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Abstract 
In the present paper I have proved that in the setting of recently introduced concept of bounded-
ness the intensive macroscopic variables such as temperature and concentration are well-defined 
even for structured objects and nano-objects. I have proved that the Poisson distribution is gener-
ic distribution for all fluctuations. An indispensable part of the proof is the existence of a general 
dynamical mechanism which provides damping out of the arbitrary accumulation of matter/ 
energy in every given location and in every moment. 
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1. Introduction 
Thermodynamics and statistical physics are one of the most powerful tools of modern interdisciplinary science. 
Their supremacy is grounded on the fact that these approaches are equally available for the widest scope of sys-
tems ranging from nano-systems to living organisms to cosmic objects. On the other hand, their power is built 
on the postulate that the macroscopic variables are divided into two sub-classes: intensive and extensive va-
riables so that the intensive ones do not depend on the shape and size of a system while the extensive ones exhi-
bit linear dependence on the size of a system. The most important intensive variables are temperature and con-
centration. The temperature is defined as a measure for the average velocity of the species while concentration is 
defined as the average number of species at a given physically infinitesimal volume. 

Although this postulate works remarkably well, it still suffers severe flaws when considering nano-objects or 
structured objects such as living organisms. In the first case the considerable growth of the fluctuation size 
compared to the mean value gives rise to the question whether it is ever possible to define the notion of intensive 
variable. Indeed, according to the statistical mechanics, the weight of fluctuations increases as 1 21 n  on de-
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creasing the size of a system n. This problem acquires an immense importance in view of the demand for further 
downsizing of nano-objects. 

The second flaw concerns structured objects such as living organisms where complicated bio-chemical reac-
tions proceed permanently. It is well known [1] that because every reaction, along with the corresponding diffu-
sion, defines specific size in the system, it should be expected that the web of bio-chemical reactions would 
prevent living organisms from steady functioning. Moreover, since the presence of specific sizes in a system 
yields violation of the Poisson distribution [1], it is to be expected an uncontrolled growth of fluctuations of all 
sizes and shapes. 

These flaws outline the important role which fluctuations play in defining the macroscopic variables. The 
problem is particularly important for the basic macroscopic variables such as temperature and concentration 
since the lack of damping mechanism for fluctuations renders impossible assigning of probability distribution to 
the fluctuations. This happens because the lack of damping renders the average velocity and the average number 
of species in any point to depend on the number of species involved in their determination. This, however, con-
tradicts the basic assumption of probability theory that neither distribution depends on the number of species 
involved [2]. 

The successful overcoming of the above flaws constitutes the major goal of the present paper. Yet, the way to 
its resolution faces the following dilemma: is it ever possible to resolve the above paradoxes in the setting of the 
traditional statistical mechanics or one should adopt a novel paradigm for this purpose. A lot of papers are writ-
ten in favor of the first alternative. The major approaches are: the one called dissipative structures developed by 
Prigogine and co-workers [1]; the second major approach has been introduced by [3] where it is considered that 
the species movement is random but happens with bounded velocity. The accent of the enormous amount of pa-
pers is put on the memory effects produced by the boundedness of the velocity.  

However, I have proved [4] that the boundedness of the velocities alone yields an unexpected amplification of 
the fluctuations which makes the above approach inappropriate. For this purpose I have redeveloped the idea of 
boundedness so that it acquires dynamical origin whose major property is that it provides automatic control over 
fluctuation growth. The major advantage of that mechanism is that its operational protocol is available for the 
widest scope of systems: ranging from the nano-objects to the living organisms to the cosmic objects. 

Another advantage of the concept of boundedness introduced by me is that it provides that weight of fluctua-
tions always inversely proportional to the size of the system. In section 2 I will prove that this condition is ne-
cessary and sufficient one for providing the availability of the Poisson distribution for the fluctuations at each 
and every system. 

In Section 3, I will demonstrate the operational protocol which provides the dynamical control over the fluc-
tuations grow. Yet, it should be stressed that it acquires novel meaning: it is measure for the average relative 
velocity among species. 

In the next section I will make a brief introduction to the concept of boundedness which I put forward recently 
[5] and whose systematic development can be found in my recently published book [6]. A particular stress is put 
on the highly non-trivial interplay among all components of that concept. This is made because some of these 
components are present in other popular concepts of interdisciplinary science but the effect of their presence is 
very different compared to the concept of boundedness where their synergy gives rise to unexpected conse-
quences. 

2. Concept of Boundedness in a Nutshell 
The concept of boundedness has been introduced [5] [6] for explanation of the ubiquitous coexistence of specif-
ic and universal properties of complex systems. It grounding assumptions concern the major protocol of the re-
sponse of complex systems. The most amazing property of the ubiquitous coexistence of universal and specific 
properties is that it is shared by both intelligent and non-intelligent complex systems. That is why I have intro-
duced several grounding assumptions about the response of all complex systems along with additional assump-
tions how further the response of the sub-class of intelligent complex systems is organized. Since the subjects of 
consideration of the present paper are temperature and concentration, I will present only the grounding assump-
tions for the response of the widest class of complex systems which comprises both the non-intelligent and intel-
ligent ones. 

The concept of boundedness consists of mild assumption that the rate and the amplitude of matter/energy/  
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information that a system exchanges with its ever-changing environment are permanently bounded and stay 
within specific margins. The response itself can “adapt” locally its specific rule so that to fit within the above 
margins. Another assumption which I will discuss in details in Section 3 is that the relative velocities must also 
be kept bounded. 

The comparison with two other theories of the complex systems which comprise certain aspects of the con-
cept of boundedness but not all of them highlights better the highly non-trivial interplay among all components 
of the concept of boundedness. 

Let me start the comparison with the theory of deterministic chaos. It is a theory where a given non-linear 
mapping, defined in a bounded domain of admissible values, produces a stochastic sequence as a solution at 
certain values of the control parameters [7]. For the sake of clarity let me present this property on the example of 
logistic mapping: 

( )1 1n n nx rx x+ = −                                       (1) 

where nx  is the population of a given species set at constant environment defined through the control parame-
ter r. Obviously the population is defined only in the range [ ]0,1 . Then, on reaching a value greater than 1, the 
value of nx  “jumps” to the difference between that value and 1 and the process starts again. Further, for the 
values of r about 4, the solution turns stochastic. 

Thus, it becomes apparent how and to what extend the boundedness enters the basic assumptions of the de-
terministic chaos. That is: first the deterministic chaos involves boundedness of the amplitudes through restrain-
ing the set of admissible values to a bounded region. Second it involves the idea of non-homogeneity since the 
rule “adapts” its form depending on whether the current value of nx  is within the domain of admissible values 
or it exceeds it. To remind, on exceeding the thresholds, the rule is given by a “jump” to the beginning of the 
range. Thus, we have two basic assumptions of the theory of boundedness in hand and one basic assumption of 
the concept of boundedness missing: The missing assumption is boundedness of the rates. Next I will consider 
how critical the absence of that assumption is for the deterministic chaos. 

Indeed, it is well-established fact that the power spectrum of the chaotic solutions is white noise not 1/f noise 
which is typical for complex systems. White noise implies lack of correlations among members of the corres-
ponding power spectrum. This result is to be excepted because the “jumps” from the one end of the domain of 
admissible values to the other eliminate the correlations among successive steps created by the successive ap-
plication of the specific rule that defines any given mapping. What does the boundedness of the rates change in 
this frame so that to expect 1/f shape of the power spectrum? It is that the boundedness of the rates “keeps” the 
distance between successive steps within a given margins. In result, distant steps turn correlated. It should be 
stressed on the fact that these correlations are not a result of specific physical process but they are purely of ma-
thematical origin. 

The second very popular theory of complex systems, the so called Self-Organized Criticality (SOC), has been 
introduced by Bak et al. [8] where “self-organized” means that starting from any initial condition, the system 
tends to move toward a critical state and stay there, without external control. This supposition is held by means 
of keeping the rates of development of avalanches bounded which turns into sliding when the thresholds are ex-
ceeded. This theory successfully explains the 1/f shape of the power spectrum but it fails to explain the coexis-
tence of specific and universal properties of any system. Another serious flaw is that it is not able to quantify 
any relation system-response. This implies that even tiny perturbation can trigger a large avalanche. At the same 
time at a next run, the same perturbation can trigger an avalanche of completely different size. This flaw is result 
of the lack of boundedness over the amplitude of growing the avalanches. 

The highly non-trivial interplay between all aspects of the concept of boundedness renders its exclusive prop-
erty to be the existence of presentation basis (which is power spectrum) where the response decomposes addi-
tively into two parts: a specific discrete pattern, called homeostasis, and a continuous noise component whose 
shape is universal. The homeostatic pattern is robust to environmental changes. Since the shape of the noise 
component is also robust to the environmental changes, the separation of the homeostatic pattern happens with 
constant accuracy. 

In turn this constitutes the fundamental difference between the concept of boundedness and the above theories. 
Indeed, while both the deterministic chaos and SOC implies total unpredictability of the future behavior of a 
system, the above central result implies that the future behavior of every complex system is predictable up to 
predictability of its homeostasis. 



M. K. Koleva 
 

 
1152 

3. Poisson Distribution under Boundedness 
The Poisson distribution is one of the most popular statistical distributions because its interpretation has widest 
scope of availability. Indeed, it is supposed that the Poisson distribution gives the probability for occurring of an 
event among other uncorrelated events. Thus, it is widely used for defining the notion of concentration since it is 
supposed that the current positions of different species are uncorrelated in view of the random motion and num-
ber of binary collisions they exerted. 

However, this setting suffers the following fundamental flaw: The supposition about lack of correlations 
among different species makes local averages ill-defined since there is no dynamical mechanism which keeps 
local accumulation of matter within specific margins. 

The way out commences from the theory of boundedness. At first let me present how the major assumptions 
of that theory help to formally derive the Poisson distribution and then, in the next section I will present the ma-
jor dynamical mechanism for controlling growth of the local fluctuations. 

Let me start with the fact that under boundedness, each and every bounded irregular sequence (BIS) has well 
defined mean and variance according to the Lindeberg theorem [2]. On the grounds of this fact I suggest that the 
coarse-grained structure of each and every BIS consists of excursions of specific duration and amplitude. An ex-
clusive for the boundedness property is that each excursion is embedded in a specific for it interval, called em-
bedding time interval, so that no other excursions of larger size can be found in that interval. The role of embed-
ding is to prevent overlapping of successive excursions and thus to sustain boundedness of rates and amplitudes. 
This result can be found in Chapter 5 of the book [6]. Further, it is proven that the excursions form a homoge-
neous process and thus successive excursions turns uncorrelated. It is worth noting that on fine-grained level 
there are correlations among successive excursions because the successive steps that built any given excursion 
are subject to boundedness of rates and amplitudes. 

The statistical independence of different excursions makes possible to conclude that every local average is 
subject to the following estimation: 

( ) 1d
a

av a T
x x t t O

T
λ

+

 = = ±  
 ∫                                  (2) 

where T is the length of the time window and λ  is the mean. Equation (2) implies that the deviation of the lo-
cal average from the mean is inversely proportional to the length of the time window. This estimation is 
grounded on the fact that the characteristics of every excursion are independent from length of the time window. 
Thus, the number of excursions participating in the time window is proportional to its length which yields the 
local average to follow Equation (2). Then, Equation (2) stands as a necessary and sufficient condition for the 
following estimation to hold: 

1 ~ constTO
T
 
 
 

                                        (3) 

The meaning of Equation (3) is as follows: given the elementary event to be the deviation of a local average  

in any moment from the mean; according to Equation (2) its probability is 
1O
T
 
 
 

. Then Equation (3) gives the  

necessary for the derivation of the Poisson distribution relation between the number of trials T and the probabil-
ity for the event in a single trial. An exclusive property of Equation (3) is that it is exact relation and it does not 
impose any special conditions on neither of the variables involved. Thus, the necessary and sufficient condition 
for the derivation of the Poisson distribution is met. It is worth noting that the present derivation of the Poisson 
distribution is free from any special conditions apart from the constraints which boundedness imposes in general. 

Moreover, its enormous advantage is that the derivation is free from any constraint imposed over the size of 
the window T. Alongside, the derivation is free from any dependence on the specific size which specific pro- 
cesses imposed on any given system. In turn this renders the notion of concentration well-defined in each and 
every point of the system and in every moment. 

4. Dynamical Mechanism for Controlling Local Accumulation of Matter/Energy 
The major goal of the present section is to present the dynamical mechanism which controls unrestrained growth 
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of local accumulation of matter/energy/information. Detailed description of this mechanism can be found in 
Chapter 3 of [6]. I present it here because a certain result is obtained here as a consequence of the derivation 
made in [6]. 

As it has been already stated in the Introduction, the boundedness over velocities alone is not sufficient to en-
sure automatic damping of the fluctuations. This is so because the traditional approach to interactions assumes 
interactions among colliding species to be unitary. The latter implies that a certain number of colliding species 
form a closed system during interaction. In turn, the unitarity of the interactions renders mutual independency of 
the properties of different species. Consequently the latter validates the Law of Large Numbers which says that 
the one can assign probability to a given event which is given by the average of many independent events. 
However, there is a flaw: being independent from one another, prior to averaging, large enough fluctuations can 
cause severe damages on each and every system such as pattern formation, sintering, overheating, ageing etc. In 
any case, the lack of a uniform convergence makes a system to behave in an uncontrolled and non-reproducible 
way. 

In Chapter 3 of [6] I have proposed the way out from the above problem. It assumes that along with the uni-
tary interactions there are non-unitary ones whose role is to dissipate the accumulated energy and matter 
throughout a system so that to keep local concentrations bounded. 

An exclusive generic property of a non-unitary interaction is that its time asymmetry renders each and every 
such interaction dissipative. Indeed, the time asymmetry renders the asymmetric role of any species that is as 
follows: the impact of the i-th species on the j-th one does not turn out equal to the impact of j-th species on the 
i-th one because we have to take into account the non-equal impact on each of them by a third species entering 
the collision. Thereby the corresponding Hamiltonian turns always into non-Hermitian (its eigenvalues are com-
plex numbers), hence dissipative. On the other hand, we look for a mechanism able to “disperse” every locally 
accumulated by unitary interactions energy/matter. And namely the generic dissipativity of the non-unitary inte-
ractions is a key ingredient of that mechanism. The next step is to establish how the dissipated by a non-unitary 
interaction energy becomes dispersed throughout the corresponding system. I assume that it happens as follows: 
the dissipated from non-unitary interaction energy resonantly activates an appropriate local linearly-dispersed 
gapless mode (e.g. acoustic phonon) of the corresponding state variable (e.g. concentration), by means of which 
“dispersion” of the accumulated matter over the entire system is achieved. Further, the need for stable and re-
producible functioning of a system imposes the following general requirement to the operation of that feedback: 
it must provide those fluctuations covariant, i.e. it must provide independence of the characteristics of each and 
every of them from their location and moments of their development. 

The concept of boundedness, applied to the operation of the above feedback, implies that it must maintain 
stability by means of providing the effect of each and every interaction to be always bounded. This implies that 
whatever the specific characteristics of any given non-unitary interaction are, the operation of the feedback is 
such that the effect over each and every of the colliding species is finite and bounded. This property delineates 
the fundamental difference between a unitary and a non-unitary interaction. Indeed, whilst the unitaritity implies 
linearity and additivity of the corresponding interactions at the expense of allowing arbitrary accumulation of 
matter/energy, the boundedness applied to non-unitarity keeps the effect of any interaction bounded at the ex-
pense of introducing non-linearity and non-additivity of its execution. Consequently, the non-unitary interac-
tions acquire the following 3 generic properties imposed by the boundedness: 

1) The Hamiltonian of a non-unitary interaction is described by a non-symmetric random matrix of bounded 
elements. The property of being random is to be associated with the interruption of an unitary collision by 
another species at a random moment; and since the original distance to the interrupting species is of no impor-
tance for any given collision, a non-unitary interaction is not specifiable by metric properties such as the dis-
tance between species—it is rather specifiable by the correlations among the interacting species so that the in-
tensity of these correlations are permanently kept bounded within metric-free margins.  

2) The requisition about limited effect of the interactions over each participating species is further substan-
tiated by setting the wave-functions to be bounded irregular sequences (BIS). Indeed, an exclusive property of 
the BIS’s is that each one is orthogonal to any other; alongside, each of them is orthogonal to its time and spatial 
derivatives. The latter property is crucial for providing the covariance of the non-unitary interactions since: (i) 
the orthogonality of every BIS to its spatial and time derivatives provides independence of each and every non- 
unitary interaction from the interaction path of any participating species; in turn, the obtained independence 
renders every non-unitary interaction a local event, that is: it depends on current status of participating species 
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only; (ii) alongside, the orthonormality of the BIS`s renders the probability for finding a species independent 
from its current position, and from the position of its neighbors. 

3) In order to keep the effect of non-unitary interactions permanently bounded and covariant, I suggest that 
the transitions introduced by them are to be described by operations of coarse-graining. To remind, the coarse- 
graining is mathematical operation which acts non-linearly and non-homogeneously on the members of BIS un-
der the mild constraint of maintaining their permanent boundedness alone. As discussed in Chapter 1 of the 
book [6], this makes a set of BIS’s dense transitive set where the coarse-graining appears to be an operation that 
transforms one BIS into another. Thus, the self- consistency of the frame is achieved: the eigenfunctions are 
supposed always to be BIS and the transitions described as operations of coarse-graining sustain that property 
since an operation of coarse graining transforms one BIS into another. 

Further in Chapter 3 of [6] it is proven that the eigenvalues of any bounded non-Hermitian Hamiltonian tend 
to cluster near unit circle and their angles are uniformly distributed. The clustering of the eigenvalues at the unit 
circle provides not only boundedness of the amplitude of each fluctuation but boundedness of the rate of devel-
opment of a fluctuation. Indeed, the rate of a fluctuation is given by the real part of any eigenvalue and thus it is 
not only bounded but covariant as well; alongside the corresponding rate of its development is given by  
extension
duration

; the duration is given by the imaginary part of the corresponding eigenvalue iImE  and its spatial  

extension is also related to the imaginary part of the same eigenvalue trough the dispersion relation of the ex-
cited mode; since it is assumed that the feedback operates through excitation of linearly dispersed gapless modes  

( )1 1
i i i

c c
E ReE ImE

λ − −= =
+ 

; thus the extension length is ext iIm cImEλ λ= = − ; thereby the rate of develop-

ment 
extension
duration

 is proportional to the velocity of the acoustic phonons𝑐𝑐. Note that the independence of the rate  

of development from the size of the fluctuation, from the particularities of the interactions and from the moment 
and location of its development renders its covariance. 

The generalization of the above presented results reads that there exists natural mechanism for maintaining 
the stability of a system by means of permanent preventing accumulation of arbitrary large amount of matter and 
energy. The presence of non-unitary interactions along with linearly dispersed gapless modes such as acoustic 
phonons in every many-body system renders the feedback universally available. We have proved that the opera-
tion of that mechanism under boundedness renders fluctuations covariant, extended to bounded size both in 
space and in time objects which appear, develop and relax with bounded rate.  

It is an immediate consequence of the above considerations that the relative velocity of the species involved in 
a fluctuation is also constant and thus neither molecule is accelerated or retarded during relaxation. Indeed, it is 
obvious that the rate of dispersion is sustained bounded if and only if the dissipative energy is kept on the unit 
circle; if otherwise, the gradual dispersion of energy would provide permanent acceleration of species that take  

part into each fluctuation; it is best seen by the permanent increase of the rate of dispersion 21

c
E

ν
−

=


. In turn,  

this destabilizes the corresponding system and yields its explosion. Along with heating up, there would be an 
accelerating expansion of the particles that participate to each fluctuation. Indeed, the current velocity of each 
molecule is: 

( )
1 1 2 21 1

1cRe cRe cRe ReE iImERe cReE iImE
Re ReE ReE E ReE E
λ ων
ω − − − −

−+= = = = =
 

 

                  (4) 

In consequence any decrease of E  would yield acceleration of the corresponding molecules. In turn the 
latter would produce violation of energy conservation since both the kinetic energy and the heat grows up to in-
finity each starting from any finite value; hence each and every fluctuation, regardless how small it could be, 
would yield system breakdown. On the contrary, the maintenance of the energy on the unit circle guarantees 
constant velocity of the corresponding species during the process of smoothing out of each and every fluctuation.  
Alongside this smoothing out happens at constant temperature since keeping energy uniformly distributed along 
the unit circle implies constant relative velocity among species which in turn sustains constant temperature. 
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Consequently, damping of fluctuations does not produce or consume heat. Consequently, both temperature and 
concentrations turn out to be properties of the corresponding homeostasis. 

Outlining, it is proven that the necessary and sufficient conditions for providing covariance of the macroscop-
ic thermodynamical variables such as temperature and concentration render constant relative velocity among 
species which does not change under damping of fluctuations. 

5. Conclusion 
In the present paper, I have demonstrated that the intensive macroscopic variables such as temperature and con-
centration are well-defined even for structured objects such as living organisms and for nano-objects. The proof 
is made under the mild assumptions of the concept of boundedness. No special additional conditions are neces-
sary for it. In the course of the proof it turns out that the Poisson distribution turns ubiquitous for the description 
of the deviations from the mean. An indispensable part of the proof is the existence of a general dynamical me-
chanism which provides damping out of the arbitrary accumulation of matter/energy in every given location and 
in every moment. Thus, the dynamical mechanism serves as an implement for sustaining boundedness of the 
rates and amplitudes of the local fluctuations. 
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