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Abstract 
A metallic disk with strong spin orbit interaction is investigated. The finite disk geometry intro-
duces a confining potential. Due to the strong spin-orbit interaction and confining potential the 
metal disk is described by an effective one-dimensional model with a harmonic potential. The 
harmonic potential gives rise to classical turning points. As a result, open boundary conditions 
must be used. We bosonize the model and obtain chiral Bosons for each spin on the edge of the disk. 

When the filling fraction is reduced to F

so

k
k

1
3

= =ν  the electron-electron interactions are studied 

by using the Jordan Wigner phase for composite fermions which give rise to a Luttinger liquid. When 
the metallic disk is in the proximity with a superconductor, a Fractional Topological Insulator is ob-
tained. An experimental realization is proposed. We show that by tunning the chemical potential 
we control the classical turning points for which a Fractional Topological Insulator is realized. 

 
Keywords 
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1. Introduction 
The presence of the spin-orbit interaction in confined geometries gives rise to a Topological Insulator (T.I.). 
Following ref. [1] one maps the spin-orbit interaction to a spin dependent magnetic field zBσ . As a result, the 
non interacting electrons are mapped to two effective Quantum Hall problems, for each species of spin. When 
the electron density is tuned to an integer Landau filling kν =  (for each spin) the ground state is made up of 
two decoupled spin species which form an integer Quantum Hall state with opposite chiralities. When k is odd  

the system is a TI and when k is even we have a trivial insulator. When 1
k

ν =  the presence of electron-electron 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.71012
http://dx.doi.org/10.4236/jmp.2016.71012
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


D. Schmeltzer 
 

 
119 

interaction for each species of spin gives rise to a Fractional Topological Insulator (F.T.I.). 
Using the proposal for the Fractional Quantum Hall, which is built on an array of quantum wires [2], the 

authors [3] [4] have shown that by fine tuning the spin orbit interaction for a configuration of coupled chains a 
Topological Insulator (T.I.) emerges. When the filling factor is such that it corresponds to composite Fermions, a 
Fractional Topological Insulator (F.T.I.) has been introduced in ref. [3]. It has been shown that for a model of 
coupled chains in the y direction the spin orbit interaction can be gauged away resulting in twisted boundary 
conditions for which a F.T.I. was obtained. 

The purpose of this paper is to demonstate that a two-dimensional metallic disk with spin-orbit interaction and 
electron electron interaction gives rise either to a Topological Insulator or Fractional Topological when the disk 
is in the proximity to a superconductor. We bosonize [5] [6] the model in the limit of strong spin orbit 
interactions and geometrical confinement. We find that the edge of the disk is equivalent to a one-dimensional 
model with a harmonic potential. We obtain a chiral Bosonic model [7] and show that a T.I. emerges for the 

filling factor 1F

so

k
k

ν = = . 

For the filling factor 1
3

F

so

k
k

ν = =  we use the composite electrons method [8] [9] and show that the 

composite Jordan Wigner phase [10] gives rise to an interacting one-dimensional model in the Bosonic form. 

We obtain a Luttinger liquid with the Luttinger parameter 1
3

F

so

k
k

κ ν= = =  which is the proximity to a super- 

conductor, then we obtain a F.T.I. 
An experimental verification is proposed. We show that the F.T.I. is obtained by tunning the chemical 

potential, the interactions and the radius of the disk. 
The plan of the paper is as follows. In Section 2 we present the spin-orbit interactions in metals. In Section 2.1 

and 2.2 we review the model introduced in ref. [3]. We find it advantageous to use open boundary conditions 
and study the model in the framework of Bosonization. In Section 3.1 we introduce our new model. We consider 
a metallic disk with srong spin orbit interaction and confinement. In Section 3.2 we study the metallic disk with  

strong spin orbit interactions and confinement for the filling factor 1
3

F

so

k
k

ν = = . Using the composite Fermion  

method we obtain a Luttinger liquid which in the proximity with a superconductor represents a F.T.I. At the 
end of this section we consider the experimental realization of the model. Section 4 is devoted to conclusions. 

2. The Spin Orbit in Two Dimensions in the Presence of a Confining Potential 
The Hamiltonian for a two dimensional metal in the presence of a parabolic confining potential is given by:  

( ) ( )
2

*

ˆ1 ,
22

H V
cm
µ µ = − × − +  

p E x yσ                             (1) 

Using the confining potential ( ) ( )2 2,
2

V x yγ
= +x y  we obtain the electric field: xE xγ= , yE yγ=  and 

0zE = . We introduce a fictitious magnetic field 
2

sok B
a c

µ
≡ ≡


. As a result the Hamiltonian in Equation (1) is 

a function of the spin orbit momentum sok  and takes the form:  

( )

2 22

*2

,

x z so y z so
y xH i k i k
a am

V

σ σ

µ

    = − ∂ − + − ∂ +    
     

− +



x y

                       (2) 

a is the lattice constant and so
x

kA y
a

= , so
y

kA x
a

=  are the gauge fields. 
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2.1. The Emerging Topological Insulator for a Two-Dimensional Model Periodic in  

the y Direction with the Filling Factor F

so

k
k

1= =ν  for a System of Coupled Chains 

In this section we will review the model introduced in ref. [3]. We find essential to modify the model and use 
open boundary conditions. This modification is important for avoiding complications caused by the twist 
introduced by the spin-orbit interaction. The open boundary conditions impose a constraint on the Bosonic fields 
(the right and left Bosonic field are not independent). 

For the remaining part we will bosonize [7] the model given in ref. [3] using the open boundary conditions. 
We will use open boundary conditions also for the metalic disk (see Sections 3.1-3.2) The methodology for both 
model will be same, therefore we find it necessary to present the details of the Bosonization method (for open 
boundary conditions). The model considered in ref. [3] is as follows: In the y direction we have N chains with 
the tunneling matrix element t. The confining potential ( ),V x y  obeys, for 0 x L< <  ( ), 0V x y =  and for 
x L>  ( ),V x y →∞ . We will assume open boundary conditions in the x direction. In the y direction the  

confined potential is effectively zero for 0 y Na< <  and ( ),V x y →∞  for y Na>  (N are the number of 

chains). We will use the conditions so
x

kA y
a

=  and 0yA = .  

( ) ( ) ( )

( ) ( )

0

2 2
†

0 , , *
, 1

†
, 1,

, 1

d ,
2 22

d . .

t

N

n x z so n
n

N

t n n
n

H H H

yH x x i k V x x
a m

H t x x x h c

σ σ
σ

σ σ
σ

γ γσ µ
=↑ ↓ =

+
=↑ ↓ =

= +

  = Ψ − ∂ − − + Ψ =  
   

= − Ψ Ψ +

∑ ∑∫

∑ ∑∫



         (3) 

0H  is the one dimensional model for each chain and tH  describes the tunneling between the chains. The 
confining potential ( ),V x y  enforces the open boundary conditions.  

( ) ( ), ,0 0, 1, 2, ,n nx x L n Nσ σΨ = = Ψ = = = 
                     (4) 

The open boundary conditions avoid the twist.  

( ) ( ) ( ) ( )
( ) ( )

† †
, , , ,

, ,

e ; e

0 0, 1, 2, ,

z so z so
y yi k x i k x
a a

n n n n

n n

x x x x

x x L n N

σ σ

σ σ σ σ

σ σ

−
Ψ = Ψ Ψ = Ψ

Ψ = = Ψ = = =

 

 



                 (5) 

As a result the Hamiltonian is transformed,  

0 tH H H= +  

( ) ( )

( ) ( ) ( )

2
†

0 , ,
, 1

2†
, ,

, 1

d
2

d
2

N

n x z so n
n

N

n x n
n

yH x x i k x
a

x x i x

σ σ
σ

σ σ
σ

γ σ µ

γ µ

=↑ ↓ =

=↑ ↓ =

  = Ψ − ∂ − − Ψ  
   

 = Ψ − ∂ − Ψ  

∑ ∑∫

∑ ∑∫  

 

( ) ( )

( )
( ) ( )( )

( )

†
, 1,

, 1

1
†

, 1,
, 1

d . .

d e . .z so

N

t n n
n

y n y nN i k x
a

n n
n

H t x x x h c

t x x x h c

σ σ
σ

σ

σ σ
σ

+
=↑ ↓ =

− +

+
=↑ ↓ =

= − Ψ Ψ +

= − Ψ Ψ +

∑ ∑∫

∑ ∑∫  

 

Next we use the mapping 
( ) 2 1

y n
n

a
= −  for 1, 2, ,n N=   introduced by [3] [11]. This parametrization 

removes the oscillating phase for certain channels , 1n n +  and therefore gaps are opened. 
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In the next step we bosonize the model for the filling factor 1F

so

k
k

ν = =  using the electronic density ( ),nn xσ  

and the Bosonic phase ( ),n xσϕ  for each chain ( µ  is the chemical potential, Fk  is the Fermi momentum and 

sok  is the spin orbit strength).  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

, ,

, , ,

, ,

π d π
, , , ,

, , , , , ,

π 4π
, , ,

π
, ,

1 1e e ,
2π π

π , , ,

1 1e e ,
2π 2π
1 1e
2π 2π

x
n n

R
n n n

n n

i x n x i x
n n n x n

n F x n n n n n n

i x x i x
n n n

i x x
n n

x F n x n x
a

n k x p x x p x i x x

R x F F
a a

L x F
a a

σ σ

σ σ σ

σ σ

ϕ
σ σ σ σ

σ σ σ σ σ σ

θ ϕ θ
σ σ σ

θ ϕ
σ σ

θ

θ θ δ δ δ

−∞ ′ ′± −

′ ′ ′ ′−

−

− +

∫Ψ = = + ∂

′ ′ = ∂ ≡ = − 

= ≡

= ≡







( )

( ) ( ) ( )

,4π
,

, , ,

e

e e

L
n

F F

i x
n

ik x ik x
n n n

F

x R x L x

σθ
σ

σ σ σ

−

−Ψ = +  

           (6) 

,nF σ , †
,nF σ  are anti commuting Klein factors [10] [12] [13]. 

Due to the boundary conditions the left and right movers are not independent. The Bosonic representation of 
the Fermion field ( ),n xσΨ  is given in terms of the right movers ( ),nR xσ

 . The left movers are given by 

( ) ( ), ,n nL x R xσ σ= − −  .  

( ) ( ) ( ), , ,e eF Fik x ik x
n n nx R x R xσ σ σ

−Ψ = − −                           (7) 

We define a new chiral (right moving) Fermi field ( ) ( ), ,n nx R xσ σ= Ω  for 0x >  and ( ) ( ), ,n nx L xσ σ= −Ω  
for 0x < . This implies that the chiral Fermionic field ( ),n xσΩ  obeys ( ) ( ), ,n nL Lσ σ= −Ω Ω . ( ),n xσΩ  is  
periodic in the domain L x L− < <  (the domain 0 x L< <  has bee enlarged to L x L− < < ). Using the step 
function [ ]xθ  we write the representation of the chiral field ( ),n xσΩ .  

( ) ( ) [ ] ( ) [ ], , ,n n nx R x x L x xσ σ σθ θ= + − − Ω                        (8) 

We find:  

( ) ( ) ( )

( ) ( )

( ) ( )

0 , ,

†
0 , ,

, 1

1

, 1, ,0
1
1

, 1, ,0
1

,

d ;

d . . ;

d . . ;

t t t t

N L
n x nL

n

N L

t n n
n
N L

t n n
n

H H H H H H

H x x i x L

H t x R x R x h c L

H t x R x R x h c L

σ σ

σ σ
σ

σ

σ

=↑ =↓

−
=↑ ↓ =

−

=↑ + ↑ ↑
=

−

=↓ + ↓ ↓
=

= + = +

= − ∂ →∞

 = − + →∞ 

 = − + →∞ 

∑ ∑∫

∑∫

∑∫

 

 

Ω Ω

                    (9) 

The bulk is gaped and only four chiral modes remain gapless,  

( ) ( ) ( ) ( )† †
1, 1, , ,, , ,n n n N n Nx x x x= ↑ = ↓ = ↑ = ↓− −Ω Ω Ω Ω                     (10) 

The chiral edge Hamiltonian is given by chiral, 1 left-edgenH H= = , chiral, right-edgen NH H= = :  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

chiral left-edge right-edge

† †
left-edge 1, 1, 1, 1,

† †
right-edge , , , ,

;

d

d

x xn

x xN N N N

H H H L

H x x i x x i x

H x x i x x i x

∞

↑ ↑ = ↓ ↓−∞

∞

↓ ↓ ↑ ↑−∞

= + →∞

 = − ∂ + − ∂ 

 = − ∂ + − ∂ 

∫

∫

Ω Ω Ω Ω

Ω Ω Ω Ω

           (11) 

Using the proximity to a superconductor with the pairing field ( )x∆  we can gap out the edges (the bulk 
states are gaped) without breaking time reversal symmetry.  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )1

† †
1, 1, , ,

, ,

† † † †
1, 1, , ,

ˆ ˆ ˆ ˆd

ˆ ˆ ˆ ˆe e . .N

x N x N

ii
N N

H x x i x x i x

x x x x x x H C

σ σ σ σ
σ σ

δδ

∞

−∞
=↑ ↓ =↑ ↓

↑ ↓ ↑ ↓


= − ∂ + − ∂


+ ∆ + ∆ + 

∑ ∑∫ Ω Ω Ω Ω

Ω Ω Ω Ω

            (12) 

In the presence of a magnet which breaks reversal-symmetry the spectrum will also be gaped out [11]. 

2.2. The Fractional Topological Insulator for the Filling Factor F

so

k
k

1
3

= =ν  

Next we will consider the model at the filling factor 1
3

F

so

k
k

ν = = . We use composite Fermions in one 

dimensions and Bosonize the model around 3 Fk  (we mention that in one dimensions we can Bosonize around 
any odd number of Fermi momentum Fk ). In this section we will show how the method of composite Fermions 
works in one dimensions. 

According to Equation (6) a composite Fermions is obtained whenever an even number of Jordan Wigner 

phases is attached to a Fermion. If ( ) ( ), ,π d π1 e e
2π

x
n ni x n x i x

a
σ σϕ−∞ ′ ′± −∫  describes an electrons, a composite fermions 

is obtained by modifying the Jordan Wigner phase to ( ) ( ) ( ), ,2 1 π d π1 e e
2π

x
n ni n x n x i x

a
σ σϕ−∞ ′ ′± + −∫ . As a result one 

observes that the Bosonic representation for the composite fermions with ( )2 1 3n + =  is obtained for 
1
3

F

so

k
k

ν = = . As a result the Bosonization is invariant under the fermi momentum and filling factor mapping: 

3 F Fk k→  and 1 1
3

ν ν= → = . Following the steps given in Equation (6) for the filling factor 1
3

ν =  we find:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( )

, ,

, ,,

3π d π
, ; ,

, , , , ,

, , , ,

4π 2π 3
, ; , ,

π 3
, ; ,

1 e e
2π

1 , π ,
π

,

1 1e e
2π 2π
1 e
2π

x
n n

R L
n nn n

i x n x i x
n c n

n x n n F x n n

n n n n

i x xi x x
n c n n

i
n c n

x F
a

n x n x n k x p x

x p x i x x

R x F F
a a

L x F
a

σ σ

σ σσ

ϕ
σ σ

σ σ σ σ σ σ

σ σ σ σ

θ θθ ϕ
σ σ σ

σ σ

θ θ

θ δ δ δ

−∞ ′ ′± −

′ ′ ′ ′−

+−

−

∫Ψ =

= + ∂ = ∂ ≡

′ ′  = − 

= ≡

=







( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

, ,, , 4π 2
,

3 3
, ; , ; , ;

1 e
2π

e e

L R
n nn n

F F

i x xx x
n

i k x i k x
n c n c n c

F
a

x R x L x

σ σσ σ θ θθ ϕ
σ

σ σ σ

− ++

−

≡

Ψ = +  

              (13) 

Repeating the formulation given in Equations (7)-(8) we have  
( ) ( ) ( )
( ) ( ) [ ] ( ) [ ]

3 3
, ; , ; , ;

, ; , ; , ;

e eF Fi k x i k x
n c n c n c

n c n c n c

x R x R x

x R x x L x x
σ σ σ

σ σ σθ θ

−Ψ = − −

= + − −

  

 Ω
                       (14) 

In the next step we use the relation 3 F sok k=  and obtain similar expressions to Equations (8)-(12). The bulk 
is gaped and only four chiral modes remain gapless  

( ) ( ) ( ) ( )† †
1, ; 1, ; , ; , ;, , ,n c n c n N c n N cx x x x= ↑ = ↓ = ↑ = ↓− −Ω Ω Ω Ω                    (15) 

The chiral edge Hamiltonian is given by chiral, 1; left-edge;n c cH H= = , chiral, ; right-edge;n N c cH H= = :  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

chiral; left-edge; right-edge;

† †
left-edge; 1, ; 1, ; 1, ; 1, ;

† †
right-edge , , ; , ; , ;

;

d

d

c c c

c x xc c n c c

x xN N c N c N c

H H H L

H x x i x x i x

H x x i x x i x

∞

↑ ↑ = ↓ ↓−∞

∞

↓ ↓ ↑ ↑−∞

= + →∞

 = − ∂ + − ∂ 

 = − ∂ + − ∂ 

∫

∫

Ω Ω Ω Ω

Ω Ω Ω Ω

             (16) 
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Using the relation imposed by the open boundary conditions with only one independent Bosonic field 
( ),

R
n xσθ  we have:  

( ) ( ) ( ) ( ), , , ,,R L
n n n nx x x xσ σ σ σθ η θ η= = −                           (17) 

We build from ( ),n xση  and ( ),n xση −  non-chiral Bosonic fields ( ),n xσΘ , ( ),n xσΦ :  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,,n n n n n nx x x x x xσ σ σ σ σ ση η η ηΘ = + − Φ = − −                 (18) 

( )( ) ( )( )

( )( ) ( )( )

2 2
left-edge; 1, 1,

,

2 2
right-edge , ,

,

0

1d
2

1d
2

13 ,
3

c x n x n

x n N x n N

F

so

vH x x x

vH x x x

kv v
k

σ σ
σ

σ σ
σ

κ
κ

κ
κ

κ ν

∞

= =−∞
=↑ ↓

∞

= =−∞
=↑ ↓

 = ∂ Φ + ∂ Θ  

 = ∂ Φ + ∂ Θ  

= = = =

∑∫

∑∫                (19) 

This shows that model is a Luttinger liquid with the parameter 1
3

κ ν= = . When the chains are in the  

proximity with a superconductor we add to the Luttinger liquid Hamiltonian in Equation (19) the pairing part 
given in Equation (12) (second line in Equation (12)). As result the model of the coupled chains in proximity to 
a superconductor gives rise to a F.T.I.. Following ref. [3] the F.T.I. is identified with the help of the Josephson 
periodicity which measure the degeneracy of the ground state. 

3. The Metallic Disk in the Presence of the Spin Orbit Interaction—A  
Realization of a Topological Insulator 

In this section we present our model. it was shown that in strong magnetic we can use the limit of large magnetic 
field study the physics of electrons in strong magnetic fields [14]. we Using the analogy with the strong 

magnetic field we propose to study the spin -orbit interaction in the limit 
2

*
sok

m
→∞ . As a result a one 

dimensional model in a confining potential emerges. For a parabolic potential ( ),V x y  with the condition 
2

*
sok

m
→∞  we find a constrained Hamiltonian, 

( ) ( )
22 2

* ,
2 x z so y

yh i k i V
am

σ µ
  = − ∂ − + − ∂ − +  
   

x y  

In the limit 
2

*
sok

m
→∞  we obtain , x

z
so

kV x y a
k

σ µ
 

= − 
 

. The two dimensional parabolic potential ( ),V x y  

is replaced by a one dimensional model with a parabolic potential. 

3.1. A Realization of a Topological Insulator for the Metallic Disk at  

Filling Factor F

so

k
k

1= =ν  

In the second quantized formulation we find:  

( ) ( )† †

,
d , x

z
so

kH x x V x y a x
kσ σ

σ
σ µ

=↑ ↓

  
= Ψ = − Ψ  

  
∑ ∫                   (20) 

Due to the constrained 
2

*
sok

m
→∞  the potential ( ) ( )2 2,

2
gV x y x y= +  is replaced by a one dimensional 

model. The coordinate y acts as the momentum xk , and only x remains the x coordinate. We find:  
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( ) ( ) ( ) ( ) ( )
2

2† † 2
2

, ,
d , d

22
x

z x
so so

i ga gH x x V x y a x x x i x x
k kσ σ σ σ

σ σ
σ µ µ

=↑ ↓ =↑ ↓

    − ∂
= Ψ = − Ψ = Ψ − ∂ + − Ψ    

     
∑ ∑∫ ∫  (21) 

In the second line of Equation (21) we have used the constraint relation which emerges from the strong 

spin-orbit interaction x

so

ky a
k

= , This result is interpreted as a second class constrained [15] [16] The one 

dimensional effective model given in Equation (21) with the potential 2

2
g x  allows to introduce a space 

dependent Fermi momentum, ( )
1

2 2

2
2 1

ˆF so
xk x k
xga

µ   = −     
, where 2x̂

g
µ

= ±  are the classically turning  

points. We can map this problem to the edge of the disk. We introduce the angular variables ( )xα  for the edge 
(α  is the angular variable for the edge which is a function of the original coordinate x). The mapping between 
the space dependent Fermi momentum and the angular variable is given by the function ( )sin xα   : 

( ) ( )

( ) ( )

2

2

1 sin for π 0,
ˆ

1 sin for π 2π.
ˆ

x x x
x

x x x
x

α α

α α

 − = ≤ ≤     

 − − = ≤ ≤     

 

The turning point 2x̂
g
µ

= ±  causes the vanishing of the field ( )xσΨ . For this reason we must use open 

boundary conditions. As a result we Bosonize ( )xσΨ  in terms of a single mover.  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )ˆ ˆ

π d π

d d

1 e e
2π

1 , π
π

e e

x

x x
F Fx x

i x n x i x

x F

i x k x i x k x

x
a

n x n x x n x k x

x R x R x

σ σϕ
σ

σ σ

σ σ σ

θ

−∞

− −

′ ′± −

′ ′ ′ ′−

∫

∫ ∫

Ψ =

= + ∂ =

Ψ = − −

                       (22) 

The Fermi momentum is a function of the chemical potential µ  instead of two Fermi points Fk±  the Fermi 
momentum ( )Fk x  is x dependent. The vanishing points ( ) 0Fk x =  give rise to the effective edge for the disk. 

( )Fk x  is given by, 

( )
2

2
2 1

ˆF so
xk x k
xga

µ  = −  
 

 

Due to the fact that the Fermi momentum is x dependent we that Fermi velocity is also space dependent, 

( )
22

1
ˆ2 so

ga xv x k
x

µ  = −  
 

 

In the next step we obtain the Bosonic representation for the metallic disk.  
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

ˆ0 † †
ˆ

,

ˆ0 † †
ˆ

,

,

d ; 0 ; 0 ; 0 ; 0

d ; 0 ; 0 ; 0 ; 0

y y

xy
x xx

xy
x xx

H H H

H x R x y v x i R x y L x y v x i L x y

H x R x y v x i R x y L x y v x i L x y

σ σ σ σ
σ

σ σ σ σ
σ

> <

>

−
=↑ ↓

<

−
=↑ ↓

= +

 = > − ∂ > − > − ∂ > 

 = < − ∂ < − < − ∂ < 

∑ ∫

∑ ∫

  (23) 

( )0yH >  represents the Hamiltonian for the upper half disk and ( )0yH <  is the Hamiltonian for the lower half. 
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Due to the turning points we have the relations:  

( ) ( ) ( ) ( ); 0 ; 0 , ; 0 ; 0L x y R x y L x y R x yσ σ σ σ> = − − > < = − − <                (24) 

Using the boundary conditions given in Equation (24) we obtain for Equation (23) the representation:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ0 † †
ˆ

,

ˆ †
ˆ

,

ˆ0 † †
ˆ

,

ˆ †
ˆ

,

d ; 0 ; 0 ; 0 ; 0

d ; 0 2 ; 0

d ; 0 ; 0 ; 0 ; 0

d ; 0

xy
x xx

x
xx

xy
x xx

x

x

H x R x y v x i R x y R x y v x i R x y

x R x y v x i R x y

H x R x y v x i R x y R x y v x i R x y

x R x y

σ σ σ σ
σ

σ σ
σ

σ σ σ σ
σ

σ
σ

>

−
=↑ ↓

−
=↑ ↓

<

−
=↑ ↓

−
=↑ ↓

 = > − ∂ > − − > − ∂ − > 

 ≡ > − ∂ > 

 = < − ∂ < − − < − ∂ − < 

≡ <

∑ ∫

∑ ∫

∑ ∫

∑ ∫ ( )( ) ( )2 ; 0xv x i R x yσ − ∂ < 

  (25) 

Next we map the problem to the edge of the disk. We find from the mapping x α→  the relation 
( )

( )
d 1

d ˆsin
x

x x x
α

α
=

  
. The term ( ) xv x ∂  is replaced by the derivative on the boundary of the disk α∂ .  

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )ˆ π π π

ˆ 0 0 0

d
d 2
d 2ˆ ˆd d sin d

d π
d

so
x

x

x

x k gav x v x
x

xf x f x x x f x x f
x

x

α α

α

α α α α α α α
α−

∂ = ∂ ≡ ∂

= = ≈  ∫ ∫ ∫ ∫
        (26) 

We express the Hamiltonian in Equation (25) in terms of the chiral Fermions on the boundary ( )xα  of the 

disk. We have the mapping ( ) ( ) ( ) ( )T T
, ,R x R x R Rα α↑ ↓ ↑ ↓  →       and find:  

( ) ( ) ( ) ( ) ( ) ( )† †2 d
π

sok aH g R i R R i Rα αµ α α α α α↑ ↑ ↓ ↓
 = − ∂ + − ∂ ∫             (27) 

Nest we consider the proximity effect of a superconductor with the pairing field ( )eiδα∆ . As a result of the 
pairing field a superconducting gap is open on the edges. As a results the Hamiltonian with the pairing field 
( )eiδα∆  gives rise to the Bosonized form of the T.I. Hamiltonian:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

† †

† † † †
2

2 d
π
8 d e . .
π

so

i

k aH g R i R R i R

R R R R H C
g

α α

δ

µ α α α α α

µ α α α α α α

↑ ↑ ↓ ↓

↑ ↓ ↑ ↓

 = − ∂ + − ∂ 

 + ∆ + − − + 

∫

∫





           (28) 

3.2. The Metallic Disk in the Presence of the Spin Orbit Interaction—A Composite  
Fermion Formulation for a F.T.I. 

For particular densities the composite fermions construction introduced by [8] can be used. In one dimensions 
the Jordan Wigner construction allows to obtain composite Fermions. Repeating the procedure of a space 
dependent Fermi momentum introduced in Section 3.1 we find that the turning points depends on the chemical 

potential, ( ) 21 2F

so

k x
x

k a g
µ

= − . By changing the chemical potential to 2s
µ , 1s >  we obtain 

( ) 2
2

1 2F

so

k x
x

k a s g
µ

= − . The turning points decreases to 2

ˆ 2x
s gs

µ
= . 

The construction of the composite fermions leaves the position of the turning point invariant. The Jordan 
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Wigner construction is based on the fact that both Jordan Wigner representations ( )3 π d1 e
2π

xi x n xσ−∞ ′ ′± ∫  and 

( )π d1 e
2π

xi x n xσ−∞ ′ ′± ∫  describe a Fermion. The first representation represents an interacting Fermion model with the 

filling factor 1
3

. The second one represents a non interacting Fermion model with the filling factor 1. For the 

chemical potential 2s
µ , the composite Fermion with the momentum ( )3 Fk x  will obey the relation 

( ) 2
23 23 F

so

k x s x
k a g

µ
= − . For 3s =  we obtain ( ) 2 21 23 3F

so

k x
x

k a g
µ

= −  giving the same turning point 

2

ˆ 2
3 3
x

g
µ

= . 

For this case we repeat the formulation given in Equation (13). We replace ( )xσθ  and ( )xσϕ  with the 

chiral bosons ( )L xσθ , ( )R xσθ . Due to the boundary conditions at the points 
ˆ
3
xx = ±  we use the relations 

( ) ( ); ;c cR x L xσ σ− = −  . We introduce ( ) ( )R x xσ σθ η≡  and ( ) ( )L x xσ σθ η≡ −   

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

3 π d π
;

4π 2π 3 4π 2
;

4π 2π 3 4π 2
;

1 e e
2π

1 , π
π

,
1 1 1e e e
2π 2π 2π
1 1 1e e e
2π 2π 2π

x

R L

L R

i x n x i x
c

x F

R L L R

i x xi x x i x x
c

i x xi x x i x x
c

x

n x n x x n x k x

x x x x x x

R x

L x

σ σ

σ σσ σ σ σ

σ σσ σ σ σ

ϕ
σ

σ σ

σ σ σ σ σ σ

θ θθ ϕ η η
σ

θ θθ ϕ η η
σ

σ

θ

θ θ θ ϕ θ θ

−∞ ′ ′± −

+− + −

− +− + − − +

∫Ψ =

= + ∂ =

= + = −

= ≡ ≡

= ≡ ≡

Ψ







 ( ) ( ) ( ) ( ) ( )
( )

ˆ ˆd 3 d 3
; ; ;

2 2

e e

3 1 2 1 3

x x
F Fx xi x k x i x k x

c c c

F

so

x R x R x

k x
x

k a g

σ σ

µ

− −′ ′ ′ ′−∫ ∫= − −

= −

 

          (29) 

We employ the mapping x α→  to the edge of the disk. When we a superconductor is in the proximity of 
the disk the paring field ( )eiδα∆  will generate a gap  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

† †

† † † †
2

2 d
π

8 d e . .
9 π

so

i

k aH g R i R R i R

R R R R H C
g

α α

δ

µ α α α α α

µ α α α α α α

↑ ↑ ↓ ↓

↑ ↓ ↑ ↓

 = − ∂ + − ∂ 

 + ∆ + − − + 

∫

∫

   





             (30) 

We introduce the fields:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

2

2

c

c

x x x

x x x

x x
x

x x
x

σ σ σ

σ σ σ

η η

η η

↑ ↓

↑ ↓

Θ = + −

Φ = − −

Θ +Θ
Θ =

Φ +Φ
Φ =

，                              (31) 
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( )x c x∂ Θ  measures the charge density which is conjugated to ( )c xΦ . We map the Bosonic fields ( )c xΘ  
and ( )c xΦ  to the edge of the disk: ( ) ( )c cx αΘ →Θ , ( ) ( )c cx αΦ →Φ . The Bosonic form of the 
Hamiltonian in Equation (29) reveals the Luttinger liquid structures with the interacting parameter, 

1
3

F

so

k
k

κ ν= = = . As a result the charge sector represents an F.T.I..  

( )( ) ( )( )

( ) ( ) ( )

2 2

2

3 2 1d
π 2

128 d cos 3 2π cos 2π
9 π

3 2 1,
π 3

so
c c

c c

so F

so

k a vH g

g

k a kv g
k

α αµ α κ α α
κ

µ α α α α δ

µ κ ν

 = ∂ Φ + ∂ Θ  

   + ∆ Θ Φ +   

= = = =

∫

∫





               (32) 

Comparing the results in Equation (31) with the one given in Equation (27) we notice that 1κ =  and the 
pairing operator is replaced by the symmetric form, ( ) ( )cos 2π cos 2πc cα α δ   Θ Φ +    . As a result the  

Josephson current will be different for the two cases. The use of the zero mode operators given in ref. [10] [17] 
can reveal the Josephson periodicity of the degenerate ground state. 

When the superconductor is replaced by a magnetic system a gap on the edge of the disk via spin-flipping 
backscattering will appear. In this case the Josephson charge current will be replaced by a Josephson spin 
current [3]. 

The experimental verification is done by measuring the Josephson current between the metallic disk and the 
superconductor which will show different results for the T.I. and the F.T.I. 

The experimental question is how to drive the disk to be either a T.I. or F.T.I. Our results show that for the 

two cases we have different turning points, 2
g
µ  for a T.I. and 2

9g
µ  for a F.T.I. The physical radius of the 

disk R determines what state can be obtained. When the radius R obeys 2R
g
µ

>  the T.I. and the F.T.I. are 

possible. We will have a coherent or a mixture of the two phases. In order observe a single phase we have to 

chose the radius to satisfy 2 2
9

R
g g
µ µ
≤ ≤ . For this case the phase with 1ν =  is not possible ( the ring 

radius is shorter then the turning point ), from the other-hand the F.T.I. with 1
3

ν =  is possible to observe. 

4. Conclusions 
In the first part of this paper we have presented the Bosonization for the model introduced in ref. [3]. We have 
found that it is essential to use open boundary conditions. This results are obtained by using chiral Bosonization. 
The Fractional case has been obtained with the help of the Jordan Wigner transformation for composite 
Fermions. 

In the second part we propose a new model for a Fractional Topological Insulator. We consider a metallic 
disk, and take advantage of the strong spin orbit interaction in the presence of a parabolic potential. We map the 
problem to an one-dimensional model with a harmonic potential. On the edge of the disk we find a chiral 
fermion model which in the proximity to a superconductor gives rise to a Fractional Topological Insulator when 
the radius of the disk is tuned to be larger than the fractional turning point. 

The mapping to the one dimension allows showing that the Fractional Topological Insulator emerges as an 

effective Luttinger liquid model for the filling factor 1
3

ν = . 

A possible experimental realization of the model is suggested based on tunning of the chemical potential and 
the radius of the disk. 
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