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ABSTRACT 

Conventional interpretation of the Einstein Equation has inconsistencies and contradictions, such as gravitational fields 
without energy, objects crossing event-horizons, objects exceeding the speed of light, and inconsistency in scaling the 
speed of light and its factors. An isotropic metric resolves such problems by attributing energy to the gravitational field, 
in the Einstein Equation. This paper discusses symmetries of an isotropic metric, including scaling of physical quanti- 
ties, the Lorentz transformation, covariant derivatives, and stress-energy tensors, and transitivity of this scaling be- 
tween inertial reference frames. Force, charge, Planck’s constant, and the fine structure constant remain invariant under 
isotropic gravitational scaling. Gravitational scattering, orbital period, and precession distinguish between isotropic and 
Schwarzschild metrics. An isotropic metric accommodates quantum mechanics and improves models of black-holes. 
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1. Introduction 

The present interpretation of the Einstein Equation 
8G GT  

G

 in general relativity has troubling in- 
consistencies and contradictions, such as violation of 
semiclassical locality, quantum unitarity, time reversi- 
bility, and energy conservation [1]. For example, when 
an object crosses a Swarzschild black-hole’s event-ho- 
rizon, it attains the speed of light, giving the object 
unbounded energy for nearby observers. Apparently, 
conservation of energy must be grossly violated, at least 
for local observers near the event-horizon. Since the 
Einstein Equation explicitly conserves energy, then the 
Einstein Equation must not work for local observers. 
Conventionally, one assumes that the Einstein Equation 
works only for distant observers, but by their location 
within the massive cosmos, all physical observers are 
local observers. So, the present interpretation of the Ein- 
stein Equation does not work for any physical observer. 
Moreover, a rotating black-hole can have a naked sin- 
gularity, resulting in contradictions of time-travel [2]. 
Since the conventional model of a black-hole predicts 
objects to enter a region where the model no longer 
makes sense, then something must be lacking from the 
model. 

Since the Einstein Equation is designed to conserve 
energy, the failure to conserve energy must involve 
application of the equation, such as the failure to account 
for the energy density of the gravitational field. When 

one assembles electric charges on a sphere, one applies a 
force through a distance on the charges, and thus puts 
energy into the electric field. For gravity, ordinary mass 
plays the role of charge. When one assembles a sphere of 
mass, energy is released. So, a gravitational field should 
have negative energy density. The Einstein Equation 
equates 

T
, which is a contraction of the curvature 

tensor for space-time, to 

0 

d

, which is the local energy 
and momentum density. The fact that the conventional 
Schwarzschild metric for a black-hole is derived by 
solving the differential equations for G  for all 
regions around the singularity, implies that the gravita- 
tional fields have no energy nor momentum. 

The resulting Schwarzschild metric for a black-hole is 
anisotropic: While objects in the gravitational well look 
shorter in a radial direction, their azimuthal dimensions 
remain unaffected, as viewed by a remote observer. Then, 
the speed of light is also anisotropic, and one cannot 
consistently scale mass and energy, and complications 
arise in reconciling gravity with quantum mechanics. 
These contradictions and inconsistencies should inspire 
us to consider a different metric. 

2. Isotropic Metric 

An isotropic metric with the scaling for time reciprocal 
that for space, yields a distance differential  , in terms 
of a distant observer’s coordinates :  , t r
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d          (1.1) 

The speed of light as seen from a distance,  , in 
terms of that locally, , is  c

    2g t c        
1g 

r

c x t x g g , which means that 
since , light in a gravitational well moves more 
slowly. As a result, a gravitational field deflects light. 
Therefore, this metric is not “conformally flat”. Because 
the metric is isotropic, objects no longer cross event- 
horizons. For example, one can see that in the orbit Equ- 
ation (1.44) below, for a spherically symmetric potential, 

 is bounded. 
In matrix form for spherical coordinates, this isotropic 

metric is 
2

2 2

2 2

0 0

0

0 0

0 0 0

jk

g

g r
g

g r


 

  



2

2 2

0

0 0
,

sin 0

c g






 


 


d d d

   (1.2) 

so that the length differential 
2 j k

jkg  
44G

  2
2 ,G GV V 

lnV g 

              (1.3) 

is that in Equation (1.1). The  term of the Einstein 
Tensor equals the total energy density. For an isotropic 
metric, it has two terms, one that has the form of a charge 
density, and the other that has the form of an energy 
density of a field [3]: 

44 2 2G g           (1.4) 

where G  is the gravitational potential in terms 
of scale factor g . One should ascribe the energy density 
of ordinary matter to the first term of the Einstein Tensor, 
and the energy density of the gravitational field to the 
second term. In the course of deriving this form, one 
finds that the metric scales momentum-energy like it 
scales space-time. Mass differential  

2 4 2d dm c g E 2 2 2 2d c g   p
2d

        (1.5) 

corresponds to distance differential   in Equation (1.1) 
above. 

Explicit inclusion of factors of c helps to verify scaling 
factors of g in these equations. Unlike the isotropic 
metric in Equation (1.1), isotropic metrics rejected in the 
past were conformally flat. They also did not include the 
corresponding relation (1.5) for momentum and energy, 
nor the energy of gravitational fields in the Einstein 
Tensor (1.4). While the same isotropic metric by Yilmaz 
[4] has an implicit globally preferred reference frame due 
to flawed assumptions ancillary to the form of the metric, 
the gravitational fields for the metric here have rest 
frames that vary from point to point, as shown in Equ- 
ation (1.21) below. Such rest frames are consistent with 

frame-dragging. The “Parameterized Post-Newtonian” 
(PPN) parameters for equation (0.1) as defined on pp. 
1084-1085 of Gravitation [5] are: 3 2  1.  , 

0 ,  0  , 1 1 ,  2 1 ,  3 1 4 1,    ,  

1 8 7 0, 2  0, 1  , 2   1  0, 3   . The non- 
zero value for 2  is consistent with the existence of rest 
frames, although there is no globally preferred frame. 

For a point source without rotation, metric scaling [3] 
21 .g GM rc 

2tt

             (1.6) 

Since this scaling appears in the metric as  

xx yy zzg g g g g    , it is the same as Schwarzs- 
child metric  21 1 2ttgrr g GM rc  

G

0r

 to first order 
in the gravitational constant , but differs greatly in the 
strong field limit. For example, the event-horizon is at 
  for an isotropic metric. So, one must look at 

strong gravitational fields to distinguish between them. 

3. Scaling of Physical Quantities 

It would help to consider scaling of physical quantities, 
to avoid blunders in gravitational scaling, and to identify 
those quantities that are invariant. Suppose a local ob- 
server in a gravitational field measures the distance be- 
tween events, and a remote observer external to the 
gravitational field measures the distance between the 
same two events. In local coordinates, 

2 2 2 2d d d ,c t   r

2 2 2 2d d d .c t

             (1.7) 

while in remote coordinates, 

     r
d d

            (1.8) 

g r r  and  In terms of remote coordinates, 
d dt t g . These substitutions into Equation (1.7) give 
the distance differential (1.1) from which one may infer 
the metric tensor, and calculate the affine connection and 
Einstein Tensor. Substitution 2c c g 

2 2 2dg
 into Equation 

(1.1) yields   

0 1 1 1 2 2d d d ,g g g

, which shows that scaling is 
transitive for successive reference frames: 

             (1.9)  

Scale factor g  grows to values greater than one, 
toward an attractive gravitational potential  lnV g G . 
So, d d gr r

d dt g t

 shows that, as seen by a remote observer, 
an object in a gravitational well is shorter. For time, 
  ; energy, E E g  g; momentum,  p p

2u g u  3m g m 


8G g G 

; 
energy density ; and mass, . Force 
and angular momentum are invariant. So, all observers 
agree on the value of . 

The gravitational constant scales as . To 
change the scaling of a physical quantity, one can mul- 
tiply by powers of 2g c c . For example, the di- 
mensionless quantity in g , 

  
  

8 3

2 1 4 2GN GN

g G g mG m
V V

r c g r g c



 

 
   

 
      (1.10) 
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is invariant under scaling. By c , 
4Gc  is invariant under scaling, and 

 redistributing powers of 
2 2c mc g    m

scales like energy. 

Equa  magnetic per-
To preserve the symmetry of the Helmholtz-Maxwell 

tions, the electric permittivity   and  
meability   scale t ame way. Then he s

2 4 2 41 ,c g c g               (1.11) 

shows 2g    and 2g   . Energy density of an elec- 
trom

2

2

  

 

E B

agnetic field, 

   2 2g g 

2 2

2

g u u  

E B
        (1.12) 





shows that  E E  and  B B . Also, 24q r E  
h  q


ructure constant shows t at electric charge , and fine st

2 4   arian

z 

Although the  in the local 
orentz 
 coor- 

q c  are inv t. 

4. Scaling in a Lorent Transformation 

 metric is Lorentz invariant
reference frame, where scaling 1g  , it is not L
invariant for all observers. With proper choice of
dinates, a Lorentz transformation of a vector A  is  

1

2

3

0 0

0 1 0 0

0 0 1 0

c A

A
A A

A


  
 

 



  
  

       
  (1.1

4

,

0 0

v

v c A 
     

3) 

where the Lorentz scaling is 
1 2 1 22 4 2

1 1 .
v g v

c


 
   

      


      (1.14) 

To simplify display in the rest of this section, dimen- 
sions not affected by a Lorentz transformati
displayed. Then a Lorentz transformation and its inverse 
ar

2 2c  

on will not be 

e 
1

4

1

1

v c A

v c A


  
  

  
              (1.15) 

11

1

v c
4

.
A

v c A


   
   

While the metric is not Lorentz invariant for all ob- 
servers, the length differential is, w
form 

            (1.16) 

hen written in the 

2d   † 1 0 d
d d d d ,

0 1 d

x
g x c t

c t
 



Insertion of the Lorentz transformation and its inverse 
shows the Lorentz invariance of the length differe

1 1
d ,

 
  

   
  

 (1.17) 

ntial, 

2d    †d g  
  

  
      

 
     (1.18) 

where 
 , 

 , 
 , and 

  are all the same Lorentz 
transformation. Then the Lorentz transformed metric 

2 1 1 0 1

1 0 1 1

v c v c

v c v c


    
    


   (1.19) 

  

is Lorentz invariant. But, in remote coordinates, Equation 
(1.17) becomes, 

 


2 d0

d 

2

2

1 0 d
d d d

0 1 d

d ,
d0

g x
g x c t g

c t g

c t
c tg





      

    

where in the last step, the scaling transfers from the coor- 
dinates to the metric tensor. Insertion of a Lo
formation and its inverse, in remote coordinates, shows 
that the Lorentz transformed metric is 

xg
x

  
    

    (1.20) 

rentz trans- 

2 2
2

2 2

1 0

1 0

g

g v c g

g v c g

   
 

2

2

2 2 2 4

2

4 2 6 2 2

1

1

1 1
,

1

g v c

g v c

g v c g v c

g v c g g v c











   
     
 
  

    
 
    

   (1.21) 

yielding a length differential in expected form in remote 
coordinates, 

2d †d dg 
                         (1.22) 

 † d d
d

g x v t
g
 

   
   3dc t g g x v c   

 

2 2 2d d 2 2 2x c t g gg   †d d .g 
   

Under a Lorentz transformation, the metric loses its 
isotropy, and acquires off-diagonal terms. Diagonaliza- 
tion generates the Lorentz transformation back to the 
local rest frame of the gravitational field, where the me- 
tric scaling factor g  appears like an eigenvalue. 

5. Scaling in Stress Tensors 

Covariant differentiation of vector A , 

,k
; , kA A A                     (1.23) 

in takes into account both the change A , in ,A   , and 
ation of Aan additional apparent transform   in the 

kcurved space, in k A  , where the h C ristoffel symbol 
for the affine connection is  

 1
, , , .

2
k

k k kg g g g 
          (1.24)    
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For example, the riant derivative in the y-direction 
of a vector along the 

 cova
x -direction is xA  is 

; ,

, , ,x y y x x y ,

x y
x y x y xy x xy yA A A A

A g A g g A g

       

    
  

  

If one divides through by 2

    (1.25) 

g ,  

   

2
;

2
, 1 1

, ,

x y

x y x yy x

A g

,A g g A g g A



  



   

th  where the terms are scaled 
to the local observer’s coordinates, plus a rotation: 

g
  (1.26) 

en the equation takes a form

 ,
1 .; ,x y x y yx

A A g A           

 vec- 
tor potential couples to fermion mom

 

  (1.27) 

So, covariant differentiation implicitly accounts for 
scaling. 

Since, in the Dirac Equation, the electromagnetic
entum and energy, 

as in p qA  , and since charge q  is unaffected by 
scaling, then each component of the vector potential 
should sc



ale like the operator to which it couples. For 
example, x xA gA   scales like momentum. The elec- 
tromag or in covariant form 

, , ,F A A

netic field tens

                   (1.28) 

contravariant form, 

, , ,F g A g A    
           (1.29) 

and mixed form 

,F g F
                    (1.30) 

all appear in the electromagnetic stress te

 

nsor 

1

4
4 .g F F F F   

 


    (1.31) 

use 
 space. As 

shown above, covariant differentiation also accounts for 
scaling. 

M  

If a gravitational field is present, then one should 
covariant differentiation, to account for curved

; ;

, ,

.

k k
k k

F A A

, ,

A A A A

A A

    

     

 

    

 

   (1.32) 

   

To preserve the symmetry of Equation (1.28), which 
suppresses factors of c , and to keep scaling consiste

s of 4
nt 

for the two term F n require 4, one ca A  to couple 
to E c g E c , instead ne  operator    of the e rgy E  

 s  all components  the vecto otential scale 

o
sp

alone,
lik

o that

2

of r p
e momentum. In the same way, any other derivative 

with respect to time sh uld be divided by a factor of c , 
to scale it like derivatives with respect to ace. Then, 
g g  and 

2g g   for all diagonal componen  

of the metric. Since, 

ts

A  scales like momentum, then 
A gA    and 2F g F   . Likewise, since  
A A g   , then F F 

  
  , and 2F F g   . One 

should expect M   to scale like an energy density 
. The scaling for the forms of 2u g u  F  suggest that 

M   scales as 2M M
which are rmitivity 

g   . The implicit factors, 
 the pe  and permeability  , scale 

as 2g   wn above uation (1.11). , as sho  in Eq There- 
fore, to get the expected scaling for M  , one should 

de by a factor of also divi 2c c g  . 

6. Orbit Equation for an Isotropic Metric 

Recently, long-lived stars have been found orbiting the 
black-hole in the center of the Milky y galaxy, in 
unexpectedly small orbit

Wa
s [6,7]. Measurement of the 

ish precession of orbits might make it possible to distingu
between a Schwarzschild metric and an isotropic metric, 
especially if one can observe an orbit smaller than the 
Schwarzschild radius. Furthermore, for an isotropic me- 
tric, non-decaying orbits exist at all distances from a 
black-hole. 

As usual, equations of motion are 
2

2

d d d
0 .

d dd

  



  
 

            (1.33) 

For  t  in Equation (1.33), 
2

,d d drgt t r
2

0 2 .
d dd g  

  
             (1.34) 

Integration yields a constant of motion 

2
.

dtk
g

1 dt




                     (1.35) 

This scaling might seem to contradict d dt g    
ev 5) describes a 
curved orbit, while that in (1.1) describes a straight-line 
distance. From (1.1), 

ident in (1.1), but the scaling in (1.3

2

2 2

d d
1 .

d d

c c

t g gc t





  
  

r
    ) 

Substitution of this 

    (1.36

d dt   into (1.35) shows that 
along an orbit, 

gck .t                    (1.37) 

Special and general relativistic effect
m rg

nstant t

of Equation 

s have the same 
agnitude. The orbiter’s ene y and the remote obser- 

ver’s metric determine co  of motion k . 
Application (1.33) to     , the 

polar angle, yields 
2

,

2

d 1 d d
0 2

d dd
rg r

r g

 

d d
2cot .

 
  

       

d d

 
 

    (1.38) 
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With choice of coordinat hat cot 0es such t   , this 
equation integrates to a constant of motion that is the an- 
gular momentum, 

2 2 2 2d d

d d
4 2d

t

t
k g r g r k g r dt

  
 


     


    (1.39) 

2 3 2 ,g m r

Again, scaling for this constant is reconciled to in- 
variant angular momentum,  

L r p m r            

b tion t

        (1.40) 

y substitu gck  . While all observers agree on 
th

 momentum varies over its 
orbit, since its rest mass does not change
verses different values of the metric. 

at

e angular momentum of a particle, the contribution of 
the particle to the total angular

 while it tra- 

For r   in Equ ion (1.33), 
22

,2 2
2

2 2
, ,2

d d
0 sin

dd

d d

r

r r

gr
r r

g

g gr t
,

d d
c

g g






 

  

  
   

       
  





which reduces to 

    

    (1.41) 

2d
1

d

d

r
r ,

2 4 3

2
, , .

d

r

r t r

kg

g g r

g k gr

g g







 

 
   

   
 

          (1.42) 

Integration of this equation gives 




 

2 2

2 2

2

2

4 2

d d d

d d d

,

r r t

t

k

r


 
                 



       (1.43) 

where 

2
2t
t

k c g
k g

  

2

6 2 8 2 ,
t t

k2
2

4 2

1c
r

g k g
  

k g r



    

which is an expansion of Eq 7), t

       (1.44) 

uation (1.3 gck  . At 
tly small r , the n s of Equation 
ake 2 0r  . Unlik arzschild metric, 

its exist at all radii fo
lication of Equa

sufficien
4) m
le orb
ltip

egative term
e the Schw

r a
.43) by 

(1.4
stab
Mu

n isotropic metric. 
tion (1 2

0 2m c  gives an 
ation. effective potential in the Newtonian approxim

22 2 2 4 2 2
0 0 0

2 4 2
0 0

22
0 0

2
0

d

2 d 2 2

22

m c m c m Lr

m c m g r

m c GE

rm c



     

  


    (1.45) 

2 2

2 2 3
0 0

2

2

M m

L G M L

m r m c r



 

 
  

 


to first order in G . The last term comes from the har- 
monic expansion  

 
1

11
2

2 3

1 1

1

G M
g

r c


         

    



  

   

Expansion (1.45) first differs from that for a Schwarzs- 
child metric in the factor of two on the last term. So, 

orb
warzschild metric. Since, 

0L m r

    (1.46) 

correction to the ital period for an isotropic metric is 
twice that for a Sch

2  ,  
2

0
2

4
1 ,

2

G M m mr G M

r r c

           



w

     (1.47) 

hich then yields 
3

2
2

4
1 .

2

r G M
T

G M r c

         
        (1.48) 

The ratio d dr r     from Equations 
s the o

(1.39) and 
(1.44) give rbit equation 

2 2 4 2
2

2 2 2

d 1

.
tk c gr g

r
k k r 


  


    

With expansion to 2

d
   (1.49) 

K  of powers of  
21 1g K r G M r c         , Equation (1.49) becomes 

 
2 2 2

2 2 2 2

2 2

101
1 .

t

t

k c

r k

K k c K

r k k



 

 2 2
4 2 2 2

1 d 1
4 2

d t

r K
k c

r k k 
 



2




 
      

   (1.50) 

r

    



For the Newtonian app oximation, 
 1 cosr A B D   , where A , B , and 1D    , are 

constants to be determined, 

 2 2 2 2d
2 1 .

d

r
r D B A A r r




         (1.51) 

Comparison of the above two equations shows that 
2 21 9 2D K k  . The precession 2 29 2K k  is 50% 

la schild metric. The 
com tation of

rger than that given for a Schwarz
parison would be complicated by ro  the 

gravitational field. 
For scattering, 1 0r  . For a massless particle at this 

limit, 0tk gc c  , because g is one; and  
4 2

0 0 0 0 0tk k g r r v L m c L m c           , where r  
is
small deflection, i

 the impact parameter and v  is the initial speed. For a 
n this limit, 2 sin  . 

 
   

2
0

22 2 2 2
0

4 2
2sin

1

K







 0

22
0 4

2
K0

2

2 1

4 2
1 1

k K

K K

k rk



 







 


         

K

r





       


 (1.52) 
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s for an isotropic metric, versu

4 2K K 
1

3r r 

 
      

           (1.53) 

for a Schwarzschild metric. 

7. Inconsistency for a Schwarzschild Metric 

The Schwarzschild metric has inherent inconsistencies, 
ale the speed of light. For 

 

mostly due to neglecting to sc
the Schwarzschild metric,  

 
2 2

2 2 2

d d

d d

s

2 2 2 2sin d .

g t

r c







  
 (1.54) 

As already explained, primed quantities are distant 
 

sr g r   

measures, while unprimed are local measures. For a point
source, the Schwarzschild metric scaling 

21 2 ,sg G M r c               (1.55) 

where c  is one. The standard interpretation assumes 
that all observers agree on the metric. Therefore 

.r GM r              

,n
sE g E         

n

  (1.58) 

With e scaling for c  for radia

G M   (1.56) 

To relate the gravitational potential energy of a system, 
as measured locally, to that measured remotely, suppose, 
as an ansatz, that energy scales as 

           (1.57) 

where  is yet to be determined. Then 
2 2.n

smc g m c                

 th l motion, 
1 2

1
1 2

dd
.

d d
s

s
s

g rr
c c g

t g t




  


         (1.59) 

W  scaling for c  for aith zimuthal motion, 

1 2
1 2

d d
.

d d s

r r
c c g

t g ts

  
  


        (1.60)

Sub tion for c  into Eq
at

2 2 2.n
sg m c

 

stitu uation (1.58), from Equ- 
ion (1.59) yields 

mc       

Then substitution into Equation (1.56) shows that 
vi n

         (1.61) 

gra- 
tational potential e ergy scales as 

2n
s

GMm G M m G M m
g

r r r
   

 
 

Th

hwarzschild me- 
tric implies a preferred remote frame of reference in 
which physics is self-consistent; one cann
tials to

chwarzschild metric. Further 
reason is provided by the symmetries of scaling for an 

ch as that between the length differen- 

NCES 
day, Vol. 66, 2013, pp. 30-35. 

has the same problem. Therefore the Sc

ot use poten- 
 conserve momentum and energy in any physical 

reference frame. In contrast, an isotropic metric has self- 
consistency across all inertial frames of reference, as 
shown by Equation (1.9). 

8. Conclusion 

That an isotropic metric accounts for the energy of a 
gravitational field, should be sufficient reason to adopt an 
isotropic metric over a S

isotropic metric, su
tial and the mass-energy-momentum equation. The in- 
variance under isotropic scaling of force, angular mo- 
mentum, electric field, electric charge, and fine structure 
constant provide consistency of general relativity with 
both quantum mechanics and electromagnetism. Orbits 
no longer cross event horizons. Inconsistencies in scaling 
for a Schwarzschild metric make the Schwarzschild met- 
ric untenable, necessitating adoption of the isotropic 
metric. 
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The scaling of this gravitational energy contradicts that 
in Equation (1.57). e scaling for c  in Equation (1.60) 
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