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ABSTRACT 

Viewing gravitational energy-momentum  as equal by observation, but different in essence from inertial energy- 

momentum  naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski 

space  which can describe gravitation at the classical level. This theory is quantized in the path integral formalism 
starting with a non-covariant Hamiltonian formulation with unconstrained canonical field variables and a manifestly 
positive Hamiltonian. The relevant path integral measure and weight are then brought into a Lorentz- and gauge- 
covariant form allowing to express correlation functions—applying the De Witt-Faddeev-Popov approach—in any 
meaningful gauge. Next the Feynman rules are developed and the quantum effective action at one loop in a background 
field approach is renormalized which results in an asymptotically free theory without presence of other fields and in a 
theory without asymptotic freedom including the Standard Model (SM) fields. Finally the BRST apparatus is developed 
as preparation for the renormalizability proof to all orders and a sketch of this proof is given. 
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1. Introduction 

In [1] we have started to explore the consequences of 
viewing the gravitational energy-momentum G

  as dif- 
ferent by its very nature from the inertial energy-mo- 
mentum Ip , accepting their observed numerical equa- 
lity as accidential. 

As both are conserved this view has led us to look for 
two different symmetries which through Noether’s theo- 
rem generate two different conserved four vectors—one 
symmetry obviously being space-time translation inva- 
riance yielding the conserved inertial energy-momen- 
tum I  vector. To generate an additional conserved 
four-vector the field concept has proven to be crucial as 
only fields can carry the necessary inner degrees of 
freedom to allow for representations of additional inner 
symmetry groups—in our case an inner translation group 
yielding the conserved gravitational energy-momentum 
vector . 
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4M
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G

Gauging this inner translation group has then naturally 
led to the gauge field theory of volume-preserving 
diffeomorphisms of , at the classical level, thereby 
generalizing the Yang-Mills approach for compact Lie 
groups acting on a finite number of inner field degrees of 

freedom (also see [2,3] for the mathematical framework). 
The resulting theory is a consistent classical gauge theory 
and its gauge fields can be coupled in a universal way to 
any other field. 

In [4], we then have interpreted the theory as a theory 
of gravitation reducing the full gauge theory of volume- 
preserving diffeomorphisms of  to a gauge theory of 
its Poincaré subgroup . As a consequence of 
this reduction we have obtained a relativistic description 
of gravitational fields interacting with point-particle 
matter and of matter moving in gravitational fields which 
—after numerical identification of gravitational and iner- 
tial energy-momentum and angular-momentum—in the 
non-relativistic limit has yielded Newton’s inverse square 
law for gravity. 

For the theory’s viability there remains the problem of 
a consistent quantization. Not only will we have to deal 
with the usual short distance divergencies of space-time 
integrals in a perturbation expansion [5,6], but due to the 
non-compactness of the gauge group we will face addi- 
tional divergent integrals over inner space which have to 
be regularized in a way respecting the relevant sym- 
metries (inner Lorentz and scale invariance)—generaliz-  
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ing thereby the finite sums over structure constants 
appearing in the perturbation series for the Yang-Mills 
case to the present one. 

The solution is related to noting that the classical 
gauge theory of volume-preserving diffeomorphisms of 
M4 has a linearly realized inner scale invariance which 
necessarily has to be a symmetry of the quantum effec- 
tive action as well [6]. This suggests a regularization 
scheme of the divergent integrals over the gauge group 
respecting inner scale invariance which will yield a re- 
normalizable quantum field theory uniquely determined 
up to inner rescalings. 

Technically we will quantize in the path integral for- 
malism starting with a Hamiltonian formulation of the 
theory with unconstrained, though neither Lorentz- nor 
gauge-covariantly looking canonical field variables and a 
manifestly positive Hamiltonian. Over various steps the 
relevant path integral measure and weight are brought 
into a Lorentz- and gauge-covariant form allowing us to 
express correlation functions first in the Minkowski-plus- 
axial gauge and applying the De Witt-Faddeev-Popov 
approach in any meaningful gauge. Next the Feynman 
rules are developed and the quantum effective action at 
one loop in a background field approach is renormalized 
which results in an asymptotically free theory without 
presence of other fields and in a theory without asymp- 
totic freedom if including the Standard Model (SM) 
fields. Finally the BRST apparatus is developed as pre- 
paration for the renormalizability proof to all orders and 
a sketch of this proof is given. 

The notations and conventions used follow closely 
those of Steven Weinberg in his classic account on the 
quantum theory of fields [5,6]. They are presented in the 
Appendix. 

2. Quantization in the Minkowski-Plus-Axial 
Gauge 

In this section we quantize the gauge theory of volume- 
preserving diffeomorphisms of M4 starting with a Ham- 
iltonian formulation of the classical theory equivalent to 
its Lagrangian formulation in the Minkowski-plus-axial 
gauge. This allows us to express all quantum amplitudes 
of interest as path integrals over unconstrained canonical 
field variables which live in certain functional spaces 
ensuring the positivity of the Hamiltonian. These inte- 
grals look neither Lorentz- nor gauge-invariant. We then 
show that they can be transformed into explicitly Lorentz- 
and gauge-invariant expressions to be evaluated in the 
Minkowski-plus-axial gauge resulting in a ghost-free, 
covariant and unitary quantum field theory with a posi- 
tive field energy operator. 

Our starting point is the Hamiltonian formulation of 
the classical gauge theory of volume-preserving diffe- 
omorphisms of  in terms of a minimal set of un- 

constrained canonical field variables and with a mani- 
festly positive Hamiltonian as developed in [1]. This for- 
mulation specifies the physical field content of the theory 
and comes—after quantization—along with a positive- 
definite metric in the Hilbert space of state vectors and a 
manifestly positive energy operator, hence yielding a 
viable quantum theory. On the other hand it obscures the 
Lorentz- and gauge invariance embedded in the Lag- 
rangian formulation and comes at the price of non-local 
relations between the unconstrained field variables and 
the covariant ones of the Lagrangian formulation. 

The independent canonical field variables of the theory  

4M

 ˆ ,i aA x K


 together with their conjugate field vari-  are 

 * ,j b xables K
4 4

, defined on the product of space-time 
and an inner momentum Minkowski space M M

, 1, 2i j
, 

where , 1, 2,3a b  and  —in total twelve field 
variables without constraints apart from the reality condi-  

   *ˆ ˆ, ,i a i aA x K A x K  
, tions 

   *, ,j b jbx K x K   
3 4 4d dH x K   

. 

The Hamiltonian  specifying the 
field dynamics is given in terms of the Hamiltonian 
density [1] 
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To ensure its positivity the field variables have support 
on     4 K K  M V V

 
, where 

 4 2 0= 0, 0K K K K     V M

*
0

ˆ ˆ ˆˆ, ,a k c hd ij a k c

      (2) 

denote the forward and backward light cones in inner 
momentum space. The non-local functionals  

A A F A        
  

, , , 1, 2k h

 of the independent canonical  

variables with i j   and  also 
have support on 

, , 1,2,3a c d 
    4 K K  M V V . Their explicit 

functional form is specified in Equations (18) and (19) 
below.   is a parameter which carries dimension of 
length ensuring the dimensionlessness of all expressions 
when counting dimensions w.r.t. inner space. 

The energy of a field is positive if its support is limited 
to the forward and backward light cones Equation (2) in 
inner space—a condition which after expanding the fields 
into free waves in inner space is equivalent to the more 
physical one that for all free wave states the square of the 
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gravitational energy-momentum vector K which equals 
the invariant mass squared  is positive.  

 
2 2 0K M  

3a Finally we note that singling out the -field com- 
ponents is a pure matter of convention—we could have 
as well singled out the 1a  - or a -field com- 
ponents as will become clear further down. 

2

So H  is manifestly positive definite and specifies a 
consistent classical field dynamics in terms of the regular 
equal-time Poisson brackets 

    
   

0 0

3

,
x y

y Q*

4 4

ˆ , ,i a jb

ij ab

A x K

K Q x y


 
ˆ

  



 


         (3) 

for the unconstrained canonical field variables i aA


*
 and 

j b , as discussed in [1]. Note that the classical dy- 
namics corresponding to the Poisson brackets above is 
consistent with the support condition on the fields and 
that quantization of these Poisson brackets gives us a 
Hilbert space with positive definite metric for the quan- 
tum states. 



  together with a Hamiltonian density 

0πM n n M  for generic “matter” fields 
n

 ,m

  
x X  with conjugates n  π ,x X  is our starting 

point for the path integral quantization. Note that the 
unconstrained gauge field variables we start with are 
defined on K-space to manifestly implement the support 
condition on the fields ensuring a positive Hamiltonian 
and not on X -space on which the “matter” fields are de- 
fined from the outset for convenience. 

The Green functions of the quantized theory are de- 

fined as unconstrained path integrals over  ˆ ,i aA x K


,  

 * ,j b x K ,  ,m x X ,  π ,n x X

2, 1,2,3

*

2, 1,2,3

ˆ
m i a

a

n jb
b

d dA

d d

 

 





 with gauge and mat- 
ter field measures 

, ; , ; 1,

, ; , ; 1,

x X m x K i

x X n x K j







 

 

 
            (4) 

and weight 
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(5) 
Through a series of canonical field transformations and 

Gaussian integrations we next turn these unconstrained, 
but neither Lorentz- nor gauge-covariantly looking path 
integrals into Lorentz- and gauge-covariant ones. 

The first step is to bring  into a form symmetric in 
all three -indices, which, however, will obscure the 
positivity of the Hamiltonian. It is related to the  - 
matrix 

2

0

a b
ab ab

K K
M K

K
 

 

              (6) 

which is real and symmetric with eigenvalues 1, 1 and  
2

2

0

K

K
    2 232

0 1 aa
K K K


  . Here  is the Min-  

kowski square. 
 MBecause K

33
 is symmetric there exists an ortho- 

gonal  D K T 1D D

 

,  such that   -matrix 
2

T
2

0

diag 1,1,
K

MD
K

 
  
 
 

     ˆ ˆa a b
i b i

D . Rotating the field variables 

K D K A K 
A              (7) 

and using the same transformation for all the terms 
appearing in Equation (1) we can rewrite the Hamil- 
tonian density in the symmetric form 
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where we have applied the usual sum convention for 
. Note that starting with the - or  -field 

component singled out instead of the -field com- 
ponents in the definition of the Hamiltonian Equation (1) 
above and 

3a 

M  accordingly diagonalized as  

 

2

2

0
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K
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2

2

0
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K
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 
 

 

 respectively 

it becomes obvious that the support for all field com- 
ponents has to be restricted to  K K V V

 D K

 to en- 
sure positivity of the Hamiltonian. 

Due to the orthogonality of  resulting in 
 det 1D K   the gauge and “matter” field measures 

transform into 
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The second step is to Fourier-transform all the fields in 
inner space which is a canonical transformation. Omit- 
ting the x -coordinates for notational simplicity we have 

 
 

 ˆe ,iK X a
i i

4
4

2

d

2π
a K

A X   A K

ˆ a
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        (11) 

where the reality condition on A  
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i i    * *a a

i iA K A K A   X A X     (12) 

ensures that the fields over X -space are real. 
Note that the support condition on  ˆ a

iA K
 a

 does not 
translate into a simple condition on iA X  which is 
the reason why we had to start with Fourier-transformed 
fields to uncover a condition sufficient for the Hamil- 
tonian to be positive. The appropriate functional spaces 
over which path integrals are to be evaluated are then 
defined such that their Fourier-transformed elements 
have support on    K K V V . 

Fourier-transformation of a typical term in Equation (8) 
yields 
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which is an additional field defined as a functional of the 
canonical variables iA x X

0
. 

We formally take iA  as the zero component of a 
four vector in inner space. As a consequence the iA  
fulfil the unimodularity constraints in inner space 

0
0

a
i i aA A
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As a result we can re-write the Hamiltonian density in 
a form which is Lorentz-invariant in inner space 
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and where the additional fields 0A   are non-local func- 
tionals of 

i
  and A j  given by 
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0
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  fulfil the unimodularity constraint AThe 

0 0A 
                    (20)  

which is easily proven using Equations (15) and (16). 
Inverse Fourier-transforming and rotating 0

  and A

ij
  in inner space gives the explicit non-local func-  F

*
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0

 appearing in  

 of Equation (1) in terms of the original canonical 
variables we have used above. 

Adding a trivial integration over iA  and its con- 
jugate field by means of including delta functions in the 
gauge field measures which enforce the unimodularity 
conditions Equations (15) and (16) on i

  and A j  
the gauge and “matter” field measures become 

 

 
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, ; , ; =1,2, =1,2

m i i
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with the weight 

2

0 0
1

1
exp i i n n M

i n

i A
  



        
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which is a Lorentz-invariant expression in inner space. 
Note that the  -functions in the integration measures 
above do ensure that we integrate over gauge fields and 
their conjugates belonging to the gauge algebra 4diffM

i i i i

 
only. 

To keep the formulae below simple we next introduce 
the covariant derivative 

 A A   
                (23) 

as in [1] allowing us e.g. to re-express 
2

0 2
13

1
i i

i

A  




 
               (24) 

in a compact form. 
The third step is to turn the path integrals above into 

Lorentz-invariant expressions as well in space-time ap- 
plying the usual trick to treat 0A   as a new inde- 
pendent variable which we can integrate over [6]. The 
trick still works with the constrained measure Equation 
(21). In fact, as the weight factor Equation (22) is at most 
quadratic in 0

  we find that A
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 



 




   


  

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 

 





 



 (25) 

after a shift of integration variables  
2

1 i ii0 0 2
3

1
A A  


 


  

0

. Apart from a field-inde-  

pendent normalization factor this is the gauge weight 
factor Equation (22) with A   given by Equation (24) 
in terms of iA , j

 . 
The fourth step is to perform the corresponding j

  
integrations for fixed iA  and 0A   which is possible 
because  is quadratic in  j

 . After a shift of inte-  

gration variables 0

1
j j jF  


   we find 
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 

, ; 1,2, 1,2

2 2

0
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d
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i i i
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



 
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








 
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
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  


 

 

 

  
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i

i iF F

 
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 

  


  
 





0i i

 (26) 

Above we have introduced 

0 0 0 0i i iF A A A A A A           
     (27) 

and used that 0iF   is an element of the gauge algebra 
4diffM  as is easily verified. 

As a result Green functions are given as path integrals 
over iA , 0A   and m —assuming that the inte- 
grations over n  are Gaussian as well—with the gauge 
field measure 

 0 0
, ; , ; 1,2,x X x X i i

dA A dA  
1,2

i iA  

 


 

   
     (28) 

and gauge field weight 

2 2

, 1

3 0 3 0 .

ij ij
i j

F F

A A

 
0 02 2

1

2

3 32 2
1

1 1
exp

2 4

1 1

2 2

i i
i

i i
i

i F F

A A

 

 
 





 


 

3






 

 

    
 




   (29) 

  which 

vanishes identically in the Minkowski-plus-axial gauge 
and to finally recast the path integrals in a manifestly 
Lorentz- and gauge-invariant fashion in both space-time 
and inner space with gauge field measure 

 
, ; ,x X

dA A 
  

  
  

The last step is to introduce the variable 

            (30) 

and gauge field weight 

   3 exp -terms ,A i            (31) 

where 

A

2

1

4
F F 
   




4M

F A A

              (32) 

is the Lagrangian density of the gauge theory of volume- 
preserving diffeomorphisms of  and 

A A A A

  
    

   
     

   

   
       (33) 

are the covariant field strength components [1]. The  - 
terms indicate the appropriate imaginary parts of pro- 
pagators. 

Note that the measure Equation (30) is the gauge- 
invariant functional measure on the space of gauge fields 
living in the gauge algebra 4diff M

   

. Also note that the 
path integrals are to be evaluated over functional spaces 
which are defined such that their Fourier-transformed 
elements have support on K K V V

4

. 

3. General Gauge Fixing in the De 
Witt-Faddeev-Popov Approach and 
Ghosts 

In this section we define the quantum gauge field theory 
of volume-preserving diffeomorphisms of M  in ge- 
neral gauges based on the De Witt-Faddeev-Popov (FP) 
method introducing the ghost fields related to these 
gauges and the generating functional for Green functions. 

Following closely [6] we start noting that gauge-in- 
variant Green functions calculated as path integrals with 
measure and weight given by Equations (30) and (31) 
respectively are of the general form 

     
, ;

d Det ,n
x X n

B f               (34) 

 ,n xwhere X

, ;
n

x X n

d
 are a set of gauge and matter fields,  

   is a volume element and  

n

 is a functional  

of the   satisfying the gauge-invariance requirement 

    
, ; , ;

.n n
x X n x X n

d d       !        (35) 

n  denote the fields after an infinitesimal gauge trans- 
formation with local gauge parameters  ,x X  [1], 

 f ; ,x X   is a vector-valued non gauge-invariant 
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 gauge-fixing functional, B f
f

 a numerical functional de- 
fined on general  and   is the operator 

     
  0

,

,

f x X
x X

x X




 

 
 


, .       (36)  

Indeed, with fields n  taken as A 
  and m , and set- 

ting 

  3, ,f A A    

    , ,f x X

, ;x X

B f

   

   xp -ter

uge-invariant functio

M, e

ga

A i ms

nals of ,A

 



    



n

  (37) 

 A A
, ; , ; , ; ,

n m
x X x X m x X

d d d  
  


 

  3X  


 
    



4M

 

the integral  Equation (34) yields the Green functions 
of the gauge theory of volume-preserving diffeomor- 
phisms of  in the Minkowski-plus-axial gauge as 
defined above. Here we have used the fact that 

,A x    



,

            (38) 

is field-independent and Det  reduces to an overall 
normalization factor in the Minkowski-plus-axial gauge. 

Next, let us check the gauge-invariance requirement 
Equation (35). Under local gauge transformations we 
have [1] 

A A A A      
              

, ; ,

dA
, ; ,

Det
x X

dA
A



x X

A 
 

 
   

   
 

 

   .A A 
      

 
        (39) 

 

Calculating 

     A

A




           

 Det 1






    (40) 

we find that the functional trace of the logarithm of the 
above Jacobian vanishes—yielding  in Equ- 
ation (39). As a result the gauge field measure is gauge- 
invariant and the condition Equation (35) is fulfilled. 

Now we are in a position to freely change the gauge as 
path integrals of the form Equation (34) are actually 
independent of the gauge-fixing functional  ; ,f x X   
and depend on the choice of the functional  B f

4M

e generating r the Green 

fu

 only 
through an irrelevant constant. The proof of this crucial 
theorem is found e.g. in [6]—as all the steps in the proof 
hold true for the gauge theory of volume-preserving dif- 
feomorphisms of  as well we do not repeat them ex- 
plicitly here. 

As a result th  functional fo

nctions of the gauge theory of volume-preserving 
diffeomorphisms of 4M  in an arbitrary gauge and in 
the presence of “matter” fields is given by 

 , J

 

   

, ; , ; ,

2

d d

1
exp -terms

, Det , ,

m
x X m x X

M m m
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i S S J A
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 
  

  
 

  

 

  

        
 

   

   

 


 

(41) 

where we have introduced the external sources 



  and 
J —transforming as a vector in inner space—f r the 

atter” and gauge fields respectively. 
In order to further evaluate the gene

o
“m

rating functional 
above we choose 

 , exp GFA iS     B f

   4 4 4
2

1
d d , ,

2GFS x X f A f A
  


   

     (42) 

to be quadratic in the gauge-fixing functional  ,f A   
e and re- which transforms as a vector in inner spac

express the functional determinant as the Gaussian inte- 
gral 

   

 

 

* *

, ;

, ;

4 4 4 *
2

Det , d

d exp

1
d d , .

x X

GH
x X

GH

A

iS

S x X A


 



 




 
 

   

  

  

 

  

  






 





    (43) 

Above we have introduced the ghost fields  * ,x X  
and  ,x X  which are independent anti-c  
class bles. The 

ommuting
ical varia  -functions ensure that both 

sets of variables obey the same constraints as the gauge 
parameters   and that the corresponding operators 

* * 
    d an     are elements of the gauge 

algebra 4ff M  oves crucial in defining the 
BRST-symmet  operation later. 

What is the condition to represe

di which pr
ry

nt  Det ,A  above 
as 3)?  a Gaussian integral as in Equation (4

The condition is that for   in the gauge algebra 
 
  is in the gauge algebra as well. Then 

4 4: diffM diffM             (44) 

is an endomorphism of 4diff M . 
oduct Defining the scalar pr

   2
d , ,4 41

g h X g x X h x X
  

      (45) 

on 



4diff M  and restricting ourselves to vector-valued 
functions in 4diff M  which are square-integrable in the 

Copyright © 2013 SciRes.                                                                                 JMP 



C. WIESENDANGER 139

sens  scalar product above the corresponding func- 
tion space be a Hilbert space. For 

e of the
comes 

  being a 
selfadjoint endomorphism of 4diff M  with a complete 
system of orthonormal eigenvectors we inde ave Equa- 
tion (43) with the 

ed h
 -function atically taken ac- 

count of in the Gaussian integration. 
Finally we can write the generating functional for the 

Green functions of the gauge theo

s autom

ry of volume-pre- 
serving diffeomorphisms of 4M  in an arbitrary gauge 
as 

 
 

  
, ;

, ;

p

x X m

x X
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, ; ,
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(46) 
wher

, J

MODS S

 FP gauge
e-preservi

Expa
t

GF GHS S               

odified -fixed action for the gauge 
theo  volum ng diffe

nd s 
th

nsion, Feynman Rules 
and Asymptotic S ates 

f 
the  Green functions of the 

(47) 

is the m
ry of omorphisms of 4M . 

Equation (46) defines the quantum gauge field theory 
of volume-preserving diffeomorphisms of 4M  a  i

e starting point for the evaluation of matrix elements at 
the quantum level. 

4. Perturbative 

In this section we derive the perturbative expansion o
 generating functional for the

quantum gauge field theory of volume-preserving dif- 
feomorphisms of M4 and its Feynman rules in Lor- 
entz-covariant Minkowski gauges. We then use power 
counting to demonstrate the superficial renormalizability 
of the quantum gauge field theory of volume-preserving 
diffeomorphisms of M4. Finally we analyze the asymp- 
totic states of the theory and are led to introduce addi- 
tional quantum numbers related to the inner degrees of 
freedom of the theory. 

Working in Minkowski gauges with inner metric   
we use Equation (46) as the starti nt for pertur- 
ba

ng poi
tion theory. Splitting the action 

* * *
0, , , , , ,MOD INTS A S A S A                  (48) 

into
an

 the 
e i

part S c in the gauge and ghost
d th n S  we can rewrite Eq

0

teractio
 quadrati

n part 
 fields 
uation INT

(46) for the pure gauge field theory as 
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    (49) 
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 
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



 (50) 

is the generating functional for Green functions of the 
non-interacting theory and  , *  are sources for the 
ghost fields. Note that for consistency reasons all J ,  , 

*  have to be elements of the gauge algebra 4diff M . 
In particular, it is crucial that the conserved gauge-field 
currents 

J A F F A     
           (5 ) 

related to the global coordinate transformation invariance 
in inner 

  1

space and generating the self coupling of the 
gauge fields are elements of the gauge algebra 4

which is easily verified. 
diff M  

To derive Feynman rules we have to specify the gauge 
and choose 

 f A A  
             )    (52

as the Lorentz-covariant gauge fixing function resulting 
in 

   A A A  
         

       (53) 

which is easily shown to be an endomorphism of 
4diff M  as required. 

For the choice Equation (52) 0S  is calculated to be 

0 0,22
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S A A

*
02

1
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  
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  
           (54) 

 
   

  

where we have defined the non-interacting gauge and 
ghost field fluctuation operators by 

2
0,

1
1   

2
0

  

 
 

 
  

        

and the corresponding free propagators 0G  through 




  

 

     (55) 
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6) 

where 


        (5
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      (57) 

is the delta function transversal in inner space. The fac- 
  ensure the scale invariance of the r.h.s under 
ale transformations. 

After some algebra we find the propagators for the 
gauge and ghost fields to be 
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  

 
        (58) 

    


They are manifestly diagonal and local in inner space 
and invariant under local inner Poincaré transf

 

ormations 
   X X T x x X   

Both the fluctuatio

 
  , 

n operators and the 
 1,3SO

  . 
propagators are 

endomo s of rphism 4 , diff M i.e. if f  fulfills 
f 

 will 0  so   0, f  ,   0,G f
   and 0 f 

 , 

0G f 
 d ords the pro- 

pa
 as is easily verifie . In other w

gators are the inverses of the fluctuation operators on 
the functional space 4diff M . As a consequence the  - 
func tio  au - tions in the measure in  will be to
m

e g
ost field

Equa n (50)
atically taken care of in the Gaussian integrals above. 
Performing the Gaussian integrals over th auge and 

gh s we find 

* 0,
0 2

*
02

1
, , exp

2

exp
1

J i J G J

i G

  
  

 
 

t contribute to physical amplitudes 
and can be discarded. 

Insertion of the result above into Equation (
the unrenormalized perturbation expansion of t
rating functional of the Green functions of the quantum 

will have to deal with potentially 
di

asi
by Fourier-transforming inner space integrals as well. 

 

 

     

 







    (59) 

up to the functional determinants of the fluctuation op- 
erators Equation (55). These field-independent normali- 
zation factors do no

49) gives 
he gene- 

gauge field theory of volume-preserving diffeomor- 
phisms of 4M  which is plagued by the usual ultraviolet 
and infrared divergencies of perturbative QFT. On top of 
these divergencies we 

vergent integrals over inner space. We will show below 
that they can be consistently defined respecting the inner 
scale invariance of the classical theory. 

Next we give the momentum space Feynman rules 
which are e ly derived generalizing the usual approach 

The momentum space gauge field and ghost propa- 
gators are given by 

 

 

 

0, ;

1
1

G k K

k k




 
    

 
   

2 2 2

1
;

k i k K

K K
G k K




  





     
 

  

   (60) 

0 2 2k i K   
being transversal in

K K 

 inner space. The inner degrees of 
freedom do not propagate whereas the space-time parts 
of the propagators equal the well-known Yang-Mills pro- 
pagators. 

The particle content is now easily read off—there is an 
uncountably infinite number of both massless gauge and 
unphysical ghost fields—the latter to counter-balance the 
unphysical gauge field degrees of freedom arising in co- 
variant gauges. 

Next we calculate the vertices starting with the tri- 
linear gauge field self-coupling 

 2 A A A A    
          (61) 

corresponding to a vertex with three vector boson lines. 
If these lines carry incoming space-time momenta 1k , 

2k , 3k , inner momentum space coordinates 1K , 2K , 

3K  and gauge 

    

field indices  ,  ,   the con- 
tribution of such a vertex to a Feynman integral is 

 
 

2k

K k k

 
2 3 3

3 1 1K k k

2
1 22 K k 

   

 
   

 
   

  

  



      

wi

   

th 

1 2 3 1 2 30, 0.k k k K K K

 

    (62) 

             (63) 

The quadri-linear gauge field self-coupling term 

 2

1

2
A A A A A A     

          


  (64) 

corresponds to a vertex with four vector boson lines. If 
these lines carry incoming space-time momenta 1k , 2k , 

4k , inner momentum space coordinates 1K , 2K , 

3 4K  and gauge field indices 



3k , 
K ,  ,  ,  ,   

ral is the contribution of such a vertex to a Feynman integ

 
 



 
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
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 

 

(65) 

   

           

  
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with 

3 4 0.K K     (66) 

Finally, the gauge-ghost field coupling term 

 A A

1 2 3 4 1 20,k k k k K K    

2 *  
        

         (67

corresponds to a vertex with one outgoing and one in- 
coming ghost line as well as one vector boson line. If 
these lines carry incoming space-t enta 1k , 2k , 

3k , inner momentum space c 1K , 2K , K  
and el

) 

ime 
ordinates

mom
 o 3

 fi d indices  ,  ,   the contribution of su
 to a Feynman integral becomes 

 2 3 1

ch a 
vertex

2 K K k  
           

w

2 3 0.K K    

og  o
the ants in Yang-

g s ov
re 

 

   (68) 

ith 

1 2 3 10,k k k K         (69) 

In summary, the above propagators and vertices allow 
us to perturbatively evaluate the Green functions of the 
theory. Note that for any Feynman graph the anal on f 

 sums over Lie algebra structure const  
Mills theories are inte ral er inner momentum space 
variables with the scale-invariant measu

4
4

4

d
.

2π

K
      

As the vertices in such graphs contribute
in the inner space coordinate

that the gauge 
and ghost fields have the same can

           (70) 

 polynomials 
s K  to the integrand and 

as these inner degrees of freedom do not propagate such 
integrals look badly divergent—we will show in the next 
section that they can be consistently defined respecting 
the inner scale invariance of the classical theory. 

Turning to the space-time integrals and renormaliza- 
bility in the power-counting sense we note 

onical dimensions 
  1A   and  * 1       rel

g-Mills counterparts do. 
evant for power count- 

ing as their Yan
The corresponding divergence indices 1  of the tri- 

linear gauge field vertex, 2  o e quadri-linear gauge 
field vertex and 3

f th
  of the ghost-gauge field vertex 

vanish 

1 3 4 3 1 4 0,b d        
   

2 4 4 0,   

where b  is the number of gauge field and ghost lines 
and d  the number of space-time derivatives attache

   (71) 

d to 
the res vertex. 

ivergence 
pective 

Accordingly the superficial degree of d   
for any diagram with a total of B  external gauge field 
and ghost lines becomes 

4 B                     (72) 

which shows that only a finite number of combinations 
of external lines will yield divergent integrals. As a result 

the quantum gauge field theory of volume
diffeomorphisms of 4M  is renormalizable by 
ing. 

s

d in the next section. 
is

f 
eomorphisms of 4M  given by 

simultaneous eigenvectors of

rom

-preserving 
power count- 

Let u  finally consider the classification of asymptotic 
one-particle states assuming they are not confined which 
will be further analyze

To label the physical state-vectors we construct a bas  
of the one-particle Hilbert space o the gauge field theory 
of volume-preserving diff

 observables commuting 
amongst themselves as well as with the Hamiltonian of 
the theory. In other words we look for a complete system 
of conserved, commuting observables. 

The specific difference of the present theory to a Yang- 
Mills theory arises f  the structure of the gauge group 
—all observables not related to the gauge group remain 
the same and comprise the energy, the momentum and 
angular momentum three-vectors and other conserved 
internal degrees of freedom [5]. 

As the quantum gauge field theory of volume-pre- 
serving diffeomorphisms of 4M  and minimally coupled 
“matter” field Lagrangians are translation and rotation 
invariant in inner space we have the additional conserved 
observables—the gravitational energy-momentum ope- 
rator K  and the gravitational angular momentum ten- 
sor. As K  commutes with the already identified set of 
observables including the Hamiltonian (consistent with 
the Coleman-Mandula theorem) its eigenvalues K  be- 
come additional quantum numbers labelling physical 
states. In addition, as all “matter” fields transform as 
scalars and the gauge and ghost fields as vectors under 
inner Lorentz transformations inner spin becomes yet 
another quantum number. 

As a result we can find a basis of the one-particle 
Hilbert space 

, ; , ;all other quantum numbersk K       (73) 

labeled by he momentum four-vector k , the spin  t  , 
the gravitational energy-momentum vector K  and the 
inner spin   which is 0  for “matter” and 1 r the 
gauge and ghost fields of the gauge field theory of vo- 
lume-preserving diffeomorphisms of 4M . The relation 
of these state vectors to asymptotic states describing ob- 
servable particles with gravitational equal to inertial ener- 
gy-momentum and the d

 fo

efinition of the S -matrix is 
de

5. Effective Action, Renormalization at One 
Loop and Asymptotic Freedom 

 p ex
ulat

ef n c

veloped in detail in [7]. 

In this section starting from the formal erturbative - 
pansion derived in the last section we calc e the re- 
normalized fective actio  at one loop. The cru ial point 
is to note that space-time and inner space integrals in the 
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calculation of loop graphs completely ecouple which 
allows us to first regularize the potentially divergent 
inner space integrals appropriately. Note that any con- 
sistent definition must respect the inner scal  invariance 
of the classical action a

 d

e
t the quantum level as this 

linearly realized symmetry is a symmetry of the quantum 
 

in ncies related 
effective action as well [6]. This allows us second to deal

the usual way with the ultraviolet diverge
to the short distance behaviour in space-time and de- 
monstrate the renormalizability of the gauge field theory 
of volume-preserving diffeomorphisms of 4M  at one 
loop. 

Technically we derive a formal expression for the one- 
loop effective action of the quantum gauge field theory 
of volume-preserving diffeomorphisms of 4M  working 
in a covariant Minkowski background field gauge. We 
then define the inner momentum integrals using   as a 
cut-off and demonstrate the locality of the one-loop 
effective action in inner space. To prove the renormali- 
zability at one loop we calculate the divergent contri- 
butions to the functional determinant of a general fluctu- 
ation operator with differential operator-valued coeffi- 
cients in four space-time dimensions. Finally we deter- 
mine the one-loop counterterms, renormalize the one- 
loop effective action and calculate the  -function of 
both the pure quantum gauge field theory of volume- 
preserving diffeomorphisms of 4M  and the same 
theory minimally coupled to the Standard Model fields. 

5.1. Formal Expression 

To derive a formal expression for the one-loop effective 
action we work in a covariant Minkowski background 
field gauge choosing 

 , Bf A B A  
                (74) 

where 

B B B    
                   (75) 

is the covariant derivative in the presence of a back- 
ground field B  we will further spe  below. 

To get the one-loop expression for the generating func
cify

- 
tional Equation (46) we have to expand the exponent 

up to second order in the around its stationary point 
fluctuations. Starting with 
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   

 

  
  

where we have explicitly introduced a dimensionless 
gauge coupling 2g  and where 

  0B

B



 
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



 

 
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is easily shown to be an endomorphism of 

,A B A  





 


4diff M  as 
required, we get the field equations in the presence of J  
and B  

21
0

0
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B

F A g J     
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

  

     (78) 

e th oints 

 

They determin e stationary p  A ,A J B 
  , 

0  and * 0   around which we exp
the background field equal to the stationary

 

and. Setting 
 point 

   ,B J A J B  
!              (79) 

determines B as a functional of J at least perturbatively. 
Next we calculate the second variation of MOD he

na y points 
S  at t  

statio r

2
,2

*
2

1

2
,

MOD AS A A  
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
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


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   (80) 

g Ahere we have absorbed the factors of  in   and
calcu

 
lated the gauge and ghost field fluctuation operators 

to be 

1
, 1

.

A

2 2F F

    
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      



They are endomorphisms of 
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  (81) 

 

4diff M , i.e. if f  
fulfills 0f 

   so will ,A
 f 
  and f 

 , as is 
te easily verified. Note that we had to commu 

  with 

  to get the expression above for ,A


 . 

Taking all together we finally get 
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As the fluctuation operators are endomorphisms of 
4diff M  the integrals in Equation (82) are Gaussian and 

can be performed resulting in the usual determinants. 
Indeed, endowed with the scalar product Equation (45), 

4diff M  becomes a Hilbert space with a complete or- 
thonormal set of eigenvectors for each of the selfadjoint 
fluctuation operators above. These bases of the Hilbert 

ke the space ta  -functions automatically into a
and the integration over each eigenvector direction be- 
comes Gaussian. 

Defining next the generating functional for connected 
Green functions 

ccount 

   LnJ i J               (83) 

and the quantum effective action as its Legendre trans- 
form 

 A J A                 (84) 

in ual way we find 


 the us



 

1

,,0; Tr Ln Tr Ln
2

loop

MOD A

A

i
S A A i,0  


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  (85) 

which is the formal expression for the one-loop effective 
ac

e work with the sp choice 1
tion we were looking for. 
From now on w ecific    

and drop e subscript  th   to keep th
as simple as possible. 

initeness and Locality of Inner Space 
Integrals 

To get a well-defined quantum theory
at the functional traces in Equ- 

ation (85) above evaluated over inner space can be app- 
ropriately defined, an issue which does not arise in Yang- 
Mills theories of compact Lie groups due to th
volume of the underlying gauge groups. 

e calculations below 

5.2. F

 at the one-loop 
level we have to show th

e finite 

To define Tr Ln A  and Tr Ln   and to demon- 
strate their locality in inner space we note that both 
operators are of the form 

2
,

  

        
   

         (86) 

where | |, ,  
    

space and matrix-valued differential operators in
ki space. Th

    are both matrices in inner 
 Min- 

is form is quite general and can account kows
for covariant Minkowski background-field gauges such 
as in Equation (74) as well, however, for 1   the 
operator would take an even more general form. 

Properly normalizing and expanding the logarithm we 
obtain 
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which is manifestly invariant under local inner Poincaré 
transformations    

4
1 d nP
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X X T x x X   
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4
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d
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  (89) 
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it becomes obvious that the de ition of the 1P -integrals 
above over p omials in P uires care in order to 
avoid poten finities relat  the non-compactness 
of the gauge group. 

We regularize such integrals generalizing our app- 
roach to define the classical action of the gauge field 
theory of volume-preserving diffe hisms of 4M  in 
[1] and get 

fin
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ed to
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tial in
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Note that

2π

(
 this regularization respects the inner scale 

invariance. To write it in a Lorentz-covariant way we 
have used the fact that there is always a Lorentz frame 
with a tim e vector has 2 2Le-lik L  which    as its 
invariant length so that  1,0  L  in this frame. 
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Above, the differential operators act to the left and 
ordering obviously matters. Integrating over ,

(92) 

i jK X  for 
, 2,3, ,i j n  r  n yields the final expression fo   in 

this subsection 
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(93) 
The expression above for  n

  is not only finite as an 
integral over inner space, but also local in 1X . Note that 
the regularized integrals over P  coll  sums 
over products of metric

1 apse into
 tensors   and 

fa
in inner space 

ctors of   to some power ensuring the correct dimen- 
sion in inner space. These sums correspon

ants in the Yang-Mills case. 
As in the case of the classical Lagrangian the contri- 

butions  n

d to the sums 
over structure const

 to the one-loop effective action for    
are related to the ones for a given   by 

         , , , ,n nX A X X A X 
          (94) 

respecting the scale invariance of the classical theory as 
they have to because this invariance is linearly realized 
and hence an invariance of the quantum effective action 
as well [6]. 

At one loop the dependence of the theory on   is 
again controlled by its scale invariance. In other words 
up to one loop theories for different   are equivalent 
up to inner rescalings. This symmetry is not distroyed by 
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the renormalization required for the divergent space-time 
integrals with which we deal in the next subsection for 
the simple fact that both types of integrals and how we 
properly define them completely decouple. 

5.3. Divergence Structure of Space-Time 
Integrals 

We turn to calculate the divergent contributions to
functional determinant of a general fluctuation operator 
with differential operator-valued coefficients in four space- 
time dimensions in preparation of the one-loop renor- 
malization in the next subsection. 

To analyze the space-time divergencies occurring in 
Tr ΛTr Ln

 the 

Λ Ln A  and   we note that both operators 
ar

  (

rential operators in inner space. Again, 
this form is general enough to cope with covariant Min- 
kowski background-field gauges such as in Equation (74), 
howe e case 1

e of the form 
2

,


    
 

             95) 

where ,   are both matrices in Minkowski space and 
matrix-valued diffe

ver, th    is not included. 
Properly normalizing and expanding the logarithm we 

obtain 
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Now it is easy to read off the degrees of divergence 
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Above, we have used the results from Appendix A in 
[3] for the  n div

  for n = 1, 2, 3, 4 with 4d   and  
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4 2

1
 


. 

8
For fluctuations operators of the form 

, ,
             (101)      

where the gauge field   is a matrix-valued differential 
operator, we have 
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and using the cyclicality property of the trace, which is 
easily demonstrated, Equation (100) further simplifies 
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Above we have introduced the field strength operator 

,                     (104) 

which belongs to the gauge operator field  . 

5.4. One-Loop Renormalization 

With the formulae Equations (103) and (104) which hold 
true for general fields living on both space-time and inner 
sp
ren ili  theory o

g di sms o
 of “matter” fields. Note that after 

pr
s over 

inner space versus space-time variables if needed. In this 
section we perform the functional trace over space-time 
variables first. 

To analyze renormalizability we have to evaluate the 
divergent contributions to the one-loop effective action 



ace we are now in a position to analyze the one-loop 
ormalizab ty of the quantum gauge field f 

volume-preservin ffeomo f 4M  both in the 
absence and presence

rphi

operly regularizing the inner space integrals we can 
safely interchange the order of taking the trace

,1 loop A   in Equation (85). A short calculation shows 
that the fluctuation operators Equations (81) take the 
form of Equation (101) above with 

 2


 






 
 

   
    .

A

  
   

  
    

  
   







 
  (105) 

Taking the trace over space-time Minkowski indices 
w

d



 
  







  

  

  

 

 

 

 

  

e get the divergent contributions to the gauge field 
determinant in 4    dimensions 

0

1 1

D 
 44

Tr Ln

d Tr 4 4
12 2

div

A

X
i x  

 











 
 

44 5
4 d Tr ,

3 X
i x 



D

        (106) 
    

and to the ghost determinant 


   

44 1
Tr Ln d Tr

12

div

X

D
i x 


0

44

12

1
4 d Tr .

XD

i x 


  


    

  (107) 







  
      

Note that as for other gauge field theories it is the 
second term in Equation (106) which determin
of the gauge field contribution above—which 
determine the sign of the β-function of the quantum 
gauge field theory of volume-preserving diffeomorphisms 
of

Taking all together we find 

es the sign 
will in turn 

 M4. 

 ,1 loop

div
i

 

   

0

Tr Ln Tr Ln
2

i    
   0

div

div

A

A









    (108) 
44

4
1 2

11
d Tr

3
11 1

,
3

X
x F F

F F




 
 










  


   







where 
 1 3

1

720 4
 


 as calculated in [1]. The one-  

loop divergence is proportional to the original action of 
the gauge field theory of volume-preserving diffeomor- 
phisms of 4M  and the theory is renormalizable at one 
loop. Note the formal similarity of the formula above 
with the analogous expression for Yang-Mills theories, 
especially the occurrence of the universal numerical  

factor 
11

3
. 

As usual the divergent contribu  ,1
div

loop Ation    can 
be absorbed in the original action of the gauge field 
theory of volume-preserving diffeomorphisms through a 
redefinition of the gauge coupling constant 

 
 

2
4

5

11 1
1

3180 4
R

g
g g O g



 
   
  

    (109) 

where we have used 4 28
 


. 

As a result the one-loop effective action after regulari- 

1

zation of the inner space integrals and renormalization is 
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a perfectly well defi xpression. ned e
Th esponding e corr  -function of the gauge field theory 

of volume-preserving diffeomorphisms at one loop be- 
comes 

 
 

3

5

11

3180 4

g


          

and the theory is asymptotically free. 
 renormalized as we would 
oupling of inner and space- 

time integrals and their treatments. 

5.5. Inclusion of Standard Model “Matter”
Fields 

As

ysical interpretation of the 
ga e-preserving diffeomor- 
phisms of M4 it is thence crucial to extend the analysis of 
the asymptotic scaling behaviour above to include the 
impact of these other fields on the renormalized coupling 
and the 

g    (110) 

Note that   does not get
expect from the complete dec

  

 discussed in [1] the fields of the gauge theory of 
volume-preserving diffeomorphisms of M4 interact with 
all fundamental fields appearing in a QFT such as the 
SM of elementary particle physics through minimal 
coupling. For clarity we call all these other fundamental 
scalar, spinor and (gauge) vector fields “matter” fields in 
the sequel. For a potential ph

uge field theory of volum

 -function. 
To be specific let us do this analysis for the

which we mini-mally couple to the gauge field theory of 
volume-preserving diffeomorphisms by (1) allowing all 
SM fields t on 4 4M M  (with possibly the same 
restrictio support of inner space Fourier-trans- 
form    

 SM fields 

o live 
n for the 

ed “matter” fields to K K V V )—adding 

by (2 ives through covariant 
the nec l inner degrees of freedom—and essary add

) replacing or
itiona

dinary derivat
ones D A 

           in all “matter” Lagran- 
gians as usual. 

In Appendi  A we have derived the additional diver- 
gent contributions 

x
 ,1

div
loop A   to the one-loop effec- 

tive action contributing to the renormalization of the 
gauge field theory of volume-preserving diffeomor- 
phisms of 4M .  

To a ly pp this to the SM let us recall its field content. 
Th  e SM is built by gauging    3 2 1SU  
which leaves us with 8 strongly, 3 weakly and 1 electro- 
magnetically interacting gauge fields—12 in total. These 
fields interact with 3 families of leptons and quarks, two 
of which are structural replications of th

S

15 chiral Dirac fields for  
,a a

L Rd , where 1, 2,3a   i
ng color degrees of freed

U U 

e first family 
consisting of the 

, , ,a a
L Ru u nd

nteracti om. Finally 
of 

In total we have (see Appendix A for the derivation) 

, ,e L Re e
strongly i

d icates the 

there is a Higgs dublett adding two scalar degrees 
freedom. 

 
   

   

,1

,1 ,112

div
loop

div div
loop G loop

A

A A

 

,1 ,145 2

1 1

div div
D loop S loop A

 

   



    

4
1 2

44 24 90 2 ,
12

A

F F 
 

    
 

where 24 is the contribution of the S
of the leptons and quarks and 2 of the Higgs respectively. 

oupling 

        


 

 (111) 

M gauge fields, 90 

This translates into the renormalized c

 
 

2
4

5

1
1 2

180 4
R

g
g g O g



 
   
 

    (112) 


 

and the β-function 

 

3g

omorphisms of 4M  as we have 
do

the nilpotent BR

 of the gauge-fixed 
valence classes 

of
he generalize

art w  the modified action 

5
2

180 4
g  


            (113) 

of the gauge field theory of volume-preserving diffeo- 
morphisms of M4 minimally coupled to the Standard Mo- 
del fields. 

The combined theory is not asymptotically free and we 
expect the inner space degrees of freedom and the gauge 
and “matter” fields associated with them to be observable 
and asymptotic free field states to exist which we have 
discussed in detail in [7]. In this case it also makes sense 
to evaluate the classical limit of the gauge field theory of 
volume-preserving diffe

ne in [4] deriving Newton’s inverse square law of 
gravitation. 

6. BRST Symmetry and BRST Quantization 

In this section, we introduce ST trans- 
formations for the gauge field theory of volume-pre- 
serving diffeomorphisms of M4 and establish the BRST 
invariance action. We define the phy- 
sical states as equi of states in the kernel 

 the nilpotent BRST operator Q modulo the image of Q. 
Finally we discuss t d BRST quantization of 
the gauge field theory of volume-preserving diffeomor- 
phisms of M4. 

Let us st ith MODS  from Equa- 
tion (47) which may be written as 

*
2 2

1 1
,

2

MODS

S f f  
 

    
  

       (114) 

where we have introduced the quantity 

.  
                    (115) 

Next we re-express 
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 

 
2

exp
2

B f i f f 


   
 


, ;

2 2

1

d

1
exp

2

x X

h h

i h h i h f

 




 
 





 

 

     
  



 

    (116) 

as a Gaussian integral and introduce the corresponding 
new modified action 

   
 

*0,

0

s sA s s

s

 
 



*
2

1
NEWS S 



2 2

1
.

2
h f h h 
 


   
  

    (117) 

Green functions are now given as path integrals over the 

  
 

 

fields A , * ,  , h ,   with weight  

nst ion the gauge-fixed modified action S  
is not invariant under gauge transfor
is invariant under BRST transformations parametrized by 

 exp NEW Mi S S . 
By co ruct NEW

mations. However, it 

an infinitesimal constant   anticommuting with ghost 
and fermionic fields. The BRST variations are given by 

A  
*

0

.

A A

h

h

     

, , , ,

      

  

  
 

 


 

   

  

   



   

     

 

  



  

  (118) 

The transformations Equations (118) are nilpotent, i.e. 
if   is any *



 functional of A h    and we define 
s  by 

s                 (119) 

then 

 0 or 0.s s s            (120) 

The proof for the fields above is straightforward, but 
somewhat tedious. Here we just give a sketch of the 
verification of   0s sA 

   

 sA

 A A

  

0


 

A A

AA

 
  

 

     
     

     
  

 


  

  
   




   

        

 

 



 

 

    (121) 

tativity of 

 

 

   

    



   

using the chain-rule and the anticommu

 0, 0s s

  0,s sh s

 

 
   (122) 

The extension to products of polynomials in these fields 
follows then easily. 

To verify the BRST invariance of .

  
with  . As a result we have 

NEWS  we 
the BRST transformation acts on functionals
and gauge fields alone as a gauge transformation with 
gauge parameter 

note that 
 of matter 

  . Hence 

0.S                    (123) 

  
Next with the use of Equation (36) we determine the 

BRST transform of f

0

f
f


 

 


  
   

    

which yields 

     (124) 

*

2
h f h h

* * .
2

s f h

  
 

 




 
 

    

 
   

     
 

Hence we can rewrite 

,NEWS S s

      (125) 

                  (126) 

where 

* *
2

1
.

2
f h 

 
                 (127) 

Finally it follows from the nilpotency of th
transformation 

0.NEWS

e BRST 

                 (128) 

As for Yang-Mills theories Equation (128) shows that 
th

se  of 4M  is c
kern the BRST transformation modulo terms in its 
image. 

Equivalent to this is the requir
 between physical states ,| a  are independent of 

the choice of the gauge-fixing functional  . This im- 
plies the existence of a nilpotent BRS
w 2

e physical content of the gauge field theory of volume- 
pre rving diffeomorphisms ontained in the 

el of 

ement that matrix ele- 
ments

T operator Q  
ith 0Q  . Physical states are then in the kernel of Q  

0, 0.Q a b Q             (129) 

Independent tephysical sta s are defined as the equi- 
valence classes of states in the kernel of Q  modulo the 
image of Q . 

Finally let us note that as for Yang-Mills theories [6] 
we can generalize the Faddeev-Popov-de Witt quanti- 
zation procedure. In the general case one starts with an 
action given as the most general local functional of A , 

* ,  , h ,  with ghost number zero which is in- 
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variant under the BRST transformations Equations (118) 
and any other global symmetry of the theory as well as 
with dimension less or equal to four so as to assure 
renormalizability. Such actions are of the ge
[6] 

*

, ,

, , , ,

h

A h



neral form 

 

*, ,NEWS A

S s

 

   

  
  

       (130) 

s nctional respecting the re- 
strictions above. 

S -matrix elements of physical states annih
the appropriate BRST operator of the theory
i pendent of  . In addition, in the Minkowski-plus- 
a

e-preserving diffeomorphisms of 
oice of 

ability to All Orders 

In this section we sketch a p
of

ders. 
A general proof of the renormalizability of the gauge 

field theory of volume-preserving diff
4M , i.e. the existence of a finite, well-defined pertur- 

e action, has to comprise the analysis of 
ce structure and the renormalizability of 

space-time integrals as for Yang-Mills theories and in 
addition the verification that inner space
properly regularized respecting the scale inva
the classical theory which is a key condition as this is a 
lin metry which extends neces- 
sa ctive action. 

Turning to the first point we
employ the full machinery developed for the in- 

roof of renormalizability for Yang-Mills gauge 
theories as the general structure of the qu
field theory of volume-preserving diffeomorphisms of 
M

should be able to repeat all the steps in 
the renormalizability proof e.g. g
to 17 in [6] or in [8]. The only
sl

ng-

. 

e the 

 

  

with  being a general fu

ilated by 
 are then 

nde
x

M

ial gauge the ghosts decouple in the quantum gauge 
field theory of volum

4 , hence they decouple for any ch   and the 
theory is ghost-free. 

7. Renormaliz

roof of the renormalizability 
 the gauge field theory of volume-preserving diffeo- 

morphisms of M4 to all or

eomorphisms of 

bative effectiv
the divergen

 integrals can be 
riance of 

early realized classical sym
rily to the quantum effe

 note that we should be 
able to 
ductive p

antum gauge 

4 formally is close to that of quantum Yang-Mills theo- 
ries. Hence we 

iven in the Chapters 15 
 change arises from the 

ightly different form of the BRST transformations for 
the gauge field theory of volume-preserving diffeomor- 
phisms of M4 as compared to Ya Mills gauge theories 
requiring the adaptation of the analysis given in Section 
17.2 of [6]

Turning to the second point our approach at the one- 
loop level has been to (1) defin inner one-loop inte- 
grals using   as a scale-invariant cut-off as in Equation 
(91) 

 

4
1 1
4 4

d

2 2

P P

  reg

an

4d
integrand integrand       (131) 

d (2) on the basis of this definition to demonstrate the 
validity of the scaling law 

    
    

1

1

, ,

, ,

loop M

loop M

X A X

X A X

 



 







 




         (132) 

ensuring consistency and the uniqueness of the theory p 
nner re cal gs. 

The same strategy should work for any number of 
loops. Again (1) we regularize inner n -loop integrals 
arising in the calculation of the effective action by the 
scale-invariant prescription Equation (91) 

 u
to i s in

 

   

   

44
1
4 4

44
1
4 4

dd
integrand

2 2

dd
integrand

n

n

PP

PP


 

 

 

 



reg reg

sis of this regularization we should be 
able

2 2 

and (2) on the ba

      (133) 

 to demonstrate the validity of the scaling law 

    
    

, ,

, ,

n loop M

n loop M

X A X

X A X

 



 







 




           (134) 

ng that the inner scale invariance is a linearly 
realized symmetry o
noti

f the gauge field theory of volume- 
preserving diffeomorphisms of 4M  and hence a sym- 

his ensures 

T

metry of the quantum effective action [6]. T
the uniqueness of the theory up to inner rescalings at n  
loops. 

The locality of the theory in inner space for any 
number of loops follows from the non-propagation of 
inner degrees of freedom which can be most easily read 
off the propagators in Equatios (60). 

his completes the sketch of a general proof of the 
renormalizability and the essential uniqueness of the 
quantum gauge field theory of volume-preserving diffeo- 
morphisms of 4M . 

8. Conclusions 

In this paper, we have quantized the classical gauge 
theory of volume-preserving diffeomorphisms of 4M  in 
the path integral formalism starting with a Hamiltonian 
formulation of the theory with unconstrained, though 
neither Lorentz- nor gauge-covariantly looking canonical 
field variables and a manifestly positive Hamiltonian. As 
the canonical field variables obey the usual Poisson 
brackets the physical Hilbert space of states has positive 
norm and is ghost-free. 

Over various steps we then have brought the relevant 
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path integral measure and weight into a Lorentz- and 
gauge-covariant form allowing us to express correlation 
functions first in the Minkowski-plus-axial gauge and— 
applying the De Witt-Faddeev-Popov approach—in any 
meaningful gauge. On that basis we have developed the 
Feynman rules of the theory and demonstrated that the 
gauge theory of volume-preserving diffeomorphisms of 
M

hi
ha

parts of the quantum effective action at one loop in a 
background field approach. Here we had to deal no
with the usual short distance divergencies of 

ver inner space. We have re- 
gularized these based on the requirement of respecting 
the relevant inner symmetries (inner L
importantly inner scale invariance)—gen
by the finite sums over structure constants appearing in 

ult at one loop  negative 

4  is renormalizable by power-counting. Finally we 
have discussed the new quantum numbers appearing in 
the theory w ch label state vectors. 

Next we ve calculated and renormalized the diver- 
gent 

t only 
space-time 

integrals in a perturbation expansion [5,6], but due to the 
non-compactness of the gauge group, also with addi- 
tional divergent integrals o

orentz and most 
eralizing there- 

the perturbation series for the Yang-Mills case to the 
present one. The res  is a  -func- 
tion and hence an asymptotically free theory without the 
presence of other fields and a positive  -function and a 
theory without asymptotic freedom after minimally 
coupling the Standard Model (SM) fields to the gauge 
fields. 

Finally we have developed the BRST apparatus as pre- 
paration for the renormalizability proof to all o
given a sketch of this proof which in itself
open points to be further addressed. Yet we have demon- 
strated that the gauge theory of volume-preserving dif- 

heory: 
nam  have a positive Hamiltonian, a ghost free 
Hilb ace of states with positive norm
S-m . Taking this into account to
m hat the theory at the classical level yields a 

eno

i
such as the disappearance of the notion of a parti- 

cl

eloped in the con- 
te

 the ructure of the vacuum of the present 
theory—noting that unlike in the Yang-Mills case, where 

rders and 
 is one of the 

feomorphisms of 4M  is a quantum field theory ful- 
filling the key requirements towards a physical t

ely to
ert sp
atrix

onstration t

 and a unitary 
gether with the de- 

relativistic description of gravitation we propose the 
gauge theory of volume-preserving diffeomorphisms of 

4M  as a viable candidate for a r rmalizable quantum 
theory of gravity. 

On top, none of the well-known fundamental diff - 
culties 

e or the non-existence of non-trivial correlators arising 
in the attempts to quantize General Relativity or any 
other geometric theory of gravity [9,10] plagues the cur- 
rent approach as all the notions dev

xt of a relativistic QFT can immediately be generalized 
to our context. 

Also let us point to interesting not yet analysed ques- 
tions such as to  st

0F   implies that A  is pure gauge, in our case 
0F   also results from any constantA  —or to the 

perturbative calculation of correlation functions and scat- 
tering cross-sections which in the gravitational scattering 
of matter should result in the non-relativistic limit in 
well-known Rutherford-type formulae [11] allowing for 
further consistency checks. 

Finally what makes the gauge theory of volume- 
preserving diffeomorphisms of 4M  an attractive candi- 
date for a consistent classical and quantum theory of 
gravity in the first place is its structural analogy with the 
existing gauge field theories of the electromagnetic, 
weak and strong interactions [12-14]. If it was the “right” 
theory we would finally have a unified view of Nature 
and a consistent framework to describe all fundamental 
interactions at all accessible scales and without any logi- 
cal or mathematical rift between the worlds of classical 
and quantum physics. 
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doublet to the one-loop effective action 
of

9.1. G

 
Appendix Expanding MODS  around its stationary points  

* 0a a cB C  

Copyright ©

9. “Matter” Contributions to Divergent Part 
of One-Loop Effective Action of the Gauge 
Field Theory of Volume-Preserving 
Diffeomorphisms of M4 

In this Appendix, we calculate the divergent vacuum 
contribution of a gauge vector field, a Dirac spinor and a 
complex scalar 

 the gauge field theory of volume-preserving diffeo- 
morphisms of 4M . 

auge field Contribution  ,1
div

G loop A    

The vacuum amplitude of a Yang-Mills gauge field aB  
with gauge algebra indices , , 1, ,dima b A   mini- 
mally coupled to the gauge field theory of volume-pre- 
serving diffeomorphisms of 4M , where dim A  is the di- 
mension of the gauge algebra, is given by 

 

 

*

, ; , , , ;

d d d

exp -terms ,

a c
G b

x X a x X x X c

MOD

A B

i S


 ;b

 





 

    
   (135) 

where  a a a c
b b cbD B C B      is the covariant deri- 

vative in the presence of a gauge field B , a
cbC  the 

structure constants of the gauge algebra and *
b

 

 , c   

the ghost fields corresponding to the gauge-fixed action 

MODS  

   
2

 * , .b c
GH b cS B C

1

4

GF GH

a
YMS G G

1

a

MOD YMS S S S

ab c
cGF abS D C B D C B 


  

   

aC

  

  
     (136) 

  appearing in the gauge-fixing and ghost terms is 
background gauge field. Above we have mi
upled the Yang-Mills field to th

a nimally 
co e gauge field theory of 
volume-preserving diffeomorphisms of 4M  replacing or- 
dinary through covariant derivatives  

D A 
           yielding 

    ,
aa a a c

bb b cbD B D B D C B         (137) 

and introduced the field strength and the ghost fluc- 
tuation operator 

     

,

, .

a a a a b c

b ab
a cc

G D B D B C B B

B C D C D B

   




  


 (138) 

The bars over derivatives etc. indicate m

bc  
   

inimal coupl- 
ing to the gauge field theory of volume-preserving dif- 
feom isms of 4M . orph

b      in the absence of source terms 
and performing the Gaussian integral gives 

 ,1

*d d d

G loop

a c

A

B  
, ; , , ;, ;

*
,exp

b
x X a x X cx X b

a b b c
B ab b c

i
B B




   



     



1 2
,

2

Det Det ,B  

         



 
  

  
 (139) 

where 

,

1
1B ab D D D     

  abD F  


 
  

      

.b b
c cD D 

  
 

 (140) 

Taking everything together and evaluating the diver- 
gent contribution to the one-loop effective action with 
the use of Equations (139), (103) and (104) for 1   
yields for each independent gauge field and associated 
ghost 

  4
,1 1 2

,
6

div
G loop A F F 1 1

 


 


     
    (141) 

where we have discarded the factor dim A  which ac- 
ts for the number of independent gcoun auge fields. Note 

that such a term will reinforce asymptotic freedom. Note 
dition that this formula also holds in the in ad Abelian 

case where the ghost contribution in the presence of 
A  does not reduce to a field-i ndependent determinant. 

.2. Dirac Spinor Contribution  div A   9 D loop,1 

The vacuum amplitude of a Dirac field minimally coupl- 
ed to the gauge field theory of volume-preserving dif- 
feomorphisms is given by 

   
, ,

d d exp -terms ,D D
x X x X

A i S         (142) 

where   is a Dirac spinor and 

 DS D m                (1 )   43

the covariant derivative 
is the spinor action coupled to a Yang-Mills field through 

 a
aD B it B     . Here at  

is the generator of the gauge algebra in the fermion 
space. 

Again we have minimally coupled the Dirac field to 
the gauge field theory of volume-preserving
phisms replacing ordinary through covariant

D A 

 diffeomor- 
 derivatives 

          yielding 

    .a
aD B D B D it B             (144) 

Expanding DS  around its stationary points  
0aB     in the absence of external sources and 
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performing the Grassmann integral gives 

 
 

,1

exp

D loop A

i
, ,

1 2 2

d d

Det ,

x X x X




      



  



    (145)  



 



where 

2 2D D
1

.
2

D F 
          (146) 

Taking everything together and evaluating
gent contribution to the one-loop effective action with 
th

    

 the diver- 

e use of Equations (145), (103) and (104) yields for 
each independent Dirac spinor 

  4
,1 1 2 .

3D loop F F
1 1  div A      

     (

ork against asymptotic freedom. 
Note in addition that a chiral Dirac field co

 147) 

Note that this will w
ntributes just 

half of the value above. 

9.3. Scalar Doublet Contribution 


 

 div
S loop A,1   

The vacuum amplitude of a complex scalar double
mally coupled to the gauge field theory of volume-pre- 
serving diffeomorphisms is given by 

 

t mini- 

   -term ,S
†

, ,
d d expS

x X x X
A i S     s   (148) 

where   is a complex scalar doublet and 

    †

SS D 
  †D V       

is the doublet    2 1SU U  gauge bo- 
so

    (149) 

coupled to the 
ns of the electro-weak interaction through the cova- 

riant derivative  D B iB t iB y        
 

. 
Again we have minimally coupled the scalar to the 

gauge field theory of volume-preserving diffeomorphi- 
sms replacing ordinary through covariant derivatives 

D A 
        yielding   

    .B t iB y D B D B D i   


   


    (150) 

Expanding SS  around one of its stationary points 
0B B  


 and † constant    and performing the 

Gaussian integral gives 

 
 

,1

† †

, ,
d d exp

S loop

x X x X

A

i 

1Det 

   



      



     (151) 

 

where 

 †

.
† 

V
D D D

  

 

Taking everything toge  the dive - 
gent contribution to the one-loop effective action with 
the use


         (152)   

ther and evaluating r

 of Equations (151), (103) and (104) yields for a 
complex scalar doublet 

  4
,1 1 2

1 1
,

6
div

S loop A F F 
 


 


     

    (153) 

which holds independent of whether the 
nism is in place or not and will work agai
fr  th eld con- 
tributes just half 

Generally, (M4, η) denotes the four-dimensional 
kowski space with metric diag 1,1,1,  
letters denote space-time coordinates and parameters and 
capital letters denote coordinates and parameters in inner 

Specifically, , , ,x y z     denote Cartesian space- 
time coordinates. The small Greek indice

Higgs mecha- 
nst asymptotic 

eedom. Note at a single complex scalar fi
of the value above. 

10. Notations and Conventions 

Min- 
1 , small 

space. 

s , , ,     
from the middle of the Greek alphabet run over 0,1,2,3 . 
They are raised and lowered with  , i.e. x x   
etc. and transform covariantly w.r.t. the Lorentz group 

 1,3SO . Partial differentiation w.r.t to x  is denoted  

by 
x 


 


. Small Latin indices , , ,i j k   generally  

run over the three spatial coordinates 1,2,3  [5]. 
, , ,X Y Z     denote inner coordinates and g  the 

flat metric in inner space with signature , , ,    . The 
metric transforms as a contravariant tensor of Rank 2 
w.r.t. 4DIFF M . Because  Riem 0g   we can always 

 and the Minkoglobally choose Cartesian coordinates - 
wski metric   which amounts to a pa g rtial gauge fixin
to Minkowskian gauges. The small Greek indices  

, , ,     from the beginning of the Greek alphabet run 
again over 0,1,2,3 . They are raised and lowered with 
g , i.e. x g x

   etc. and transform as vecto

w.r.t. 

r indices  
4DIFF M . Partial differentiation w.r.t to X   is  

denoted by  X


  . 


The same lower and upper indices are summed unless 

indicated otherwise. 
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