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Abstract 
The metric, that enables measurement of structural data from diffraction in quasicrystals, is ana-
lyzed. A modified compromise spacing effect is the consequence of scattering of periodic electro-
magnetic or electron waves by atoms arranged on a geometric grid in an ideal hierarchic structure. 
This structure is infinitely extensive, uniquely aligned and uniquely icosahedral. The approximate 
analytic factor that converts the geometric terms base τ , into periodic terms modulo 2π , is 

( )sc 2mod 2τ= π . It matches the simulated metric .sc 0 947= , consistently used in second (Bragg) 
order, over a wide scale from atomic dimensions to sixth order superclusters. 
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1. Introduction 
The quasi-Bragg law for quasicrystals was discovered, firstly by visual inspection of the quasi-crystal diffraction 
pattern, and secondly by three-dimensional indexation and simulation of the pattern. The simulation is of scat-
tering from an ideal hierarchic model for icosahedral quasicrystals [1]-[7]. The model is infinitely extensive, 
uniquely aligned and uniquely icosahedral. The diffraction patterns are produced by periodic waves of electro-
magnetic radiation or electron beams, that scatter from atoms arranged not in linear series as in crystals; but on 
planes that are ordered with interplanarspacings being members of the geometric series, base ( )1 5 2τ = + , 
the golden section. The scattering occurs at angles different from corresponding Bragg angles in crystals and a 
resulting “compromise spacing effect” sc  was found in the simulations. This important parameter enabled 
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measurements of the structure to be made—not chosen as guesses [5] [8] [9]—from the diffraction data. Other 
differences from Bragg scattering were observed and they are sufficiently fundamental to constitute the quasi- 
Bragg law as a new law in physics. It is used to describe effects of logarithmic periodicity in three dimensions. 

Previous explanations for the simulated values for the metric were qualitatively described. One method was to 
expand the cosine function used in calculations of quasi-structure factors into its regular series derived from 
complex exponentials: the members of both the diffraction pattern series and the cosine series expansion belong 
to the same geometric series ([1] Appendix A.1). This fact turns out to be related to a second explanation for 
simulated values for the metric: the mid terms of the geometric series, around g0, have almost half integral val-
ues [5] that distort the regularity observed in Bragg diffraction from crystals. Whereas in crystals, the structure 
factor is used to identify forbidden lines when the factors are zero owing to symmetries in the unit cell; in quasi-
crystals, we use the concept for the same purpose, but also to compensate for lack of periodicity between unit 
cells. We treat the solid as an infinitely large unit cell and simulate the wide variety of quasi-structure factors 
that are apparent in the various reflections. The method depends on three dimensional indexation, and also on 
the model of structure factor calculation in crystals. Now we are able, analytically, to clarify the quantitative re-
sult for the metric obtained in the simulations. The metric is the key to understanding any measurement de-
pendent on diffraction in quasicrystals.  

2. Linear and Logarithmic Periodicities 
The chief justification for the present analysis is the simple, complete and systematic simulation of the principal 
diffraction patterns [1]-[7] displayed by icosahedral i-Al6Mn [10]. These patterns depend on the quasi-Bragg law: 

( )sinm dλτ θ′ ′= ,                                    (1) 

where d ′  is a corrected quasi-interplanar spacing sd d c′ = ; with compromise spacing effect cs that is discov-
ered to be the same for all quasi-structure factors; and where the quasi-Bragg angle θ ′  differs from the Bragg 
angle θ in crystals, chiefly because of the multiple interplanarspacings that, in quasicrystals, contribute to each 
diffracted beam1. The incident radiation wavelength is λ, and m and n are orders. Every variable except wave-
length differs in the original Bragg law: 

( )2 sinn dλ θ=                                     (2) 

and even the constant 2 transforms to unity. The reason for this will be found in the following analysis. Equation 
(1) can be reformulated in the conventional way by writing, in zeroth quasi-Bragg order2, 0m = , for quasi- 
Miller indices h k l′ ′ ′ , 

2 2 2h k l

s

ad
c h k l

′ ′ ′′ =
′ ′ ′+ +

                                (3) 

using for axes the cubic sub-group of the icosahedral point group symmetry, where a is the diameter of the Al 
atom that is equal to the side length of the icosahedral unit cell. (In calculations, it was convenient to use this 
number as the unit of length, the icosahedral unit). The quasi-Miller indices are three dimensional. A key con-
cept is the compromise spacing effect and there are various ways in which it can be described. It was first meas-
ured in simulations of the quasi-structure factor calculated from the following formula that is derived from the 
formula commonly used for calculating structure factors from unit cells in crystal physics:  

( )( )cos 4πh k l s i i i
i

F f c h x k y zζ
ζ

′ ′ ′ ′ ′ ′= + +∑                           (4) 

summed over atoms having scattering factors fζ for ζ = Al or Mn in this case, and with atomic positions xi, yi, zi. 
The formula applies to the centro-symmetric, hierarchic model in second Bragg-order where it maximizes at cs. 
The results demonstrate negligible values for Bragg structure factors where cs = 1, and for higher Bragg orders 
(n > 2) that are generally not observed in quasicrystals. The quasi-Bragg angle is adjusted by 5.3% so as to cor-

 

 

1By contrast, Bragg’s law gives a unique interplanar spacing for each specular diffracted beam. 
2This formula resembles a corresponding formula for the first Bragg order, n = 1; but the orders in quasicrystals extend past zero to m = −∞ 
(the straight through beam). The value described, in Equation (3), is for the quasicrystal zero order, where the corresponding interplanar 
spacing is the side length of the icosahedral unit cell. In i-Al6Mn, this length is the diameter of the Al atom. 
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respond, through Equation (1), with cs (whether simulated or derived as below). It was found that the same cs 
applies to all diffracted beams, and this leads to the generic explanation that follows. What we have is a periodic 
incident beam that is scattered by a set of atoms on a geometric grid into diffracted beams with quasi-Miller in-
dices h k l′ ′ ′  (Figure 1). Being geometric, the atomic interplanarspacings are members of the series maτ , where 
the spacings are describable in three dimensions. In electron diffraction, where scattering angles are small, 

2h k l h k l h k ldθ λ′ ′ ′ ′ ′ ′ ′ ′ ′′Θ ≅ ≈ , similar to the corresponding scattering angle in grating optics. The metric cs is most 
easily understood as mediating the two series, linear and geometric, as we shall see. 

Previously we have noticed three features in simulations of the quasi-structure factors: 
a) the diffraction is in second Bragg order [5] [6]; 
b) the diffracting angle is less than the equivalent Bragg angle. The difference is the compromise spacing ef-

fect or metric. 
c) The terms in the quasi-scattering angle are geometric because of the logarithmic grid on which the atoms in 

the model reside (Equation (4)). Likewise the terms in the cosine expansion are members of a geometric series 
[1]. 

What is needed is the factor that converts those geometric terms in Equation (4) that result from the locations 
of x′ , y′ , and z′  on a logarithmic grid base τ , into the corresponding series that is periodic in space 
common to the incident and diffracted beams, i.e. modulo 2π . That factor is π τ  (see Table 1).  

The factor can be seen to convert the regular series expansion of the cosine function, its argument forming the 
base of a geometric series. We can, in consequence, collate items a, and b to produce a modified compromise  
 

 
Figure 1. Schematic illustration of scattering of a periodic incident 
wave (top), wavelength λ, by a cluster of icosahedral i-Al6Mn atoms 
on a logarithmic grid (center), onto a geometric diffraction pattern 
(bottom). Near center, the (100) axis is normal to the plane shown, 
with (010) horizontal. Populations of Al atoms are shown above the 
horizontal abscissa, with Mn below it. At highest contrast in the two 
beam condition [12], a quasi-Bloch wave is superposed on these 
populations and the overlap (Σ) is maximum [4]. The wave illustrates 
lin-log response, where high resolution transmission microscopy does 
not image atoms [1]. 
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Table 1. Trigonometric values for the geometric series demonstrate periodicity given by the inclusion of the conversion 
factor π/τ in column 7. Notice the significant result on line 7. Negative values are red; significant values bold. 

m m
mg τ=  ( )cos mg  ( )sin 2 mg⋅  ( )cos 2 mg⋅  ( )cos π 2pg τ⋅  

−5 0.09016994 0.99593744 0.0900478 0.98378279 0.98471366 

−4 0.14589803 0.98937575 0.14538098 0.95772874 0.96014505 

−3 0.23606798 0.9726512 0.23388148 0.89059891 0.89678398 

−2 0.38196601 0.9279336 0.37274552 0.72212156 0.73737173 

−1 0.61803399 0.8150192 0.57943394 0.32851261 0.36238125 

0 1 0.54030231 0.84147098 −0.4161468 −0.3623646 

1 1.61803399 −0.0472201 0.99888451 −0.9955405* −1 

2 2.61803399 −0.8660455 0.49996526 0.50006947 0.36234795 

3 4.23606801 −0.4585128 −0.8886878 −0.5795321 −0.3623314 

4 6.85410206 0.84140591 0.54040364 0.41592782 0.73741986 

5 11.0901702 0.09445487 −0.9955291 −0.9821566 −0.8967288 

6 17.9442724 0.61746259 −0.7866002 −0.2374799 −0.9601997 

7 29.0344429 −0.7247609 −0.6890004 0.0505568 0.98465795 

8 46.9787157 −0.9894807 0.14466468 0.95814426 −0.9942073 

9 76.0131593 0.81681058 0.57690595 0.33435906 −0.9977089 

10 122.991876 −0.8916757 −0.4526747 0.59017117 0.9992007 

11 199.005037 −0.4671777 −0.8841634 −0.5634899 −0.9996159 

12 321.996917 0.0163295 0.99986666 −0.9994667 −0.9999247 

13 521.001959 0.87641917 −0.481549 0.53622113 0.99988095 

14 842.998884 0.49578924 0.86844288 −0.5083861 −0.9999951 

15 1364.00086 0.85271014 0.52238435 0.45422918 −0.9998281 

16 2206.99976 −0.0309177 0.99952194 −0.9980882 0.99976582 

17 3571.00065 −0.5485271 0.83613277 −0.398236 −0.9991953 

18 5778.00047 −0.818742 −0.5741616 0.34067692 −0.9981 

19 9349.00121 0.92921071 −0.3695503 0.72686508 0.99484324 

20 15127.0018 −0.9729319 −0.2310921 0.89319285 −0.9867496 

 
spacing effect, mod

sc . This new convention has the disadvantage that it loses closeness to Bragg values for spaces, 
angles, wavelengths and indices (~5.3% under the simulated convention where the metric was ~ ( )2π 2τ ); but 
the new convention has the convenience of explaining the common reasons for the two effects that had previ-
ously been described separately. Both effects had the same origin in maximization of the quasi-structure factors 
within the constraints of forbidden Bragg orders—forbidden that is in both observed diffraction patterns, and in 
corresponding calculations. Notice that, under the old convention the simulated ( )20.947 ~ π 4sc τ= =  

mod 2sc , where mod
sc  describes a new approximate convention that is now derived analytically. The new con-

vention supplies the factor that converts geometric terms, with logarithmic periodicity in the cosine expansion, 
to periodic terms modulo 2π . This is the factor that mediates the periodic incident beam with the geometrically 
arranged atoms. It offsets the simulated quasi-Bragg angle from the corresponding crystal Bragg angle.  

How does this conversion factor π τ  cause the argument of Equation (4) to become periodic? The answer is 
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that every term in the inner bracket of the argument in Equation (4) contains some power of τ  and these val-
ues are periodic in logarithmic space [1]: 

( ) ( ) ( ) ( )
22

, ,
1 4π 2 ! 1 4π 2 !

pp m m n
hkl j j j s n

j p j m n p
F f i h u p f i c a pς ς τ τ  ′= + = +      ∑ ∑ ∑ ∑         (5) 

where an atomic location iu  is equal to some sum over m n
s nc a τ  [1], with na  integral. In order to link to the 

periodic incident wave, the geometric series is made periodic in real space by replacing τ  by π , i.e. by ap-
plying the metric. Our compromise spacing effect cs expresses the difference here from Bragg diffraction for a 
periodic crystal lattice. In the execution of Equation (5), the quasi-structure factor is squared to realize its ob-
served intensity [11] and this gives the value for mod

sc  shown in the previous paragraph (since ( )21 ~ 1 2x x− − , 
1x ). The value includes higher order terms in the cosine series and so the simulated value is the more accu-

rate. The modified metric can be used in an analytical modification of Equation (4):  

( )( )mod modcos 2πh k l s i i i
i

F f c h x k y l zς
ς

′ ′ ′ ′ ′ ′= ⋅ + +∑                        (6) 

Meanwhile the quasi-Bragg law ensures that corresponding adjustments are made in interplanarspacings and 
quasi-Bragg angles. Though the two conventions using cs and mod

sc , are approximately equivalent, the reader 
may find the older one is more intuitive because closer to Bragg methods in crystals. 

Notice that the logarithmic grid is not a simple concept. There are several ways to describe it. One is ostensive: 
it is the grid that sites the atoms in the hierarchic Al6Mn structure [6]. A second way is through the logarithmic 
quasi-reduced zone scheme in the quasi-Brillouin zone representation of energy bands in Al6Mn [2]. A third way 
is a description of overlapping grids with origin repeating on principal grid points. An example of this grid is 
used in the indexation of the two-fold pattern in Al6Mn [6]. Yet another example is illustrated, in one dimension, 
near the center of figure 1. This grid contrasts with a crystalline lattice. 

The quasi-structure factor simulation constitutes, in itself, a simple demonstration of quasi-Bragg diffraction 
and this new analytical explanation now confirms it. As a subsidiary illustration, and to conserve similarities to 
Bragg diffraction, we show the effect of the conversion factor on various trigonometric values that were previ-
ously used in the quasi-structure factor calculations derived from Equation (4). It is evident in Table 1 that the 
inclusion of the factor π τ  causes the trigonometric values to become periodic. This regularity matches the 
simulation results that demonstrate positive interference at the quasi-Bragg angles, s Bragg' cθ θ= ⋅ . The interpre-
tation is consistent with simulations on truncated clusters and superclusters of various sizes [4] [6] [7]. In these, 
the number of scattering atoms correlates with the width, in scattering angle, of the calculated quasi-structure 
factor profiles. More generally, the table demonstrates the analytical importance of the metric. To mark the re-
sult, terms greater than 0.5 are shown in bold font in the table, and negative values are shown in red.  

Further explanations are more or less obvious. The “third bright ring” of diffracted beams away from zero or-
der, that is evident in Shechtman’s and other data—especially when specimen films are thin—is due to the index 

1τ , where the value in column 7 is larger than those of its neighbors. This feature in Table 1 is consistent with 
our adopted method of indexation [5] [6] and confirms it. Most importantly, the calculated quasi-structure fac-
tors match experimental data very well indeed. Moreover, these general phenomena show that the Ewald sphere 
construction that applies rigorously in X-ray diffraction from crystals—but rather weakly in electron diffraction 
—requires re-analysis in quasicrystals. This marks territory for further experiment and research.  

Moreover, with the understanding given below for cs and mod
sc , it is reasonable to speculate on possible uses 

that might be made of precise measurements. If the metric turns out to be minutely sensitive to disorder in a 
quasicrystal, then precise measurement of cs could be used in defect analysis, along with dark field imaging [3]. 
Careful calibration would be needed to make use of the small changes.  

3. Discussion  
Hitherto, it has seemed that the metric is a fortuitous factor that mediates logarithmic space with real space. 
However, the calculations on Table 1, especially column 7 line 7, when combined with the periodic regulariza-
tion of the column, make it most improbable that the link is fortuitous. It is now possible to see that the link is 
precisely constrained. This appears from the series expansion of the cosine function. The metric causes the ex-
pansion in terms of mτ , to convert to the same series expansion, but in terms of πm . The metric therefore con-
verts the logarithmic series contained in the cosine function to a function modulo 2π . In this conversion the 
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compromise spacing effect is applied together with the simulated “second Bragg order”. In the analytic form, 
mod
sc  is applied to quasi-structure factor calculations in first (Bragg) order; in the more accurate simulated form, 

cs had been applied in second (Bragg) order through a slightly different formula. It was once more common for 
the solid state to contribute to general physics, as in the example of statistical physics; the linear response to 
logarithmically spaced scatterers is a new example. Science should be made a simple as possible but not simpler: 
the log-lin metric can no longer be avoided. 

4. Conclusion 
The compromise spacing effect and metric, in quasicrystal diffraction, occur under the quasi-Bragg law. Analy-
sis shows that the metric is due to the conversion factor π τ  that mediates scattering of a periodic beam by 
atoms lying on a geometric grid. The metric is explained by the factor that converts geometric series (base τ ) 
in atomic locations, to the geometric terms in the series expansion of the cosine (modulo 2π ). The factor, π τ , 
is consistent with, and confirmed by, prior detailed and systematic simulation of quasi-structure factors. The 
quasi-Bragg law adapts corresponding adjustments to interplanarspacings and quasi-Bragg angles. When loga-
rithmic periodicity is discovered in one part of physics, it is expected in others. 
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Two Tutorial Endnotes Added in Proof  
While in crystals, an allowed line has non-zero structure factor when ( )cos 2 0j i ijf h xς π >∑  summed (by the 
repeated subscript convention) over dimensions i, j = 1, 2, 3 in a unit cell; in quasicrystals, allowed lines have 
quasi-structure factors ( )cos 2 0j s i ijf c h xς ′π >∑  where ( )22sc τ≅ π , and simulated quasi-structure factors 
match experimental intensities. It is interesting that mod

sc  occurs in the second term of the expansion of 
( )( )cos 2 i ijh xτ ′π π . 

The ripple, evident at higher orders in Table 1 column 7, illustrates beating between waves in linear space (4th 
harmonics) with logarithmic space (3rd log harmonics), since 34 0.944 scτ = ≅ .  
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