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Abstract 
The pairon field operator ( ),Ψ r t  evolves, following Heisenberg’s equation of motion. If the Ha-

miltonian H contains a condensation energy ( )0 0<α  and a repulsive point-like interparticle in-

teraction ( )0 1 2−r rβ δ , ( )0 0>β , the evolution equation for Ψ  is non-linear, from which we derive 

the Ginzburg-Landau (GL) equation: ( ) ( ) ( )2
0 0 0Ψ + Ψ Ψ =r r rσ σ σα β  for the GL wave function 

( )Ψ ≡r r uσ σ , †≡n uu  where σ  denotes the state of the condensed Cooper pairs (pairons), 

and n the pairon density operator (u and †u  are kind of square root density operators). The GL 
equation with ( )0 = − g Tα ε  holds for all temperatures ( )T  below the critical temperature Tc, 

where ( )g Tε  is the T-dependent pairon energy gap. Its solution yields the condensed pairon 

density ( ) ( ) ( )2 1
0 0

−= Ψ = gn T r Tσ β ε . The T-dependence of the expansion parameters near Tc ob-

tained by GL: ( )0 = − −cc T Tα , 0β  = constant is confirmed. 
 

Keywords 
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1. Introduction 
In 1950 Ginzburg and Landau (GL) [1] proposed a revolutionary idea that below the critical temperature Tc a 
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superconductor has a complex order parameter (also known as a GL wave function) Ψ  just as a ferromagnet 
possesses a real order parameter (spontaneous magnetization). Based on Landau’s theory of second-order phase 
transition [2], GL expanded the free energy density ( )f r  of a superconductor in powers of small ( )Ψ r  and 

( )∇Ψ r : 

( ) ( ) ( ) ( )
2

2 4 2
0 0 0

0

1
2 2

f f
m

α β= + Ψ + Ψ + ∇Ψ
r r r r ,                      (1) 

where 0f , 0α  and 0β  are constants, and 0m  is the superelectron mass. To include the effect of a magnetic 
field B , they used a quantum replacement: 

( ) ,   chargeiq q∇→∇− =A ,                               (2) 

where A is a vector potential generating = ∇×B A , and added a magnetic energy term 2
02B µ . The integral 

of the free energy density ( )f r  over the sample volume Ω gives the Helmholtz free energy F. After minimiz-
ing F with variation in ∗Ψ  and Aj, GL obtained two equations: 

( ) ( ) ( ) ( ) ( )22
0 0

0

1 0
2

i q
m

α β− ∇ − Ψ + Ψ + Ψ Ψ =A r r r r ,                     (3) 

( )
2

0 0

=
2 2
iq q
m m

∗ ∗ ∗− Ψ ∇Ψ −Ψ∇Ψ − Ψ Ψj A ,                          (4) 

with the density condition: 

( ) ( ) ( )s superelecton densityn∗Ψ Ψ = =r r r ,                          (5) 

where j is the current density. 
The superelectron model has difficulties. Since electrons are fermions, no two electrons can occupy the same 

particle state by Pauli’s exclusion principle. Cooper [3] introduced Cooper pairs in 1956. Bardeen, Cooper and 
Schrieffer (BCS) published a classic paper [4] on the superconductivity in 1957 based on the phonon exchange 
attraction between two electrons. The center-of-mass (CM) of Cooper pairs (pairons) move as bosons, which is 
shown in Section 2. We view that the Bose-condensed pairons can generate the superconducting state. We mod-
ify the density condition (5) to 

( ) 2
0 condensed pairon density at the state σΨ =r .                       (6) 

Equation (3) is the celebrated Ginzburg-Landau equation, which is quantum mechanical and nonlinear. Since 
the smallness of 2Ψ  is assumed, the GL equation was thought to hold only near Tc, c cT T T−  . Below Tc 
there is a supercondensate whose motion generates a supercurrent and whose presence generates gaps in the 
elementary excitation energy spectra. The GL wave function Ψ  represents the quantum state of this super-
condensate. 

In the present work, we derive the GL wave equation microscopically and show that the GL equation is valid 
for all temperature below Tc. 

2. Moving Cooper Pairs (Pairons) 
Fujita, Ito and Godoy in their book [5] discussed the moving pairons. We briefly summarize their theory and 
main results here. The energy qw  of a moving pairon can be obtained from 

( ) ( ) ( ){ } ( )
( )

( )30
3, 2 2 , d , ,

2π
q

vw a a k aε ε ′ ′= + + − + − ∫


k q k q k q k q k q               (7) 

which is Cooper’s equation, Equation (1) of his 1956 Physical Review [3]. The prime on the k'-integral means 
the restriction on the integration domain arising from the phonon-exchange attraction, see below. We note that 
the net momentum q is a constant of motion, which arises from the fact that the phonon exchange is an internal 
process, and hence cannot change the net momentum q. The pair wave functions ( ),a k q  are coupled with re-
spect to the other variable k, meaning that the exact (or energy-eigenstate) pairon wavefunctions are superposi-
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tions of the pair wavefunctions ( ),a k q . 
Equation (7) can be solved as follows. We assume that the energy qw  is negative: 

0qw < .                                         (8) 

Then, ( ) ( )2 2 0qwε ε+ + − + − >k q k q . Rearranging the terms in Equation (7) and dividing it by  

( ) ( )2 2 qwε ε+ + − + −k q k q , we obtain 

( ) ( ) ( ){ } ( )
1

, 2 2 qa w Cε ε
−

= + + − + −k q k q k q q .                        (9) 

Here 

( )
( )

( )30
3 d ,

2π
v

C k a′ ′≡ ∫q k q


                                (10) 

is k-independent. Introducing Equation (9) in Equation (7), and dropping the common factor ( )C q , we obtain 

( )
( ) ( ){ } 130

31 d 2 2
2π

q
v

k wε ε
−

= + + − + +∫ k q k q


.                      (11) 

We now assume a free electron model. The Fermi surface is a sphere of the radius (momentum): 

( )1 2
12F F Fk m ε≡ =k ,                                   (12) 

where m1 represents the effective mass of an electron. The energy ( )ε k  is given by 

( )
2 2

12
F

m
ε ε

−
≡ =k

k k
k .                                  (13) 

The prime on the k-integral in Equation (11) means the restriction: 

( ) ( )0 2 ,     2 Dε ε ω< + − + < k q k q .                           (14) 

We may choose the polar axis along q as shown in Figure 1. The integration with respect to the azimuthal angle 
simply yields the factor 2π. The k-integral can then be expressed by 

( )
( )

3 1 2π cos
22

1 10 2cos
0 2 1

2π d4π d sin
2 4

F D

F

k k q

k q
q k

k k
v w m q

θ

θ
θ θ

ε

+ −

−+
=

+ +
∫ ∫



                    (15) 

where kD is given by 
1

1D D Fk m kω −≡                                       (16) 

After performing the integration and taking the small-q and small- ( )D Fk k  limits, we obtain 
 

 
Figure 1. The range of the interaction 
variables (k, θ) is restricted to the circular 
shell of thickness kD. 
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0 2
F

q
vw w q= + ,                                      (17) 

where the pairon ground-state energy w0 is given by 

( ){ }0 0 0
0

2
,     

exp 2 0 1
Dw v V

v D
ω−

= ≡ Ω
−



.                             (18) 

As expected, the zero-momentum pairon has the lowest energy. The excitation energy is continuous with no 
energy gap. Equation (17) was first obtained by Cooper (unpublished) and it is recorded in Schrieffer’s book 
(Ref. [6], Equations (2)-(15)). The energy wq increases linearly with momentum ( )q = q  for small q. This be-
havior arises since the pairon density of states is strongly reduced with increasing momentum q and dominates 
the q2-increase of the kinetic energy. This linear dispersion relation means that a pairon moves like a massless 
particle with a common speed 2Fv . 

The center-of-mass (CM) of pairons move as bosons. We can show this as follows. Second-quantized opera-
tors for a pair of “electrons” (i.e., “electron” pairons) are defined by 

1 2

† † † †
12 1 2 34 4 3,     B B c c B c c↑ ↓≡ ≡ =k k                               (19) 

where c’s and †c ’s satisfy the Fermi anti-commutation rules: 

[ ]† † †
,, ,     , 0k k k k k k k k k kc c c c c c c cδ′ ′ ′ ′ ′ ++

  ≡ + = =  .                         (20) 

Using Equation (20) we compute commutation relations for pair operators and obtain 

[ ]12 34 12 34 34 12, 0B B B B B B≡ − =                                (21) 

1 2 1 3 2 4
†

2 4 1 3 2 4†
12 34 †

1 3 1 3 2 4

1 if    and  
if    and  =

,
if    and  

0 otherwise

n n
c c

B B
c c

− − = =
 /=  =   ≠ =


k k k k
k k k k
k k k k

                       (22) 

( )2
12 12 12 0B B B≡ = ,                                   (23) 

where 

1 1 2 2

† †
1 2,     n c c n c c↑ ↑ ↓ ↓≡ ≡k k k k                                (24) 

are number operators for electrons. Using Equations (19)-(24), we obtain 

( ) ( )22
12 12 12 12 1 2 12 12 12 12 12 121n B B B n n B B B B B n≡ = − − + = ≡† † † † .                  (25) 

Hence ( ) ( )2
12 12 12 12 12 121 0n n n n n n′ ′ ′ ′− = − = , indicating that the eigenvalues 12n′  of 12n  are 12 0n′ =  or 1. 

Thus, the number operator in the -k q  representation †n B B≡kq kq kq  with both k  and q  specified, has the 
eigenvalues 0 or 1. 

We now introduce 

B B≡ ∑q kq
k

,                                     (26) 

and calculate ,B n  q q  and obtain 

( ) † †
2, 1 ,     ,B n n n B B n B B+ − +    = − − = =   ∑q q k q k q kq q q q q

k
,                  (27) 

from which it follows straightforwardly that the eigenvalues n′q  of nq  are: [7] 
0,1, 2,n′ =q                                      (28) 

with the eigenstates 
† † †0 ,   1 0 ,   2 0 ,B B B= =q q q  .                          (29) 
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3. Ginzburg-Landau Equation at 0 K 
Let us take a three dimensional (3D) superconductor such as tin (Sn) and lead (Pb). Both metals form face-cen- 
tered cubic (fcc) crystals. They are in superconducting states at 0 K. 

The system ground-state wave function ( )0Ψ r  is a constant in the normalization volume Ω and vanishes at 
the boundary: 

( )0

constant within the volume Ω,
0 at the boundary.


Ψ = 


r                            (30) 

We may assume a periodic rectangular-box with side-lengths ( ), ,x y zL L L  along the cubic lattice, 
,     1,     , , ,j j jL N a N j x y z= =                               (31) 

where a is the lattice constant. 
We introduce a one-body density operator n and the density matrix nab for the treatment of a many-particle 

system. The density operator n can be expanded in the form: 

,     0n P Pµ µ
µ

µ µ= ≥∑                                  (32) 

where { }Pµ  denote the relative probabilities that particle states { }µ  are occupied. It is customary to adopt the 
following normalization condition: 

{ }trn P n Nµ
µ

= = =∑ ,                                   (33) 

where the symbol “tr” means a one-body trace and N is the particle number. The density operator n is Hermi-
tean: 

†n n≡ .                                         (34) 
Let us introduce kind of a square root density operator u such that 

†n uu= .                                        (35) 
This u is not Hermitean but †uu n=  is. We will show that the revised G-L wave function ( )σΨ r  is con-
nected with 

( ) uσ σΨ =r r ,                                    (36) 

where σ  denotes the condensed pairon state. For a running ring super current [8] we may choose 

2π ,     0, 1, 2,mp m m
L

σ = = = ± ±  ,                             (37) 

where L is the ring circumference. The m  are very small numbers ( )m N . The energies of the excited 
states m are practically the same as the ground state ( )0m =  since m N  and L a . The excited states 
are semi-stable because N particles must be redistributed when going from an excited state m to the ground state 
0. The natural decay times are measured in days. 

Let us introduce boson field operators ( ), tψ r  and ( )† , tψ r  which satisfy the Bose commutation rules: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3† † †

† †

, ,

, , 0,     the time  omitted .t

ψ ψ ψ ψ ψ ψ δ

ψ ψ ψ ψ

 ′ ′ ′ ′≡ − = − 
 ′ ′= =    

r r r r r r r r

r r r r
                 (38) 

where ( ) ( ) ( ) ( ) ( )3 x x y y z zδ δ δ δ′ ′ ′ ′− ≡ − − −r r  and ( )x xδ ′−  is Dirac’s delta-function. 
We take a system characterized by many-boson Hamiltonian H: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 31d , d d
2

H r h i r rψ ψ ψ ψ φ ψ ψ′ ′ ′ ′= − ∂ ∂ + −∫ ∫ ∫r r r r r r r r r r

† † †          (39) 

where ( ),h r p  is a single-boson Hamiltonian and ( )φ ′−r r  is a pair potential energy. The field equation 
obtained from the Heisenberg equation of motion is 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3,
, , , , d , , ,

t
i t H h i t r t t t

t
ψ

ψ ψ φ ψ ψ ψ
∂

′ ′ ′ ′= = − ∂ ∂ + −  ∂ ∫ 

r
r r r r r r r r r† .     (40) 

We note that the field equation is nonlinear in the presence of a pair potential. 
We can exprress r  and r  by 

( ) ( )†
0 0,     ψ ψ= Φ = Φr r r r ,                           (41) 

where ( )ψ r  and ( )†ψ r  are boson operators and 0Φ  and 0Φ  represent vacuum state vectors satisfying 

( ) ( )†
0 0 0 00,     1ψ ψΦ = Φ = Φ Φ =r r .                        (42) 

In the Heisenberg picture (HP) the boson states are time-independent and boson operators ψ  and †ψ  move 
following the field Equation (40). 

The single particle Hamiltonian h contains the kinetic energy ( )0h p , which depends on the momentum p 
only, and the boson-condensation Hamiltonian he which arises from the phonon exchange attraction. The ground 
state wave function ( )0Ψ r  is flat as seen from Equation (30). There are no gradients and no material currents. 
Hence, we obtain 

( ) ( ) ( ) ( ) ( ) ( )0 0
0 0 0 0h h iσΨ = − ∂ ∂ Ψ =p r r r ,                          (43) 

where the superscript (0) means the ground state average. 
The ground-state energy of the pairon is negative and is given by w0 in Equation (18). Hence we may choose 

( ) ( ) ( ) ( )0 0
0 0 0 0,     0w wσα αΨ = Ψ = <r r .                           (44) 

The pairon has charge magnitude 2e and a size. For Pb the pairon linear size is about 103 Å. Because of the 
Colomb repulsion and Pauli’s exclusion principle two pairons repel each other at short distances. We may 
represent this repulsion by a point-like pair potential: 

( ) ( ) ( ) ( )3
0 0,     constant 0v vφ δ′ ′− = − >r r r r .                       (45) 

Using this and the random phase (factorization) approximation we obtain 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

233
0 0d .

-dependence and superscript omitted

v r v

t
σ σ σ σ σδ′ ′ ′ ′− Ψ Ψ Ψ = Ψ Ψ∫ r r r r r r r†

                 (46) 

Gathering the results (43), (44) and (46), we obtain 

( ) ( ) ( ) ( )

( )

2
0 0 0

,
, , , .

superscripts ommited

t
i w t v t t

t
σ

σ

∂Ψ
= Ψ + Ψ Ψ

∂
r

r r r

                      (47) 

For the steady state the time derivative vanishes, yielding 

( ) ( ) ( )2
0 0 0w vσ σ σΨ + Ψ Ψ =r r r .                            (48) 

This is precicely, the GL equation, Equation (3) with 0 0wα =  and 0 0vβ = . 
In our derivation we assumed that pairons move as bosons, which is essential. Bosonic pairons can multiply 

occupy the condensed momentum state while fermionic superelectrons cannot. The correct density condition (6) 
instead of (5) must therefore be used. 

4. Discussion 
We derived the GL equation from first principles. In the derivation we found that the particles that are described 
by the GL wave function ( )Ψ r  must be bosons. We take the view that ( )σΨ r  represents the bosonically 
condensed pairons. This explains the quantum nature of the GL wave function. 

The nonlinearity of the GL equation arises from the point-like repulsive inter-pairon interaction. In 1950 when 
Ginzburg and Landau published their work, the Cooper pair (pairon) was not known. They simply assumed the 
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superelectron model. 
Our microscopic derivation allows us to interpret the expansion parameters as follows. The 0α  represents 

the pairon condensation energy, and 0β  the repulsive interaction strength: 

0 constant 0β = > .                                   (49) 

BCS showed [4] that the ground-state energy W for the BCS system is 

( )
( ){ }0 0

0

2
0 ,     

exp 2 0 1
D

DW D w w
v D
ω

ω
−

= ≡
−



 ,                        (50) 

where ( )0D  is the density of states per spin at the Fermi energy and 0w  the pairon ground-state energy. 
Hence we obtain Equation (44): 0 0 0wα = <  at 0T = . 

In the original work [1] GL considered a superconductor in the vicinity of the critical temperature Tc, where 
2

σΨ  is small. Gorkov [9]-[11] used Green’s functions and interrelated the GL and the BCS theory near Tc. We 
derived the original GL equation by examining the superconductor at 0 K from the condensed pairons point of 
view. The transport property of a superconductor below Tc is dominated by the Bose-condensed pairons. Since 
there is no distribution, the qualitative property of the condensed pairons cannot change with temperature. The 
pairon size (the minimum of the coherence length derivable directly from the GL equation) naturally exists. 
There is only one supercondensate whose behavior is similar for all temperatures below Tc; only the density of 
condensed pairons can change. Thus, there is a quantum nonlinear equation (48) for ( )σΨ r  valid for all tem-
perateures below Tc. The pairon energy spectrum below Tc has a discrete ground-state energy, which is separated 
from the energy continuum of moving pairons [5]. Inspection of the pairon energy spectrum with a gap suggests 
that 

( )0 0,     g cT T Tα ε= − < > .                               (51) 

Solving Equation (48) with Equation (6), we obtain 

( ) ( )2 1
0 0 gn T Tσ β ε−= Ψ = ,                               (52) 

indicating that the condensed density ( )0n T  is proportional to the pairon energy gap ( )Tε g . 
We now consider an ellipsoidal macroscopic sample of a type I superconductor below Tc subject to a weak 

magnetic field H applied along its major axis. Because of the Meissner effect, the magnetic fluxes are expelled  

from the body, and the magnetic energy is higher by 2
0

1
2

Hµ Ω  in the super state than in the normal state. If the  

field is sufficiently raised, the sample reverts to the normal state at a critical field Hc, which can be computed in 
terms of the free-energy expression (1) with the magnetic field included. We obtain after using Equations (6) 
and (50) 

( ) ( ) ( )1 2
0 0 0c gH T n Tµ β ε− ∝ ,                             (53) 

indicating that the measurements of Hc give the T-dependent ( )0n T  approximately. The field-induced transi-
tion corresponds to the evaporation of condensed paions, and not to their break-up into electrons. Moving pai-
rons by construction have negative energies while quasi electrons have positive energies. Thus, the moving pai-
rons are more numerous at the lowest temperatures, and they are dominant elementary excitations. Since the 
contribution of the moving pairons was neglected in the above calculation, Equation (51) contains approxima-
tion, see below. 

We stress that the pairon energy gap gε  is distinct from the BCS energy gap Δ, which is the solution of 

( )
( )

( )1 22 2

0 1 20 2 2

11 0 d tanh
2

D

B

v D
k T

ω ε
ε

ε

 + ∆ =
 + ∆  

∫


.                     (54) 

In the presence of a supercondensate the energy-momentum relation for an unpaired (quasi) electron changes: 

( ) ( )1 22 2 2
02k F k kk m Eε ε ε≡ − → ≡ + ∆ .                         (55) 

Since the density of condensed pairons changes with the temperature T, the gap Δ is T-dependent and is 
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determined from Equation (54) (originated in the BCS energy gap equation). Two unpaired electrons can be 
bound by the phonon-exchange attraction to form a moving pairon whose energy 0w  is given by 

0
1 0
2q Fw w v q= + <  ,                                  (56) 

( ) ( ){ } 11 22 2
0 00

1 0 d 2Dv D w
ω

ε ε
−

= + + ∆∫


 .                          (57) 

Note that 0w  is T-dependent since Δ is. At Tc, Δ = 0 and the lower band edge 0w  is equal to the pairon 
ground-state energy w0. We may then write 

( ) ( )0 0 0
1 ,     0
2q g F gw w T v q T w wε ε= + + ≡ − ≥  .                       (58) 

We call ( )g Tε  the pairon energy gap. The two gaps ( ), gε∆  have similar T-behavior; they are zero at Tc 
and they both grow monotonically as temperature is lowered. The rhs of Equation (54) is a function of ( )2,T ∆ ; 
Tc is a regular point such that a small variation cT T Tδ ≡ −  generates a small variation in Δ2. Hence we obtain 

( ) ( )1 2 ,     ,      constantc c cT b T T T T T b∆ − − =  .                      (59) 

Using similar arguments we get from Equations (57)-(59) 

( ) ( ) ,     ,     constantg c c cT c T T T T T cε − − =  .                       (60) 

As noted earlier, moving pairons have finite (zero) energy gaps in the super (normal) states, which makes 
Equation (53) approximate. But the gaps disappear at Tc, and hence the linear-in- ( )cT T−  behavior should hold 
for the critical field Hc: 

( ),     ,     constantc c c cH d T T T T T d= − − = ,                       (61) 

which is supported by experimental data. Tunneling and photo absorption data [12]-[16] appear to support the 
linear law in Equation (60). 

In the original GL theory [1], the following signs and T-dependence of the expansion parameters ( )0 0,α β  
near Tc were assumed and tested: 

( )0 00,     constant 0cc T Tα β− − < = > ,                         (62) 

all of which are reestablished by our microscopic calculations. 

5. Conclusions 
In summary we reached a significant conclusion that the GL equation is valid for all temperatures below Tc. The 
most important results in the GL theory include GL’s introduction of a coherent length [1] and Abrikosov’s pre-
diction of a vortex structure [17], both concepts holding not only near Tc but for all temperatures below Tc. 

In the present work the time evolution of the system is described through the field equation for the boson op-
erators ( ), tψ r  and ( )† , tψ r . The resulting equation 

( ) ( ) ( ) ( ) ( )2
0 0

,
, , , ,

t
i h i t v t t

t
σ

σ σ

∂Ψ
= − ∂ ∂ Ψ + Ψ Ψ

∂
r

r r r r r                  (63) 

may be useful in deriving the Josephson-Feynman equation and describing dynamical Josephson effect [18] [19]. 
Operators u and †u  are non-Hermitean, see Equation (35). Hence, a off-diagonal long range order simply aris-
es from the definition of ( )0 0 u σΨ ≡r r . 

GL treated the effect of the magnetic field applied based on the super electron model. We shall treat this ef-
fect based on the moving pairons model separately. 
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