS σ= −                                        (54) 
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However, since fε  is the partial molar Gibbs free energy of the electron, the partial molar entropy of the 
electron is 

.f
eS

T
ε∂

= −
∂

                                      (55) 

Substituting (54) and (55) into (53) we get 

( )1
e

TS
x x
φ σ∂ − ∂
= +

∂ ∂



                                (56) 

Using Equation (47) this becomes 

( ) .
A T T

x x
φ −∂ ∂ =  ∂ ∂ 

                                (57) 

Since ( )A T  is a universal function this equation tells us that all conductors form the same electric field in 
their interior if subjected to a temperature gradient. Furthermore, if as argued earlier 

( ) 0A T =                                     (58) 

then 

0
x
φ∂
=

∂
                                     (59) 

and the electrostatic field inside of a conductor is zero in a conductor in a temperature gradient. 
Partial molar electronic entropies of metals are related to the temperature coefficient of the contact potential. 

The contact potential between dissimilar metals equals the difference between Fermi levels of the metals. How-
ever, since the temperature coefficient of the Fermi level is the negative of the partial molar electronic entropy, 
the temperature coefficient of the contact potential is given by the difference in partial molar entropies. Adsorp-
tion of gases on the surfaces of the metals, which could shift the work functions of the metals, may be a con-
founding factor. 

The partial molar entropy can be used in the determination of partial molar entropies of ions in solution. Con-
sider a generic electrochemical reaction 

metal solution metalM M e .+ −→ +                                  (60) 

The entropy of this reaction can be measured from the heat of electroplating under reversible conditions. This 
heat is also called the electrochemical Peltier heat 

reversible .QS
T

∆ =                                      (61) 

The entropy of the same reaction is also given related to the partial molar entropies  

M,metalM ,solution e ,metal
.S S S S+ −∆ = + −                              (62) 

Therefore,  

reversible
M,metalM ,solution e ,metal

.Q S S S
T + −= + −                           (63) 

Of these terms, reversibleQ T∆  can be measured by the electrochemical Peltier heat, M,metalS  can be deter-
mined from third law measurements, and 

e ,metal
S −  is given by Equation (49) of this paper. 

M ,solution
S +  can 

therefore be determined by solving the above equation for 
M ,solution

S +  [13] [14]. This is quite significant, since 

M ,solution
S +  has long been considered a thermodynamically unmeasurable quantity. 

There is a subtle point to consider when these ideas are applied to the entropy of multiply charge ions. For 
example, consider the following reaction. 

3
metal solution metalAl Al 3e .+ −→ +                               (64) 

In this case the equation corresponding to Equation (63) is 
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3
reversible

Al,metalAl ,solution e ,metal
3 .Q S S S

T + −= + −                         (65) 

The partial molar electronic entropy appears with a factor of three in this expression because aluminum is a 
trivalent metal. 

This also brings up the issue of how to specify the components in a metal and how that specification relates to 
the contributions of partial molar quantities to the total thermodynamic functions. For example, one might de-
scribe aluminum in terms of a lattice composed of Al+ , together with one electron per Al+  lattice element. 
The contribution of the partial molar entropy to the total entropy of the system would be simply eNS , where N 
is the number of lattice elements. There is nothing fundamentally wrong with this, but a more conceptually ap-
pealing choice might be to describe aluminum in terms of a lattice composed of 3Al +  with three electrons per 
aluminum ion. This corresponds to our conception of three electrons per lattice element added into a conduction 
band of aluminum to form the metal. This also fits into the chemical concept of trivalent aluminum, e.g. in Equ-
ation (64). In this case one would describe the contribution of the partial molar electronic entropy to the total en-
tropy as 3 eNS . One could also describe aluminum in terms of a lattice composed of 13Al + ions together with 
13 electrons filling the core bands and conduction bands in turn. In this case the contribution of the partial molar 
electronic entropy to the total entropy would be 13 eNS . 

All of these descriptions of aluminum are logically and thermodynamically consistent. Each picture gives a 
different calculation for the contribution of the partial molar electronic heat capacity to the total heat capacity of 
the crystal, but any discrepancy is taken into account by a difference in the partial molar entropy of the lattice 
ions. Thus, the partial molar entropy of lattice ions in a description based on 3Al +  is different from the partial 
molar entropy of lattice ions based on 13Al + . 

For aluminum the most useful picture is probably the one based on a lattice of 3Al + , both from the point of 
view of how many electrons aluminum has in its conduction band and from the point of view of the chemical 
reactions typical of aluminum which typically involve triply-charged aluminum. However, some metals can rou-
tinely exist in more than one charge state, such as iron, and for those the choice of how to count the number of 
electrons may be less clear-cut. For example, in a reaction analogous to Equation (64) the iron ion may be ferric 
iron, 3Fe + , in which case the natural choice for the number of electrons would be three, and the contribution of 
the partial molar electronic heat capacity to the total heat capacity of the metal could be described as 3 eNS . 
However, it is also possible for iron ions to exist in a ferrous state, 2Fe + , in which case it may be more conve-
nient to count the electrons in the metal as two per lattice element. Thus, from one point of view it may be most 
useful to define the number of electrons in terms the number of electrons involved in a particular process. 

On the other hand, the definition of eS  is unambiguous, i.e. independent of what picture one uses to describe 
the lattice. eS  is always based on a one-electron process. In other words it is simply the change in entropy upon 
the addition of a differential quantity of electrons (expressed in either particle number or moles) per unit of elec-
trons added. 

Returning to a consideration of the discontinuity in the partial molar electronic entropy at the superconducting 
transition temperature, it is notable that the total entropy of the material is continuous at the transition tempera-
ture. These two facts, along with Equation (2) imply that there must be a compensating discontinuity in the par-
tial molar entropy of the lattice ions at the superconducting transition temperature. In particular, if the partial 
molar electronic entropy drops from a positive value to zero as the material cools through the transition temper-
ature, then the partial molar entropy of the lattice ions must have a compensating sudden increase as one drops 
the temperature through the transition temperature. Conversely, if the partial molar electronic entropy is nega-
tive above the transition temperature and zero below the transition temperature then the partial molar entropy of 
lattice ions must have a compensating negative discontinuity as the temperature crosses the critical temperature 
on the cooling curve. 

There are a number of biochemical processes involving the unbalanced charge transfer of ions across mem-
branes, including oxidative phosphorylation, photosynthesis, nerve signal propagation, and muscle contraction. 
Full understanding of the thermodynamics of these processes requires knowing partial molar entropies of ions, 
and these are only experimentally accessible via processes such as Equation (64) in conjunction with knowing 
partial molar electronic entropies of metals. 

For example, without going into specific detail, oxidative phosphorylation takes place at mitochondrial mem-
branes. The mechanism is based on electrochemical proton gradients across the membrane. Energy is converted 
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from reducing equivalents to ATP-based energy via unbalanced transfer of charged species (protons) across the 
membrane. These processes are understood in qualitative, or even semi-quantitative terms, but to give a fully 
complete and accurate energy accounting one would need to know quantities such as partial molar entropies of 
ions, and these are only accessible via reactions analogous to Equation (64) in combination with knowledge of 
partial molar electronic entropies of metals. Similarly, the evaluation of the Gibbs free energy of the process 
must include single ion activities or equivalent information [18]. 

In another application, partial molar electronic entropies can give information on the shape of the density of 
states curve near the Fermi level of a conductor. This was discussed earlier in this paper. 

Partial molar entropies can be used to help elucidate the properties of electron-phonon interactions. One form 
of this interaction was discussed in section on Debye heat capacity, but there are likely a number of others as 
well. For example, in thermoelectricity there is a phonon drag effect. If Equations (49) and (52) are correct the 
phonon drag effect must also contribute to the partial molar electronic entropy and partial molar electronic heat 
capacity [12]. 

The low temperature thermal properties of aluminum illustrate some of the issues discussed above. Figure 5 
illustrates the low-temperature electronic heat capacity of aluminum just above and below the superconducting 
phase transition. This is taken from experimental data with the 3T  dependence removed [19]. The shape of a 
heat capacity curve typifies that of a typical metal undergoing a phase transition into the superconducting state. 
Also shown on the curve is the partial molar electronic heat capacity. The partial molar electronic heat capacity 
was calculated using Equation (52). The Thomson coefficient for this calculation was calculated from published 
thermo power data for aluminum [20]. That data was for the normal state, but it is well-known that the thermoe-
lectric coefficients are zero for superconductors, so below the superconducting transition temperature Equation 
(52) predicts that the partial molar heat capacity is zero. This is consistent with a two-state model as discussed 
earlier in this paper. 

The notable features of this comparison are that the partial molar electronic heat capacity above the transition 
temperature is nearly linear, which is qualitatively similar to the total heat capacity curve, but the curves do not 
coincide. Furthermore, below the transition temperature the curves are very different. 

Figure 6 shows the comparison of the total electronic entropy and the partial molar electronic entropy using 
data taken from the same sources as the data for Figure 5. Again, the curves are qualitatively similar above the 
transition temperature, except that the curves do not overlap, and there is a small 3T  component in the partial 
molar electronic entropy that is absent (by definition) from the total electronic entropy. Below the transition 
temperature the curves are very different. The zero partial molar entropy is consistent with the two-fluid model 
discussed earlier in this paper. It would be interesting to know if the BCS model or other models of supercon-
ductivity would predict this, but that issue will not be pursued further in this paper. 
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Figure 5. Partial molar electronic heat capacity ( eC ) and total 
electronic heat capacity ( eC ) for aluminum as a function of T. 

eC  is based on Equation (52). eC  is based on the conven-
tional interpretation of electronic heat capacity used in solid 
state physics. Data were taken from references [19] and [20] 
respectively. 
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Figure 6. Partial molar electronic entropy ( eS ) and total elec-

tronic entropy ( eS ) for aluminum as a function of T. eS  is 
based on Equation (49). eS  is based on the conventional in-
terpretation of electronic entropy used in solid state physics. 
Data were taken from references [19] and [20] respectively. 

 
It seems clear that both the conventional approach and the partial molar approach to describing the electronic 

entropy and heat capacity are useful to help understand the electronic and thermal properties of metals and su-
perconductors. It is also clear that the two approaches provide complementary information. However, there is 
one area in which the partial molar approach is superior. That is in dealing with the thermodynamics of process 
in which electrons cross phase boundaries, i.e. any process in which electrons are transferred from one material 
to another. The conventional way of looking at those processes cannot in general provide us with any thermo-
dynamic information for such processes. However, partial molar quantities are inherently capable of dealing 
with such processes. 

One conceptual hurdle is that partial molar entropies and heat capacities may be negative. Naively, this may 
seem to be a violation of the third law of thermodynamics, but it is not. The third law applies to total entropies, 
and it is known that partial molar entropies may be negative. Furthermore, it was shown that this is consistent 
with band theory. 

As pointed out previously, one of the strengths of partial molar thermodynamics is that partial molar quanti-
ties implicitly include any interactions that might be present between the components of the system. Most com-
monly, thermodynamics in solid state physics are discussed in terms of non-interacting electrons or at least in 
terms of quasiparticles that can be thought of as free or nearly free. The quasiparticles have interactions folded 
into them. Generally speaking, this approach does not ask the question of what happens to the thermodynamics 
of the system if electrons are added or removed from the system. However, there has been some work on the in-
teractions occurring when electrons are added or removed. For example, Hedin, Lundqvist and Lundqvist dis-
cussed the meaning of “density of states” when going beyond the one electron approximation [21]. They con-
centrated on a definition tied to the addition or removal of an electron. This seems to be getting close to the 
concepts discussed in the present paper, though they focused on spectral properties and do not seem to have ap-
plied these ideas to the calculation of partial molar quantities. One interesting point discussed in that paper is 
that as a result of electron-phonon interactions the density of electronic states (in the quasi-particle picture) may 
increase. Since this is the result of interactions between components of the system one can expect this to be re-
flected in the partial molar electronic entropy and heat capacity, and furthermore this effect is likely to be tem-
perature-dependent. 

This paper has pointed out some of the general features of the partial molar electronic entropy and the partial 
molar electronic heat capacity and applied the concepts to a few simple models. However, there are many issues 
not covered here. For example, not discussed are the implications of the fact that the phonon spectra of real sol-
ids do not fully conform to the assumptions of the Debye theory, in particular how these may relate to electronic 
structure, and the implications of thermal expansion on the electronic density of states has also not been dis-
cussed. Additionally, a more complete discussion of phonon-electron interactions has been omitted. No doubt 
there are many additional effects to consider and refinements that can be added to the concepts introduced here. 
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10. Summary 
The conventional way of dealing with the thermodynamics of electrons in metals and superconductors is based 
on the statistical mechanics of specific microscopic models. It considers the total electronic entropy and total 
electronic heat capacity within those models, i.e. the Sommerfeld-like heat capacity is of a normal metal is 
called the electronic heat capacity of the metal, and the BCS-like heat capacity of a superconductor is called the 
electronic heat capacity of the superconductor. These assignments provide much insight into the electronic 
structure and thermal properties of metals and superconductors. However, they do not fully take into account 
how electron-lattice interactions may affect the division of entropy and heat capacity between electrons and lat-
tice. Instead the Sommerfeld-like heat capacity and entropy, and the BCS-like heat capacity and entropy are ar-
bitrarily called “electronic”. In addition, these approaches are entirely dependent on microscopic models. Fur-
thermore, the conventional approach does not provide a way to analyze the thermodynamics of a process in 
which materials (electrons in this case) cross phase boundaries. 

An alternative approach is presented here that is based on macroscopic thermodynamic principles using par-
tial molar quantities, a rigorous approach developed by chemical thermodynamicists. This approach is mod-
el-independent in its foundations. However, it can be applied to specific microscopic models to provide addi-
tional insights about the models. 

The partial molar method provides an unambiguous way to divide an extensive thermodynamic function into 
contributions from the components of the system as illustrated in Equation (2), and any interactions between the 
components of the system are automatically taken into account. Furthermore, the partial molar method provides 
a way to analyze the thermodynamics of a process in which a component (such as an electron) crosses a phase 
boundary. Thus, if an electron were to pass from a sample of iron to a sample of copper the entropy of the 
process would be given by 

,Cu ,Fee eS S S∆ = −                                     (66) 

and if the process is carried out under reversible conditions the heat of the process would be given by the differ-
ence in partial molar electronic entropies. 

( ),Cu ,Fe .e eQ T S T S S= ∆ = −                               (67) 

In this paper, the partial molar method is applied to several microscopic models. It is shown that it provides 
additional insight into the electronic structure and thermal properties of metals and supercondcutors. In addition, 
a comparison is given between total electronic entropy and partial molar electronic entropy of a specific material, 
aluminum at low temperature. The two quantities do not coincide. A similar comparison is made between total 
electronic heat capacity and partial molar electronic heat capacity, and again the two quantities are quite differ-
ent from each other. 

The two approaches to thermodynamics of electrons are not mutually exclusive, but rather they provide com-
plementary information. For example, the total low temperature electronic heat capacity of a normal metal tells 
us about the density of states at the Fermi level, whereas the partial molar electronic heat capacity and partial 
molar entropy provide additional information, i.e. the slope in the density of states curve at the Fermi level. 

Partial molar electronic entropies have applications to a number of fields, and a few of these are specified here, 
including solid state physics (e.g. entropy for the process of electron transfer between materials, the properties of 
electrons in superconductors, and the magnitude and sign of electrostatic gradients existing in conductors in 
temperature gradients), chemical thermodynamics (e.g. partial molar entropies of ions in solution), and biology 
(e.g. energy transformation processes involving the unbalanced transfer of ions across membranes.)  

In addition, the identification of the partial molar electronic entropy of a metal with the thermo power of a 
metal, if true, would unite the fields of reversible and irreversible thermodynamics and add an additional ther-
modynamic principle or law to the canon of thermodynamic theory. One possible objection to this is that it 
would imply the existence of negative partial molar entropies. However, negative partial molar entropies are 
well known in solution-phase chemistry, which shows that negative partial molar entropies do not violate fun-
damental thermodynamic theory, and the possible existence of negative partial molar entropies of electrons in 
metals is consistent with band theory. 
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