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ABSTRACT 

We compare the static nucleon properties in the Chiral Perturbation Theory (χPT) and the Linear Sigma Model (LSM). 
We consider a chiral model for the nucleon which is based on the linear sigma model with scalar-isoscalar and scalar- 
isovector mesons coupled to quarks. We have solved the field equations in the mean field approximation for the hedge- 
hog baryon state with different sets of model parameters. A good investigation of some static nucleon properties is ob- 
tained by the LSM. 
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1. Introduction 

A lot of groups have made significant progress towards 
understanding the fundamental baryon properties using 
several models [1-5]. One of the effective models in de- 
scribing hadron properties is the Linear Sigma Model 
(LSM) [2,4], which serves as a good low-energy effective 
theory in order for one gain some insight into Quantum 
Chromodynamics (QCD). The LSM [6] provides an il- 
luminating example of spontaneous chiral symmetry 
breaking in strong interactions, and has been studied ex- 
tensively in the literature [7]. Some of the consequences 
of this model, however, are known to be in conflict with 
observation. In [6,8], it is argued that spontaneous sym- 
metry breaking of the QCD Lagrangian gives rise to an 
effective chiral Lagrangian of Gell-Mann-Levy sigma 
model from involving explicit quark, scalar-isoscalar 
meson (sigma, σ), and pseudoscalar-isovector meson 
(pion, π) degree of freedom. There is no confinement in 
this model, and nucleons appear as bound states of a 
three-quark system. The bound states of the model have 
been solved in mean field approximation using the 
hedgehog ansatz [4] which assumes a configuration 
space-isospin correlation for the pion field, ˆπ πr


, and 

for the quarks. One drawback of this ansatz is that it 
breaks both rotational  J


 an  isos variance 

the end. On the other hand, Chiral Perturbation Theory 
(χPT) [9-11] is a low momentum effective field theory 
for QCD written as an expansion in small momenta and 
quark masses, and it has become an invaluable tool for 
subatomic physics. With only the lightest octets of pseu- 
doscalar mesons and spin-1/2 baryons, χPT is order-by- 
order renormalizable and physical results are independ- 
ent of whichever regularization prescription that is cho- 
sen. The addition of lightest decuplet of spin-3/2 baryons 
introduces a new physical scale, and the mass difference 
between decuplet and octet baryons, which does not van- 
ish in the chiral limit (i.e. when quark masses vanish). 
However, this mass difference is similar in size to the 
pseudoscalar meson masses, so the strict chiral expansion 
can be generalized to a small scale expansion where the 
power counting is now meaningful even if the decuplet  
baryons are presented [11,12]. The perturbative technique 
allows a quantized treatment of the pion field up to a 
given order in accuracy. Although formulated on the 
quark level, where confinement is put in phenomenologi- 
cally, chiral perturbative quark models are formally close 
to χPT on the hadron level. As a further development of 
chiral quark models with a perturbative treatment of the 
pion cloud [12-17], the Tuebingen group extended the 
relativistic quark model for the study of the low-energy 
properties of the nucleon [18,19]. In Section 2, LSM is 
presented. (χPT) is given in Section 3 and our results and 
conclusion are in Section 4. 

d pin in  I


 
(although the grand spin  G I J 

  
 remains con- 

served) requiring some projection onto physical states at  
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2. The Linear Sigma Model 

We describe the interactions of quarks with σ-mesons 
and pions by Birse and Banerjee [5]. The Lagrangian 
density is,  

   
   5

1
π π

2

π ,π ,

L r i

g i U

 
  

   

       

     

 

  
     (1) 

where  

   
2

22 2 2 2
π π,π π ,

4
U m


f            (2) 

is the meson-meson interaction potential and the ,  
and π are the quark, (scalar, isoscalar) sigma and (pseu- 
doscalar, isovector) pion fields, respectively. In the semi- 
classical or mean-field approximation the meson fields 
are treated as time-independent classical fields. This 
means that we are replacing power and products of the 
meson fields by corresponding powers and products of 
their expectation values. 

The meson-meson interactions in Equation (2) lead to 
hidden chiral  symmetry with    2SU SU 2  r  
taking on a vacuum expectation value  

π ,f                 (3) 

where  Mev is the pion decay constant. The 
last term in Equation (2) is included to break the chiral 
symmetry. It leads to partial conservation of axial-vector 
isospin current (PCAC). The parameters 

91.9f 

2 2,   can be 
expressed in terms of f , the mass of the σ and mass of 
the π meson:  

2 2
2 π

2
π

,
2

m m

f



             (4) 

2
2 2 π

π 2
.

m
f


              (5) 

Now we expand around the extremum, with the shifted 
field defined as 

π .f                  (6) 

Substituting Equation (6) into Equation (1) we get :  

   
 

π

5

1
π π

2

π ,π ,

L r i g f

g ig U

 
  

   

           

        

 

 
 (7) 

with  

     

 

2
22 2 2 2 2

π

2
2 2 2 2 2π

π

,π π
4

π
2

U f

m
f

    

  

      

   

π
   (8) 

The time-independent fields and  .r   π r  are to 

satisfy the Euler-Lagrangian equations, and the quark 
wave function satisfies the Dirac eigenvalue equation. 
Substituting Equation (7) into the Euler-Lagrangian 
equation we get: 

    2 2 2 2 2 2
ππ 3 π ,m g f                 2

   (9) 

   2 2 2 2
π 5 ππ π 2 π,m ig f             
  

 (10) 

where   refers to Pauli (iso)spin-matrices,  

5

0 1
.

1 0


 
  
 

 

By using Hedgehog Ansatz [4] where  

  ˆπ π .r r r 
              (11) 

The Dirac wave function  and    are given by 

   
       1 1

and
4π 4π

u r
r r u

iw r

 
     r iw r   

 
 

  

(12) 

where  u r  and  w r  are the upper and lower 
component of the Dirac wave function. The chiral Dirac 
equation for the quarks are  

   d
,

d q

u
P r u E m S r w

r
            (13) 

    d 2
,

d q

w
E m S r u P r w

r r
     
 


    (14) 

where     ˆ,S r g P r r E   


,  are the scalar 
potential, the pseudoscalar potential and the eigenvalue 
of the quark spinor  . The set of Equations (9), (10), 
(13), (14) is solved following the method used by Gold- 
flam and Wilets [20] and Birse and Banarje [4] for the 
Soliton Bag model. Including the color degree of free- 
dom, one has cg N g    where 3cN   for the 
number of colors and g is coupling constant. 

Then  

 2 23
,

4πs c

g
N g u w              (15) 

5

3
2

4πp ciN g g uw        ,
      (16) 

 2 23
,

4πv

g
u w               (17) 

where ρs, ρp and ρv are the scalar density, pseudoscalar 
density, and vector density respectively. Finally, we have 
solved the Equations (13) and (14) using fourth order 
Rung-Kutta. Due to the implicit nonlinearly of our Equa- 
tions (9) and (10) it is necessary to iterate the solution 
until self-consisteny is achieved (For details; see Ref. [1]) 
for details. To start this iteration process, we use the 
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chiral circle form for the meson fields, 

   1 cosqS r m             (18) 

  sinqP r m              (19) 

where  

π tanh .r               (20) 

The field Equations (9), (10), (13) and (14) are subject 
to the boundary conditions requiring asymptotically the 
fields approach their vacuum values,  

   91.9 Mev 0 at .r f r r        (20) 

(For details; see Ref. [1]). 

3. The Chiral Perturbation Theory (χPT) 

The (χPT) [9] is based on an effective chiral Lagrangian 
describing the valence quarks of baryons as relativistic 
fermions moving in a self consistent field (static potential) 
[10] 

     0 ,effV r S r V r r x  


      (22) 

which are supplemented by a cloud of Goldstone bosons 
 Treating Goldstone field as small fluctuations 

around the three quark (3q) core and derive a linearized 
effective Lagrangian . The Lagrangian 

π, , .  

eff

,Lin
eff inv SB                 (23) 

derived in Ref. [11], includes the linear chiral invariant 
term 

         

        

0

2
51 ˆ ,

2

Lin

inv
£ x x i S r V r x

x
x x S r i

F

  

  

     


   
 (24) 

and a term  which explicitly breaks chiral symme- 
try 

SB

           ˆ ˆTr , .
8SB

B
£ x x x x x          

(25) 

Containing the mass term for quarks and mesons[11]. 
The octet matrix  of pseudoscalar mesons is defined 
as:  

̂

0

08
0

1

0

2 6
ˆ

2 2 2 6
2

6

i i

i

k

k

K K

  

  



 















   
 
 
  
 






   (26) 

F is the pion decay constant [11] in chiral limit;  

 ˆ ˆ ˆdiag , , sm m m           (27) 

is the mass matrix of current quarks (we restrict to the 
isospin symmetry limit with ; B =  ˆu dm m m 

2

0 0uu

F


 is the low-energy constant which measurs  

the vacuum expectation value of the scalar quark densi- 
ties in the chiral limit [12]. We rely on the standard pic- 
ture of chiral symmetry breaking [14] and for the masses 
of pseudoscalar mesons we use the leading term in their 
chiral expansion (i.e. linear in the current quark mass):  

 

 

2
π

2

2

ˆ2 ,

ˆ ,

2
ˆ 2 .

3

k s

s

M mB

M m m B

M m m B



 

 

           (28) 

Meson masses obviously satisfy the Gell-Mann- 
Oakes-Renner Equation (13) and the Gell-Mann-Okubo 
relation 2 2

π3 k
24M M M   . In the evaluation, we use the 

following set of QCD parameters [13]: m̂  7 MeV ,  

2
ˆ
sm

S
m

  and 

2

π 1.4 GeV
ˆ2

M
B

m


  . 

To derive the properties of baryons, which are mod- 
elled as bound states of valence quarks surrounded by a 
meson cloud, we formulate perturbation theory. At zeroth 
order, the unperturbed Lagrangian simply describes the 
nucleon by three realativistic valence quarks which are 
confined by the effective one-body potential in the Dirac 
equation. The mass  of the three-quark core of the 
nucleon is then related to the single quark ground state 
energy 

core
Nm

o  by 3core
N om  . 

4. Results and Conclusion 

The field Equations (9), (10), (13) and (14) have been 
solved by iteration for different values of quark and 
sigma masses. The dependences of the nucleon properties 
on the sigma and quark masses are listed in Tables 1 and 
2 that show the nucleon observables which have been 
calculated for the values in the range of  
MeV and 

900 980m  
370 440qm    MeV. It is seen from Table 1 

that as sigma mass increases, all the nucleon observables 
decrease and then get closer to the experimental data, ex- 
cept the nucleon magnetic moments. In fact, neither m  
nor q  is experimental data, since the quark cannot be 
isolated (due to the confinement principle), we believe 

q  is of order of one third of the nucleon mass and from 
Nambu and Jona-Lasinio model [6], 

m

m
m  is twice q . 

The experimental values of the pion decay coupling con- 
stant and the pion mass are 93 MeV and 139.6 MeV re- 
spectively, but by decreasing these values following 
Hemmert et al. [21] to the values 91.9 MeV and 138.04 
MeV, all the nucleon observables decrease. I assume here 
the value of the constituent quark mass to have a range of 
370 - 440 MeV depending on the model parameters. In  

m
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Table 1. Values of magnetic moments, σ (πN) and gA (0) at 
mq = 400 MeV. All quantities in MeV. 

mσ (MeV) 900 940 960 980 Exp.

σ (πN) 83.03 81.61 80.98 76.99 50 ± 20

Total moment proton μp (N) 2.67 2.68 2.68 2.64 2.79

Total moment neutron μn (N) −2.05 −2.06 −2.06 −2.03 −1.91

gA (0) 1.77 1.77 1.77 1.76 1.25

 
Table 2. Values of magnetic moments, σ (πN) and gA (0) at 
mq = 1000 MeV. All quantities in MeV. 

mσ (MeV) 440 420 400 380 370

σ (πN) 88.48 88.81 79.86 72.46 65.96

Total moment proton μp (N) 2.79 2.75 2.69 2.59 2.50

Total moment neutron μp (N) −2.19 −2.14 −2.04 −1.98 −1.89

gA (0) 1.82 1.80 1.78 1.74 1.72

 
some schematic way, the LSM and the hedgehog pro- 
jection techniques are valid only for a very small number 
of pions (about 0.5 and less), and the LSM was better (in 
a variational sense) than the ordinary hedgehog. The gen- 
eralized hedgehog appears always to be the best. Unfor- 
tunately, none of the above approaches yields a proper 
axial vector coupling constant of 1.25 nor a proper pion- 
nucleon sigma term (whose present day value with all 
corrections of the Bern group is (45 ± 5)). The results of 
Ref. [17] were successfully applied to the study of 
sigma-term physics, and those results for the  sigma 
term π

πN
45 MeVN   are in a good agreement with the 

value deduced by [18] using dispersion-relation tech- 
niques and exploiting the chiral symmetry constraints. To 
achive these goals, one should not, as we believe, replace 
the whole system by a boson field (as Skyrme does) nor 
replace the Dirac Sea by a boson field (as the above ap- 
proaches do). An approach (simple quark model) [22] 
considers the simple quark model in the limit of SU (3) 
flavor symmetry at the strange quark mass. The approach 
gives an excellent fit for the octet baryon magnetic mo- 
ments (see Table II in Ref. [22]). They obtained μp = 
2.724 and μn = −1.826 which are in very good agree- 
ments with the experimental results μp = 2.793 and μn = 
−1.913 that are better than LSM. However, the rest of the 
properties of the nucleons have not been calculated in 
this model. The idea represented in this approach [22] 
leads to a new appreciation of the role of the consistuent 
quark model in modern hadron phenomenology in which 
there is no longer a conflict with the constraints of (χPT). 
So far, all these approaches do not produce the three 
known properties in QCD, namely confinement, chiral 
symmetry and asymptotic freedom. We hope that the 
ideas presented here will lead to a new combined ap- 
proach which successfully agrees with the three main  

Table 3. Values of the observables calculated from the 
chiral perturbation theory (χPT) are compared with our 
calculations using the linear sigma model (LSM). 

Observable χPT [15] LSM [1] Exp. 

σ (πN) 54.7 65.96 50 ± 20

Total moment proton μp (N) 2.26 2.79 2.79 

Total moment proton μp (N) −2.02 −1.89 −1.91

gA (0) 1.267 1.72 1.25 

 
observations of QCD. We found quark and sigma masses 
affected observables of nucleon as seen from Tables 1 
and 2. Finally, we compare our model with experimental 
data and the χPT in Table 3. 
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