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ABSTRACT 

 We study Laplacian transport by the Dirichlet-to-Neumann formalism in isotropic media I 

,I   ,I

. Our main results 

concern the solution of the localisation inverse problem of absorbing domains and its relative Dirichlet-to-Neumann 
operator . In this paper, we define explicitly operator   , and we show that Green-Ostrogradski theorem is 

adopted to this type of problem in three dimensional case. 
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1. Laplacian Transport and 
Dirichlet-to-Neumann Operators 

The theory of Dirichlet-to-Neumann operators is the ba- 
sis of many research domains in analysis, particularly, 
those concerning Laplacian transports. It is also very 
important in mathematical-physics, geophysics, electro- 
chemistry. Moreover, it is very useful in medical diagno- 
sis, such as electrical impedance tomography: 

In 1989, J. Lee and G. Uhlmann have introduced an 
example on the determination of conductivity matrix 
field in a bounded open domain, see e.g. [1]. This exam- 
ple is related to measuring the elliptic Dirichlet-to- 
Neumann map for associated conductivity equation, see  

e.g. [1]. 
The problem of electrical current flux is an example of 

so-called diffusive Laplacian transport. Besides the volt-
age-to-current problem, the motivation to study this kind 
of transport comes for instance, from the transfer across 
biological membranes, see e.g. [2,3]. 

Let some species of concentration , , 
diffuse stationary in the isotropic bulk 

 v p dx
 I   from a 

(distant) source localised on the closed boundary 
B

 
towards a semipermeable compact interface   of the 
cell B  

0W 
0D 

, where they disappear at a given rate 
. Then the steady field of concentrations (Lapla-

cian transport with a diffusion coefficient ) obeys 
the set of equations: 

 

   (P1) 

   

0, ,

, the concentration at the source ,

( ), on the interface .
B B

v p B

v p f p

D v W v c B   



 


  
  

    



0 p B

 

 

Usually, one supposes that ,  v p c  , is 
a constant concentration of the species inside the cell B

B

. 
This example motivates the following abstract stationary 
diffusive Laplacian transport problem with absorption on 
the surface : 

(P2) 

 
  

 


   

0, , ,

, .
B

v p p B

v p f

v v h B   




 ,B v

p p

Cons

, ,

p t     



   



   

This is the Dirichlet-Neumann problem for domain 
B 

B
 with the Robin [4] boundary condition on the 

absorbing surface  . Varying  between 1: WD 
0  and     , one recovers respectively the 

Neumann and the Dirichlet boundary conditions. 
Now, we can associate with the problem (P2) a Di- 

rihlet-to-Neumann operator 

, : :I ff g v   
   .            (1) 

 ,dom I   belongs to a certain Sobolev Domain 

Copyright © 2013 SciRes.                                                                                 JMP 



I. BAYDOUN 773

space of functions on the boundary , which contains  
 ,: g

f fv v  , the solutions of the problem (P2) for given 

f  and for the Robin boundary condition on B  fixed 
by   and g . 

The advantage of this approach is that as soon as the 
operator (1) is defined, one can apply it to study the 
mixed boundary value problem (P2). This gives, in par-
ticularly, the value of the particle flux due to Laplacian 
transport across the membrane . Moreover, the total 
current across the boundary 


  can be defined (for 

given f ) in term of Dirihlet-to-Neumann operator (1) 
as follows: 

,: d ,IJ D f  

d

 
             (2) 

where   designed the differential element relative to 
. 

f

There are at least two inverse problems derived from 
problem (P2): 

a) geometrical inverse problem: given Dirichlet data 
 and the corresponding (measured) Neumann data g , 

in (1), on the accessible outer boundary , to recon-
struct the shape of the interior boundary , see [5]. 


B

b) localisation inverse problem: concerns to localisate 
of the domain (cell) B  with a given shape and the fixed 
parameters   and , see [6]. h



The main question in this context is to find sufficient 
conditions insuring that the localization inverse problem 
is uniquely soluble. Indeed: 

First, we relate the above problems a) and b) with the 
Dirichlet-to-Neumann operator (1) by defining explicitly 
this operator, whose can define the local and total current 
across the external boundary , which are useful to 
resolve a) and b). 

Second, we study the localisation inverse problem in 
the framework of application outlined in the problem 
(P2), which consist in finding sufficient (Dirichlet-to- 
Neumann) conditions to localise the position of the cell 
B



3  

 from the experimentally measurable macroscopic re- 
sponse parameters. 

In Section 2, we introduce the existence and uni- 
queness for the solution of problem (P2). In Section 3, 
we introduce our first main result concerning the study of 
spherical case of problem (P1), whose we give a general 
method to resolve the type of partial derivative system 
like (P1), see proposition 3.2. Indeed, we allow an ex-
plicit calculations, based on Green-Ostrogradski theorem, 
for the solution of this problem. 

In Section 4, it is our second main result which consist 
in showing that total current across the external boundary 

, involving Dirihlet-to-Neumann operator (1), can 
resolve the localisation inverse problem in three dimen-  

sional case, when the compact . 

2. Uniqueness of the Problem (P2) 

We suppose that   and  be open bounded 
domains in   with -smooth disjoint boundaries 

B  
d 2C

 B and  , that is B B    
B

 and  
    . 

Then the unit outer-normal to the boundary B   

vector-field    x B
x

 
 is well-defined, and we con-  

sider the normal derivative in (P2) as the interior limit: 

        : lim , .
B x

u u x x B 
  

 
       (3) 

The existence of the limit (3) as well as the restriction 
   : limu u x  u

2C
xB 

 is insured since  has to be 
harmonic solution of problem (P2) for -smooth 
boundaries  B 



 [7]. 
Now, we introduce some indispensable standard nota-

tions and definitions, see [8]. Let  be Hilbert space 
  2L M d on  domain     and M 2: L M    

denote the corresponding boundary space. We denote by 
 2

sW M  s
  2

sW M
 the Sobolev space of -functions, whose -  

derivatives are also in , and similar,  is the  

Sobolev space of  2-functions on the C -smooth 
boundary M . 

Proposition 2.1. Let  1 2f W  2
2  for C -smooth 

boundaries  B  . Then the Dirichlet-Neumann pro- 
blem (P2) has a unique (harmonic) solution in domain 

B

0f

. 
Proof. For existence we refer to [7]. To prove the 

uniqueness, we consider the problem (P2) for   
and 0c  . Then by Gauss-Ostrogradsky theorem, one 
gets that the corresponding solution  yields: u

   

    
     

    21

d

d

d

d 0.

B

B

B

B

x u x u x

xdiv u x u x

u u

WD u

   

  











 

 

 

  










         (4) 

The estimate (4) implies that   Constu x B  . 

Hence by the boundary condition one gets 

   1 0
B

WD u 


, and from     0u x f x


   ,  

n 



we obtain that for 1 0WD  , the harmonic functio
  0u x   for x B .   
The t i  

lo


next statemen s a key for analysis of inverse 

calisation problems: 
Proposition 2.2. Consider two problems (P2) corre- 

sponding to a bounded domain 2    with 2C - 
smooth boundary   and to two subsets 1B  and 2B  
with the same smoothness of the boundaries 1B , B2 . 
If for solutions  1

fu ,  2
fu  of these problems o e has n
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   1 2 ,f fu                u 
 

 (5) 

1 2B B   . 

of.

then 

Pro rtu By vi e of    1 2
f fu u f


   and by con-  

di (P2) has two solutiotion (5), the problem ns for identi-
cal external (on  ) and internal (on 1B  and 2B ) 
Robin boundary c itions. Then by the ndard a u-
ments based on the Holmgren uniqueness theorem [9] for 
harmonic functions on 2 , one obtains that 1 2B B   . 
  

ond sta rg

3. Dirichlet-to-Neumann Operators for 

He roblem (P1) 
 

 0 0,B O r R

between the
evious hyp  by 

 

V 3Let  a field vector across the domain    , 
having as border 

d   d ,MM
div

 

. 



Absorbing Laplacian Transport 

re, we consider the spherical shell of the p
so that  0 0,B O R   and the absorbing cell is also a 
ball B  , whose we denote by 0d  the  

distan o centers 
00 O Od d  . ce  tw

Hereafter, we denote the pr othesis
spherical case. 

In the sequel, we resolve the problem (P1) in order to 
calculate explicitly Dirichlet-to-Neumann operator rela-
tive to this case. 

Before resolving problem (P1), we need the following
theorem which the key of the solution: 

Theorem 3.1. (Gauss-Ostrogradski) 

  V n V

divV
V d

         (6) 

whose  designated the divergence of field vector 
.   and d  designated respectively the differen-

tial elements relative to   and  . Mn


 designated 
the unit outer-normal vector on  at arbitrary point 
M . 

Remark 1. Let the orthonormal reference with origin 
 and axis Y YO  , which is keen on the line  in the 

sense of the vector . 
0OO

OO
l

0

On the other hand, since for all , spherical har-
monic function  ,, 0l mY    is independent of   if 

0m  , then we note: 

   , 0: , .l l mY Y     

Since fv

     1
,

0

, , , .
l

l l
f l l l m

l m l

v r a r b r Y

 is harmonic function, then it takes the fol-
lowing form, see [10]: 

   


 

 

  

B

    (7) 

Therefore, we need to calculate the coefficients of (7) 
from the condition boundaries. Indeed, since the radius 
of points of   are equal to constant 0 , then the con-
dition boundary on 

r
B  implies easily, by identification, 

the following system: 
 

 
   

 

1 2 1 1
0 0 0,0

12 1 1
0 0 0 0

 , 0,

( 1) 0.
f

l l l l

DW r r c Y ifl
S

D l r Wr Dlr Wr ifl

     

    

  

      
 

, the radius aren’t equal, and 
d e 

0 0a  

l l

b

a b





 

But, on the boundary 

 

l  , a system of two equations with two unknowns la  

and 

op

epend of spherical angl  . Then, for this reason, we 
use Gauss-Ostrogradski the rem’s, whose we show that 
it is useful to find another relation between the coeffi-
cients of (7) like  

lb , which it is sufficient to calculate la  and lb : 

Pr osition 3.2. The condition boundary on   im
o

fS . Consequently, we get for each 

- 
pl

    1

0 0
, .l l l la r Y b l   

ies: 

2l

 

    2π π 1d d sin , lY f r                               (8) 

 0   l  , we construct the following vector 

, ,H r

 
 

ie
Proof. Let

f ld 
0l

V  by: 

 
0 0l l , V e            (9) 

 , ,

  

whose, lH r
0

   mitive ris a pri elative to   for the 
followin

   

g function: 

   0

0 0

0 0 0

0

1

, ,sin
.

l l
l l r l

l

v r a r Y

r b r

  
 

 
   

    
 

Calculate the flux of field 
0l

V  across the domain 

   0 0 0, ,O R B O r  using Gaus strogradski theorem 

, ,
l

h r Y  
 



B s-O

3.1: 

    

   

00 0 0

00 0 0

, ,

, ,

d

d ,

lB O R B O r

lB O R B O r

vdiv


  

 








V

V n
             (10) 

where: 

   
   
   

 

0 0 0

0 0 0

2
0 0 0

unit outer-normal v , , ,

d areal differential elemen trelative to , , ,

d s d d d volume differential elemen trelative to , , ,

divergence of vector .

B O R B O r

B O R B O r

v r r B O R B O r

div



  

   

 

ector of 

in

   


v v













 

n

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1. Calculate 

 0 0, ,B O R B O 
   00

d lr
vdiv V : 

   0 0 0, ,R B O r , we have: 

 0 0, .M B O Rr r 

 

On the other hand, 0l
div V  can be calculated from 

(9) by: 

 In domain B O  

  0Radius  varies between  and :

Angle  varies between 0 and 2π.

ries between 0 and π.

r r 







   
0

0

0 0 0

1
, ,

sin

, ,
.

l

l
l l l

l

div H r
r

Y v r a r Y

b

  


   

 

 
   

V

 

educe that: 

    

Angle  va


0

0

2 1r lr r  
 

Then, we d
 

  

      

0 00 0 0 0

0

0 0

0 00

2 2

, , 0 0

2

10 0

d sin d d d

, ,
d d d sin .

r

l lB O R B O r r

l
r l l

l r lr

vdiv r r div

v r a r Y





  



0l
b r

r Y
 

   

 

 

 



 
    



   

  


V V

 

 of multiple integrals, we obtain: 

    


 

Therefore, from Fubini’s theorem
 

 
    

 
     

          

00 0 0

0 0

0 00

0

0 0

0 0 0

, ,

2

10 0

2

10 0

2 1 2 1

0 0

d

, ,
d d sin d

, ,
d d sin

1
d d sin , ,

lB O R B O r

l
r l l

l r lr

l l r
l rl

l

l l
l l l

vdiv

v r a r Y
Y r

b r

v r a r Y
Y

b r

Y v r r a r Y
b





  
   

  
   

0

0 0

0 00
0

0

l

l

0

1

l

         

 

 

 

 

   

 
   




  

  

   



  

 

 

V


 
 

      0 0

0

0

2 1
0 0 00 0

d d sin , ,l l
l

l

Y r v r a r Y
b

      
     

Moreover, condition boundary on   implies that: 

      
0 0 0 0,, ,   , ,   ,   M B O Rv r v r v M B O R

0 0
.l l 

                     (11) 

 

 

 , .f    
       

So, by replacing 

   

 

 , ,  v r     by its value  ,f    in (11), we deduce: 
 

    

         

    

00 0 0

0 0

0 0 0

0

0 0

0 0 0

0

, ,

2 1 2 1

0 0

1
0 0 00 0

1
d d sin ,

d d sin , , .

lB O R B O r

l l
l l l

l

l l
l l l

l

Y f r a r Y
b

Y r v r a r Y
b

21

dvdiv

        

 

   

  

   

   

 

 

V


                        (12) 

 
Bu that: 

 

0 0
.l lb                                 (13) 

 

    



 

t, we can prove 

2      0 0

0 0

1
0 0 00 0

d d sin , ,l l
l lY r v r a r Y      

      

Indeed: from (7), we have that 
 

         0 0

0 0 0 0

0

=
1

0 0 0 0 0 ,
=0 =

, , , .
m l

l l l l l
l l l l l m l l

l m l
l l

r v r a r Y a r b r Y b Y0 01l      


   




          
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Mu g by sinltiplyin main       , : 0, 2π , 0,π     , we  the previous equation, and integrating it on do
obtai

   , .l l mY Y

n: 
 

     

   

0 0

0 0 0

0 0

0 0 0

1
0 0 00 0

=2 21
0 00 0 0 0

=0 =

d d sin , ,

d d sin d d sin

l l
l l l

m l
l l l l

l l l l
l m l
l l

Y r C r a r Y

b Y a r b r

      

0

2

,        

 


         (14) 

e other hand, spherical harmonic functions form 
 basis for th  2 ,1L S O    following 

inner product: 



      




  

  

 

    

 
On th

a e Hilbert space 

 ,1
, : sin d d ; ,

S O
f g fg f g     2 ,1 .L S O     

Consequently, we deduce, since  

   
   
, ,,

, , ; 

, , ,

l m l ml m
Y Y l m

l m l m



 

 
 

  
, 

that: 
 

     2
, : d d sin , ; , .l mY Y Y Y l l l      

 
                          (15) 

0 0, ,0 0l l m l

 

Here, 

0 0l

  designed Dirac funct
So, by insert

ion. 
ing (15) in (14), we deduce above equality (13) as follows: 

 

          

 

0 0 0 0

0 0 0 0 0 0

0 0

0 0

2 1 1
0 0 0 0 0 0

1
0 0

0

d d sin , ,

0 1 .

l l l l l l
l l l l l l l l

l l
l l l l

l

Y r v r a r Y a r b r l b l

a r b r b b

       
      

   



     

   

 




0

0 0
0l

l l

l l






0l l

 

 

We continue the proof by inserting (13) in (12): 
 

          0 0

0 00 0 0
0

2 1 2

, , 0 0

1
d d d sin , l l

l lB O R B O r
l

vdiv Y f r a r
b

      
      

V

 

2. Calculate 
    00 0 0, ,

dlB O R B O r

   
0 0

1 1.l lY            (16) 


  

 V n


: 

kn

   

 

00 0 0

0 00

, ,

d d .

lB O R B O r

l MM S O r

owing that, 

       0 0 0 0 0 0, , , ,B O R B O r S O R S O r     , 

then: 

d

 0
l MM S O R0 , ,

 

  

 
   V n


   (17) 

 that: 

           (18) 

 V n

  V n

2.1 Showing

   0 00
,,

  d 0.l C O rS O r
  V n        

Indeed: unit outer-normal vector Mn  relative to domain 
point    0 0 0, ,B O R B O r  at arbitrary  0,M S

   0.r e  

2.2 Showing that: 

   0 0 00 0
,,

d 0.l B O RS O R


O r  is 

re . This implies: 

 H r    V n e

  V n          (19) 

 the shape implies that unit 

0
 , ,l

Indeed: the symmetry of
outer-normal vector of  0 0, R  relativS O e to domain 
   0 0 0, ,B O R B O r  is below in plan generated by the 

two vectors re  and e  which are orthogonal to field 
vector V  directed

0l
 by e . So, we obtain:  

 
0 0 00, ,l M M S O R   . 

Then, by inserting (18) and (19) in (9), we deduce that: 

    00 0 0, ,
d 0.lB O R B O r


  
  V n


         (20) 

3. Boundary Equation 

Finally, by inserting (16) and (20) in (10), we obtain that: 

 

V n

         0 0

0 0

2 1 2 11
d d sin , , 1 0.l l

lY f r r a r Y        
         

0

0

0 0 l l
lb  

   


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The previous equation ends the proof since it is true 

y 0l  .   
osi

for an
Prop tion 3.3. If  1 2

2f W  

problem (P1) have unique solution with e form (7), 
whose the coefficients are given by: 

 

 
  


 2L  , then 

th


      

    

21 2 1
0 0 00 0

21 2 1 2
0 0 00 0

sin ,

d d sin

DW r r Y f r

DW r r Y r

1
0

0

d d

1

c Y
a

      

   

   

   






 

    





 





 

 


     

2

0d d sin ,Y r f     
0 0

0 21 2 1 2
01 d d sin

c
b

DW r r Y r



0 0 0 0
    



   

 
   

 

     

 
 

 
 

      

2

0 0 0 0 0

1 11 d d sin ,l l l l
l

22 1 2 1
0 0 0 0 0

1 sin
l

l lr Dl Wr D l r W r 2  d dl

r D l r Wr Y r f
a

Y

      

 

         
 

 
  

  

  

         

 
  

    

22 1 1
0 0
l l lr Dlr r

b
 0 0 0

22 1 2 1 2

d d sin ,

1 sin  d d

l
l

l
l l

l

Wr Y f

r Dl Wr D l Wr r Y

    

0 0 0 0 0
    

 

      

 
 

. 
  


 

where,  
 

2 2 2 2
0 0 0 0cos cosr d d R d       is the dis-  

tance d  between arbitrary point O M M  on sphere  

 ,S O R  and the center O . 
lve for any l

0 0 0

Proof. It is enough to reso


 , the 
 et lb  given by the two  

boundary conditions (8) and  fS .   
Since the solution of problem (P1) is given from 

proposition 3.3, then we can deduce its relative Dirichlet- 
to-Neumann operator: 

Corollary 3.4. The Dirichlet-to-Neumann operator (1) 
is defined by system of two unknowns la

 

   1 2
, 2 : : , , , where :f

I f

v
f W v r  

   


    


n                              (21) 

 

           



1 1 2
0 0 ,

0

1 1
0 0

, cos 1 ,

sin

m l
f l l

l l l m
l m l

v
R r d la r l b r Y

R d




m l

l
la r    lb r Y , , .l l m

0l m l

      




 
   

 

 


        



 
 

Here, the coef e given by propo-
si

t 


 

      



 

 



ficients  ,l la b  ar
l

tion 3.3. 
Proof. Since we have tha cos sinz r   e e e , then 

unit outer-normal vector Mn  for arbitrary point  

 ,0 0M S O R   is given by: 

 

    0 sin ,e  1 1
0 0 0M M r zR r d R r     n e e 0 cos rd d  e

 

 
and consequently, this implies: 

        
     

1
0 0

1 1

, , : , , , , cos

cos , , sin , , .

f f M fM
v r v r v r R r d

R r d v r R d v r

 0

0 0 0 0

sinr

r f f

d



        

      



  

 



        

      

n e 
 

roof of p

e

 
But, we have from the p roposition 3.2 that    0 rr M   . Then: 

 

         1 1
0 0 0 0co , , sin , , .f r f fR r d v r R d v r , , sv r             


      

 
equ tly, it is enough to replace  , ,fv rCons en    in 
iou ation by its value given in (7).   

Remark 2. For general properties of Dirichlet-to- 
Neumann operators, mainly existence and uniqueness, the prev s equ

Copyright © 2013 SciRes.                                                                                 JMP 



I. BAYDOUN 778 

we refer to [10], chapter 4. ii) Second, we aim to find an equation involving the  
distance 

00 : O Od d   between O center of cell Remark 3. Notice that definition of Dirichlet-to- 
Neumann operator (21) implies that it has as eigenfunc- 

tions the spherical harm  

B  and  

0O  center of  . 
Proposition 4.1. The total flux onic function ,l mY

,
,

l m l
 

 
, 

nd a discr

  and

a ete spectrum  
, ,:

I l m 




 
0,l m l 

, whose  

,l l mlim    . 
Corollary 3.5. Dirichlet-to-Neumann operator (21) is 

unbounded, non-negative, self-adjoint, first-order elliptic 
seudo-differential operator with compact resolvent on p

the Hilbert space  2 ,sin d dL    . 
Proof. For the proof, we refer to [10], chapter .  4 
Remark 4. Corollary 3.4 implies using Hille-Yosida’s 

theorem that Dirichlet-to-Neumann operator (21) can be  

generate certain semigroup   ,It  

0t

over, we can prove using Arzela-Ascoli’s criterion that 
this semigroup is contractant holomorphic in the both 

: e . More-  

sin d

S t

Banach space  C   and 2 ,dL   
Proof. For a complete proof, 4.   

. 
pter 

4. Localisation Inverse Problem 

dary 


see [10], cha

We are interested by resolving the localisation inverse 
problem of (P1) using the explicit formula of 0d , which 
will be calculated in terms of measurable Dirichlet-to- 
Neumann bounda exry hypothesis on ternal boun
 . 
For resolving this problem, we need the following: 
i) First, we aim to calculate the total flux J  across 

external boundary  . 

 J J B  satisfy 
the following: 

J 02 π .BJ b D              (22) 

Proof. Since the differential element at the boundary 
B



  and unit outer-normal vector Mn  at arbitrary point 
M B  are respectively equal to 0 sin d dr     and 

re , then we deduce from (7) that: 

02 π .MM B
: dB D   

stro  t

: dB B
J J    

  

v b D


 n  J

On the other hand, by Gauss-O gradsky heorem, 
one gets: 

d

d 0,

B

B

D v

D V v






  

   







   

ere dV  is the volume differen

 
j n

wh tial element. Therefore, 
(22) is deduced.   

Since we have, from proposition 4.1, that tal flux to
J  across external boundary   depended only of 
one coefficient 0b  of development (7), whose 0b  de- 
pended of distance 

00 : O Od d  , then an equation of 

00 : O Od d   can be find easily. Indeed: 
Corollary 4.2. The distance 0 : O Od d   verifies the 

following equation: 
0

 

 

   2 2
0 , .d f c  

2 2
2

0

1
1 d d sin

D
Y d

Wr
   

  
  
 

2 2
0 0 0

0

2
0 0 0

c

d d sin cos

R
r

Y d R    

2 2
0os d  

0 0

2 22 D  
0 0J

  

 

   

 given in proposition r to substitute 0b , after 

                       (23) 

0b 3.2 in orde

 
 

Proof. It is enough to insert (22) in the expression of 
replacing  r   by its value in term of 0d : 
 

 

   

2 2
0 0 0 0 02

2 2 2 2
0 0 0 0 00 0

cos cos

cos , .

d R d

d R d f c

 

    



      



2 21
1 d d sin

D
Y d   

     2 2

0 0
00 rWr 

22
d d sin cos

D
Y d

J
   

           

 
 

0
d sin cos 0  



 
 

chlet-to-Neumann hypothesis of problem (P1) on the ex- 
ternal boundary, and we can found them from an ex- 
perimental measures. 

To summarize, we have found an equation for 0d  
which is the distance between the center O  of the cell 

Consequently, the fact that   ends 

ly unknown d  involving 

the proof.   

5. Conclusions 

23) is an equation of the on
the p
( B  and the center O  of  , so it remains to find the 0

arameters J  and :f v


 , which are the Diri-  
0

position of the center O . In fact: 
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Let maxM  minM  be two points  t and at he external 
o    whose the norm of th l current j  

pectively its maximum and m nimum values, 
see . Then, from the symmetry o  the shape, we 

 the center  the cell 

b undary
reaches res

Figure 1
deduce that

e loca
i
f

O  of B  is localized at 
ssed b maxM min  and 0O , 

 whe distance 0d  
e  an  Eq  (23). 

swer uestion 
uniqueness of the inver

 problem for (P1), and we can conclude that 
2), involving Dirihlet-to-Neumann 
fficient to resolve the localisation 

ough in
problem like geometrical inverse problem, see [5]. 
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