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Abstract 
Assuming the light as composed of longitudinal-extended elastic (and massive) particles emitted 
during an emission time T at speed c (=u) (with u the escape speed from all the masses, toward the 
infinity), it is shown that c is invariant (under the Newtonian mechanics laws), for an Observer 
fixed to the initial emission point Ep (the point where the emission starts), in spite of any motion of 
the source (of light) with respect to Ep. On the contrary, an Observer, in motion from Ep during the 
emission, will state (indirectly) a Galilean variation of c which can be proved and evaluated by an 
appropriate feasible experiment described here. 
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1. Introduction 
This paper, in accordance with the Newtonian laws, is based on following assumptions: 

I. Gravity fields fixed to their related masses (intending that each field is co-moving with its generating mass).  
II. Finite mass of the universe, implying a finite value of U (total gravitational potential) and therefore of u 

escape speed toward the infinity due to all the masses in space.  
III. Light composed of longitudinal-extended elastic particles (as defined in Section 3) moving at speed c = u. 

This equality is supported by a cosmological reason. 
 
On above bases (including, needless to say, Newton’s absolute time and space) we obtain: 
1) The relation u = (−2U)1/2, where u is total escape speed, from all the masses, toward the infinity and U (to-

tal gravitational potential, due to all the masses in space), while the assumption c = u (which implies the mas-
siveness of the light and also c∞ → 0), gives to the speed of light a cosmological/anthropic reason to its value, as 
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highlighted in Section 2. 
2) The constancy of the speed of light, under the Newtonian laws, for an Observer fixed to the (initial) emis-

sion point, Ep, (the point where the emission of light starts), in spite of any motion of the source with respect to Ep.  
3) A variation of c (in accordance with the Galileo’s velocities composition law), if the Observer is in motion 

with respect to the said emission point (taken as reference frame): for instance, on Earth, an Observer in motion 
from the source (of light) fixed to the ground during the emission. This variation of c (contrary to the 2nd post-
ulate of Special Relativity) can be proved by a feasible experiment described here. 

2. Total Escape Speed, from All the Masses in Space 
Here we get the escape speed due to one, two and n masses; then we assume u = c (= −2U)1/2, with u the total 
escape speed (from all the masses), and U the total gravitational potential . 

As known, considering in space one only mass M (regarded as a point-like), the gravitational potential U act-
ing on a particle having mass m M , assuming U∞ = 0, with s the distance M-m, is U = −MG/s (this relation, 
according to our first assumption (I), is always valid in spite of any reciprocal motion between M and m). The 
related Conservation of Energy (CoE), E = U + K, where K (= 1/2u2) represents the unitary (for unit of mass) 
kinetic energy of our particle arriving from the infinity (where u∞ = 0), for E = 0, gives U = −K, leading to 

2 2 2u K U MG s= = − =                                 (1) 

which is a scalar, (called escape speed), representing (in the considered point) the value of the velocity u, any 
massive particle, under a potential U, needs to reach the infinity; thus u (escape velocity) has to be referred to M; 
if M is a real mass, u has to be referred to the point of M where U  has the max value, intending this point as 
the Centre of potential Cp. Therefore we have to write 

pC m =v u                                          (2) 

meaning that the escape velocity of our particle m has to be referred to Cp. 
Considering now two masses M1 and M2, having, at a given time, distances s1 and s2 from a considered point, 

the potential U1,2 in this point becomes 

( ) ( )1,2 1 2 1 1 2 2 J kgU U U M G s M G s≡ + = − − .                          (3) 

Without the assumption I, the Equation (3) is still valid, but U1,2 could have a different value, depending on the 
assigned values of s1 and s2, at the considered time. 

Now, the escape speed from two masses can be written  

( ) ( ) ( )1,2 1,2 1 2 1 1 2 22 2 2 2u U U U M G s M G s≡ − ≡ − + = +                     (4) 

representing the value, in the considered point, of the (escape) velocity u1,2 which has to be referred to the Cen-
tre of potential Cp, (where 1,2U  has the max value).  

Then, as ( )1 2
1 1 12M G s u=  and 5310uM ≅ , we also get 

2 2 2
1,2 1 2u u u= +                                        (5) 

therefore the escape speed due to all the n masses in space becomes 
2 2 2n n nu u U M G s= = − =∑ ∑                              (6) 

with n uM M=∑  the universe mass, ( )21 2n nU M G s u= − = −∑  the total gravitational potential in the con-
sidered point, where u (function of U) can be called total escape speed (toward the infinity), while the escape 
velocity u is referred to Cp (centre of potential of all the masses).  

Now, considering as origin of our Reference frame, the initial position of m, we may call it Emission point Ep, 
(the point where m will be given the speed u), the following relation  

pE m =v u                                          (7) 

may be called as relative escape velocity of m from Ep, with ( )( )p

1 2

E
2U= −u .  
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The particle m, at the time of its emission, has, in general, a velocity 
pE mv  with respect to Ep, hence, from Cp,  

it has a velocity 
p p p p p pC C E E C Em m= + = +v v v u v ; thus if 

p pC E u+ ≥u v  it turns out that m tends to the infinity:  

in particular, if the velocity 
pE mv  is provided to a great number of particles all around Ep, more than half of 

them will surely tend to the infinity.  
We assume now the equality c = u, hereafter supported by the estimated mass of the universe and also by this 

cosmological/anthropic reason: in fact, if c < u, all the masses in space, (having speed lower than u), will tend to 
a gravitational collapse, whereas for c ≥ u, the mass of light, going toward the infinity in an unlimited time, 
tends to avoid the said collapse. 

Here we also point out that the energy of light (mc2) seems to be not in accordance with the said relation E = 
U + K = 0, where K = 1/2mu2, but, as shown on [1], the energy of light is given by a kinetic energy K = 1/2mc2, 
complying the said relation (plus an internal energy of the same value). 

This following part of Section 2, is only a support to our assumption c = u. 
The mass of universe, by some authors, is estimated [2]-[4] to be 5310uM ≅  kg; the same order of magni-

tude is given throughout the number ( 2210≅ ) of observable stars [5] [6], and since from Earth the distribution of 
the masses appears to be homogeneous and isotropic, under our assumption U∞ = 0, we may assume their den-
sity as decreasing, from the Local Group (LG) toward the infinity, like a function ρ = ρce−as with cρ ≅  9.2 × 
10−27 kg/m3 the critical density [7]. So the mass of universe can be written  

2 2 53
u 30 0

8π4π e d 4π e d 10 kgas as c
c cM s s s s

a
ρρ ρ

∞ ∞− −= = = ≅∫ ∫                      (8) 

yielding 

( )
1

26 13u8π 1.3 10 mca Mρ − −= ≅ × .                              (9) 

From the LG, the variation of U, due to an increase of the distance ds, can be written as dU = −dmG/s where 
dm = ρ4πs2ds with ρ = ρce−as, hence the potential on Earth becomes 

( )2 2 16
0 0 0

4π e d 4π e d 4π 4.5 10 J kgas as
c c cU s s G s G s s G aρ ρ ρ

∞ ∞− −= − = − = − ≅ − ×∫ ∫           (10) 

Now, according to Equation (6), on Earth it is 

16 8
0 02 9 10 3 10 m/su U= − ≅ × ≅ ×                             (11) 

Therefore, on Earth, u0 = c0, so that 2
0 01 2c U= −  and, in general we may argue 

2c U u= − =                                      (12) 
The equality c = u means that, along any free path, the speed of light only depends on the value of the poten-

tial along that path. 

3. Invariance of the Total Escape Speed u for a Particular Particle, Here Defined 
Here it is shown that under the assumption III, should a source of photons, during their emission, move from its 
initial Emission point (Ep), their length will vary, and since their transit time, (time to cross an Observer), will 
also vary, their speed becomes constant for any Observer fixed to Ep, in spite of any motion source-Ep. 

The Galileo’s velocities composition law, which is related to point-particles, cannot be, apparently, applied to 
a particle defined as follows:  

“longitudinally-extended, elastic non divisible particle emitted at speed u by a source during an emission time 
T, and moving along rays, (continuous succession of photons)”. 

Of course, more photons emitted during an emission time T need an equal number of rays.  
Calling front and tail the extremities of a photon, every tail, (along a ray free path), corresponds to the front of 

the next photon. 
Now, on Figure 1, let S be a Source (of light), starting to emit, at t = 0, a photon (with front A) and let the ini-

tial Emission point Ep (the point where the emission starts), be the origin of our reference frame; then let S  
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Figure 1. Emission of photon AB while the source S is in motion 
from the Emission point Ep. 

 
move, during the emission time T, from Ep to ST. For instance, Ep may be a generic point on the Earth’s surface, 
with S coincident to Ep at t = 0. 

Now, the relative escape velocity of the front A (being a point-particle), from Equation (7), can be written  

pE A =v u                                        (13) 

which gives, as hereafter shown, to the (whole) photon, for an Observer in Ep, (or fixed to it), a constant speed 
(u), in spite of any motion of S from Ep. At this purpose, still referring to Figure 1, let the source S have a ve-
locity 

pE Sv  with respect to Ep; hence the velocity of the front A, with respect to S, that is, vSA, from Equation 
(13), becomes  

p p pSA SE E A E S= + = −uv v v v                                (14) 

Therefore, at t = T, when S has reached the point ST, we get  

( )p pSA E S E ST T T′ = = − = −λ λuv v v                             (15) 

where λ' is the photon AB emitted with the source in motion from Ep, while λ (≡ uT) should be the photon (AEp) 
if S, during the emission, should be fixed to Ep. 

Thus, after the emission time T, as for a source receding from the front A, as in Figure 1, the photon length λ', 
(for any Observer), from Equation (15), turns out to be  

( )
pE S 1uT v Tλ λ λ λ β′ = + = + ∆ = +                             (16) 

where 
p pE S E Sv = v , where ( )pE Sv Tλ∆ =  is the path Ep-ST covered by S during T, with 

pE Sv uβ = , showing 
that the length of an emitted photon, for a given source, only depends on 

pE Sv .  
Now, the speed of a point-particle is defined through two Observers, while the speed u' of a photon, (since its 

length could vary), does not correspond to the speed of any point of it, hence to define the speed of a photon we 
must consider its length referred to the time T' (transit time) the photon (front to tail) needs to cross one Observ-
er, leading to  

u T T Tλ′ ′ ′ ′= − =vλ                                 (17) 

which is the average speed of the photon along the path λ'.  
As for this definition, let us consider a system composed of two balls connected through an elastic thread and 

let them fall in vertical line: during the fall, each part of the system has different speed, that is why we need the 
Equation (16) to define the speed of the whole photon. 

Still returning to Figure 1, for an Observer fixed in Ep, the transit time T' of the photon AB is given by the 
time the front A needs to cover the path λ, that is T (= λ/u), plus the time the tail B needs to cover the path ST-EP 
= ( )pE Sv Tλ∆ =  which, (since the tail B is emitted by S, see Equation (13), at the same velocity u as the other 
parts of the photon), is 

pE ST u v T uλ∆ = ∆ = , giving 
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( )
pE SΔ 1T T u T v T u Tλ β′ = + = + = +  (Observer fixed to Ep).                (18) 

Thus, see Equation (17), the speed of the photon AB, referred to our Observer fixed to Ep, becomes 
( ) ( )1 1u T T uλ λ β β′ ′ ′= = + + =                            (19) 

showing that, on our bases, an Observer, fixed to the Emission point Ep (point where the light starts to be emit-
ted), states that the speed of light is invariant (and equal to the total escape speed), in spite of any speed 
Source-Ep.  

Now, what about for an Observer in motion from Ep? Well, the length λ' of an emitted photon does not depend, 
see Equation (16) on the Observer motion, while the photon transit time T', depends, for an Observer fixed to Ep, 
see Equation (18), on 

pE Sv  and it also depends, for an Observer in motion from Ep, on 
pE Ov , leading, in short, 

to ( )SO1T T v u′ = ± , where the sign ± is obviously given by the same/opposite direction Observer-source with 
respect to the one of the considered photon. For instance, if vSO = 0 (Observer co-moving with S, both moving 
from Ep to ST during the emission), the photon length, see Equation (16), is still λ', while its transit time (for the 
Observer and for S too) is T' = T, hence u' = λ'/T ≠ u, that is c' ≠ c. 

Hereafter, to detect this variation, we describe a feasible experiment where the Observer (measuring the 
times), has to be in motion from the Emission point (taken as reference frame): usually, the measurements of c 
(through the method d/t), to be accurate, requires the Observer(s) to be fixed with the photon emission point), 
but, on our proposed experiment, the distance d, (variable during the experiment), is not involved into the 
evaluation of Δc. 

4. Description of a Feasible Experiment Showing the Variation of the Speed of Light 
To evaluate our predicted variation of c stated by an Observer O in motion from the initial Emission point Ep, 
we may assume, for simplicity, the source S fixed to Ep. 

Thus, see Figure 2(a), at t = 0 (start of emission), let O be located in Ep (our reference frame) and let 
pO E Ov = v  be the speed of O from Ep. So, at t = 0, it is: O and A1 (front of the first emitted photon) both in Ep. 

At the end of the emission, lasting te (= nT), where n is the number of consecutive photons (A1B1-AnBn), the path 
covered by the front A1 becomes L = nλ, the Observer has covered the path Δd = vOte, while the tail Bn is still in 
Ep. Then, when the tail Bn, at a certain time tO, reaches O, the path covered by O is ΔL = vOtO, where tO corres-
ponds to the (transit) time the n photons need to cross the Observer (that is from t = 0 to the time the tail Bn 
reaches O), hence we can write tOc = L + ΔL, so we get 

( ) ( )O e O OΔ Δ Δt L L c n L c nT L c t v t cλ= + = + = + = +                      (20) 

giving 

( )O e O1t t v c= −                                      (21) 

which, for Ov c , leads to 

( )O e O1t t v c≅ +  (valid for Ov c )                             (22) 

and then 

O e e OΔt t t t v c≡ − ≅                                    (23) 

which is the variation of time stated by the Observer O between the transit time tO and the emission time te 
where te is also the transit time for the Observer if this would be fixed to S. For instance, if vO = 10 m/s and te = 
3 s, one gets Δt = 10−7 s, well measurable. 

Therefore the speed of light as stated by the Observer O (moving along the same direction as the light) be-
comes 

( ) ( ) ( )O e O O O O1 1 1c L t n t v c n v c nT c v c c vλ λ′  = = − = − = − = −                (24) 

while the speed stated by S (or by an Observer fixed to Ep) is: c L nT n nT cλ′ = = = . 
Referring to Figure 2(b), where the source S and the Observer O are duly represented in a different position, 

as for the clock of the Observer we have: 
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(a)                                              (b) 

Figure 2. Schemes of a proposed experiment showing the variation of c. (a) Theoretical scheme; (b) 
Feasibility scheme. 

 
t = 0 (start of times, when the first photon, A1-B1, reaches O); 
t = tO (end of time, when the last photon, An-Bn, reaches O). 
As for the clock of the source, not represented on figure (and not necessarily synchronized with the Observer 

clock), we have: 
tS = 0 (start of emission from S); 
tS = te (end of emission). 
We point out that the value Δt given by Equation (23) does not depend univocally on the speed of the Ob-

server, hence the predicted (by the Relativity) time dilation due to the Observer motion, cannot be claimed.  
Now for an Observer, the frequency of photons of the same ray has to be defined as n tν =  with n the 

number of photons crossing the Observer during the time t; for t = T' (generic transit time of one photon), it is n 
= 1, that is 1 Tν ′ ′= , therefore, from Equation (18), we get ( ) ( )1 1Tν ν β′ ′= = ±  with the sign + when source 
and Observer are approaching to each other; in fact, for O and S at reciprocal rest, the number of photons emit-
ted by S in a unit time has to be equal, in the same time, to the number of them crossing O, and this implies 

s Oν ν= . Now we can summarize: 
• if S is moving from Ep, (as in Figure 1), while the Observer is fixed to Ep, he will state: c' = c and 

( )1λ λ β′ = + , hence ( )1T c Tλ β′ ′ ′= = +  and ( )1 1 1T Tν β′ ′= = + ; 
• if the Observer is moving from Ep along the same direction as the photons (like in Figure 2(a)), while S is 

fixed to Ep, the Observer will state: ( )O  1c c v c β′= − = − , and cTλ λ′ = = , hence ( )1T c Tλ β′ ′ ′= = −  
and ( )1 1Tν ν β′ ′= = − . 

5. Conclusion 
We have seen that, on our bases, the speed of light (corresponding to the total escape speed) follows the Newto-
nian laws, and we have described a feasible experiment showing that the speed of light also follows the Gali-
leo’s velocities composition law, if applied to these photons. 
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