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ABSTRACT 

A detailed analysis of the magnetic response of field-cooled type-I superconducting hollow cylinders shows that the 
so-called “paramagnetic Meissner effect” can take place in opportunely devised multiply connected superconductors. 
Adopting simple circuital analogs of the latter superconducting systems, the magnetic susceptibility of micro-cylinders 
with one or two holes is studied by means of energy considerations. 
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1. Introduction 

Expulsion of magnetic field from the inner region of 
simply connected type-I superconductors was first ob- 
served by Walther Meissner and Robert Ochsenfeld in 
1933, 22 years after the discovery of superconductivity 
[1]. The two German scientists showed that these super- 
conducting systems, when cooled below the correspond- 
ing critical temperature Tc in the presence of low mag- 
netic fields, behaved like perfect diamagnetic materials. 
With the discovery of high-Tc superconductivity in lay- 
ered perovskites by Johannes Bednorz and Karl Müller 
[2] the magnetic properties of these novel superconduct- 
ing systems were analyzed in detail, starting from the end 
of 1980’s up to the beginning of 1990’s. In particular, 
much attention was devoted to the so called “paramag- 
netic Meissner Effect” (PME), also known as “Wohlle- 
ben effect” [3] first reported by a group of German re- 
searchers in 1993. In this apparently contradictory defini- 
tion of the observed phenomenon, the field-cooled sus- 
ceptibility of high-Tc granular superconductors was ob- 
served to be positive for low measuring fields. It thus 
became evident that the polycrystalline structure in sin- 
tered high-Tc materials could play a role in explaining 
this experimental outcome [4]. In fact, considering sin- 
tered superconducting systems as a collection of weakly 
coupled micrometer sized granules [5], one can describe 
the magnetic properties of granular superconductors by 
means of equivalent networks of Josephson junctions [6]. 
In order to grasp the fundamental mechanisms by which 
PME might arise, a very simple multiply connected sys- 

tem was studied: a type-I superconducting hollow cylin- 
der [7]. It was shown that the magnetic response of this 
system exhibits a diamagnetic character for most values 
of the measuring field magnitude H, while it may give a 
positive value of the field-cooled susceptibility for well- 
defined intervals of the applied magnetic flux, if the 
normal fraction, defined as the ratio between the volume 
of the hole and the total volume of the sample, is greater 
than 1/2. 

In the present work, after having briefly recalled the 
results obtained for the hollow cylinder, we study the 
field-cooled magnetic behavior of multiply connected 
superconductors consisting of type-I superconducting 
cylinders in which two holes are present. By adopting a 
simple circuital model and by taking into account the 
mutual coefficient between the circuits representing the 
current loops in the system, we derive a method to cal- 
culate the field-cooled magnetic susceptibility of multi- 
ply connected type-I superconducting cylinders. 

2. A Hollow Superconducting Cylinder 

Let us first consider the hollow superconducting cylinder 
shown in Figure 1. If a uniform magnetic field of con- 
stant magnitude H is applied along the cylindrical axis, 
the current distribution can be simplified as follows: an 
external shielding current IS flows in the outer surface of 
the cylinder; a second current I1 shields the inner part of 
the superconductor from the field h inside the hole. 

By applying Ampere’s law, following path CS, and by 
noticing that the magnetic induction in the supercon- 
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ducting region is zero, we can write 

SHd I  ,                   (1) 

where d is the height of the cylinder and CS goes through 
the superconductor in a region sufficiently far from the 
outer surface. The latter hypothesis is necessary in order 
to avoid considering the decaying magnetic field inside 
the superconductor, due to the existence of finite pene- 
tration lengths in these materials [1]. We also neglect 
demagnetization effects due to the finite size of the cyl- 
inder. Similarly, applying Ampere’s law and following 
path C1, we can write 

   1SH h d I I   

1hd I

.           (2) 

By now applying (1), we see that Equation (2) reduces 
to the following: 

.                   (3) 

Let us now write down the magnetic energy EM due to 
the circulating currents as follows: 

2 2
11 1

1 1

2 2M S S SL I MI I

0

E L I  ,          (4) 

where, denoting the permeability of vacuum as  ,  

0 1S

d


1L  and 0

S

S
L

d


  are the inductance coeffi-  

cients pertaining to the two virtual loops followed by 1I  
and SI , respectively, and M is the mutual inductance 
coefficient between these same loops. By taking 1M L  
and by substituting Equations (1)-(3) into Equation (4), 
we have: 

 22
1

1

2M Hd h H k  E L ,            (5) 

where   2 2
1H S L d H 

1

2
k L  is a constant. By now 

introducing the flux numbers 0 1

0

hS
n





 and 

0 1

0
ex

HS


 2

0M exn n  

n  ,  being the elementary flux quantum, 

we can rewrite Equation (5) in the following final form: 

0

,              (6) 

where M M HE k    and 
2
0

0
12L






 exn n 

. The possible 

quantized values of the trapped field in a field cooling 
experiment has been given by Goodman and Deaver in 
1970 [8]. The experimental results reported by these re- 
searchers can be summarized by the following simple 
non-linear expression: 

,                (7) 

where the function Ω, when applied to a real number x, 
gives the closest integer to x. This function can be easily 
interpreted by considering the minima of the energy M . 
In fact, by fixing the value of the applied flux number 

ex , the system arranges itself in the quantized flux state 
with n trapped fluxons inside the hole of area S1 in such a 
way to minimize the energy 

n

M . In this way, only the 
lower parts of all parabolas in (6) are chosen as possible 
magnetic state in the system. The result of this procedure, 
by which one chooses the possible magnetic energy 
states as  varies, is shown in Figure 2. ex

Having specified the value of the flux number n in (7), 
the field distribution inside the cylinder can be summa- 
rized as follows: 

n

 0

0 1

inside the hole

0 inside the superconducting material

exn
h S

  


 (8) 

 

C1 CS HH 

h 

S1 
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Figure 1. Current distribution in a hollow superconducting 
cylinder of total cross section S. An axial magnetic field H is 
applied to the whole system and a magnetic field induction 
h is present in the hole of section S1. The current IS shields 
the outer superconducting region from the external mag- 
netic field H, while the current I1 shields the inner super- 
conducting region from the trapped field h. Two different 
paths, C1 and CS, are shown. 
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Figure 2. Magnetic energy states in the hollow supercon- 
ducting cylinder cooled in the presence of a constant meas- 
uring field H. These low-lying states are shown as a collec- 
tion of points on the red full-line curve. The parabolas 

 are shown as dashed lines for the following val- 

ues of n: n = 0 (red); n = 1 (blue); n = −1 (cyan); n = 2 
(black), n = −2 (orange). The red full line curve is therefore 
the result of a minimization procedure over all possible n- 
states, for fixed . 
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In order to determine the field-cooled susceptibility  

FC , we need to find the average value 
1

d
S

h h S
S

   

of the magnetic induction inside the hollow cylinder. By 

applying (8), we find  0

0 1
exh n

S


  , where 

1S

S
   is the normal fraction of the sample. Therefore, 

by setting the field-cooled magnetic susceptibility equal 

to 1FC

h

H
   , we find: 

  1ex
ex

n
n


  

n

FC .            (9) 

In Figure 3, we show the field-cooled magnetic sus- 
ceptibility of a hollow cylinder as a function of the ap- 
plied flux number ex , for various values of the normal 
fraction α. From Equation (9) we notice that, for α < 1/2, 
the curves are always below the horizontal axis, so that 
the magnetic response is always diamagnetic, as it can be 
also argued from Figure 3. However, for α > 1/2, posi- 
tive values of FC  can appear in well-determined  exn

intervals. In fact, by considering 
1

1
2 exn 

 exn n 

, for which 

, we have 1 0FC   if 
1

2 exn   . On 

the other hand, for 
3

1
2exn  , for which 

  2n n   e ex , we cannot hav 0FC 

h 

. Therefore, 
we argue that, for α > 1/2, the only field interval for 

0FCwhic    is given by the following simple rela- 
tion: 
 

 

Figure 3. Magnetic susceptibility of a hollow superconduct- 
ing cylinder cooled in the presence of a constant measuring 
field H for various values of the normal fraction α, reported 
in the legend. Depending on the value of the measuring field, 
the susceptibility may take on positive values for α > 1/2. 
Susceptibility values in the interval (–1/2,1/2) coincide for 
all three values of α. 

0 0
0

1 1

1

2
H

S S
 

 
  .           (10) 

In order to detect the range in which this effect can be 
measured, we may notice that in a micro-cylinder (with a 

hole of inner radius of about 20 μm) the ratio 0

1S


 is of 

1.64 μT. 

3. Generalization to a Cylinder with Two 
Holes 

Let us now consider the multiply connected supercon- 
ductor shown in Figure 4. In this system, consisting of a 
cylinder of height d and total cross section S with two 
holes, one of area 1 , the second of area 2 , for a given 
value of ex  different flux numbers can be trapped in 
each hole (say, 1  and 2 in the holes of area 1  and 

2 , respectively). Proceeding as in the previous section, 
by applying Ampere’s law following the three different 
paths in Figure 4, we find the expressions for the cur- 
rents and in terms of the various field values, so that we 
may write: 

S S
n

n n S
S

1 1

2 2

SI Hd

I h d

I h d



 
 

.              (11) 

We may now write down the magnetic energy as fol- 
lows: 

2 2 2
1 1 2 2 12 1 2

1 1 2 2

1 1 1

2 2 2M S S S

S S S S

E L I L I L I M I I

M I I M I I

   

 
,     (12) 

where the inductance coefficients are 0 1
1

S
L

d


 , 
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Figure 4. Current distribution in a superconducting cylin- 
der of total cross section S with two holes. An axial mag- 
netic field H is applied to the whole system and magnetic 
field inductions h1 and h2 are present in the holes of section 
S1 and S2, respectively. The current IS shields the outer su- 
perconducting region from the external magnetic field H, 
while the currents I1 and I2 shield the inner superconduct- 
ing region from the trapped fields h1 and h2, respectively. 
Three different paths, C1, C2, and CS, are shown. 
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0 2S

d


2L , and 0

S

S
L

d


 , and where the mutual in-  

ductance coefficients between the different current loops 
are denoted as 12M , 1SM , and 2SM . By proceeding as 
in the previous section, we define the following flux  

numbers 0 1
1

0

hS
n





, 0 2

2
0

hS
n





,  1 0 1

0
ex ex

HS
n n


 


, 

and  2
ex

0 2

0

HS
exn n


 , with 2

1

S

S
  . By now taking 

1S 1M L  and 2S 2M L , we may write down the en- 

ergy M ME Hk   , with   2 2
1 2L L d H

2

1 22ex n n  

1

2H Sk L  , 

as follows: 

  2

1 1 2M exn n n n      ,    (13) 

where 
2
0

1
12L




  and 12

2

M

L
 

1n

. In Equation (13) we  

notice that, depending on the choice of  and 2n , we 
obtain different parabolic dependence of M  as a func- 
tion of . ex

As before, the magnetic state for a given value of the 
forcing term ex  is the one which minimizes the energy 

n

n

M . Therefore, by collecting the different parabolas, we 
shall choose only the low-lying states at a fixed value of 

ex . The representation of these states is given in Figure 
5 for 
n

1   and 0.1    by applying the same mini- 
mization procedure explained in the previous section. In 
the curves in Figure 5 we notice that the presence of the 
mutual inductance coefficients gives a different shape to  
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Figure 5. Magnetic energy states in the hollow supercon- 
ducting cylinder with two holes cooled in the presence of a 
constant measuring field H. These low-lying states are 
shown as a collection of points on the red full-line curve. 

The parabolas  are shown, 

for 

  exn n n
2

1 2  

1

the red curve pertaining to the low-energy states. By a 
similar algorithm, we can choose to register, for a fixed 
value of ex , the couple n ,n n

 

1 2  giving the parabola on 
which the minimum of the energy lies. In this way, by 
again calculating the average value of the magnetic in- 
duction over the whole sample, we define the field- 
cooled magnetic susceptibility as follows: 

 

exn n n
2

1 22 

  0.1 and   


, as dashed lines for the following 

couples n n1 2,



: (0,0) (red); (0,1) (blue); (−1,0) (cyan);　  

(1,1) (black), (−1,−1) (orange). The red full line curve is 
therefore the result of a minimization process over all pos- 
sible couples n n1 2, exn, for fixed  values. 

1 2 1
1FC

ex

n n

n





.            (14)  



where now 1 2S S

S





1n 2 exn

. Therefore, by knowing the  

quantities  and n , for a given value of , we can 
plot the FC  vs.  curves.  ex

By implementing the algorithm for finding the couple 
n

 1 2 , for a given value of ex , giving the minimum 
energy value, we find the 

,n n n

FC  vs.  curves in Fig-
ures 6(a)-(c). 

exn

n
0

In the curves shown in Figures 6(a)-(c) one notices 
that the inequality on the minimum value of α giving 
positive field-cooled susceptibility found in the case of a 
hollow cylinder with a single hole (namely, α > 1/2) does 
not hold anymore. In fact, we find intervals of ex  for 
which FC   even for α = 1/2, as shown in all three 
curves in Figures 6(a)-(c). From the same curves it can 
be argued that, by choosing a more negative value of the 
mutual inductance coefficient in Figure 6(b), the curves 
shown in Figure 6(a) rise toward more positive values. 
On the other hand, when the ratio σ is varied from 1.0 to 
0.9, more branches in the FC  vs.  curves appear. exn

4. Conclusions 

The field-cooled magnetic susceptibility FC  of type-I 
superconducting hollow cylinders is studied by means of 
energetic considerations. Starting from the case of a hol- 
low superconducting cylinder with a single hole, we in- 
terpret the classical Goodman and Deaver experiment by 
means of simple concepts on energy minimization. In 
fact, we see that the magnetic flux trapped inside a hol- 
low superconducting type-I superconductor cooled in the 
presence of an axial external field of magnitude H can be 
derived by considering the minima in the magnetic en- 
ergy states. This energy is written, under elementary as- 
sumptions, by considering the magnetic energy generated 
by the currents flowing in a classical equivalent circuit. 
In this picture, the superconductor is seen as a perfectly 
diamagnetic entity. The field cooled magnetic states of 
the system are described in terms of the applied flux 
number ex , taken to be proportional to the externally 
applied field magnitude H. 

n

By extending this concept to the case of a multiply 
connected superconductor containing two holes, we are 
able to derive the FC  vs.  curves, detecting finite  exn
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intervals of the field magnitude H in which the suscepti- 
bility FC

 

  is positive. We therefore argue that in these 
systems the so called “paramagnetic Meissner effect” is 
linked to topological as well as to electromagnetic ef- 
fects. 
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(c)  

Figure 6. Magnetic susceptibility of a hollow superconduct- 
ing cylinder with two holes cooled in the presence of a con- 
stant measuring field H for two values of the normal frac- 
tion α, reported in the legend. Depending on the value of the 
measuring field, the susceptibility may take on positive val- 
ues. The parameters are chosen as follows: a) 
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0.1   . Susceptibility values in the interval (-1/2,1/2) co- 
incide for the two values of α. 
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