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Abstract 
Probability concept in physics entered into statistical physics and quantum physics by molecules 
kinematics; and curvature concept in physics as applying differential geometry to physics, entered 
into analytical mechanics long ago. Along with introducing space-time curvature concept into 
general relativity, curvature concept became more important; gauge field theory regards field in-
tensity as curvature of fibre bundles. Curvature concept in quantum mechanics germinated from 
original derivation of Schrodinger equation; catastrophe scientist Rene Thom advanced curvature 
interpretations of ψ function and entropy according to differential geometry. Guoqiu Zhao ad-
vanced curvature interpretation of quantum mechanics; this new interpretation made relativity 
theory and quantum mechanics more harmonious, and regarded ψ function as a curvature func-
tion. So far Zhao’s quantum curvature interpretation is nearest to Schrodinger’s scientific thought 
and Einstein’s physics ideal. 
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1. Probability Concept in Physics 
Probability theory has a long history since Aristotle published his genetics work; many mathematicians and lo-
gicians developed probability theory since the 17th century. There are two types of probability interpretations: 1) 
probability is a confirmation measure of evidences; 2) probability is a relative frequency measure of a certain 
property emergence in a type of special elements ([1], pp. 34-36). 

Probability as a physical concept germinated from Aristotle’s potential concept. Newton mechanics developed 
into Laplace determinism by Spinoza’s rationalism. Classical rationalism considers that knowledge or science 
should be built on the base of a certain precise propositions or laws, but not on the base of experience by obser-
vations and experiments. These precise laws are inevitable and self-evident truths, and attainable directly by 
reason. Einstein followed Spinoza’s rationalism in his old age. When we lack knowledge about great natural 
laws, we introduce a priori probability concept as a measure of reasonable belief that is built on the base of “no 
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difference principle”, but not on the base of experience discoveries ([1], p. 35). 
Probability concept in physics entered into thermodynamics and statistical physics by molecules kinematics. 

Maxwell introduced a statistical mean concept of molecules motion speeds in 1859. Boltzmann assumed the law 
of the equipartition of energy in 1871; the energy of molecules motions is well-distributed in the energy super 
surface of molecules momentum space. When we divide energy into infinite infinitesimal portions, we can ob-
tain Maxwell distribution.  

We express Newton mechanics in analytical mechanics by the phase space concept. A point in 6N dimensions 
phase space stands for the positions and motion speeds of N particles in 3-dimensional space. Previously 
Boltzmann defined the limit of τi/τ (when τ → ∞) as the probability of a thermodynamics system in Si state; τi is 
the interval of the system in Si state when we observe the system in τ period. Einstein preferred this thermody-
namics probability definition to the later statistical weight definition of Boltzmann ([2], p. 74). 

A basic assumption in statistical mechanics is the principle of equal probability. The number of microscopic 
states Wx accessible to a macroscopic system (Ω kinds of microscopic states) is called the statistical weigh 
(thermodynamic weigh): Px = Wx/Ω. If we define entropy S by S = klnW, this is very convenient for deriving the 
thermodynamic relations from the statistical mechanical point of view; k is called Boltzmann constant. Macros-
copic entropy is a measure of phase space volume of microscopic states. This means that entropy connects with 
information. The more entropy of a macroscopic state, the more its phase space volume, the more frequent its 
appearances, but the less its information, the more its molecule motions chaos.  

Max Planck derived the black-body radiation law from experiments on October 19 in 1900; he introduced two 
hypothesis: 1) quantum hypothesis: the energy of an oscillator of frequency ν is quantized; only multiples of 
Planck’s quantum of energy E = hν are possible. 2) Statistical hypothesis: when we count entropy of oscillators, 
we regard oscillators as identical particles. So when P portions of quantum of energy are distributed among N 
oscillators, its statistical distribution is different from Boltzmann distribution.  

Laplace’s demon who can calculate the whole universe states of past, now and future according to the know-
ledge about positions and speeds of the given particles, come to a deadlock in pace with the birth of quantum 
theory and the development of atom physics. Rutherford’s and Soddy’s radioactivity decay law −dn/dt = n/τ 
hints firstly that probability concept plays more basic roles in quantum theory than that in Laplace’s analysis 
mechanics and Boltzmann’s statistical mechanics. Einstein introduced statistical concept into his light quanta 
theory in 1905, and introduced transition probability concept in derivation of Planck radiation formula in 1917. 
Transition probability is similar to radioactivity decay probability 1/τ, these means that emission and absorption 
of radiation in matter obey probability law like radioactivity decay law, in contrary to classical determinism law 
([1], p. 52). 

The popular formal system of quantum mechanics and its Copenhagen interpretation appeared in 1925-1926. 
Niels Bohr, W. Heisenberg and Max Born formed Copenhagen School. Copenhagen interpretation included two 
principles: 1) Complementarity principle; 2) Probability postulate. Max Born advanced probability interpretation 
in “Zur Quantenmechanik der Stossvorgange” in 1926, he regarded |ψ|2 as probability of a particle appearance. 
When quantum information transforms into classical information, Born’s quantum probability interpretation de-
stroys a holomorphic conversion of ψ complex-variable function. Max Born wrote a letter to Einstein in 1926: “I 
regard Schrodinger wave field as ‘ghost field’ in your terms, this is useful then…, Of course, probability field 
doesn’t propagate in common space but in phase space (configuration space).” ([2], p. 544). 

Quantum mechanics probability interpretation germinated from Schrodinger’s paper “Quantisierung als Eigen 
went problem” (Ann.phys.81), at first he gave an electron density interpretation of wave function: “We choose a 
particle whose position be described by three coordinates in common mechanics, and let ψψ* integral along all 
surplus coordinates of a system, and then the integral result multiplies a constant what represents electric particle 
charge. We do identical operations on each particle (three coordinates sets), and give a same position to chosen 
particles in each situation, namely we want to know the position of electron density space, this electron density 
is equal to the sum of part results.” And then, Schrodinger points out: “ψψ* is a weigh function of configuration 
space of a system. Wave mechanics configuration of a system is the superposition of many configurations 
(strictly the superposition of mechanics configurations of all possible particles in kinematics). Like this, each 
particle’s mechanics configuration contributes to real wave mechanics configurations in a weigh given by ψψ*.” 
Schrodinger regarded ψ as extremely real fluctuations of effective charges space density in electrodynamics, and 
pointed out: “It is ψ function to allow these total fluctuations grasped by a single partial differential equation in 
mathematics. We have underlined this fact repeatedly: it is impossible to interpret ψ function itself in 3-dimen- 
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sional space language, regardless of a single electron problem misleading us to this tendency, because ψ func-
tion is a function in a configuration space but not in a real physical space in general.” Also Schrodinger proved 
the necessity of normalization according to conservation of charges ([3], p. 106). 

Niels Bohr’s steady state transition postulate, Heisenberg’s observable physical quantity thought, and Max 
Bohn’s probability interpretation of ψ function are Copenhagen School’s essence. Different from Newton-Eins- 
tein’s natural philosophy line, Copenhagen research line is “Steady state, transition, probability” ([4], pp. 60-61). 
Einstein wrote in 1936: “ψ function can’t describe a single system in any way, but only can relate with many 
systems, the whole ensemble in statistical mechanics ([5], p. 518).” Einstein and Karl Popper developed statistic 
ensemble interpretation of quantum mechanics. 

Einstein had no hope to reform recent quantum mechanics in anti-probability ways. In the light of David 
Bohm’s quantum potential theory that try to interpret quantum mechanics in determinism ways, Einstein wrote a 
letter to Max Born: “You can see how David Bohm (in fact including De Broglie 25 years ago) has a belief to 
interpret quantum mechanics in another determinism ways? I regard this as a cheap inference, but of course you 
can have a better judgment.” “So far quantum statistical theory is still a consistent system, it describes rightly 
experimental relations between observable physical quantities and predicts its meaning in theory.” Einstein tried 
to regard quantum mechanics as a super-determinism restricted condition of future unified field theory in his ex-
ploration course ([2], pp. 570-572). 

2. Curvature Concept in Physics 
The early developments of astronomy and mathematics involved in problems about circle and conic curve, an-
cient Greek astronomer and astrologer Ptolemy (310-230BC) had developed spherical astronomy, and people 
knew the difference between flat geometry and spherical geometry. But curvature concept and torsion concept 
didn’t enter into geometry until analytical geometry and non-Euclidean geometry arose. 

Christian Huygens studied flat curve’s nature by pure geometrical method in Horologium Oscillatorium in 
1673. Suppose a rigid normal in P point of a curve, when an adjacent normal approaches this rigid normal, their 
point of intersection attains limit position in the rigid normal direction, and this point of intersection is curvature 
center in P point of curve. Huygens proved that distance between P point and limit point of intersection was  

( ) ( )
3 22 2 21 d d d dy x y x +  ; we call it curvature radius of P point in curve. Newton reached a similar conclu-

sion in Geometria Analytica ([6], pp. 301-302). 
Euler (1707-1783) used parameter equations x = x(s), y = y(s), z = z(s) to express a curve in space; s is arc 

length among them. According to spherical trigonometry, he obtained dx = pds, dy = qds, dz = rds from parame-
ter equations, among them p, q and r are direction cosine varying along with points in curve, of course p2 + q2 + 
r2 = 1. Euler regarded differential of independent variable ds as a constant variable; he assumed that ds' was arc 
angle between adjacent tangent lines of two points of distance ds in curve. Euler defined ds'/ds as curvature ra-
dius of a curve. 

Clairaut had advanced that a curve has two curvatures: one is Euler’s curvature definition; another is torsion 
that represents speed of a curve leaving from a plane in a point (x, y, z). Mathematician and engineer Michel- 
Ange Lancret (1774-1807) defined torsion concept by analysis method. He chose three main normal directions. 
The first main direction is direction of tangent line. Successive tangent lines are located in dense-tangent plane; 
the normal line in dense-tangent plane is main normal line, and its direction is the second mail normal line. The 
second normal line is vertical to dense-tangent plane; its direction is the third main direction. Torsion is the 
second normal direction’s changing speed relative to arc length. Lancret used equations x = ф(z), y = ψ(z) to 
represent a curve, and defined dμ as narrow angle between gradually normal planes, dν as narrow angle between 
gradually dense-tangent planes, so dμ/ds =1/ρ, dν/ds = 1/τ, where ρ is curvature radius, and τ is torsion radius 
([6], pp. 303-307). 

Playfair (1748-1819) expressed unproved parallel axiom anew in 1795: “There is one and only one parallel 
line in a point outside a straight line.” Russian mathematician N. I. Lobachevsky (1792-1856) published a paper 
“Brief introduction on a rigorous proof of parallel line axion” on February 23, 1826; he built a new virtual geo-
metry where there are two or more parallel lines in a point outside a straight line. In this virtual geometry, space 
is not smooth but curved (the sum of angles of a tringles < π/2, circumference/diameter > π). After 1832, John 
Bolyai (1802-1860), Carl Friedrich Gauss (1777-1855) advanced similar viewpoints ([7], pp. 258-259). 
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There is a normal line with a direction in each point (x, y, z) in curve. Gauss considered a unit spherical sur-
face, and chose a radius with a direction of an oriented normal line in surface. The chosen radius determined a 
point (X, Y, Z) in spherical surface. If we considered a small region encircling point (x, y, z) in curved surface, 
then there is a corresponding region encircling point (X, Y, Z) in spherical surface. When this two regions shrink 
into their corresponding points, we defined the limit of rate of region area in spherical surface and region area in 
curved surface as curvature in point (x, y, z) in curved surface. Gauss obtained general curvature K of surface 
after astonishing differential calculus, and found that K is product of two main curvatures in point (x, y, z) of 
surface, this two main curvatures had been defined by Euler very early. Sophie German defined mean curvature 
of two main curvatures as mean curvature of surface in 1831 ([8], pp. 301-303). 

German mathematician Georg Bernhard Riemann (1826-1866) discussed curvature problem in n-dimensional 
manifold in his inaugural speech on June 10, 1854. Gauss’s intrinsic geometry of surface revised Pythagoras 
formula in 3-dimentional space, Riemann spread it in n-dimensional manifold. Riemann assumed the square of 
distance between two common points is 2d d ds g x xµν µ ν= Σ , where gμν is a function of coordinates  

1 2d ,d , ,d nx x x , and g gµν νµ= . The shortest line between two given points t = α and t = β is a geodesic what  
satisfies an equation d 0s

β

α
δ =∫ . Euclid presumed secretly that a vector is constant under parallel translation,  

but Riemann gave up this secret hypothesis, and introduced a connection Г to represent deviation of vector di-
rection under parallel translation, so curvature of a manifold may be constructed from connection Г ([8], pp. 
309-313). 

In viewpoint of Riemann, physical space is a special manifold, we distinguish physical space from other ma-
nifolds only by experience. This train of thought led to relativity naturally ([8], pp. 314-315). Along with apply-
ing differential geometry to physics, curvature concept had entered into Newton mechanics, Maxwell electro-
magnetism, relativity theory, thermodynamics, quantum mechanics and quantum field theory. 

A curve in 3-dimentional Euclid space is ( )x x t= , ( )y y t= , ( )z z t= , so  

( ) ( ) ( ) ( )r r t x t i y t j z t k= = + + , d d d d dts r t t v t= = . Let t = s, the absolute value of acceleration relative to 

parameter s is curvature of curve in space: 2 2d dK r t= , where speed vector is vertical to acceleration vector. 
So curvature concept entered into Newton mechanics by this differential geometry expression ([9], p. 34). 

The famous Gauss, Ampere, Faraday, Maxwell equations are  
div 4π , curl 4π , div 0, curlE B j E t B E B tσ= = + ∂ ∂ = = −∂ ∂  

For handy purpose, we assume σ = 0, j = 0, so Maxwell equations are rewritten into differential geometry 
forms: dF = 0, d(*F) = 0,  
where ( )1 2 3 2 3 3 1 1 2

1 2 3 1 2 3d d d d d d d d d dF E x E x E x t B x x B x x B x x= + + ∧ + ∧ + ∧ + ∧ , 

( )1 2 3 2 3 3 1 1 2
1 2 3 1 2 3d d d d d d d d d dF B x B x B x t E x x E x x E x x∗ = − + + ∧ + ∧ + ∧ + ∧   

* is Hodge operator ([10], pp. 118-119). 
The second equation is in fact Bianchi identical equation in U(1) fibre bundle, where F corresponds to curva-

ture 2-form field d di j
ijF x xΣ ∧ . Mathematicians including Cartan and Hodge noticed that Maxwell equations 

should be explained as curvature equations of some geometry objects of so-called vector bundles. 
Maxwell equations led to special relativity naturally, Micheson-Morley experiment led to build light speed 

constant principle, H. Poincare advanced relativity principle. Einstein explained Lorentz transformation anew, 
and forced us to receive relativity of simultaneity, and led to H. Minkowski’s 4-dimentional space-time view-
point. Under Lorentz transformation, an energy-momentum vector changes as a 4-vector. 4-momentum of a 
mass point locates in mass surface that has Lobachevsky geometry structure: 2 2 2 2 4E c p m c− =  ([9], p. 254). 

General relativity extends relativity principle from an inertia system to a reference system of arbitrary motion. 
This means that physical laws keep invariance under an arbitrary space-time coordinates transformation, tensor 
differential calculus is the fittest tool to represent this general covariance. Einstein advanced equivalence prin-
ciple according to Galilieo’s free falling body experiment in 1907: inertia mass was equal to gravitational mass, 
we described a physical phenomenon in an accelerating reference frame as same as it in a gravitational field. 
Generally, to be inertial in Einstein’s sense, the frame would refer to free fall under gravity, so that the Newto-
nian field of gravitational force would appear to have disappeared. We are to think of the world line of a particle, 
falling freely under gravity (Einsteinian inertial motion), as described as some kind of geodesic in curved space-
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time: 2d d ds g x xµ ν
µν= Σ  ([1], pp. 123-127). 

Began from Poisson equation of Newtonian gravity: 2 4πG cϕ ρ∇ = , Einstein finally reached a general co-
variance equation:  

4– 2 8πR g R GT cµν µν µν= , 

where G is Newtonian gravity constant, Rμν is Ricci curvature tensor, R is scalar curvature (R is the sum of each 
statistical weight of Rμν components, gμν as space-time metric isn’t only relative with curvature, but also with 
probability). John Wheeler pointed out that Einstein’s general relativity implied “space-time told matter how to 
move, matter told space-time how to curve”. 

Later Einstein constructed some unified field models that regarded electromagnetic field as curved space-time 
structure: he followed Klein-Kaluza theory at the beginning, and treated electromagnetic field as the 5th extra 
dimension like super cylinder; finally he treated electromagnetic field as asymmetry tensors and joined it into 
symmetry gravity tensors. But along with enormous progresses and new problems in microphysics, Einstein’s 
unified field theory dream wasn’t realizable within the foreseeable future. 

German mathematician Hermann Weyl advanced the gauge transformation concept in 1918. He tried to derive 
electromagnetism from invariance of physical laws under the transformation of measuring scale along each 
space-time point. At each point in space-time, the transformation of measuring scale is called as local gauge 
transformation. V. Fock and F. London found in 1927 that if we added an imaginary factor to scale factor in 
Weyl’s theory, then Weyl’s theory was no longer a gauge (scale) transformation theory, but then a phase factor 
transformation theory, and it described electromagnetism correctly. The phase choice of whole wave function is 
arbitrary in quantum mechanics. When the phase of a wave function changes, the observation value of mechan-
ics quantity keeps invariance, the conservation quantity relative with this invariance is electric charge.  

Gauge field theory is based in some symmetry principles, where the most important principle is local gauge 
invariance principle. Weyl proved that if we replaced common derivative with covariant derivative:  

D ieAµ µ µ µ∂ → = ∂ − , then Dirac theory kept invariant relative to the phase’s local transformation group of 
wave function. Yang-Chengning and R. L. Mills advanced basic idea of modern gauge theory in 1954, they de-
veloped further ideas of gauge transformation and gauge field, and at first built universal mathematical theory of 
gauge symmetry. They distinguished global symmetry (each point’s symmetry under same transformation in 
space) and local symmetry (each point’s symmetry under independent transformation in space) from symmetries 
in physics.  

According to Yang-Mills theory, if a group of physical laws satisfy global symmetry originally, when it 
spreads to local symmetry, a new field must be introduced to keep it invariant. Gauge field quanta is a new kind 
of particles whose exchange cause new force. On this ways, Yang-Mills theory gives a picture to describe the 
origin of various forces. Gauge potential plays a similar role in gauge field theory as gravitational potential in 
general relativity. Gravitational potential relates with linear connections in tangent bundles, reflects curvature in 
space-time bottom manifold; gauge potential relates with curvature in main fiber bundle, gauge potential reflects 
curvature of fiber bundles. 

So gauge field has curvature like gravity field, for example, Yang-Mills field describes parallel displacements 
in electrical charge space, and determines curvature of electrical charge space. Under the Abel group U(1) situa-
tion, curvature tensor of electrical charge space is consistent with strength tensor of electromagnetic field, and 
then electromagnetic field has geometry structure ([11], pp. 6-8). 

When gauge theory hints the relation between curvature and quantum mechanics, we find that quantum cur-
vature concept has already germinated from Erwin Schrodinger’s paper “Quantisierung als Eigenwent Problem”. 
In his “Four Lectures on Wave Mechanics”, Schrodinger thought that Hamilton-Maupertuis principle as classic-
al starting point of wave mechanics introduced Heinrich Hertz’s generalized non-Euclidean line element 

( )2 2d 2 ,d d dk ks T q q t t= , when we defined a line element in generalized coordinate q space ([3], p. 43). And 
finally we obtained wave equation (or amplitude equation) ( )2 2 2 8π 0E V hψ ψ∇ + − = , where 2∇  could be 
regarded as neither a basic Laplacian operator in 3-dimentional space, nor a basic Laplacian operator in high- 
dimensional space, we should regard it as an extension of Laplacian operator in a line element of generalized 
coordinate q space ([3], pp. 21-22). And all geometry expressions of q space had generalized non-Euclidean line 
elements’ meaning ([3], p. 43). 

Geometrical optics is only coarse approximate optics, along with wave optics line, we should develop a new 
wave mechanics in q space. Perhaps our classical mechanics is similar to geometrical optics, as an error, it 
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doesn’t conform to reality. Once curvature radius and route length can compare with a wavelength in q space, 
classical mechanics becomes invalid. So we seek to a new wave mechanics what starts from Hamilton similarity 
and find answers along with wave optics line ([3], pp. 45-46). 

As Max Bohn developed quantum probability interpretation from Schodinger’s weigh function of ψψ*, French 
mathematician Rene Thom developed quantum curvature interpretation from Schodinger’s non-Euclid q space, 
and advanced curvature interpretation about entropy in his works: “Structural Stability and Morphogenesis” 
(1972), “Mathematical Models of Morphogenesis” (1974). Guoqiu Zhao and some Chinese learned men made a 
complete systematic exposition on quantum curvature interpretation in their works: “Motion and Field” (1994), 
“New Divine Comedy of Physics” (2002), “Between Physics and Philosophy” (2007), “From Interactive Reality 
to Curvature Interpretation of Quantum Mechanics” (2008). Compared with other quantum mechanics interpre-
tations, we find that quantum curvature interpretation is the easiest to concert with relativity, and it is the closest 
to Schodinger’s scientific thought and Einstein’s physics ideal until then. 

Rene Thom considered two conservative Hamilton systems H1 and H2, and assumed that they were coupled in 
thermodynamics. Because of random interrelations, a system in energy hypersurface D domain was direct pro-
portion to Liouville measure in D domain. The derivative a(x) = dm/dx represented (2m − 1) volume in energy 
hypersurface H = x, for two conservative systems, their volumes were a1(c − t) and a2(t) separately. Microca-
nonical entropy of a system was S(x) = lna(x), and its temperature was ( ) 1d dT S x −= , this temperature was the 
inverse of average of whole energy hypersurfaces in mean curvature hypersurface in geometrical term, and it 
was equivalent to mean moving kinetic energy of molecules in the system. In Rene Thom’s this description, 
temperature and entropy of a statistical ensemble had geometrical meanings relative with mean curvature of 
energy hypersurface ([11], pp. 60-61). 

According to Rene Thom’s viewpoint, there is a function according to normalized condition 2 d 1ψ ψ =∫  in  

a hypersurface in Hilbert space, and it simplifies as total curvature of mapped graphics in no outside potential; 
There is a progressive increasing function q = h(e) in steady state form of Schrodinger equation Eα α αψ ψ∆ =  
and it depends on the geometrical features of quantum system. The greater quantum system’s energy eigenstate 
Eα, the greater topological complexity ( )q h Eα α=  of engenfunction ψα, accordingly the greater total curvature 
of ψα graph. Energy eigenstate spectrum E is corresponding to eigenfunction ψα spectrum of structural stability, 
ν frequency reflects topological complexity of ψ graph, or rate of local curvature change ([12], pp. 157-158). 

Starting from guiding thought that ψ function reflects space-time features of micro-particles, Guoqiu-Zhao 
separates curvature factors from ψ function’s amplitude, curvature factors are called base curvature who stands 
for micro-particles’ space-time features: n nR p ћ= ∆ . And the relation between base curvature and uncertainty 
relation is:  

, 1n n n nP x ћ x R∆ ⋅∆ = ∆ = . 

In hydrogen atom, Louis de Broglie matter wave wavelength of electron on energy level n. 

0n np na= =  

n  can be regarded as phase circle radius, with nλ  as circumference, nR  is circular curvature, which is nR  
in formula 1n nx R∆ = . So, each energy level n of hydrogen atom defines the curvature nR  (also called refer-
ence curvature or base curvature) corresponding to the electron pair via Louis de Broglie matter wave wave-
length 0nr na=  (radius of reference curvature) reveals electron’s basic image on each energy level of hydrogen 
atom through the frequency and intensity of light, so there are n stationary waves in n energy level. Quantum 
curvature of electron wave is inversely proportional to the 1/n of electron orbital radius (n2a0), and it is equiva-
lent to a stationary wave epicycle’s curvature around a deferent of electron orbit radius. Quantum curvature of 
electron wave stands for quantum self-organization force of electron cloud and reflects non-Euclidean feature of 
generalized coordinates q space, the representation transformation of quantum mechanics is similar to curve 
coordinate transformation of a surface in q space. Under approximate condition of electrostatics, the electrical 
field component strength of electromagnetic gauge field in atomic nucleus is inversely proportional to the square 
of electron orbital radius, and it is proportional to electrical charges of atomic nucleus, its curvature is propor-
tional to charge density (product of electrical charge and Gauss curvature of electron orbital level surface), then 
electrical field strength curvature stands for classical force of constraint that atomic nucleus imposed on electron 
cloud. So there are different mathematical physics meaning between quantum curvature and gauge field strength 
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curvature. 
According to Heisenberg’s uncertainty relation, at each energy level in atom, the uncertain measurement ∆pn 

of electron’s momentum and ∆xn of the location will satisfy the following formula: n np x∆ ⋅∆ =  .  
In discussing atomic electron, the electron’s momentum is generally regarded as electron’s momentum uncer-

tain measurement, so n np p∆ = , n n nr x= = ∆ . 
Known from uncertainty relation, the physical sense of ∆xn is the uncertain location of electron particle, the 

measurement of which exactly equals the electron’s curvature radius. And ψψ* is proportional to this curvature 
factor, so we can make a new interpretation for quantum wave function, this is quantum curvature interpretation 
([13], pp. 16-19). 
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