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Abstract 
Multifractal analysis is carried out for the interactions of 4.5 A and 14.5 A GeV/c 28Si beams with 
emulsion, CNO and AgBr targets using the standard method of Gq moments. The Rényi dimensions 
Dq are evaluated and the results on self-similar multifractal spectra are presented. The variation 
of Dq with q is looked into and the findings reveal that the behaviour is in consistency with the 
multifractal characteristic of the multiplicity distributions in the various interactions studied. The 
self-similar multifractal spectra are found to be concave downwards with maximum at αq = 0. 
Further, Lévy stability analysis is carried out for these interactions. The Lévy stability index μ ex-
tracted from multifractal spectrum is found to lie in the range [0, 2] in agreement with the Lévy 
stability theory. 
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1. Introduction 
Study of high-energy nucleus-nucleus collisions may address several important issues concerning multiparticle 
production. Besides this, these collisions are envisaged to create conditions necessary for the production of 
quark-gluon plasma (QGP). Various studies [1]-[4] suggest the possibility of existence of a deconfined phase of 
matter comprising essentially of quarks and gluons at energy density ~3 GeV/fm3 with a subsequent phase tran-
sition to hadrons. Several important and fascinating signatures [5] for the production of QGP have been pro-
posed. One of the various possible approaches is to investigate the fluctuations in particle densities. Such inves-
tigations are carried out with the realization that a phase transition may give rise to fluctuations in individual 
events which may manifest as clear peaks or spikes in the phase space domains [6]-[8]. In the case of hydrody-
namic turbulence, this aspect is studied via scaling properties of the moments of the relevant distributions as 
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functions of the bin sizes of the phase space [9]. 
An attempt to investigate some important characteristics of the mechanism involved in multiparticle produc-

tion is made by Bialas and Peschanski [10], who have suggested the power law behaviour for the factorial mo-
ments as function of successively decreasing phase space bins which is referred to as intermittency. The search 
for a link between intermittency and a phase transition leads to a thermodynamic formulation of fractal dimen-
sions of which intermittency is a special case [11]-[14]. A fractal or a self-similar object has the characteristic 
property of satisfying a power law scaling behaviour which reflects the underlying dynamics [15]. The multi-
fractal nature of the produced particles in heavy-ion collisions is studied in terms of generalized Rényi dimen-
sions qD . In the present study, the method of multifractal moments [15] is used to evaluate qD . 

It has been proposed [16] [17] that as a self-affine or a self-similar fractal system, the multiparticle final state 
in high energy collisions can be characterized by an important parameter—the Lévy stability index µ . This 
parameter helps in classifying the intermittency regimes due to different kinds of phase transitions during cas-
cading processes [18]. It has been suggested [19] that 0 1µ< <  may be an indication of thermal phase transi-
tion whereas 1µ >  corresponds to a non-thermal phase transition. According to the Lévy stability theory [20], 
the Lévy index µ  is confined to 0 2µ≤ ≤ . This parameter is also known as the degree of fractality, 0µ =  
for monofractals, 1µ <  corresponds to “calm” singularities, whereas 1µ >  refers to “wild” singularities [20]. 
In the present work, the Lévy stability index is extracted from the multifractal spectra using the approach for-
mulated by Hu Yuan et al. [17]. 

2. Mathematical Formalism 
For studying multifractality, a given pseudorapidity range, max minη η η∆ = − , is divided into M bins of width 

Mδη η= ∆ . If jn  denotes the particle multiplicity in the thj  bin, then the total number of particles in an 
event is estimated using the relation 1

M
jjn n

=
= ∑ . The fraction of particles in the jth bin is given by: j jp n n= . 

Once this fraction is known, the thq  order multifractal moment, qG , is defined [15] [21] as: 

( )q
q j

j
G p= ∑                                         (1) 

where the summation is carried out over the non-empty bins only which constitute a fractal set. 
On averaging over all the events in a data sample consisting of evtN  events, qG  is expressed as: 

1

1 evtN

q q
evt

G G
N

= ∑                                       (2) 

For the fractal nature of rapidity distribution, qG  should exhibit the power law behaviour [22] over a range 
of small δη  in the following fashion: 

( ) q
qG τδη∝                                        (3) 

where qτ  are the mass exponents and may be determined using: 

0

ln
lim

ln
q

q

G
δη

τ
δη→

∆
=

∆
                                     (4) 

The spectral function, ( )qf α , which can be obtained [15] by Legendre transform by using the standard pro-
cedure of multifractals [22] is calculated from 

( )q q qf qα α τ= −                                      (5) 

where qα  given by 
d
d

q
q q

τ
α =  are referred to as the Lipschitz-Holder exponents [23]. 

For a multifractal structure, the spectral function is a smooth function, concave downwards with its maximum 
at 0qα = . The left ( )0q >  and right ( )0q <  wings of the plots of the function give a quantitative description 
of the fluctuation density in the dense and sparse regions of a single particle pseudorapidity distribution [21]-[23]. 
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Inhomogeneity of the pseudorapidity distribution is determined by the width of the distribution. The non-exis- 
tence of a sharp peak in ( )qf α  versus qα  plot at qα  corresponding to 0q =  reveals non-smooth nature of 
the pseudorapidity distribution in the phase space [24]. 

One of the most basic properties of the fractals which describe the scaling behaviour are the multifractal 
Rényi dimensions, qD , defined [25] as: 

1
q

qD
q
τ

=
−

                                        (6) 

It may be of interest to note that if qD  decreases with increasing q, the pattern is known as multifractal and 
on the other hand, if qD  is constant, the pattern is referred to as monofractal [25] [26]. 

The thq  order multifractal Rényi dimensions qD  can also be obtained from the multifractal spectrum 
( )f α  through [9] 

( )( )1
1q q qD q f

q
α α= −

−
                                  (7) 

The Lévy stability index µ  is obtained by fitting the ratio ( ) ( )21 1qD D− −  to the formula [27] 

2

1 1
1 1 2 2

qD q q
D q

µ

µ

− −
=

− − −
                                    (8) 

which can be simplified to the form 

1
1q

q qD A
q

µ −
= −

−
                                      (9) 

where ( ) ( )21 2 2A D µ= − − . Using the above equations, one gets 

( )1 1q A q Aqµτ = − + + −                                   (10) 

11q A Aqµα µ −= + −                                       (11) 

( ) ( )1 1qf Aqµα µ= − −                                    (12) 

Therefore, if one defines 

21
1 1 ,

2 2
DB A µ

−
= + = +

−
                                    (13) 

we get 

( ) ( ) ( )11 f B µ µα α −− ∝ −                                   (14) 

when Bα < . 
On the basis of the above formalism, it has been proposed [17] that the Lévy stability index µ  can be ob-

tained using the following procedure: 
 Find out the value of qα  where ( ) 1qf α = . call it B. 

 Fit the Bα <  part of ( )( )ln 1 qf α−  versus ( )ln qB α−  to a straight line and get the slope C. 
 Get the Lévy stability index as 

1
C

C
µ =

−
                                         (15) 

3. Experimental Details 
In the present study, a stack of ILFORD G5 emulsion, exposed to 14.5 A GeV/c 28Si nuclei from the AGS (BNL) 
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has been used. A random sample comprising of 283 interactions with 0hn ≥ , where hn  represents the number 
of charged particles produced in an interaction with relative velocity 0.7β ≤ , is analyzed. In order to examine 
the dependence of various parameters of multiparticle production on beam energy, the data involving 530 inte-
ractions, with the same description, produced by 4.5 A GeV/c 28Si nuclei from Synchrophasotron (Dubna), 
available in our laboratory are also analyzed. Various details, such as scanning procedure, criteria for selecting 
events and the method of measurements, etc may be found elsewhere [28] [29]. For the classification of the var-
ious particles emitted in the various interactions considered for the present study, the usual emulsion terminolo-
gy [30] has been used. The emitted particles are classified in three categories, black, grey and shower particles, 
depending upon their limit of ionization and the relative velocity. Black particles ( )bn  refer to the particles 
with relative velocity 0.3β < . These are mainly target fragments with ionization 0I I> , where 0I  represents 
the the minimum ionization of a single charged particle. Grey particles ( )gn  exhibit ionization range 

0 01.4 9I I I< <  and their relative velocity is 0.3 0.7β≤ ≤ . And the shower particles ( )sn  which consist 
mainly of relativistic charged particles have the velocity 0.7β >  and these are heavily ionizing in nature. 

In the present study, we have classified the interactions due to different targets on the basis of the number of 
heavily ionizing particles ( )hn  produced in an interaction. Heavy particles are defined as the sum of black and 
grey tracks produced in an interaction i.e., h b gn n n= + . The interaction events for which 2 7hn< ≤  are con-
sidered to be the interactions resulting from the CNO target of emulsion whereas, all the interaction events for 
which 8hn ≥  are attributed to the interactions due to AgBr target. The phase space variable which has been 
utilized to characterize the relativistic charged particles in the various interactions is the pseudorapidity variable  

ln tan
2
θη = −  with θ  representing the emission angle of the particle with respect to the direction of the pro-  

jectile beam. 

4. Results and Discussion 
4.1. Rényi Dimensions 
Variations of the generalized Rényi dimensions, qD , with the order of the moment, q, for 28Si-Em interactions 
at the two incident energies are exhibited in Figure 1. For both the energies, qD  satisfies the multifractality 
condition, namely, q qD D ′>  for q q′< . The generalized Rényi dimensions are found to be positive for all or-
ders of the moment q and demonstrate a decreasing trend with increasing q. The behaviour is in excellent 
agreement with the predictions of multifractal cascade model [31]. It may be noted that qD  turns out to be 
 

 
Figure 1. Variation of qD  with q for 28Si-Em interactions at 4.5 
A GeV/c and 14.5 A GeV/c. 
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more than unity for 2q ≤ − , a result in agreement with those reported [32] earlier for different projectiles over a 
wide range of beam energies. It is also noticed in Figure 1 that the generalized dimensions tend to attain higher 
values for higher projectile energy in the region characterized by 0q < , i.e., for negative order moments. 
However, in the region having 0q > , this trend seems to change, but not very significantly. In order to examine 
whether there exists any dependence of the Rényi dimensions corresponding to a certain order of moment on the 
target size, qD  vs q plots for the interactions of 28Si nuclei with CNO and AgBr targets are plotted in Figure 2. 
The Rényi dimensions have higher values for the interactions due to heavier targets for each order of the mo-
ment although the effect appears to be rather more pronounced for the situation corresponding to 0q < . One of 
the reasons for the higher values of the Rényi dimensions for the interactions due to heavier targets may be at-
tributed to increase in the average multiplicity with increasing target mass [33]. 

4.2. Multifractal Spectra 
Figure 3 shows the variation of the spectral function, ( )qf α , with the Lipschitz-Holder exponents, qα , for 
4.5 A and 14.5 A GeV/c 28Si-Em interactions. The spectra are concave downwards centered around qα  cor-
responding to 0q =  and a common tangent at an angle of 45≈  . This observation agrees fairly well with the 
predictions of gluon model [15]. However, ( )qf α  is not peaked in any of the cases studied which is an indica-
tion of non-smooth nature of the multiplicity distribution of the particles produced in the interactions considered 
in the present study. The left wings ( )0q >  of the spectra are sensitive to the peaks whilst the right wings 
( )0q <  belong to the valleys in their respective pseudorapidity distributions. The spectra at the two energies 
are nearly similar in the left wings. However, in the right wing corresponding to 0q < , the spectrum for the 
higher energy tends to broaden. 

 

  
Figure 2. Variation of qD  with q for the interactions of 28Si nuclei with CNO and AgBr targets at: (a) 4.5 A GeV/c and (b) 
14.5 A GeV/c. 
 

  

Figure 3. Variation of ( )qf α  with qα  for 28Si-Em interactions at: (a) 4.5 A GeV/c and (b) 14.5 A GeV/c. 
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For investigating whether ( )qf α  spectra depend on target mass, the spectra for the interactions of 28Si 
nuclei with CNO and AgBr targets are plotted in Figure 4 for both the energies. It is observed that for the 
interactions due to AgBr targets the spectra have larger widths in comparison to the spectra for the interactions 
due to lighter (CNO) targets. It may further be noted that the contribution to the broadening of the width of the 
spectra with increasing target mass comes mainly from the regions corresponding to 0q < . However, all the 
spectra are wide enough to indicate the occurrence of multifractality for the interactions considered. 

4.3. Lévy Stability Index 
The variation of ( )( )ln 1 qf α−  with ( )ln qB α−  for the interaction of 28Si nuclei with emulsion at 4.5 A and 
14.5 A GeV/c are presented in Figure 5. The solid lines in the figures represent linear fittings to the data. Si- 
milar plots for interactions with CNO and AgBr targets are represented in Figure 6 and Figure 7. The Lévy sta- 
bility indicies for the various types of interactions evaluated by linear fittings to ( )( )ln 1 qf α−  with ( )ln qB α−  
plots are given in Table 1. It is clearly evident from the Table that the Lévy stable index for all the interactions 
studied in the present work lies in the range [0, 2] in consistency with the Lévy stability theory. 
 

  

Figure 4. Variation of ( )qf α  with qα  for the interactions of 28Si nuclei with CNO and AgBr targets at: (a) 4.5 A GeV/c 

and (b) 14.5 A GeV/c. 
 

 

Figure 5. Variation of ( )( )ln 1 qf α−  with ( )ln qB α−  for 28Si-Em interactions at 4.5 A GeV/c and 14.5 A GeV/c. 
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Figure 6. Variation of ( )( )ln 1 qf α−  with ( )ln qB α−  for the interactions of 28Si 

nuclei with CNO and AgBr targets at 4.5 A GeV/c. 
 

 

Figure 7. Variation of ( )( )ln 1 qf α−  with ( )ln qB α−  for the interactions of 28Si 

nuclei with CNO and AgBr targets at 14.5 A GeV/c. 

5. Conclusion 
The multifractal Rényi dimensions for the interactions of 4.5 A and 14.5 A GeV/c 28Si nuclei with CNO and 
AgBr targets exhibit a behaviour which manifests the multifractal nature of the multiparticle final state in these 
interactions. The Rényi dimensions are found to obey the basic law of multifractality. Further, the Rényi dimen-
sions exhibit a dependence on the target mass; the values of Rényi dimensions are higher for heavier target mass. 
The multifractal spectrum is observed to be concave downwards with maximum corresponding to 0qα =  which 
supports the multifractality in the multiparticle production in the various interactions studied in the present work.  
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Table 1. Values of the Lévy stability index µ  for the collisions of 4.5 A GeV/c 28Si nuclei with emulsion, CNO and AgBr 

obtained from the fitting a straight line to ( )( )ln 1 qf α−  versus ( )ln qB α−  plots. 

Type of interaction Energy (GeV) Lévy index (µ) 

Si-Em 4.5 A 1.8036 ± 0.1144 

Si-Em 14.5 A 1.8001 ± 0.1137 

Si-CNO 4.5 A 1.8715 ± 0.0120 

Si-CNO 14.5 A 1.7791 ± 0.1097 

Si-AgBr 4.5 A 1.8239 ± 0.0608 

Si-AgBr 14.5 A 1.7828 ± 0.0896 

 
The Lévy stability indicies evaluated from the multifractal spectra for these interactions lie in the range [0, 2] 
which is in consistency with the Lévy stability theory. 
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