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Abstract 
We show that the model of discrete spaces that we have proposed in previous contributions gives 
a comprehensive and detailed interpretation of the properties of the standard model of particles. 
Moreover the model also suggests the possible existence of a non-standard family of particles. 

 
Keywords 
Standard Model of Particles, Chirality, Regge Trajectories, CKM Matrix 

 
 

1. Introduction 
According to the model of discrete space-time that we have put forward in preceding contributions, the universe 
as a whole could be considered as a sort of spin glass that is a set of randomly interacting Ising spins called cos-
mic bits. This model accounts for several fundamental properties of the physical world, such as the structure of 
space-time [1], the postulates of quantum theory [2], and the fundamental interactions (gravitation included) [3]. 
To be convinced that, the model provides a general description of natural phenomena, but something essential is 
still missing: it must explain the properties of matter itself that is it must provide an interpretation to the standard 
model of particles. Usual theories of natural phenomena appeal to the concept of mathematical points that are sys-
tems deprived of the possibility of housing such complex structures as elementary particles. The model of dis-
crete space-time offers this possibility because, in a discrete space, a physical point, called a world point, has a 
finite physical size. A discrete space-time model so allows an internal organization to develop inside world 
points, providing a way for the building of complex structures. This is the object of the present contribution. 

2. The Group S4 and the Organization of Elementary Particles 
2.1. Structure of Elementary Particles in Discrete Spaces 
According to the hypothesis that the universe is discrete, the elementary particles are structures built around 
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world points with a given symmetry. Let us recall that the cosmic bits of a world point are all connected to each 
other through ferromagnetic interactions [1]. Then space-time disappears inside a world point which therefore 
seems punctual from an experimental point of view. According to [3] the size l∗  of a world point would be of 
the order of 210.5 10 cml∗ −≅ × . 

Our approach suggests that a particle could be structured along a three levels organization 
1) A particle is built around a special world point (whose size is l∗ ), called its seed. The internal interactions 

matrix of the seed GP must transform according to gauge symmetries and the symmetry properties of the seed 
determine the symmetry of the whole particle. 

2) The seed modifies the polarization states of the neighbouring world points over a range lρ ∗ . This region 
of influence is called the core of the particle and the system made of a seed and its core constitutes a bare parti-
cle. 

3) Finally the bare particle is surrounded by a cloud of gauge particles whose nature and properties are deter-
mined by the symmetry of the seed according to the gauge symmetry mechanisms that have been discussed in 
[3]. The system made of a bare particle and its cloud of virtual particles constitutes a dressed particle. 

2.2. The Irreducible Representations of S4 
The permutation group S4 of four objects, a finite group, plays a prominent role in our approach as already 
stressed in [1]-[3]. Physics, indeed, must be invariant under any permutation of the four axes used to describe 
the internal states iφ  of world point i since no specific orientation of axes can be defined inside a world point. 
The permutation group S4 of four objects has 24 elements distributed into 5 classes. The table of characters of S4 
may be found in [1]. The internal interactions matrices GP of the seed must commute with any four dimensional 
representation of group S4. Therefore it must transform according to direct sums of irreducible representations of 
S4. There are two types of irreducible representations. On the one hand 1Γ  and 3Γ , that are insensitive to mir-
ror operations that is to an odd number of permutations. On the other 1

∗Γ  and 3
∗Γ  are sensitive to mirror opera-

tions. Finally 2Γ  does not take the mirror operations into account. We see below that the particles imply the 
representations 1Γ , 2Γ  and 3Γ  and the antiparticles the representations 1

∗Γ , 2 2
∗Γ ≡ Γ  and 3

∗Γ . The problem 
of finding four-dimensional matrices GP as direct sums of 1Γ , 2Γ  and 3Γ  representations has the following 
solutions. 

a) 4 = 1 + 3 
b) 4 = 2 + 2 
c) 4 = 1 + 1 + 2 
d) 4 = 1 + 1 + 1 + 1 
The matrices GB that transform along to solution a), that is 1 3BG ≅ Γ ⊕Γ , define the seeds of boson particles. 

The matrices GF that transform along to solution b), that is 2 2FG ≅ Γ ⊕Γ , define the seeds of fermion particles 
(see [2]). 

2.3. Recovering the Organization of the Standard Model of Particles 
2.3.1. Particles 
Super-symmetry theory (Susy) puts forward that fermions and bosons may be considered as two aspects of the 
very same objects. In a spirit close to that of Susy it is proposed here that the fundamental particles are objects 
that associate world points with different symmetries. A bare particle would, accordingly, be made of a pair of 
coupled world points, one undergoing a fermionic polarization and the other a bosonic polarization. The idea 
that an elementary particle could be formed of a couple of bosonic and fermionic sub-particles has also been 
suggested by Koide [4] and is implicit, through the ( ) ( )1 SU 2U ×  symmetry group, in the GSW theory of 
electroweak interactions [3]. 

The state of a particle is then represented in a 16-dimensional vector space that is obtained by the direct 
product of the two 4-dimensional spaces associated with the members of the pair that form the particle. The 
states must therefore transform as 

( ) ( )1 3 2 2Γ ⊕Γ ⊗ Γ ⊕Γ , 
that may be expanded along 

( ) ( ) ( ) ( )1 2 2 3 2 2Γ ⊗ Γ ⊕Γ ⊕ Γ ⊗ Γ ⊕Γ . 
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There are therefore four particles. The two particles associated with ( ) ( ) ( ) ( )1 2 2 1 2 1 2Γ ⊗ Γ ⊕Γ = Γ ⊗Γ ⊕ Γ ⊗Γ  
are called leptons. The two particles associated with ( ) ( ) ( ) ( )3 2 2 3 2 3 2Γ ⊗ Γ ⊕Γ = Γ ⊗Γ ⊕ Γ ⊗Γ  are called 
quarks. Since all these particles transform along 2Γ  they are all fermions. 

2.3.2. Antiparticles 
We now consider how antiparticles may be derived from the same formalism. The different types of particles 
have been determined by using the mirror insensitive representations 1Γ  2Γ  and 3Γ . The types of anti- parti-
cles are determined by using the mirror sensitive representations 1

∗Γ , 3 1 3
∗ ∗Γ = Γ ⊗Γ  and 2 1 2 2

∗ ∗Γ = Γ ⊗Γ = Γ . 
Since 1

∗Γ  and 3
∗Γ  are sensitive to mirror operations the state φ  associated with an anti-particle is obtained 

from the state φ  associated with a particle through a mirror transformation that is a sign change of one of its 
components. Nothing, however, determines which component has to be modified and all signs have to be 
changed at once that is 

1 1

2 2

3 3

4 4

1
1

1
1

C

ϕ ϕ
ϕ ϕ

φ φ
ϕ ϕ
ϕ ϕ

− −    
    − −    = = =
    − −
    
− −    

. 

C is the charge conjugation operator. 
Let us remember that the polarization φ  of a world point obeys a mean field equation [1] 

( )tanh bJφ φ= . 

J is the amplitude of binary interactions between the n cosmic bits of a world point and b is a parameter that 
materializes a cosmic disorder ( 1b−  is somehow similar to a cosmic temperature though completely different in 
nature). 

If φ  is a solution of this equation, φ−  is also a solution. 
The states of anti-particles then transform as 

( ) ( )1 3 2 2
∗ ∗Γ ⊕Γ ⊗ Γ ⊕Γ , 

that may be expanded along 

( ) ( ) ( ) ( )1 2 2 3 2 2
∗ ∗Γ ⊗ Γ ⊕Γ ⊕ Γ ⊗ Γ ⊕Γ . 

Antiparticles are therefore organized exactly as particles. They have exactly the same properties as the corre-
sponding particles, except for the sign of electric charges which is sensitive to charge conjugation. 

We have so far obtained a description of the organization of one family of elementary particles that exactly 
fits the standard model of particles. However there are three families of particles with identical properties except 
for their masses. The symmetry properties are the same for the three families and one must admit, accordingly, 
that the matrices GP are the same for the three families. However while the particles of the first family are stable 
the particles belonging to the other families are unstable. Therefore, the existence of these families cannot be 
looked for in some new type of symmetry similar to ( )SU 3  for example. An alternative interpretation is pro-
posed below. 

2.3.3. A Non-Standard Family of Particles 
According to solution (c): (4 = 1 + 1 + 2) the internal interactions matrix would transform according to 

1 1 2nsG ≈ Γ ⊕Γ ⊕Γ , where “ns” is for non-standard. 
The particles that possibly emerge from this representation have been ignored so far. We consider that nsG  

comes from a symmetry breaking 2 1 1Γ → Γ ⊕Γ . Then a family associated with the representation 
[ ] [ ]1 1 2 1 3Γ ⊕Γ ⊕Γ ⊗ Γ ⊕Γ  can be generated. This gives rise to a family comprised of six particles. We find four 
bosons: 
 ( ) ( )1 1 1 1Γ ⊗Γ ⊕ Γ ⊗Γ : two scalar bosons; 
 ( ) ( )1 3 1 3Γ ⊗Γ ⊕ Γ ⊗Γ : two vector bosons; 
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and two fermions: 
 ( )2 1Γ ⊗Γ : one lepton; 
 ( )2 3Γ ⊗Γ : one quark. 

It is possible that one of these particles corresponds to the particle recently observed at the Large Hadron Col- 
lider (LHC). To understand which particle is really at stake we must, however, gain much more information re- 
garding the properties of the found particle. 

The two scalar bosons, if they do exist, behave as Higgs scalar particles and could be involved in the same 
sorts of reactions. If a Higgs boson is defined as a scalar boson the proposed particles are Higgs bosons. If a 
Higgs boson is defined as a particle that gives masses to otherwise zero mass particles the two particles are not 
Higgs bosons because, as we will see in the present approach, no Higgs mechanism is necessary to give masses 
to particles. The lepton could give rise to a new type of neutrino. There are experimental evidences for the exis- 
tence of a new type of neutrino, called a sterile neutrino, whose (still controversial) existence has possibly been 
revealed in LSND [5] or Mini-Boone experiments [6]. 

Finally we can ignore the representation 1 1 1 1Γ ⊕Γ ⊕Γ ⊕Γ  which seems not to have any physical conse- 
quences because the so generated space has four time-like and no space-like dimensions. 

3. On Particles Masses 
3.1. General Considerations 
Let us recall that the state Pψ  of a physical system containing a particle P obeys the following eigenvalue 
equation 

{ }( ) PPG ψ κ ψ∆⊗ = , 

The mass Pm  of P is given by ( )1 21
P Pm

c
κ= . 

This way of introducing particle masses seems to go against the usual conclusion that all particles must have 
zero masses due to the dichotomy of the universe between a right ( )R  and a left ( )L  universe. The well 
known argument goes as follows: 

The mass term in the Lagrangian of a fermion field ψ  writes 

( )( )T 1C C C
R L R Lm m mψ ψ ψ γ ψ ψ ψ ψ ψ= = + + . 

We consider the right handed term C
R Rψ ψ . We define a projection operator ( )51 2γ+  with 5 1 2 3 4iγ γ γ γ γ=  

where ( )1 2 3 4, , ,γ γ γ γ  are the four Dirac matrices. The projection operator transforms a general state ψ  into a 
right handed state Rψ  

( )51

2R

γ
ψ ψ

+
= . 

Since 1 5 5 1γ γ γ γ= −  one also has 

( )51

2
C C
R R

γ
ψ ψ

−
= , 

and thus 

( )( ) ( )( )25 5 51 11 1 1 0
4 4

C C C
R Rψ ψ ψ γ γ ψ ψ γ ψ= − + = − = . 

Likewise 0C
L Lψ ψ = . All other terms, such as C

R Lψ ψ , mix the chiralities and are therefore forbidden. Con-
sequently there are no more mass terms left in the Lagrangian. 

If there is no universe dichotomy this derivation no longer holds and the particles may have non zero-masses. 
The universe dichotomy is introduced to account for the experimental observation that the neutrinos are left 

handed. We show in Section 4.1 that this property of neutrinos is, in reality, a consequence of the model and no 



P. Peretto 
 

 
815 

Higgs mechanism is needed to give a mass to particles. It must be stressed, however, that a Higgs scalar field, 
identified with the world point polarization state iφ , is still necessary simply to give an existence to particles. 

3.2. Seeds Masses 
The states seed

Pφ  of an isolated seed, associated with a particle P, are obtained by minimizing the Lagrangian 

( )seed seed seed, seedT
P P P P PGφ φ φΛ = , 

under the constraint seed, seed 1T
P Pφ φ = . The states of the seed thus satisfy the following eigenvalue equation 

seed seed seed
P P P PG φ κ φ= . 

The mass seed
Pm  of the seed is given by 

( )1 2seed seed
P Pm

c
κ=



. 

3.2.1. Bosonic Seeds 
Since the internal interaction matrix GB of bosonic seeds must transform according to the direct sum ( )1 3Γ ⊕Γ , 
its diagonal form writes 

1

2

2

2

B

B
B

B

B

G

κ
κ

κ
κ

 
 
 =
 
 
 

. 

The analytical form of matrix GB may be found from the dynamics of boson fields that is from the Klein- 
Gordon equation 

( ) ( )
22

2 2

1 , ,mcr t r t
c t ν νψ ψ

 ∂  − + ∆ + =   ∂    

, 

by isolating a world point i from its neighbourhood. This is achieved by replacing the differential operators 2
µ∂  

by Dirac functions ( )2 xµ µδ∂ →  with ( ) 1xµδ =  if 0xµ =  and ( ) 0xµδ =  otherwise. GB is then given by 
21

1
1

1

B

c

G

 −
 
 =  
  
 

.                                  (1) 

GB, therefore, is proportional to the metric matrix of vacuum vacuumG . The eigenvalues of GB are 2
1 1B cκ = − , a 

non degenerate time-like eigenvalue and 2 1Bκ = , a three fold degenerate space-like eigenvalue. 

3.2.2. Fermionic Seeds 
Since the internal interaction matrix GF of fermionic seeds must transform according to the direct sum 
( )2 2Γ ⊕Γ , its diagonal form writes 

1

1

2

2

F

F
F

F

F

G

κ
κ

κ
κ

 
 
 =
 
 
 

. 

The analytical form of matrix GF may be found from the equation of fermion fields that is from the Dirac 
equation 
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i 0mcµ
µ

µ
γ ψ

 
∂ − = 

 
∑ 

, 

by isolating a world point i from its neighbourhood. Then 
1

2 3 4
FG

c
γ γ γ γ
 

= + + + 
 

.                                (2) 

The Dirac matrices µγ  are expressed in a basis (the Dirac representation) where the indices µ  of matrices 
µγ  are identified with the Lorentz indices µ  of space-time itself. The matrix 1γ  

1

1
1

1
1

γ

 
 
 =
 −
 

− 

 

is introduced so as to make hermitian the operator FΛ . Then 

1 1 2 3 41
FG

c
γ γ γ γ γ = + + + 
 

                               (3) 

and the matrix GF finally writes 

1 0 1 1 i
0 1 1 i 1
1 1 i 1 0

1 i 1 0 1

F

c
c

G
c

c

+ 
 − − =
 +
 
− − 

. 

As expected GF has two real two-fold degenerate eigenvalues ( )1 1 3F cκ = −  and ( )2 1 3F cκ = + . 
The lepton associated with the eigenvalue ( )2 1 3F cκ = +  is called the neutrino, that associated with 

( )1 1 3F cκ = −  is called the electron. The quark associated with eigenvalue ( )2 1 3F cκ = +  is called the 
down quark d and, finally, the quark associated with eigenvalue ( )1 1 3F cκ = −  is called the up quark u. The 
representation 3Γ  introduces a three-fold degeneracy, associated with colour quantum number, for the states of 
quarks. 

3.3. Masses of Bare Particles 
By using a first order perturbation expansion we find that the eigenvalue b

Pκ  of a bare particle associated with 
a seed P is simply proportional to the eigenvalue (here and in the following sections s or seed will be used for 
seed, d or dressed for dressed, bare for bare and finally vb or virtual bosons for virtual bosons). 

Proof: 
A bare particle, we have seen in Section 2.1, is comprised of a seed and its core. Let i be the label of world 

points belonging to the core. The vacuum states vacuum
iφ  of world points belonging to the core are modified by 

the state seed
Pφ  of the seed. To first order they become vacuum vacuum seed

i i i Pφ φ ε φ⇒ + . Similarly the states modifica-
tions in the core induce a reorganization of the cosmic bits of world points i, and, therefore of the internal inter-
action matrices. Gi becomes vacuum vacuum

i i i PG G Gδ⇒ + . 
The eigenvalue bare

Pκ  of the bare particle then writes 

( ) ( )( )Tbare vacuum vacuum vacuum seedseed
P i i P i i P i i P

i
G Gκ φ ε φ δ φ ε φ= + + +∑ . 

There is no orientation correlations between vacuum
iφ  and seed

Pφ . Therefore, the cross terms vanish and we ob-
tain 

bare seed,T seedT 2 seed seed
P i P i P i P i i P P

i i
G Kκ ε φ δ ε φ ε δ κ κ= = =∑ ∑ . 
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3.4. Analytical Expressions for Bare Particles Masses 
The Lagrangian operator of a particle, that is of a coupled pair of world points, one of bosonic type, the other of 
fermionic type, must keep the symmetry properties of the two components taken separately so as to preserve the 
organization of the particles of the Standard Model. This compels the Lagrangian to be a 16-dimensional opera-
tor given by 

( ) ( )4 41 1P B F B FG G G GζΛ = ⊗ + ⊗ + ⊗                            (4) 
( )4I  is the four dimensional unit matrix. The coupling parameter ζ  is determined by the organization of inte-

ractions between the two world points that constitute a particle, more precisely by the relative numbers n+  and 
n−  of ferromagnetic and antiferromagnetic interactions that link the two points. For example ζ =
( ) ( )n n n n+ − + −− + . We have no indication as regards an evaluation of the coupling parameter ζ  except that 
the values 0ζ =  and 1ζ =  are forbidden, 0ζ =  because the two world points that form the particle would 
not be coupled and 1ζ =  because the coupling would be so strong that the two world points would be in the 
same state. A value 0.5ζ =  could be a reasonable guess but we will see that the results are, in actual fact, 
weakly ζ  dependent. 

The Lagrangian (4) has four eigenvalues. The first is associated with the bare down quark 
bare
down 2 2 2 2B F B Fκ κ κ ζκ κ= + +                                 (5) 

The second is associated with the bare up quark 
bare
up 2 1 2 1B F B Fκ κ κ ζκ κ= + +                                  (6) 

That is 

bare
down

1 11 3 3
c c

κ ζ   = + + + +   
   

                              (7) 

and 

bare
up

1 11 3 3
c c

κ ζ   = + − + −   
   

                              (8) 

Since the masses of bare particles are proportional to the masses of their seeds one has 

( )

1 2

1 2bare bare bare bare
up down up down

1 11 3 3

1 11 3 3

c cm m

c c

ζ
κ κ

ζ

    + − + −        = =
    + + + +        

                   (9) 

For leptons, however, no calculation of bare particles has been carried out. It is then necessary to add the ef-
fects of virtual bosons. Then to calculate their dressed masses one must write 

dressed
1 1 1 1

vb
B F B Fν νκ κ κ ζκ κ κ= + + +                             (10) 

for the neutrino ν  and 
dressed

1 2 1 2
vb

el B F B F elκ κ κ ζκ κ κ= + + +                             (11) 

for the electron. Explicitly one has 

dressed
2 2

1 1 1 13 3 vb

c cc cν νκ ζ κ   = − + + − + +   
   

                       (12) 

and 

dressed
2 2

1 1 1 13 3 vb
el elc cc c

κ ζ κ   = − + − − − +   
   

.                       (13) 



P. Peretto 
 

 
818 

3.5. The Zitterbewegung 
The definition of the bare mass bare

Pm  implies that bare 0Pκ > . If bare 0Pκ <  one has a problem since the mass of 
the bare particle becomes imaginary. If one wants to keep the minimization principle, and to give nevertheless a 
physical meaning to negative eigenvalues, one is forced to interpret the negative eigenvalues as zero mass (or 
almost zero mass) particles. To make this point more precise we consider the set of states ωφ  defined by 

( ) 0P ωφΛ = . This set forms a surface (a manifold) ωΣ  in the internal space of the world points that generates 
the bare particle P. During the minimization process the state Pφ  evolves so as to minimize ( )P PφΛ  under 
the constraint T 1P Pφ φ = . The trajectory of Pφ  possibly crosses ωΣ  at a point P

ωφ . Let us then consider a state 
P P Pdωφ φ φ= + . One has 

( ) ( )
P P P PP P P P P P P Pd dω ω

ω
φ φ φ φ

φ φ φ φ
= =

Λ ≅ Λ +∇Λ = ∇Λ . 

Pφ  has a physical meaning if 2 0m >  that is if 0
P PP Pdωφ φ

φ
=

∇Λ > . Crossing ωΣ , however, induces a sign 
change of 

P PP Pdωφ φ
φ

=
∇Λ . If Pφ  has a physical meaning in one side of ωΣ  it loses this meaning on the other 

side. To a trajectory of state Pφ , however, there corresponds a mirror trajectory of the anti-state Pφ . On this 
trajectory the sign of 

P PP ωφ φ=
∇Λ  is changed. Therefore while crossing ωΣ , a state Pφ , attracted by ωΣ , keeps 

a physical meaning if it transforms into its anti-state Pφ  which is also attracted by ωΣ . This mechanism re-
minds the Zitterbewegung process, an oscillation between a particle and its antiparticle. The trajectory of Pφ  
therefore stops on, or remains close to, ωΣ . Since ( ) 0P P

ωφΛ ≅  the state P P
ωφ φ=  corresponds to zero, or al-

most zero mass particles.  
The mass of a dressed particle dressed

Pκ  is given by dressed bare vb
P P Pκ κ κ= + . If bare 0Pκ <  while dressed

Pκ  is posi-
tive, the mass dressed

Pm  of the dressed particle keeps a physical meaning which, in the framework of the present 
model, seems to be the case for the electron (but not for the neutrino). Otherwise the electron would have an 
imaginary mass which is possibly the reason that makes impossible a calculation of the electron bare mass. 

3.6. Numerical Calculations and Comparison with Experimental Observations 
There is no direct measurement of quark bare masses because it is not possible to observe separate quarks due to 
their confinement properties. The value of separate bare quark masses can only be obtained through various 
theoretical calculations that usually lead to different numerical values. The results for quarks bare masses are 
rather scattered. For example it has been proposed [7] that 

bare
up3 MeV 8 MeVm< <  and bare

down5 MeV 10 MeVm< <  

Calculations, carried out on lattices by C. Davies et al. [8] (see also [9]) give values for the bare masses of 
light quarks that, the authors claim, are much more accurate than the previously published data. They find 

bare
up 2.01 0.14MeVm = ±  and bare

down 4.79 0.16MeVm = ±  

which gives bare bare
up down 0.420 0.04m m = ± . 

The ratio between bare quark masses is better determined than their explicit values and this is the only value 
that one can calculate in the present theory without appealing to free parameters. There are two parameters in eq. 
(9): c and ζ . The constant c, the dimensionless speed of light, may be determined through considerations relat-
ing to electroweak interactions given in contribution [3]. Explicitly ( )tg Wc θ=  where Wθ  is the Weinberg angle. 
Then ( )2 21 1 sin 1Wc θ = −  . With the experimental value ( )2sin 0.231Wθ =  this yields 1 1.824c = . From 
the above formula (Equation (9)) one has 

1 2

1 2
bare bare
up down

1 11 3 3
1.093 0.093

1 1 4.557 3.5571 3 3

c cm m

c c

ζ
ζ
ζζ

    + − + −      +    = =  +      + + + +        

.             (14) 

With the value 0.5ζ =  (that is 3n n+ − = ) one finds up down 0.424b bm m = , that fits the Davies calculation 
bare bare
up down 0.420m m =  within a 1% error. 
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The range of values given by Davies calculation is bare bare
up down0.38 0.46m m< <  and corresponds to the range 

0.8 0.2.ζ> >  
The average value bare bare

up down 0.420m m =  of Davies is obtained for 0.535ζ =  close to the proposed value 
0.5ζ = . 

With the values adopted for c and ζ  one has dressed 5.690 vb
ν νκ κ= − +  and dressed 3.442 vb

el elκ κ= − + . Note that 
vb
elκ  must be positive and large enough for dressed

elκ  to be positive. Since vb vb
el νκ κ>  (the neutrino is neutral) 

one has dressed 5.690 0vb
ν νκ κ= − + < .The mass of the neutrino therefore vanishes or, at most, remains very close 

to zero. In our interpretation the state of a neutrino associated with negative eigenvalues oscillates from one side 
of the manifold ωΣ  to the other side and from the particle to its antiparticle. The mass of a neutrino is the mass 
it has in the positive side of ωΣ . Since the particle must never go far away from ωΣ  its mass is very small. 

4. Other Considerations 
4.1. The Neutrino Left Handed Chirality 
The discovery (by Wu) that the parity symmetry is completely broken by weak interactions and that the elec-
tronic neutrino is left handed compelled the physicists to assume that the universe is, in actual fact, made of two 
different sorts of universes: a left-handed universe L and a right-handed universe R. This hypothesis, we have 
seen, leads to the conclusion that all fermions are zero-mass particles. The eigenvalue associated with neutrinos 
is negative dressed 0νκ <  and the state νφ  of a neutrino must stay on or remain in the close vicinity of the mani-
fold ωΣ , a surface on which the neutrino state can move freely until the Lagrangian ( ) T

FGν ν νφ φ φΛ =  is mini-
mized, that is until the neutrino state νφ  is parallel to a relevant eigenvector of GF. GF can be written as 

( ) ( )4 4 01 1
0

F
F F

F

G I G I
c c

σ
σ
 

= + = +  
 

 

with 

1 1 i
1 i 1Fσ

+ 
=  − − 

 

( )2i 1= − . The eigenstates of GF and those of FG  are identical. FG  has two eigenvalues. The eigenvalue 
3  is associated with the neutrino and the eigenvalue 3−  is associated with the electron. Let us write the 

eigenstate of a neutrino as 

1

2 1

3 2

4

ν

ϕ
ϕ φ

φ
ϕ φ
ϕ

 
    = =      
 

. 

For νφ  to be an eigenstate of FG  it is necessary for 1φ  and 2φ  to be eigenstates of Fσ  with the same 
eigenvalue 3+ , (corresponding to neutrinos), and 1φ  and 2φ  must be identical to one another within a phase 
factor ( )exp iη  whence 

( )
1

1exp iν

φ
φ

η φ
 

=  
 

. 

The Lagrangian of a neutrino then writes 

( ) ( )( )
( )

( ) ( )

2
1T T T

1 1 2
1

0 3
,exp i

exp i3 0
F

I
G

I
ν ν ν

φ
φ φ φ φ η φ

η φ

   
 Λ = = −        

 

that is 

( ) ( ) ( )( ) ( )3 exp i exp i 2 3cosνφ η η ηΛ = + − =  
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( )νφΛ  is minimum for πη = : ( ) 2 3νφΛ = −  and the eigenstate νφ  of a neutrino writes 

1

2

1

2

ν

ϕ
ϕ

φ
ϕ
ϕ

 
 
 =
 −
 
− 

 

νφ  is an eigenvector of matrix 5γ  with eigenvalue −1 since 

1 1 1

2 2 25

1 1 1

2 2 2

1
1

1
1

ν ν

ϕ ϕ ϕ
ϕ ϕ ϕ

γ φ φ
ϕ ϕ ϕ
ϕ ϕ ϕ

−      
       −      = = = − = −
       − −
      
− −      

 

The eigenvalue associated with νφ , an eigenvector of 5γ , is negative and the neutrino is, therefore, 
left-handed. In our approach the neutrino’s left handed chirality is a consequence of the general properties of the 
universe which does not need to be shared into left handed, L, and right handed, R, universes. The same argu- 
ment does not hold for the electronic state because dressed 0eκ >  and the electron state trajectory does not cross 
the manifold ωΣ . Then the electron state is an eigenstate corresponding to the eigenvalue dressed

eκ  which has no 
defined chirality. 

The particles masses can be computed without appealing to a Higgs mechanism as we have seen. We have al-
ready said that the Higgs field, identified with the polarization amplitude iϕ  ( )i iϕ φ=  of world point i, is still 
necessary, not to give a mass to particles, but simply to give them an existence. The Higgs field is also necessary 
to make sure that the photon mass is strictly zero as found by the GWS approach of electroweak interactions [3]. 

The model can however yield a value for the mass Hm  of Higgs particles if any. The polarization ϕ  mini- 
mizes the Landau expression (see [1]) 

( ) 2 4F ϕ λϕ µϕ= + , 

where 

( )1
,    

2 12
n bJ n

b b
λ µ

−
= = . 

The minimum 0ϕ  of F is given by 2
0 2ϕ λ µ= − . We expand F to second order around this minimum  

( )22
04 2F λ µ λ ϕ ϕ≅ − − − , 

that is 

( ) ( )2 1
2H

n bJ
m c

b
λ

−
= − = . 

In other respect one has ( )1 22l n b∗=  and therefore 

( )( )1 2
2 1H

cm bJ
l∗

= −


. 

We now give to c its physical value. With 311.6 10 sl c t∗ ∗ −= = × , 4.33bJ =  and 166.6 10 eV s−= × ⋅  one 
finds 

4 21.21 10  TeV cHm ≅ × , 

a value that is far out of reach even for the most modern colliders. 
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4.2. Regge Trajectories 
The model presented here also provides a very simple explanation of Regge trajectories [10]. We have seen that 
the eigenvalue Pκ  of a particle is related to the mass Pm  of the particle by the relation: 

( ) 2bare 2
P Pm Kκ = . 

Let us gather fn  fermions. The stability of the cluster is generally weak and the cluster, called a resonance 
( )R , decays rapidly. The spins of the individual fermions adds up to a maximum spin 2fj n=  . Since the 
links between the individual fermions are weak their eigenvalues Pκ  approximately add up and 

2 2 2 2
R R f P f RM K n n m Kκ κ= = =  

that is 

( ) ( )2 2
R f PM n m≅ . 

Finally 

( )( )( )2 22 P Rj m M≅  . 

This linear dependence of the spin j along the square of the mass RM  is called a Regge trajectory. 

4.3. The CPT Theorem 
The parity symmetry P is broken by weak interactions as we have seen. On can wonder whether the time inver-
sion symmetry T, or the charge conjugation symmetry C can also be broken. We do not know the answer but a 
very general property, the CPT theorem, a product of these three invariance shows that the product CPT must be 
always verified. 

The vector 

1

2

3

4

ϕ
ϕ

φ
ϕ
ϕ

 
 
 =
 
 
 

, 

represents the state of a particle. The state φ  of the associated anti-particle is obtained from φ  through a 
mirror transformation that is a sign change of one of its components but, as discussed above, all signs have to be 
simultaneously changed. Whence 

1 1

2 2

3 3

4 4

1
1

1
1

C

ϕ ϕ
ϕ ϕ

φ φ
ϕ ϕ
ϕ ϕ

− −    
    − −    = = =
    − −
    
− −    

, 

C is the charge conjugation operator. 
In other respects the time reversal operator T changes the sign of the time component 1ϕ  of φ  

that is 

1 1

2 2

3 3

4 4

1
1

,    
1

1

T T

ϕ ϕ
ϕ ϕ
ϕ ϕ
ϕ ϕ

− −     
     
     = =
     
     

    

. 

Finally the operation of reversing the direction of one axis, say the z  direction, amounts to a reflection of 
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space (a mirror symmetry operation) in any number of space dimensions, and in three space dimensions it is 
equivalent to reflecting all space coordinates, because one can add an additional rotation of 180 degrees in the 
x-y plane to complete the transformation. Let P be the operator that reflects all space coordinates. P amounts to 
changing the signs of the three spatial components 2ϕ , 3ϕ  and 4ϕ . 

1 1

2 2

3 3

4 4

P

ϕ ϕ
ϕ ϕ
ϕ ϕ
ϕ ϕ

   
   −   =
   −
   

−   

, 

that is 

1
1

1
1

P

 
 − =
 −
 

− 

. 

We see that 

( )4

1
1

CPT 1
1

1

 
 
 = =
 
 
 

. 

a simple and straightforward derivation of the CPT theorem. 

4.4. On Electric Charges of Fermions 
The electric charge Qf of a given fermion, lepton or quark, is derived from the hypercharge Yf through the for-
mula 

( )1 2 2f f fQ Y σ= + , 

where fσ  is the isospin of the particle. 
The three generators of ( )SU 2  are the three Pauli matrices 

1 2 3

0 1 0 i 1 0
,    ,    

1 0 i 0 0 1
σ σ σ

     
= = =     − −     

. 

The interaction Lagrangian between leptons and their gauge field writes [3] 

T

1, ,3
A Aµ

ψ α α
µ α
ψ σ ψ∗

−
=

 
Λ =  

 
∑ ∑



. 

The quantities Aµ
α  are gauge fields. To make this expression more symmetric, the 2-dimensional identity 

matrix 

0

1 0
0 1

σ
 

=  
 

 

is added (and substracted) to the list of Pauli matrices (as in GWS theory) 

T
0 0

1, ,3
A A Aµ µ

ψ α α
µ α
ψ σ σ ψ∗

−
=

  
Λ = −  

  
∑ ∑



. 
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The amplitude of the hypercharge leptonY  is defined by the coefficient of the generator of group U(1) namely 
the coefficient of the unit matrix 0σ  and, therefore, lepton 1Y = . One chooses leptons 1Y = − . The isospin of the 
electron is 1 2elσ = − . Therefore its electric charge is 1elQ = − (that is elQ e= − ). The isospin of the neutrino 
is 1 2νσ = + . Therefore its electric charge is 0Qν = , that is the neutrino is neutral. 

Let us now turn towards the electric charges of quarks. The eight generators of SU(3) are the eight Gell-Mann 
matrices 

1 2 3

0 1 0 0 0 1 0 0 0
1 0 0 ,    0 0 0 ,    0 0 1
0 0 0 1 0 0 0 1 0

τ τ τ
     
     = = =     
     
     

 

4 5 6

0 i 0 0 0 i 0 0 0
i 0 0 ,    0 0 0 ,    0 0 i

0 0 0 i 0 0 0 i 0
τ τ τ

     
     = − = =     
     − −     

 

7 8

1 0 0 1 0 0
0 1 0 ,    0 1 0
0 0 0 0 0 2

τ τ
   
   = − =   
   −   

. 

To make the expression of the Lagrangian more symmetric the 3-dimensional identity matrix 

0

1 0 0
0 1 0
0 0 1

τ
 
 =  
 
 

 

is added (and substracted) to the list of Gell-Mann matrices  

T
0 0

0, ,8
A B Bµ µ

ψ α α
µ α
ψ τ τ ψ∗

−
=

  
Λ = −  

  
∑ ∑



. 

In order to compare the electric charges of leptons and quarks it is necessary to establish an endomorphism 
between the set of the eight Gell-Mann matrices and the set of three Pauli matrices. This endomorphism is given 
by 

1 2 3 1

4 5 6 2

0 7 8 3

; ;
; ;
; ;

τ τ τ σ
τ τ τ σ
τ τ τ σ

→
→
→

 

in the main term and 0 0τ σ→  in the last term whence 

( )0 0
1, ,3

T 3 3A B Bµ µ
ψ α α

µ α
ψ σ σ ψ−

=

∗   
Λ = −  

  
∑ ∑



. 

One observes that quark 1 3Y = . One chooses quark 1 3Y = . The isospin of the up quark is up 1 2σ = + . 
Therefore the electric charge of the up quark is 

up 2 3Q =  (that is up 2 3Q e= ). 

The isospin of the down quark is down 1 2σ = − . Therefore its electric charge is 

down 1 3Q = −  (that is down 1 3Q e= − ). 

4.5. Three Families of Particles 
As already argued, the symmetry properties of bare particles are determined by the matrix PG . The particles are 
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created in high energy collisions experiments. In this type of experiments much energy is put down inside the 
core of a world point to such an amount that the value of cosmic temperature 1b−  inside the core could be se-
verely modified and, thereby, could modify its geometrical properties. We propose to look for the origin of fam-
ilies of fermions in these cosmic temperature perturbations. 

We have seen, in [1], that the dimensionality d of space-time is given by ( )Intd Jb= , where J is the binary 
interaction between the cosmic bits and b is a measure of cosmic bits disorder that is of cosmic temperature. The 
spatial dimension is 1Sd d= − . A decrease of the cosmic temperature 1b−  results in an increase of the dimen-
sionality d. When 1b−  decreases, the dimensionality of the core of the point of collision undergoes a series of 
changes. 

1) 1 0bJ> > : 0d = . The core of a world point is very “hot” and dimensionless. 
2) 2 1bJ> > : 1d = . The core has one time dimension and no space dimensions. 
3) 3 2bJ> > : 2d = . The core has one space dimension and one time dimension. 
4) 4 3bJ> > : 3d = . The core has two space dimensions and one time dimension. 
5) 5 4bJ> > : 4d = . This is the case for the ordinary space-time. The core has then three space dimensions 

and one time dimension. 
The three domains (3, 4 and 5) of cosmic temperatures would correspond to the three families of particles. 

The domain (5) ( )3Sd =  would be the domain of the electron family, the domain (4) ( )2Sd =  that of the 
muon family and the domain (3) ( )1Sd =  that of the tau family. There is no room for any other family. There 
are three families of fermions because there are three space dimensions in our space-time. 

4.6. On the CKM Matrix 
The idea that the three-fold multiplicity of families of particles may be explained by a dimensional re-organiza- 
tion of space-time in the core of a particle is supported by the following analysis of the CKM (Cabbibo, Ko-
bayashi and Maskawa) matrix. 

The CKM matrix V describes the amplitudes of transition probabilities between the set of three quarks with 
isospin −1/2, namely u, c and t, and the set of three quarks d, s and b, with isospin +1/2 through weak interaction. 
The CKM matrix V writes 

ud us ub

cd cs cb

td ts tb

V V V
V V V V

V V V

 
 =  
 
 

. 

The experimental values of the elements of the CKM matrix are given below in Equation (15). 
Here we strive to find the CKM matrix by using a very simple geometrical argument. The probability 

2
W Vαβ αβ=  of a transition of quark α  into quark β  is assumed to be proportional to the overlap between 
quark α  and quark β , that is by the relative number of world points that are common to α  and β . 

The perturbation ( )
Sd rγ  in the vicinity of a particle seed that is in the core, in a d-dimensional space be-

haves as 

( ) ( )2 S

S

d

d r r lγ ρ
−∗≅  

with 1Sd d= − . lρ ∗ , the dimension of bare particles, that is the size of the core, is a standard of length. Let 
( )rg d  be the range of a d-dimensional bare particle. This size is the distance where ( )( ) 1.

Sd r rg dγ = =  
For 3-dimensional quarks (u and d) one has ( )3 r l rγ ρ ∗≅ . Then ( )1 3l rgρ ∗=  and therefore ( )3rg lρ ∗= . 

The number ( )3Wn of world points gathered to build a 3-dimensional bare particle is 

( ) ( ) ( )3 3 33 4π 3 4π 3 .Wn l lρ ρ∗ ∗= =  

For 2-dimensional quarks (s and c) one has ( ) ( )2 Logr r lγ ρ ∗≅ . Then 

( ) ( )( )1 Log Log 2e rg lρ ∗= =  

and, therefore, ( )2rg e lρ ∗= . The number ( )2Wn  of world points in a 2-dimensional bare particle is 
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( ) ( ) ( )2 2 2 22 4π 4πWn e l l eρ ρ∗ ∗= = . 

Finally for 1-dimensional quarks (t and b) one has ( )1 r r lγ ρ ∗≅ . Then ( )1 1rg lρ ∗=  and, therefore, 
( )1rg lρ ∗= . The number ( )1Wn  of world points gathered to build a 1-dimensional bare particle is 

(1) 2 2Wn l lρ ρ∗ ∗= = . 

According to our hypothesis, the probability 
2

W Vαβ αβ=  of transition between particle α  and particle β  
is 

( )( ) ( )( )W WW n d n dαβ β α= . 

That is 

( ) ( ) ( )( ) ( )3 3 223 1 4 3 2 π
3W Wn n l lρ ρ ρ∗ ∗= =  

( ) ( ) ( )( ) ( )3 32 2
2

13 2 4π 3 4π
3W Wn n l e l
e

ρ ρ ρ∗ ∗= =  

and 

( ) ( ) ( ) ( )3 32 2 22 1 4π 2 2πW Wn n e l l eρ ρ ρ∗ ∗= = . 

The matrix W then writes 

( )

2

2

2

2

2 2

3 11 3
2π

13 1
2 π

3 1 1 1
2π 2 π

e

eW
e

e

ρ ρ

ρ
ρ ρ

ρ ρ

 
 
 
 
 =
 
 
 
 
 

. 

Since one must have 1Wαβ
β

=∑  the probabilities are normalized 

W W Wαβ αβ αγ
γ

→ ∑ . 

Finally the transition probability amplitude is given by ( )1 2
V Wαβ αβ= . To find the range parameter ρ  we 

use an optimal mean square deviation procedure. The quantity to be minimized is  

( )
( )

2exp

2.
1 2

1, ,3; 1, ,3
1

V

W
αβ

α β αβ

χ ρ
ρ= =

 
 = −
 
 

∑
 

. 

One finds 410ρ = . Then the computed CKM matrix writes: 

0.974 0.226 0.002
0.226 0.974 0.007
0.002 0.007 0.999

V
 
 =  
 
 

, 

to be compared with the experimental matrix [10] 

exp
0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

V
 
 =  
 
 

.                           (15) 
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The agreement is not that satisfactory, especially for the transitions between the quarks of muon family and 
those of tau family. This is not surprising given the crudeness of the calculations. One may consider, however, 
that the general trend is in the right direction and that the approach brings a valuable support to the granular 
structure of space-time and to the thermodynamic interpretation of the nature of fermions families. With the 
value 410ρ ≅  the size of a bare particle is 

21 19410 0.52 10 cm 2.1 10 cmbl lρ ∗ − −= × = × × = × , 

perhaps not completely out of the reach of realizable colliders. 

5. Conclusions 
The details of the organization of particles along the Standard model, their spins, charges and masses have been 
recovered in the framework of the discrete spaces model that we put forward. The neutrino chirality has been 
explained without appealing to a dichotomy between left and right universes. The introduction of this dichotomy 
is, in our opinion, a price too high to pay. 

Our approach of physical phenomena implies a number of consequences: 
1) The concept of infinity does not belong to the realm of physics. Infinity would only be a creation of ma-

thematicians. We know that the observable universe is finite and therefore the infinitely large cannot be ob-
served. We assume that, likewise, the infinitely small cannot be observed either.  

2) The set of experimental results accumulated so far is enough to build a comprehensive theory of natural 
phenomena. 

3) Many physicists believe that we cannot understand the laws of nature without appealing to complicated 
mathematics. Some physicists even believe that the necessary mathematics must be so complicated that they are 
outside the reach of a human brain. We do not share this prejudice. Notions of linear algebra and elements of 
group theory seem to be enough. 

Finally let us list the main notions that have been introduced and that could be open to experimental observa-
tions. 

a) First of all, we have introduced a metric limit l∗  (a cut-off) where both relativity and quantum mechanics 
loose their meanings. This solves the apparent incompatibility between these two theories. Exploring the metric 
limit implies energies of the order of 104 TeV outside the reach of currently available colliders. The size lρ ∗  of 
bare particles, however, could correspond to sizes of the order of 102 TeV that is of the order of 2010 cm− . Very 
large linear colliders, using the CLIC technology for example, could perhaps explore that range of energy. 

b) We have defined a so-called cosmic noise, a sort of temperature that describes the disorder of the most 
elementary physical systems (the cosmic bits) at a Planck scale. The cosmic noise, in our model, plays a central 
role in the organization and understanding of all natural phenomena. This noise could possibly be observed 
through phenomena relating to dark matter [3] or, perhaps, to the properties of quasars. The maps of dark matter 
would be, in reality, maps of cosmic noise.  

c) The model has no need of a dichotomy of the universe between a right and a left universe. The left hand-
edness character of a neutrino is a consequence of the present theory and no Higgs mechanism is necessary to 
give a mass to particles. The mass of the Higgs particle, if any, would be of the order of 104 TeV. 

d) The model opens the possibility to the existence of a non-standard family of particles whose main proper-
ties are described in Section 5. 

Finally we, obviously, do not claim that the model of discrete spaces could be a sort of Grand Unified Theory 
(GUT), but we simply hope that some significant steps have been made towards the solution of the sixth Hil-
bert’s problem [11] [12], which is the expression of axioms of physics. We could also say that, since it gives a 
physical interpretation to so many natural phenomena, the model of discrete spaces that we put forward probably 
contains some elements of reality. 
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