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ABSTRACT 

We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by 
applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the lattice size scal- 
ing of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases sig- 
nificantly with the increase of the disorder strength. Meanwhile, the weak disorder can readily restrain the Drude weight, 
while the superconducting gap has the tendency to suppress the low-energy optical conductivity. We also employ the 
Lanczos exact diagonalization method to study the competition between the on-site repulsive interactions and disorder. 
It is shown that the screening effect of repulsive interactions significantly enhances the Drude weight in the normal 
phase. 
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1. Introduction 

The strong electron correlations are widely accepted as 
the key to solve the fundamentally important problems of 
the high-temperature superconductors [1]. Apart from the 
electron-electron interactions, the effect of disorder is 
also an essential ingredient of high temperature super- 
conductors, since a certain extent of structure and chemi- 
cal inhomogeneity will inevitably exist in the experi- 
mental samples, bringing about significant influence on 
both the excitations of the normal state and the super- 
conducting gap (SG) [2,3]. To present the effect of 
disorder in the inhomogeneous superconductors, the 
self-consistent field method based on the Bogoliu- 
bov-de Gennes (BdG) equations has been widely used 
[4-7]. 

In this paper, we study an effective tight-binding mo- 
del of the inhomogeneous superconductor on a square 
lattice [5] 

 † †
i j i i i

ij i ij

† † . ,ij i jH t c c c c   
 

       c c H c  

 c c

  (1) 

where i i   are the electronic annihilation (creation) 
operators at sites  with spin 



i   (   or ),  de- 
note the hopping integrals between nearest neighbor (NN) 
sites, 

 t

i  present the on-site disorder energies. The su- 

perconducting order parameters, ij j iV c c 

    12Im 1 2 d ,c

c

E

ij ijE
V G f

   [8], 
can be obtained by 

  


   
V

      (2) 

where  represent the NN attractive interactions, 
 f   is the Fermi-Dirac distribution function, and 
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i
G c G c ij j

 
  indicate the off-diagonal Green’s 

function of NN sites  and . 
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We introduce the kernel polynomial method (KPM) [9] 

to expend the off-diagonal single particle Green’s func- 
tion  12

ijG   into a series of Chebyshev polynomials of 
order M  [8,9], 
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where   represent the scaled energies within the inter- 
val [–1, 1], and    cos arccosT H n H  

 

n    denote the 
Chebyshev polynomials of the first kind, and we intro- 
duce the Lorentz kernel  sinh 1 sinhg n Mn   

i

   
to overcome the Gibbs oscillation. 

  as random We define the on-site disorder energies 
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 ,rivariables distributed uniformly between 2W  and 
2 W



4.0

W , where  can be regarded as the strength of dis- 
order. In Figure 1, we present the disorder effects on 

ij . To our surprise, we also find that disorder can 
strongly enhance the superconducting order in some 
small local regions. The strong superconducting local 
regions emerge near the sites with smaller disorder po- 
tentials, while the non-superconducting local regions 
occur at the hills of the disorder potentials, where the 
local density of states are very weak. When W   
and , we observe very strong fluctuations of ij4.0V    
with the maximum value , which is quite 
larger than 0  of the homogeneous case. Here 
the energies are unit of t . Our findings are in good 
agreement with the results obtained in the inhomogene- 
ous s-wave superconductors, where some isolated super- 
conducting islands are found to survive strong disorder [10]. 
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Neglecting the intervalley scatterings, the interactions 
can introduce metal-insulator transition (MIT) in the two 
dimensional (2D) electron systems with a large number 
of degenerated valleys [11]. Therefore, it is a crucial 
problem to study the delocalization effect of interactions 
in 2D systems with disorder. We introduce a new ap- 
proach [12] to do lattice size scaling of the generalized 
inverse participation ration (RIPR) [13], which is defined 
as 
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Figure 1. (a) The disorder configuration of a square lattice 
with N = 100 sites, and the corresponding distributions of 
the inhomogeneous superconducting gap  for the cases 

with W = 2 (b), 4 (c) and 8 (d). Some other parameters are t = 
1.0, V = 2.0, M = 2000, and λ = 10.0. 

ij

where  
i
 denote the local density of states 

(LDOS) at sites . We find that the dependence of 21 L

G

 
is a good approximation for the lattice size scaling of 
GIPR of the 2D inhomogeneous systems. As shown in 
Figure 2, 2  of 2D inhomogeneous superconductors 
also has very good linear relationship with 21 L
L

L 

W

 

, where 
 represent the size of a square lattice. In addition, it is 

shown that the intercept on the limitation of  of 
a localized state increases significantly with the increas- 
ing of the disorder strength W . Since the localization 
lengths of quasiparticles are proportion to the the inverse 
of the square root of the above intercept. Therefore the 
localization length of quasiparticle decreases with the 
increase of disorder strength . 

The optical conductivity can be calculated by [9] 
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coordination number. In Figure 3(a), we present the ef- 
fect of disorder on the optical conductivity of the inho- 
mogeneous superconductors with different attractive in- 
teractions . We find that the density of optical con- 
ductivity in the low-energy region suppressed by the en- 
hancement of superconducting order parameters. In addi- 
tion, the Drude weight increases slightly with the in- 
crease of , suggesting the delocalization effect of , 
which is in agreement with the prediction drawn from the 
scaling of GIPR. It is obvious that, in the superconduct- 
ing phase, the localization effect of disorder is weakened 
by the off-diagonal superconducting order. 

V

V V

To study the competition between the on-site repulsive 
interactions and disorder, we employ the Lanczos me- 
thod [14] to investigate the Hubbard model with box dis- 
tributed Anderson disorder, which is also called Ander- 
son-Hubbard model with Hamiltonian, 
 

G
2 

1/L2  

Figure 2. The lattice size scaling of the generalized inverse 
participation ratio  G2   for the quasiparticles with en- 

ergy t1.5   in the conditions with attractive interactions 
V t4  and different disorder strength W. 
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Figure 3. The optical conductivity obtained by (a) the ker- 
nel polynomial method for the mean-field superconducting 
model with N = 200, M = 2000 and W = 4.0, and by (b) the 
Lanczos diagonalization method for the Anderson-Hubbard 
model at half-filling with N = 8 and W = 4.0. Energies are in 
unit of t. 
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where is the on-site repulsive interactions. We fix the 
disorder strength W  to study the effect of the 
on-site repulsive interactions on the optical conductivity. 
As shown in Figure 3(b), the Drude weight increases 
significantly when the on-site interactions increase from 

 to U . As discussed in reference [15], the 
delocalization effect comes from the screening effect of 
the on-site interaction on the disorder potential. 

U  t

In summary, the localization effect of disorder has 
been investigated by applying the scaling of generalized 
inverse participation ratio. We find that the off-diagonal 
superconducting order has the delocalization effect, while 
the on-site repulsive interactions can suppress signifi- 
cantly the localization of quasiparticles by screening 
strongly the disorder potential. The foregoing solutions 
can be demonstrated by observing the evolution of Drude 
weight. 
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