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Abstract 
We present a short note about the perturbative correction to Rydberg energies under a perturba-
tion cosθ/rμ and discuss the role of SO(4) symmetry. 
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1. Introduction 
The subject of this short note stems from a classroom exercise. I proposed my students to evaluate the effect on 
the degenerate levels of the hydrogen atom of a perturbation with potential energy ( ), cosV r θ λ θ= . At the first 
order in perturbation theory this problem requires the diagonalization of the matrix representing the perturbation 
restricted to the -thn  degenerate subspace (see Appendix A). 

( ) , , cos , ,n n m n mθ ′ ′=                                  (1) 

The problem in itself appears to involve a rather standard (and boring) calculation based on the properties of 
Laguerre and Legendre functions. To save time one can attack the problem using a computer algebra system, 
like Mathematica1 and the matrix   can be readily constructed; if we are lucky enough, its spectrum could be 
exhibited in closed form or at least in numerical terms. Now, the surprise is that the eigenvalues turn out to be all 
simple rationals of the form m n  where m runs from ( )1n− −  to 1n −  and they are ( ) -foldn m−  degene-
rate. The result is so simple that one cannot be satisfied by the brute-force calculation, and he or she is forced to 
look for some explanation. Obviously the first idea that comes to mind is that this result should rely on some 
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Lie-algebraic property. In the following I’m going to explain how hydrogen’s ( )4SO  symmetry accounts for 
the result. 

2. Dipole Operators and the SO(4) Generators 
The origin of the Lie-theoretic explanation lies in one of the first papers about quantum mechanics [1]. In the 
book by Gottfried and Yan [2]2 one can find all details in a masterly presentation. In this note, however, we 
present a somewhat simpler derivation, suitable for an introductory Quantum Mechanics course. In particular we 
give a simple derivation of Pauli’s link between ( )4SO  Casimir operator and the Hamiltonian, which cannot 
be found in most textbooks (see Appendix B). Other relevant information is contained in the recent paper [3] 
with generalization to higher multipoles. 

The fact is: hydrogen atom, in its simplest terms, described by the Hamiltonian 21 1
2

p r− , exhibits a larger  

degeneracy than required by rotational invariance, the -thn  level being 2 -foldn  degenerate. This fact was re-
lated, since Pauli’s paper, to the presence of an extra conserved vector quantity, which in classical mechanics is 
known as the Laplace-Runge-Lenz vector and was used by Pauli in the calculation of the spectrum. This should 
be considered as the first example of dynamical symmetry in Quantum Mechanics. The quantum conserved 
vector is 

( )1
2 r

= ∧ − ∧ −
rL p M M p                                 (2) 

where = ∧M x p  and r = x . Since L  commutes with the Hamiltonian it can be normalized by adding a  
factor ( ) 1 22H −−  in such a way that M  and 2H−L  close the Lie algebra of ( )4SO  under commutation. 
In his 1926 paper Pauli showed that this fact was sufficient to derive Balmer’s formula and the “dipole matrix 
elements” , , , ,n m n m′ ′

 x  in terms of the matrix of 2H≡ −N L  in the same 2 -dimensionaln  degene-  

rate subspace. Denoting by nΠ  the orthogonal projector on the -thn  degenerate subspace, it is immediately  

realized that 1
n n n n n nr

n
Π Π = −Π Π = − Π Πx L N ; no contributions arise from the term ∧p M  which has va-  

nishing matrix elements between degenerate states since it coincides with the commutator [ ],H ∧x M . Now, 
since N belongs to the Lie algebra of the symmetry group ( )4SO , its spectrum is fixed by group theory alone. 
Simply enough, 1 2= −N J J  where iJ  are the generators of the two ( )2SU  factors of ( )4SO . Since 1J  
and 2J  commute, and the total angular momentum is ( )1 2j n= −  for each of them, the spectrum is simply 
given by { }1 2 , 1, , 1,im m m j j j j− = − − + −  that is { }1, 2, , 1,0,1, , 2, 1n n n n− + − + − − −   with degenera-
cy { }1,2,3, , 1, , 1, , 2,1n n n− −  . As a result the spectrum of the matrix cosn nθΠ Π  is precisely given, as 
anticipated, by 

{ }1 1, 2, , 1,0,1, , 2, 1n n n n
n

− + − + − − −                          (3) 

For the sake of completeness we recall the detailed expression for the eigenfunctions and the matrix elements 
in appendix. 

3. Conclusion 
It is clear that the use of a symbolic algebra system can easily give the spectrum of the dipole x or, more gener-
ally, rµx . For instance one can check immediately that the matrix identically vanishes for 3µ = , the case of 
the electric dipole perturbation. However the connection with group theory gives a deeper insight into the result, 
which by itself could remain a simple mathematical curiosity. Let us notice that in the classical book [4] by 
Condon and Shortley the calculations of the Stark effect perturbative corrections to the Balmer energies are 
beautifully obtained using parabolic coordinates, but the result of Equation (3) takes on a new light when inter-
preted group-theoretically. 
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Appendix A 
We adopt the convention for the hydrogen eigenfunctions as follows: 

( ) ( )
( )

{ }( ) ( ) ( )1 2 1
, , 12

1 !
, , exp 2 2 ,

!
m

n m n

n
r x n r n L r n Y

n n
ψ θ φ θ φ+ +

− −

− −
= −

+




  





 

The non-vanishing matrix elements for cosθ  are explicitly given by 

( )( )2 2 2 2

2

1, , cos , 1, .
4 1

n m
n m n m

n
θ

− −
+ =

−

 

 



 

Appendix B 
We prove the relation 

( ) 12 2 1 2 .H −+ + = −M N                                  (4) 

In classical mechanics it holds ( ) 12 2 2H −+ = −M N  which clearly cannot hold in quantum mechanics, since 
the left hand side annihilates the ground state. Quantum commutators provide the 2

  shift which fixes the 
ground state. This was emphasized by Pauli in [1]. Now to the proof: since the action of ( )4SO  spans the 
whole energy level and the identity links together ( )4SO  invariants, we can limit ourselves to check the valid-
ity of Equation (4) to 0=  states. So we may reduce the proof to the more tractable identity 

( ) ( ) ( ) ( )121 2r H rψ ψ−+ = −N  

or, by defining ( ) ( ) ( )12H r f rψ−− = , we are left to prove 

( ) ( ) ( )2 2H f r f r− =L                                  (5) 

Now, on s-states the definition of L  gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
21 1 1

2 2 2
1

2 2

f r f r f r f r f r f r
r r

i f r rf r f r f r f r
r r r r

= − ∧ − = − ⋅ + −

′′′ ′= ⋅ − − = − +

x xL M p x p p x p

x x xx p x
 

For instance L  annihilates ( ) { }expf r r= − , H  has the value 1 2−  and the relation is satisfied. Now in 
general, instead of evaluating 2L  it’s easier to check Equation (5) on the quadratic form 

22 2f H f f− =L  

Indeed, 

( ) ( )( ) ( ) ( )22 2 2
0 0

2 2 d d 2f H f f f f H f r r f f r r rf r r f r r f r
∞ ∞  ′′′− = − = + + + 

 ∫ ∫L L L  

Applying integration by parts we can transform ( ) ( ) ( )22 d dr f r f r r rf r r′ = −∫ ∫  and finally reach the result. 
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