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ABSTRACT 

Model of an atom by analogy with the transmission line is derived using Maxwell’s equations and Lorentz’ theory of 
electrons. To be realistic such a model requires that the product of the structural coefficient of Lecher’s transmission 
lines σ and atomic number Z is constant. It was calculated that this electromechanical constant is 8.27756, and we call it 
structural constant. This constant builds the fine-structure constant 1/α = 137.036, and with permeability μ, permittivity 
ε and elementary charge e builds Plank’s constant h. This suggests the electromagnetic character of Planck’s constant. 
The relations of energy, frequency, wavelength and momentum of electromagnetic wave in an atom are also derived. 
Finally, an equation, similar to Schrödinger’s equation, was derived, with a clear meaning of the wave function, which 
represents the electric or magnetic field strength of the observed electromagnetic wave. 
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1. Introduction 

A hundred years ago, classical physics, with Newton’s 
mechanics and Maxwell’s theory, couldn’t explain de- 
termined properties of atoms [1]. For that reason Max- 
well’s equations are neglected in modern physics, despite 
the fact that matter is composed of electrically charged 
particles, and that static and current electricity are in 
complete harmony with Maxwell’s equations. The main 
motive of this paper is to show that the atom can be ex- 
plored using Maxwell’s equations. Moreover, I want to 
show that, in addition to Maxwell’s equations and Lor- 
entz’ theory of electrons for the basic research of the 
atom, nothing more is needed. By using Maxwell’s the- 
ory differential equations of the electromagnetic wave in 
any space are derived. This space could also be the space 
within the atom. These differential equations have the 
same form as the differential equations of wave on the 
parallel-wire transmission line, on the so-called Lecher’s 
line [2]. Therefore, this electromagnetic wave, with the 
same differential equations, is treated in analogy with the 
wave on Lecher’s line. Here I show a model of atom [3], 
where structural coefficient of Lecher’s transmission line, 
corresponding to a certain atom, multiplied by their 
atomic number, appears as a structural constant 8.27756, 
which is a universal constant. This constant builds the 
fine structure constant, and with other constants builds  

Planck’s constant [4]. The energy and momentum of the 
electromagnetic wave can be determined using Max- 
well’s and Lorentz theory. This paper makes it possible 
to eliminate some disadvantages of classical physics 
mentioned at the beginning. 

The idea of this article is that it is not possible to make 
the same thing in two distinctly different ways in nature. 
Therefore an electromagnetic wave that originates in the 
atom and the electromagnetic wave in the macro world 
have common ground. Due to identical differential equ- 
ations a linking of electromagnetic wave in atoms and 
wave on the transmission lines is possible. 

This linking of waves in atoms and waves on the trans- 
mission line is carried out using the parameters of atoms 
and transmission lines, as well as through their energy. 

Researching electromagnetic energy from transmission 
lines it was determined that this energy can be expressed 
as linearly proportional to the frequency of oscillation of 
its own LC circuit. Proportionality factor leads to struc- 
tural constants and action constants. Structural constant 
is introduced so as to make action constant independent 
of LC circuit natural frequency. Here, in a unique way, 
we can determine the value of the action constant. It’s 
shown that action constant is equal to Planck’s constant 
h. 

Then we determine the frequency of the wave in the 
atom, the wavelength, phase velocity and momentum of  
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the wave. 
Knowledge of these quantities allows determination of 

the properties of space in which these phenomena take 
place. 

Finally, we can determine the wave equation accord- 
ing to which all of these phenomena are governed by 
investigating the atom. 

2. The Atom and the Transmission Line 

Using equations of Maxwell’s theory, [5], it is possible to 
obtain the states of the electric field (vector E) and mag- 
netic field (vector H) in any space, even within the atoms. 
The mathematical description of these states are pre- 
sented with two second-order linear partial differential 
equations (wave equations) [1,6]: 
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where  is del-squared, 
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, t is time  

and em  is phase velocity of the electromagnetic wave, 
which dependents on the medium, i.e., em 1 u ; 

r 0    is permittivity, r  is relative permittivity, 0  
is permittivity of free space, r 0    is permeability, 

r  is relative permeability and 0  is permeability of 
free space. 

The same form of differential equations as previous, 
but only in one dimension, [2], is also present on the par- 
allel-wire transmission line, called Lecher’s line, con- 
sisting of a pair of ideal conducting parallel wires of ra- 
dius  , separated by  , wherein the ratio    : 
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where  ln 1 4 π  L  is inductance of Lecher’s  

line per unit length and  2
ln 2 2 1C'         

u
dz

dz

  

is its capacitance per unit length,  is voltage at the 
entrance to the element  of Lecher’s line, and i is 
electrical current at the entrance to the element  of 
Lecher’s line [2,4]. 

The same form of differential equations for example 
those in the atom and on the Lecher’s line, allows finding 
unknown solutions in the atom using known solutions on 
Lecher’s line. In this case, the voltage u on the Lecher’s 
line is analogous to the electric field E, while the electric 
current i on the Lecher’s line is analogous to the mag- 
netic field H. Therefore, the voltage and current on 
Lecher’s line behaves the same way as the electromag- 
netic wave in the atom. The analogy between the wave 
on the transmission line and electromagnetic wave will 
be completed when we put that energy into transmission 

line, then it is equal to the energy of the electromagnetic 
wave. 

On one hand, such transmission line can be regarded 
as a limiting case of an LC network with infinitely small 
capacitors and inductors [7]. If all small capacitors of the 
network are put on the open end (C), and all small in- 
ductances are put on the shot-circuited end (L) of 
Lecher’s line, then the natural frequency of such os- 

 cillatory circuit is 1 2 LC  

E

, [8]. 

3. Electromagnetic Energy in an Atom and 
on the Transmission Line 

We can determine the amount em  of electromagnetic 
energy of a wave and bring that energy to the LC circuit 
formed in the manner described by Lecher’s line, [9]: 

2ˆ1 2E Q C C
ˆ

em C , where Q  is a maximum charge on 
the said capacitor C. 

On the other hand, however, in force equation accord- 
ing to Newton’s second law, F ma , we substitute ace- 
leration a from 2a r v , F from Coulomb’s law, 

24qQ r , and m from transverse mass of the electron 
according to Lorentz’ theory. Because the acceleration is 
at right angles with respect to the velocity, this transverse  

21m  mass of the electron is , [10]. Therefore we  

obtain: 

22

2 2 22

1
;

4 41

qQ qQm
r

r mcr


  


 

 

v

 q e

,      (3) 

where r is the radius of the circular orbit of the electron 
in an atom, q is the charge of the electron   , Q is 
the charge of the nucleus  Q Ze , Z is atomic number, 
m is the electron rest mass, c is the speed of light in vac-
uum, c  v v, where  is the electron velocity.  

The kinetic energy of electron is 
2 2 21K mc mc   , [9]. Using Equation (3) and  

noting that an electron is of opposite charge of the nu- 
cleus, than the potential energy of electron is  

2 2 24 1U qQ r mc       . The total mechanical 

energy of the electron  2 2
T 1 1E K U mc ,       

according to the law of conservation of energy is equal to 
the negative emitted electromagnetic energy,  

 2 2
em 1 1E mc eV   

T emE K U E eV

, [4]; here V is the potential  

difference, which passes an electron from the point of 
reference potential, to the potential of the point at which 
an electron is currently located, i.e.,  

     . 

 2 2
em 1 1E mcAccording to     we can write:  
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Now, the radius r in Equation (3) we write:  
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This single Equation (5) has two unknown sizes, i.e. 
parameter C and variable CQ . With the help of Dio- 
phantine equations we obtain one of the solutions: 

4C r  , and    2
C em

2 2
em1 1 2Q qQ E mc E mc  ˆ , 

[4]. 
We can transform now the Equation (5) of the elec- 

tromagnetic energy in LC circuit [4]: 
2 2
C C

em

2 em
LC C LC

em

ˆ ˆ1 1

2 2

1ˆ
1 2

Q Q L L
E

C CC C L

2
C

2

2

ˆ

2

,

Q

LC

E mc
Z Q Z qQ A

E mc
  







  




   



 (6) 

where 
2
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shall be called the action of the electromagnetic oscillator, 
[6,11,12], and 
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is the characteristic impedance of Lecher’s line, [5], 
while 

     2+ 4 1 

emE

ln +1 4 ln 2         (9) 

shall be called the structural coefficient of Lecher’s line 
[4]. 

The solution  of Equation (6) now reads: 

   222 2 .mc

E A

em LC LCE Z qQ mc Z qQ      (10) 

4. Structural Constant and Action Constant 

Now, with regard to Equation (6), em  , the action 
of electromagnetic oscillator can be written as: 

Constant part of this solution, which does not depend 
on natural frequency  , we denote as action constant 

0 LCA Z qQ  . Each oscillator has its own action con- 
stant. Equation (11) is then: 

 22 2 2
0 0 ,A A mc A mc          (12) 

and also we can now write Equations (6) and (10) as (see 
Planck-Einstein equation): 
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and with em   the first part of the Equation (13) 
gives (see the test of Duane-Hunt’s law [4]): 
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A  can now be written using Equation (8): Also, 
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0 LC .Z qQ eZe Ze
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One specific Lecher’s line is dedicated to each atomic 
element. We can choose Lecher’s line, which represents 
an atom of atomic number Z, arbitrarily. If we choose it 
so that the product of structural coefficient     and 
atomic number Z, i.e.  Z 

 
 in Equation (15), is con-  

stant, so called structural constant, 0s Z 

,

, then,  

providing r r   action constant 0A  will be the 
same for all atoms, i.e. it will be a universal constant for 
all atomic oscillators: 2 2 2 2

0 0 0 0 0A s e s e    
0

. 
The only unknown quantity in this expression is s . 
Let’s see how we shall determine it. 

 2 , 2  Namely, below  

2

, Lecher’s line does 
not exist, because in that case two conductors become 
just one guide. Therefore, in the region below   , 
Lecher’s line cannot represent a single atom. However, 
the limit 2   can be used to determine the structural 
constant 0s . For example, I estimate, [4], that only ten 
percent increase of  , . . 1.1 2 2.2i e     , is not big 
enough to include all of about forty of unstable elements 
in this region. An increase of twenty percent of  , 
 1.2 2 2.4   

294 Uuo 118Z 
207

82 Pb 82Z 

 

, however, should then include almost 
40 elements, exactly from 118 , , to the first 
always-stable atom of lead, , . Therefore,  

 0 2.4 82 0.837  82 8.28s Z       . Now,  

one can calculate 2 2 34
0 0 6.63  10 J sA s e  

0 0   
22 137.11s 

 
(it is like Planck’s h), and 0  (like fine-struc- 
ture constant 1  ). The best agreement with the fine- 
structure constant gives: 0 . Then the action 
constant of the atomic oscillator is always the same and it 

8.277 56s 
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is equal to Planck’s constant h. This is a realistic and 
proven solution. 

5. The Wavelength and Momentum of the 
Electromagnetic Wave in an Atom 

The momentum of a limited plane electromagnetic wave, 
like the momentum of a photon, is related to its phase 
velocity by  em em em emp E E  u , where   is 
the wavelength of the electromagnetic wave, and on the 
other hand, in accordance with the law of conservation of 
momentum, the linear momentum of the electron, [10], is 
equal to the momentum of the electromagnetic wave, 
(see Compton effect [9]), 

em
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         (16) 

From Equation (16), by using Equations (4), (14) and 

em , we obtain (see de Broglie wavelength; in the 
case of low-energy is 2 2, 2K m  veV mc eV ): 
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Phase velocity,  , of electromagnetic wave from 
Equations (14) and (17) is 
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The momentum  we obtain from Equations (13), 
(17) and (18), with : 
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6. Properties of Space in the Model of Atom 

As I have already stated at the beginning, that phase ve-  

locity is also em 1 u , while it is now clear that the  

wave impedance   , [which is an integral part of the  

characteristic impedance of Lecher’s line in Equation (8), 
and hence integral part of the action constant 0A  in 
Equation (15)], should therefore remain unchanged, i.e., 
we get a system of two equations: 
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with two unknowns, μ and ε. The solutions of these equa- 
tions are [6]: 
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7. Equation Like Schrödinger’s Equation 

A current value of linearly polarized standing wave reads 
[3,4]: 
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where 0  is the maximum value, i.e., the amplitude of 
electric field strength E, x  is the x-component of 
the electric field strength dependent on the z-axis and the 
time t, and  ,yH z t  is the y-component of the magnetic 
field strength H dependent on the z-axis and the time t. 
All that we shall continue to write for the y-component of 
the magnetic field  ,yH z t  shall be applied in the exact 
same way to the x-component of the electric field 

 ,E z tx . If we use the second derivative of the previous 
equation,  y ,H z t

 
, with respect to z, we get: 
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y y, 2π , 0H z t z H z t    . After the inclu- 

sion of wavelength  , from Equation (17), we obtain: 
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In the case of low-energy  
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T,eV mc eV K E U    , we have: 
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which in this form resembles the non-relativistic Schrö- 
dinger’s equation for a single particle moving in an elec- 
tric field, [1,2]: 

   
2

2
T2

8
, , , , , , 0,

m
x y z t E U x y z t

h
 

     (25) 

 , , ,xwhere y z t
h A

 is the state function, and h is Planck 
constant, 0 . 

This similarity of Equations (24) and (25) is not sur- 
prising, because Schrödinger’s equation is based on the 
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following assumptions [1]: 
 For a micro-object there exists a state function, whose 

complex amplitude satisfies the same equation as the 
complex amplitude of the electromagnetic wave. 

 Between the energy of the object TE  and the fre-
quency of the wave   exists relation E h . T

 The phase velocity of the wave corresponds to the 
Equation (19). 

At low energies, all these assumptions are met for the 
electron and for the fields E and H. Therefore Equation 
(24) actually represents Schrödinger’s equation. 

In the same way, using the second derivative with re- 
spect to time t, with 2   , we obtain the following 
from the current values  ,yH z t  of linearly polarized  

standing wave:    2
y, , 0H z t2 2

yH z t t    

TeV E 

; or, us- 

ing Equation (14) (in addition to ),  

   T y , 0.H z t
mc
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22 2
y T

2 2
0 T

, 1+ 22

1+

H z t E mc
E

At E

  
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Then in the case of low-energy: 

   
22

y

2
0

, 2H z t
E U

At

  
    

 T y , 0.H z t         (27) 

8. Conclusion 

Using Maxwell’s equations we determined that the volt- 
age and current on the transmission line as well as an 
electromagnetic wave in the atom are described using the 
same differential equations. Electromagnetic energy in 
the transmission line is linearly proportional to the natu- 
ral frequency of oscillation of the LC circuit that belongs 
to this line. By analogy, the same is true for the electro- 
magnetic energy of the atom. Factor of proportionality, 
which we call the action of electromagnetic oscillator, 
however, is not constant. Because of Lorentz’ theory of 
electrons this factor depends on the energy, or frequency, 
of electromagnetic wave. The part of the factor of pro- 
portionality, that is not dependent on the frequency, 
which we denoted as action constant, completely coin- 
cides with Planck’s constant. For low-energy the wave- 

length of the wave in the atom corresponds to de Bro- 
glie’s equation, and the frequency corresponds to Duane- 
Hunt’s law. We found that the electromagnetic wave in 
the atom is described by Schrödinger’s equation. All of 
this indicates that atoms can be well described only with 
the help of Maxwell’s equations and Lorentz’ theory of 
electrons. All this provides a deeper entry into the matter 
and reveals a different view of the atom. 
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