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Abstract 
The energy emitted by an electron in course of its transition between two quantum levels can be 
considered as a dissipated energy. This energy is obtained within a definite interval of time. The 
problem of the size of the time interval necessary for transitions is examined both on the ground 
of the quantum approach as well as classical electrodynamics. It is found that in fact the emission 
time approaches the time interval connected with acceleration of a classical velocity of the elec-
tron particle from one of its quantum levels to a neighbouring one. 
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1. Introduction. Planck’s Approach to an Electron Transition and Its Difficulty 
The phenomenon of the electron transitions between quantum levels is basic for the quantum theory. In fact the 
theory began by a fit of the transition energy of a set of oscillators to the intensity of the emission spectrum of 
the black body examined with respect to its dependence on the body temperature [1] [2]. A success of Planck 
was based on discovery that the energy of the oscillators is regularly a multiple 

nhν                                         (1) 
of the same expression 

hν                                         (2) 
where ν  is the oscillator frequency and h  is the Planck constant. 

In a further development of the theory the result of (2) has been extended to any transition energy between 
two quantum levels, not necessarily those belonging to the oscillator. In effect the formula 
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E hν∆ =                                        (3) 
couples the energy interval 

0E∆ >                                         (4) 
with the frequency ν  of the electromagnetic wave characteristic for any transition between two different 
quantum levels. 

However an important lack of the theory which remained in it was the problem of the time interval 

0t∆ >                                         (5) 

necessary for the process of the energy change E∆  entering (3). In accordance with the statistical background 
of the energy spectrum of the black-body radiation the problem of t∆  has not been examined for an individual 
transition between separate quantum levels, but approached on the basis of a probabilistic analysis of the popu-
lation number of the quantum states forming the interval E∆ . This kind of reasoning, characteristic already for 
the old quantum theory [3] [4], has been consequently prolongated and extended in case of quantum mechanics; 
see e.g. [1] [5]-[7]. 

The aim of the present paper is to examine the problem of the transition time 

2 1t t t∆ = −                                       (6) 

on the ground of a non-probabilistic (non-statistical) approach. Therefore formally the task becomes rather op-
posite to a treatment which has been usually applied. Only the emission rate of energy E∆  between two 
neighbouring quantum states is mainly considered. The obtained result is that E∆  and t∆  should satisfy the 
equation 

.E t h∆ ∆ =                                       (7) 

Formally (7) is much similar to the well-known Heisenberg principle of uncertainty for energy and time [8] 
which is 

E t∆ ∆ >                                        (8) 

But the interval E∆  entering (8) is not necessarily limited to E∆  entering (3). Another remark concerning 
(8) is of a more principal character: in (7) there is no uncertainty concerning t∆  for a given E∆ . A different 
situation does exist in the case of (8). In fact (8) gives the relation 

min ,t t
E

∆ > ∆ =
∆
                                    (9) 

so t∆  may assume an infinite spectrum of values for some constant E∆ . 
Physical and philosophical implications of (9) have been discussed on many occasions, see e.g. [9] [10]. An 

important philosophical implication of (9) was to point out an indeterministic character of the relation between 
E∆  and t∆ . But in several further studies [11]-[13], the validity of (8) has been objected on the basis of vari-

ous reasons. In effect in numerous textbooks (see e.g. [7] [14]), the relation (8) has been neglected at all. 

2. Quanta of the Dissipated Energy and Intervals of Time Necessary to Produce 
Them 

In the first step, the aim of the formalism developed in the present paper is to demonstrate that t∆  for an elec-
tron transition can be a defined quantity similar to E∆  and ν . To this purpose the E∆  is referred to the dis-
sipation energy Q∆  which accompanies the electron transition by the equation: 

Q E∆ = ∆                                      (10) 

Evidently Q∆  occuring in the transition seems to be of a typically emissive character. In short we assume 
that the emission of E∆  should not be necessarily of a radiation character dictated by (3), but can materialize 
also in the form of Q∆ . Consequencies of such assumption are illustrated on three examples concerning re-
spectively the hydrogen atom, a particle enclosed in the potential box and the harmonic oscillator. In Section 3 
the results of the present Section are applied in calculating the electron acceleration produced in course of the 
quantum transitions performed in the mentioned three systems. 
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The energy differences 

1n nE E E+∆ = −                                    (11) 

between two neighbouring quantum states having the indices 
1 andn n+                                    (12) 

( )1n  are mainly considered. We have 

( )

4 4

2 2 2 2 3

1 1
2 1
me meE

n nn

 
∆ = − − ≈ 

+   

                           (13) 

for the hydrogen atom [15], 

( )
2 2

2 2
2 21

8 4
h h nE n n
mL mL

 ∆ = + − ≈                              (14) 

for a free particle having mass m  enclosed in a one-dimensional potential box of length L  [16], and 

3 1
2 2

E n nω ω ∆ = + − − = 
 

                                (15) 

for the harmonic oscillator having the frequency ω . 
The time periods of the electron particle circulation on the orbits are defined by a physical character of each 

of the above systems. They are 
3 3

4

2π
n

nT
me

=
                                      (16) 

for the case of electron in the hydrogen atom occupying the state n  [15], 
22 2 4

2

n
n

L L mLT
hnv hn
mL

= = =                                 (17) 

for the particle of mass m being in state n in the potential box because of the relation between energy and 
velocity equal to 

2 2 2

2 ,
2 8

n
n

mv h nE
mL

= =  

and 

2π
nT T

ω
= =                                      (18) 

for all states n  of the harmonic oscillator. 
A characteristic property of expressions (13)-(18) is that 

4 4

3 3 3 22πn

h me h meE
T n n

∆ = = =
 

                               (13a) 

holds for the atomic orbit n  of the hydrogen [see (13)], 
2

24n

h h nE
T mL

∆ = =                                   (14a) 

for a free particle (free electron) in state n  in the box [see (14)], and 

2πn

h h hE
T T

ω ω∆ = = = =                                (15a) 
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for the harmonic oscillator [see (15) and (18)]. A common feature of (13a)-(15a) is that 

.
n

hE
T

∆ =                                       (19) 

If we note that the resistance R  connected with any of transitions examined above can be defined by the 
ratio 

V ER
i ei

∆
= =                                     (20) 

where V  is a potential and i  is a current intensity given by the electron particle of charge e , so 

,
n

ei
T

=                                       (21) 

we obtain 

2 2 2 .n
E E h hR T

Ee e e
∆ ∆

= = =
∆

                              (22) 

In the last step in (22) the result of (19) is taken into account. 
The R  in (22) is equal to the well-known quantum of resistance examined experimentally in the planar free- 

electron structures [16] [17]; some theoretical results connected with R  are presented in [18]-[20]. 
Let the dissipation heat Q∆  of the quantum emission process satisfy the Joule-Lenz equation [21] [22] 

2 .Q Ri
t

∆
=

∆
                                   (23) 

By putting 
Q E∆ = ∆                                    (24) 

[see (10)] we obtain from (21)-(24) the following relation 
2

2 2
n n

E h e h
t Te T

 ∆
= = ∆  

                              (25) 

which gives 
2

nET
h

t
∆

=
∆

                                  (26) 

But because of (19) the formula (26) can be transformed into 
2

n
n

T h T
t E
= =

∆ ∆
                                 (27) 

which implies that 
.nt T∆ =                                     (28) 

In effect of (28) the relation (26) can be presented in a more familiar form: 
;E t h∆ ∆ =                                    (29) 

cf. here (7). 
A comparison of the time rate of energy emission calculated according to the method presented above with 

the quantum-mechanical method is done in [23]. 

3. A Check of the Theory: Acceleration of Electrons Obtained in Effect of Their 
Quantum Transitions 

The physics of the test is much similar to that entering the Tolman experiment [22]. The point is that the change 
of the electron energy in course of its transition between the quantum levels is accompanied by a change v∆  of 
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the velocity which the electron has along its path. For example in the hydrogen atom the emission of energy 
from some level 1n +  to level n  is associated with an increase of the tangential velocity along the orbit. Let 
us assume that the expense of energy connected with acceleration is approximately equal to the emission energy 

E∆ . In this case 

vE m l
t

∆
∆ ≈

∆
                                     (30) 

where the time of emission t∆  is also a time of the acceleration v∆ . Consequently the length l  of the elec-
tron path covered in course of acceleration should approach that obtained during the electron circulation nt T∆ = ; 
see (28). In effect instead of (30) we should have a transformed relation 

n n

vE
ml T

∆∆
≈                                     (30a) 

where nl  is the path travelled in course of nT . The calculations of (30a) effectuated for the quantum systems 
examined in Section 3 are presented below. They seem to confirm the validity of (30a). The absolute value of 

v∆  is taken in (30a) in order to make this formula applicable to both positive and negative cases of acceleration; 
see [22]. 

Beginning with the hydrogen atom we have E∆  in the formula (13), the velocity in state n  is [15] 
2

,n
ev
n

=


                                      (31) 

( )
2 2 2

2 ,
1

e e ev
n n n

∆ = − ≈
+  

                             (31a) 

nt T∆ =                                       (31b) 

is given in (16), and 
2 2

22π 2π ;n n
nl r
me

= =
                                  (32) 

nr  is the nth orbit radius [15]. A substitution of parameters (13) and (32) into the left-hand side of (30a) gives 
the following expression 

4 2

2 3 2 2

1 .
2π 2πn n

E E me me
ml m r mn n
∆ ∆

= =
 

                             (33) 

On the other side, a substitution of the absolute value of v∆  given in (31a) and the results of (31b) and (16) 
give for the right-hand side of (30a) the formula 

2 4

2 3 3

1 .
2πn

e mev
T n n

∆ =
 

                                 (34) 

Evidently both expressions (33) and (34) are equal: 

( ) ( )33 34 .=  

A similar operation can be repeated for the electron in the potential box. Here [see (17) and equation below of 
it] the velocity 

1 21 2 2 2

2

2 2 1
28

n
n

E n h nhv
m m mLmL

  = = =  
   

                           (35) 

so 

1 .
2 2n

n n hv h
mL mL
+ −

∆ = =                                 (36) 
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The time period in state n is that given in (17) and 
2nl L=                                       (37) 

for any state n. Therefore the left-hand side of (30a) becomes 
2 2

2 2 3

1 1
24 8

E nh nh
ml L mmL m L
∆

= =                               (38) 

and the right-hand side is 
2

2 2 3 .
2 4 8

n n

n

v v h nh nh
t T ml mL m L

∆ ∆
= = =

∆
                           (39) 

In effect we obtain 

( ) ( )38 39=  

which is a similar property to that calculated above in the case of the hydrogen atom. 
The case of the harmonic oscillator is rather different than that of the electron in the hydrogen atom or the po-

tential box because the velocity nv  ceases to be a constant number within the oscillation time period T: it 
changes gradually from zero value at the turning points of the oscillator to a maximal absolute value at the cen-
tral point of the oscillator motion which is represented by the Hamiltonian: 

2 2

2 2
xp xH k
m

= +                                    (40) 

where k is the force constant. In consequence the formalism described in (30) and (30a) is applied solely to the 
velocity acceleration at a single point 

0.x =                                       (41) 
The electron velocity nv  in state n and point (41) is obtained from the formula 

2

2
n

n
mv

n Eω≅ =                                   (42) 

where nE  is the oscillator energy in state n. This gives 
1 22 .n

nv
m
ω =  

 

                                    (43) 

By considering solely the positive sign in (43) the increment of velocity due to the change of the quantum 
state becomes 

( )
( )

1 2 1 2 1 2
1 2 1 2

1 2 1 21 2

2 2 1 2 11 .
21

nv n n
m m m nn n
ω ω ω      ∆ ≅ + − = ≅           + +

               (44) 

The length nl  is 
4n nl a=                                       (45) 

where na —the amplitude of the oscillator—is coupled to the oscillator energy in state n by the formula 

2 21
2n nE m aω=                                    (46) 

so 
1 2 1 2

2 2

2 2 .n
n

E na
m m

ω
ω ω

   = ≅      

                              (47) 

In effect the left-hand side of Equation (30a) becomes 
1 22

4 4 2n

E m
ml m a m n

ω ω ω
ω

 ∆
= =  

 

 



                             (48) 



S. Olszewski 
 

 
1283 

and the right-hand side of (30a) is 
1 2

1 2

2 1 .
2π2

n nv v
t T m n

ω ω∆ ∆  = = ⋅ ∆  

                             (49) 

In consequence we obtain an approximate equality of both sides of (30a) represented by the relation 

( ) ( )4 48 2π 49× = ×  

but not precisely the relation 

( ) ( )48 49 .=  

4. Semiclassical Approach to the Dissipated Energy and Transition Time Deduced 
from the Ohm’s Law 

An approach to the Joule-Lenz dissipation energy and its transition time can be done also on a semiclassical ba-
sis. First we note that the effective electric field effE  which gives the Ohm relation with the electric current j  
on the orbit n, viz. 

effλ=j E                                       (50) 

where λ  is a constant, should satisfy the relation [22] 

eff effd 2π .nr Ri= = =∫E l E


                              (51) 

Here   is the electromotive force and nr  is the radius of the Bohr orbit n. Evidently 

n
n

ei
T

=                                        (52) 

where nT  is the time period of the electron circulation on the orbit. The potential V entering R according to the 
formula 

V R
i
=                                        (53) 

can be provided by the energy difference E∆  between some excited orbit state 1n +  emitting the energy and 
a stationary state n for which the circular electron motion is examined: 

1 .n nE EEV
e e

+ −∆
= = =                                  (54) 

The efficiency of the Joule-Lenz heat Q∆  within a time interval t∆  is given by the formula 

eff n e n
Q j S l
t

∆
=

∆
E                                    (55) 

where eS  is a transversal cross-section of the nth orbit conductor 
2π ,e eS r=                                       (56) 

er  is the radius of the electron particle [22] 
2

2 ,e
er

mc
=                                       (57) 

and nl  is the conductor length 
2π .n nl r=                                       (58) 

Since (see [22]) 

n
n e

ej
T S

=                                       (59) 
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we obtain because of (55) the following result 

eff 2π .e n
n e n n

Q e e ES r
t T S T T

∆ ∆
= = =

∆
E                             (60) 

By assuming that 
Q E∆ = ∆  

[see (10)] the formula (60) yields evidently the result 

nt T∆ =                                        (61) 

obtained in (28). 

5. Energy Emission and Its Time in the Case of n 1∆  
In preceding sections the case of the neighbouring quantum states 1n +  and n has been mainly considered. An 
opposite situation is the case of 

1.n∆                                         (62) 
For example for the hydrogen atom the situation (62) implies 

4

2 2 ;
2
meE

n
∆ =



                                     (63) 

see (13) where 1n +  is replaced by an almost infinite number n n+ ∆ . The formula (63) is 2n  times larger 
than (13) and for 1n =  we have 

4

1 2 .
2
meE E∆ = ∆ =


                                   (64) 

Assuming that the end state of the energy emission has the index 1n =  the time interval of the emission 
becomes [see (16)] 

3

1 4

2π .t T
me

∆ = =
                                    (65) 

The length of the electron path covered within the time period 1T  is 
2

1 1 22π 2π ;l r
me

= =
                                  (66) 

see (32). 
Our aim is to check the validity of the formula (30a) for the case of the emission from the state 1n . In this 

case the absolute value of the electron velocity change between 1 1n +   and 1n =  is 
2 2

1
1 1 .
1 1

e ev
n

 ∆ = − ≅ +  

                              (67) 

We substitute on the left-hand side of (30a) the quantities 1E∆  and 1l  respectively from (64) and (66) so 
4 2

1 1
2 2

1 1

1 .
2π 2 2π

E E me me
ml m r m
∆ ∆

= =
 

                            (68) 

On the right-hand side of (30a) a substitution of 1v∆  calculated from the formula (67) should be done 
together with the time expression for t∆  given in (65). We obtain the acceleration expression 

2 4
1 1

3
1

.
2π

v v e me
t T

∆ ∆
= =

∆  

                               (69) 

We find that the left-side of (30a) presented in (68) differs from the right-hand side presented in (69) solely by 
a factor of 2: 



S. Olszewski 
 

 
1285 

( ) ( )2 68 69 .× =  

It is easy to demonstrate that a particle in the potential box and the harmonic oscillator submitted to the check 
given by the Equation (30a) do not satisfy this equation. For an electron in the potential box the energy E∆  
coming from a transition between the state 1n  and state 1n =  is approximately proportional to 2n  [the 
left side of (30a)], whereas the velocity change entering the right-hand side of (30a) is solely proportional to n. 
A similar discrepancy between the both sides of (30a) occurs for the harmonic oscillator. Here the transition 
energy between 1n  and 1n =  is approximately proportional to n but the velocity change in the central 
point of the oscillator is approximately proportional only to the square root of n. 

It should be noted that for the transition 1n∆   in the hydrogen atom the product of E∆  [see (64)] and 
t∆  [see (65)] gives 

4 3

1 1 2 4

2π .
22

me hE t E T
me

∆ ∆ = ∆ = =




                            (70) 

This result is different from a similar product calculated in the case on 1n∆ =  [see (29)] solely by the factor 
of 1/2. 

6. Poynting’s Vector in the Hydrogen Atom and the Emission Time 
We define [21] [22] [24] 

[ ]
4πp
c

= ×S E B                                   (71) 

as Poynting’s vector. The time rate of the loss of energy is [24] 

( ) [ ]2 2d 1 d d d .
d 8π d 4π S

Q cE B
t t

τ= − + + ×∫ ∫ E B S


                      (72) 

A well-known formal asymmetry of the Bohr model of the hydrogen atom is the presence of the electric field 
strength 

2n
n

e
r

=E                                     (73) 

in the orbit plane for any quantum state n, but this presence is combined with the absence of a similar magnetic 
field strength nB . In fact nB  are also present in the hydrogen atom if we note that the electron is circulating 
along the orbit n having the radius nr  [see (32)] with the velocity nv  [see (31)]. In effect we obtain the rela-
tion 

2π n
n n n

n

r
r v

T
ω= =                                  (74) 

[ nT  given in (16)] which supplies the frequency 
2 2

2 2

2π .n
n

n n

v e me
T r n n

ω = = =
 

                            (74a) 

With the electron circulating with frequency (74a) is associated the field strength nB  according to the well- 
known formula [25]: 

.n
n

eB
cm

ω =                                   (75) 

In effect 
3 2

3 3n
e m cB

n
=


                                 (76) 

which is the size of a vector normal to the orbit plane. 
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A substitution of nE  and nB  into the expression (71) gives for the absolute value of the Poynting’s vector 
the expression 

[ ]
3 2

2 3 3 .
4π 4πp n n

n

c c e e m c
r n

= × =S E B


                           (77) 

Since nE  and nB  are numbers constant in time, the time derivative of the expressions 2E  and 2B  
composed of these vectors being on the right-hand side of (72) should vanish. There remains solely the surface 
integral of the Poynting vector value given in (77). This is a toroidal surface which encloses the electron orbit as 
the torus axis. Approximately the torus surface becomes equal to a surface of a thin cylinder having its axis 
length of the size 

2π .nr                                        (78) 

On the other side, the cross-section of the toroidal cylinder is dictated by the radius (see e.g. [22]) 
2

2e
er

mc
=                                       (79) 

of the electron particle which moves along the orbit. In effect the toroidal surface is approximated by the product 
of (78) and the circumference of the cross-section of the torus cylinder which is 

2π .er                                         (80) 

The value of the Poynting vector for a thin electron orbit can be assumed as a constant number given in (77), 
therefore a non-vanishing term on the right of (72) becomes equal to 

3 2 2 8 2

2 3 3 2 5 52π 2π 2π 2π π .
4πp n e n

n

c e e m c e e mr r r
r n mc n

= =S
 

                     (81) 

This is a product of (77), (78) and (80). In effect the Equation (72) has the form 
8 2

5 5

d 2π 2π π .
d p n e
Q Q e mr r
t t n

∆
≈ = =
∆

S


                           (82) 

Since the emitted energy in course of the electron transition between levels 1n +  and n is [see (13)] 
4

2 3 ,meQ E
n

∆ ≈ ∆ ≈


 

the emission time for that energy is 
18 2 4 5 5 3 2

5 5 2 3 8 2 4

π
π π

e m me n nt Q
n n e m me

−
 

∆ = ∆ = = 
 

 

 

                        (83) 

where the term taken in brackets is that calculated in (82). 
The result of (83) should be compared with that given by the quantum-mechanical formula (29). This gives 

3 3
2 3

4 4

2πh h h nt n
E Q me me

∆ = = = =
∆ ∆



                           (84) 

which is a number larger by the factor of 
22π n                                        (85) 

than that of (83). 
This is an expected situation because the emission rate described by the Poynting vector is not restricted to a 

single transition from level 1n +  to level n [a limitation which exists in calculations leading to (84)] but con-
cerns emission from n to any level below n. 

It seems of interest to demonstrate that nB  in the hydrogen atom can be obtained with the aid of the Biot- 
Savart law [21] [22]. For a constant current intensity nj  along the nth orbit, we have from the Biot-Savart law 
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3

d
.n n

n n
n

B j
cr
×

= ∫
r r

                                     (86) 

The current nj  along the orbit is defined by the formula 

1
n n e n e

e

j ev S ev S
V

ρ= =                                   (87) 

where 
1

eVρ− ∼                                         (88) 

is the volume occupied by the electron particle and 
2πe eS r=                                         (89) 

is the cross-section area of both of the volume eV  and the electron orbit. 
Since the integral of dn n×r r  leads to result proportional to 2

nr , and nr  is a constant applied in (32), we 
obtain from (86) and (87): 

2 2 2 3 2

2 2 2 3 3

1 1
n n

n e

e me mc e m cB ev e
cr r n cn e n

= = =
  

                           (90) 

which is a formula identical to that given in (76). 

7. Summary and Comments 
In his derivation of the formula (3) applied in the present paper, Einstein [4] has pointed out that statistical con-
siderations supplemented by classical physics were necessary to obtain that formula. In effect no insight to an 
individual transition time of a particle between two quantum levels has been done. The aim of the paper was to 
bridge this gap. 

The first step demonstrates that instead of (3) the Joule-Lenz dissipation energy can be applied [see (10) and 
(24)]. This yields an estimate of the emission time t∆  involved in an individual electron transition process; see 
Section 2. 

The t∆  obtained in the formalism were checked by using them to calculate the electron velocity accelerated 
in effect of the quantum transitions. Beyond of a quantum theory a semiclassical approach based on electrody-
namics is also developed in order to derive the formula for t∆ ; see Section 4. 

It has been demonstrated that for 1n∆ =  the acceleration formula (30)-(30a) is satisfied perfectly well for 
the electron in the hydrogen atom and electron particle in the potential box, and with a good accuracy when the 
acceleration of the central point of the oscillator is examined; see Section 3. 

A good fit of nT  to the formulae of Section 3 implies that in course of the electron transition its velocity, 
considered for example for the hydrogen atom, changes rather smoothly from that in state 1n + , viz. 

( )
2

1 1n
ev
n+ =
+

                                    (91) 

to the velocity in state n, viz. 
2

.n
ev
n

=


                                       (92) 

A separate study of t∆  in the hydrogen atom has been done with the aid of the Poynting vector; see Section 
6. 

A similar agreement of emission time and acceleration time is present also for 1n∆   in the case of the hy-
drogen atom, but ceases to hold for the electron motion in the potential box and harmonic oscillator; see Section 5. 

The only condition imposed on the applied formalism is that the electron states considered in a system are pe-
riodic in time. This property can be coupled rather easily with the idea of the electron orbit, for example that in-
troduced by Bohr in the model of the hydrogen atom. In this case the electron remaining in a quantum stationary 
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state is circulating incessibly along an orbit of a definite size within a definite constant period of time [15]. 
In general the use of the orbit idea is well known in the whole domain of the atomic, molecular and solid-state 

physics [26]. For solids the idea became widely applied as soon as Bloch proposed to describe the electron wave 
functions with the aid of combinations of the atomic orbitals spread over all atoms building up regularly a given 
crystal sample [27]. Such combinations, classified according to the quantum parameter k , are also orbits which 
can be repeated unlimitedly in time. The time period required by the packet to perform a travel across the crystal 
volume is therefore 

LT α
∼k

kv
                                     (93) 

where kv  is the electron wave packet velocity; L is the edge length defining the volume size of the elementary 
crystal cube equal to 3LΩ ∼ ; and the coefficient α  is a constant not much larger than unity. 

The Bloch model, especially of a one-dimensional crystal, is much similar to the model based on the stand-
ing-like wave functions characteristic for the electron particles enclosed in a potential box discussed in the 
present paper; see e.g. [28]. 
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