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ABSTRACT

We want to show extra-dimensions corrections for Fermionic Casimir Effect. Firstly, we determined quantization
fermion field in Three dimensional Box. Then we calculated the Casimir energy for massless fermionic field confined
inside a three-dimensional rectangular box with one compact extra-dimension. We use the MIT bag model boundary
condition for the confinement and M* x S' as the background spacetime. We use the direct mode summation method
along with the Abel-Plana formula to compute the Casimir energy. We show analytically the extra-dimension cor-
rections to the Fermionic Casimir effect to forward a new method of exploring the existence of the extra dimensions of

the universe.

Keywords: Casimir; Fermionic; Extra Dimensions

1. Introduction

Casimir effects, first discovered in 1948 [1], are mani-
festation of the zero-point energies of the quantum fields
and have played an important role on a variety of fields
of physics. It discovered by Hendrick Casimir. He showed
that zero-point fluctuations in electromagnetic fields gave
rise to an attractive force between parallel, perfectly con-
ducting plates. Since spacetimes with extra dimensions
are fundamental in most of theories of high energy phys-
ics, there have been intensive activities in investigating
the Casimir effect in spacetime with extra dimensions.
The case of a scalar field and electromagnetic field with
various boundary conditions has been studied at either
zero or finite temperature, for different extra-dimensional
spacetimes such as Kaluza-Klein spacetime and Randall-
Sundrum spacetime [2-3]. For fermionic field, there has
been calculated Casimir energy in three-dimensional box
[4]. There also has been calculated Casimir energy be-
tween parallel plates with compact dimensions [5]. Then,
in this paper we investigate the extra-dimension correc-
tion to fermionic Casimir energy in three-dimensional box
to explore the existence of extra-dimensions of our uni-
verse.

This article is organized as follows: In Section 2 we
present the solution to the Dirac equation in 5D subject
to the MIT bag model boundary condition in all the sur-

Copyright © 2013 SciRes.

faces. Then we compute the Casimir energy by perform-
ing a direct sum over all modes of the field using the
Abel-Plana summation formula. As we shall show, there
will be no need for any analytic continuation techniques
in this case. There will be influenced from extra dimen-
sion on the nature of Casimir energy between the con-
figuration boundary that confine the field in the space-
times with extra dimensions.

2. The Dirac Field 5D Confined in
Three-Dimensional Cube

We consider a quantum fermionic field ¥ on (3 +1 +
1)-dimensional spacetimes with M *xS" manifold.

ds* = gAdeAde =i’ —dx* -dy? (1)

The field W is assumed to satisfy the general com-
pactification

P(y)= Y, ()@

n=—o0

where R is the size of extra dimension. The field ¥ sat-
isfy 5D Dirac equation

iy'0 ¥ —m¥ =0 3)

using the chiral representation of Dirac matrices
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“4)

with y* =iy’ [6]. The positive energy solution of the 5D
Dirac equation can be written respectively as

. 7, (%)
¥ (x", )= 2| i(o-V)+(in/R)

n=-—w
m+E

y =077y

e—iEteiny/R (5)

7,(x)

Spinor 7, (x) are given by

ikyxp +ikyx3

1 ik x; 1 —ikyx;
7, (%) = (mh.e" +7) e e

ikyx) +ikyx3

(6)

2 Likyxy 2 —ikyxy
+(77n+e +77nfe )e

ikyxy +ikyxy

+(’73+eik3x3 + nsiefikm )e
Then we have
-io-Vn,(x)

= |:(O'k)77,1,+ +(Gk)77n2+ +(O‘~k)773+:Ieik1X1+ik2x2+ik3x3

_ 1 ikyx +ikyxy +ikyxs
+(—ok, + 0,k + 03k )1, e (7)
ikyxy —ikyxy +ik3xy

+(ok, — 0.k, + 03k, )17 e

kg x, -ikyxy —iksxs

+ (lel +0,k, — ok, )7]376
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The MIT bag model boundary condition is usually said
to imply that there is no flux of fermions through the
boundary. The prevalent form of the MIT bag model
boundary condition is as follows:

[1+i(A-y)]¥(x)

This boundary condition for our special case becomes

(liiyk)‘P(xl,xz,x3) ©)

®)

Boundary -

=0,k=12,3
xp=tay /2
where a,,a,,a, denote the lengths of the sides of the
box. Subtituting Equations (6) and (7) into Equation (9)
we obtain, for example, the following two equation for
x, =ta, /2 surface:
}ﬂiﬁ

ikyxy

o, (O"k)$O'1 (n/R)

B

m+E m+E

o
ﬂn+_

and for x, =—q,/2, we get

(m+E)(m—ik,)

-m(m+E)-k + ko, (o,k,

:|:_1$i0'1(0'1k1)i_i0'| (O'zkz +O'3k3)i0'1(n/R) (10)
m+E m+E m+ E
'ﬂ:,_e_ikl)q
for x, =a,/2, we get
+osk,)—iko, (n/R) | i -
+G3k3)—ik10'1 (n/R)U;_ o W)

L
77n+_

Comparing (11) with (12), we find that in order to
have nontrivial solutions for (77,11“77,117) , one requires k;
to satisfy a transcendental equation

k cotka =m (13)
by setting m =0 for massless Dirac field, the quantiza-
tion condition Equation (13) yields

k = [”1 +lj£
2)aq

3. Casimir Fermionic Energy in
Three-Dimensional Cube at M, X S

(14

From this point, we concentrate on the massless case

(m+E)(m+ik1)

with a, =a, =a,=a, for simplicity. By using the se-
cond quantized form of Dirac field, the vacuum expecta-
tion value of the free Hamiltonian can be expressed in
the form

o0 d3
Ep=—a'2 2. fﬁ\/pﬁpiwﬁ

2
o 1)
where summation index runs over the spin states and
subscripts F'V stands for free vacuum. In the presence of
the boundaries, all of components of the momentum are
subjected to quantization condition Equation (14). There-
fore the integrals turn into summations:

0 0

EBV:_Z Z Z

)
n +—

s m=—00 ny,ny,n3=0 2
where Ejpy denotes the vacuum energy in the presence of
the boundaries. Obviously, in both situations the vacuum
energy is divergent. However, the Casimir energy, which

is the difference between these two quantities, is usually

Copyright © 2013 SciRes.

+

1Y 1 m?
nt+—| +ln+=| +— 16
( ’ zj ( 3 2] R 1o
expected to be finite. One usually needs to utilize a regu-
lation prescription to give a physical meaning to such a

difference. In this paper we choose a modified form of
the Abel-Plana formula, which is useful for the summa-
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tion over half-integer numbers

ks 1 2 T dr
Fln+=|=[dtF(t)-i[ ——
3 r(ned) janr () <

where F(z) is assumed to be an analytic function in the
right half-plane. The first term is the main term of turning
a sum into an integral. The second term is called branch-

E, :_2[£j > [ [ dudidied i+ 2+ + aom?
aJ |m=20900

(-1) am?
=0 2m(j+1) ]

> 3/2
| 2\(ny +1/2)" +am?

2n(j+1)

Ko (2,2n(j+l)mx/g)+2ni(_l)f

; 2\/(;12 +1/2)" +(n, +1/2) +am?

2 2 21
m=—0 ny ,n3=0 j=0

27‘C(j+1)

with o = I?/n*R* . It is extremely important to note that
the only divergent quantity in Equation (18) is the first
term, which is precisely the free vacuum energy £,
and is supposed to be subtracted from E,, in order to
obtain the Casimir energy. Second, fourth, and fifth term
related to extra dimension corrections.

T &E (—1)j0!m2

Feuime = 2(%j 22 zuzo [22(j+1)]

Kyea (2.20(j +1)ma )+ x> (-1)

[ F(it)-F(-ir)] (17)

cut term. Since we have a four sum over for Equation
(16), we need to apply the Abel-Plana formula four times.
The details are given in the Appendix. The final result is

1

[2n(j+1)]

(18)
Kbcssc] (3/2’275(.]"’_1) (n3 +1/2)2 +am2j
Kbcsscl (1,27T(]+1)\/(n2 +1/2)2 +(n3 +l/2)2 + Clmz )
ECCaus?renir =Eyy —Epy (19)

As a check on our procedure we have computed the
Casimir energy for a fermionic field between two parallel
plates in M*xS', separated by a distance a, and ex-
tradimensional size R, we obtain

1

70 [2n(j+1)]

NT?
i(—l)f 2(%—+Zj KBessel(3/2,2n(j+l)(n3+%)]

T 0
+_
4 ,,;‘,:0 27‘[(j+1)
2 > (20)
1 1 5
. _ 2\/£n2+2j +(n3+2j +am : 2 | 3
-1y K L2n(j+1 — — :
+;n2%:0j§0( ) 27t(]+1) Bessel 7[(]+ )\/(nz"l‘zJ +(n3+2J +am
1Y 1Y
| = = _2 ;12+5+n3+E Y 1
— -1Y K 1,2m(j+1 — —
+2/12%:0j§0( ) 27'C(j+1) Bessel TE(]+ )\/(”2 +2j +(I’l3 +2j
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Figure 1. Fermionic Casimir energy with and without a compact dimension as a function of the plates separation.

Figure 1 depicts the dependence of the Fermionic Ca-

simir energy in a Three-dimensional box on a radius of
extra dimension and the size of the box. It is showed that

AEED

a

2\/5 m=1 j=0 [211(] + 1)]

corrections’ factors increase proportional to the size of
extra dimensions. For extra dimension correction, we
deduce from Equation (20) that

_ o o -1 J 2
Casimir :z(ﬂJ z Zz ( ) on > KBessel(2,21t(j+l)m\/E)

DIDIDAC)

1Y’ 1Y
2 (n2+j +(n3+j +am’
; 2 2

2n(j+1)

m=1ny,n3=0 j=0

If there are no extra dimension, then the term am?

vanishes. Then casimir energy will become as be shown
by [4].

4. Conclusion

In this paper, we have investigated the extra dimensional
corrections for Casimir energy in a three-dimensional
boxin M*xS' due to the vacuum fluctuations of mass-
less fermionic field with MIT bag boundary conditions.
The Casimir energy is computed using generalized Abel-
Plana summation formula. The most important result we
obtain in this letter is that Fermionic Casimir energy de-
pends on the size of extra dimensions.
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Appendix: Abel-Plana Formula in
Calculating the Casimir Energy

In this appendix we present the details of the calculations
leading to our main expression for the casimir energy of
a massless fermionic field confined inside cube with one
extra dimension via MIT bag model boundary condition.
In order to apply the Abel-Plana formula to four sum in
Equation (16), we first define

F(nl+%j
o e

(A1)

DN

A =0 ny,ny=

with

601

1Y 1Y
B2 (ny,ny,m) :(nz +Ej +[n3 +§j +am’

The factor 2 is associated with the spin multiplicity.
The branch-cut term can be calculated using the follow-
ing:

F(it)
(#i)\e* = B* (ny,my,m),
2n |t|>ﬂ(n2,n3,m)
A =0 ny.ny=0 \/—tz + B (nz,n3,m),
|t| < ﬂ(n2,n3,m)

By using Equations (17) and (A2), Equation (16) turns
into

0 0

(A2)

0 0 © 2 2
E,, :[_2_nj >y jdt £ +(n2 +1J +(n3 +1J +am’
a )m=—o ny,n3=0 2 2
(A3)
@ “ a |, 1Y 1y ,
-= Z z J. —— == | —| 4= | —am
m==01,13=0 B(ny ,n3,m) " +1 2 2
The first term is infinite and we have to use the Abel-Plana formula again for the first term. We obtain
o 0 o 1 2
E, =(——j > jdtj'dk\/k2 +1 +(n3 +—J +am’
=—0on3=0 ( 0 2
© 1 2
o235 S ] ng+1sz_tz_(n3+5) ™
m=—o13=0 0 +(n3+1/2)2+am2
1Y 1Y
2 ZI - n+—| —|ng+— —am’
S — B(ny.n3, m 27“ +1 2 2
Again the first term is infinite and we must apply the Abel-Plana formula to obtain
5 w
E,, =(_ ”j jdujdzjdk\/H +2 +u +am’
a )m—ny
+2[_2_”j > [defdk 7 —am?
a4 Jm=20 k242 ram? e +1
) & & ? dk 1Y "
2 2
+2(—7j > Zj'dt .[ T k™ —t —(n3+5j —am
m=—0m3=00 12+(n3+1/2)2 +om?
+2(—2—nj i i T _dk t2—(n +lj2—(n +—j2—01m2
a ) m=— ny,n3= Oﬂ(llz,n3,m) eznk +1 ’ 2 ’
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Note that all of branch cut terms is finite. On other Making appropriate changes of variables, we obtain
hand the free vacuum energy is
2n ) & \/ 3
E,, Ep === m_wz[du.[dtjdk B+ +u’ +am® (A7)
w O 0 © d d d m2 (A6)
=-2a" ) _[ _[ I M\/ L+ ps+ps +? Therefore when we compute the Casimir energy these
NI om0 (2n) two terms precisely cancel each other. That is,
Ecy=Egy —Epy
2 0 o0 o0 d
:2( _Ej fafae | - Sk —am’
@ J = 0 0 K2 +1% +am? +1
2
© w 0 0 1 AS
( j > Zjdt J zcik kz—t2—(n3+—j —am’ (A8)
a m=—0 n3=0 ( 2 zen +1 2

7 +(ny +1/2)2 +am

* o dr 1y 1y
(D e Y U
m=—0 1y ,n3= Oﬂ(nzj;,3 m) e2 ! +1 2 2

here we explain the details of the calculation of the last _ i(_l)j o 2w+ (A9)
term and then outline the calculation for remaining terms. e+l 3
We expand the denominator as follows: The last term turn into

_47-[ =2m(j+1) 2 l ’ _ l ’ — 2
Z z Z( )Jn2n3,m)dte x\/t £n2+2j n3+2 am (A10)

a m=—w ny,n3=0 j=0

by using the identity

0
then we have

0

> P 2(—1)f

24(my +1/2)" +(n +1/2) +am’
2n(]+1

Bm, 1, 2n(j+1)\/(n2 +1/2) +(ny +1/2) +am? j (A12)

Tdu(uz —a2)v_1 e H :%(Z_‘lTQ T'(V) Kpesa [v—%,aluj (A1)

In order to compute the second term of Equation (A8) we first interchange the order of integrations to obtain

Y
2‘1’“ [y —¢ (A13)
" +1y

© ©

DI

m=—e0 13=0 (n3+1/2)2+am2

where Y? = k* —(ny + 1/2)2 —am® . Now using Equations (A9) and (A11) we obtain

@ “ dk | ., 1Y )
k"—|n,+—| —am
ngo _[ zean+l|: ( 3 2)

()13 +1/2)2 +am

(L
a

%

32

2
o[ e a0

nﬁ»?ri—:wni)g(_l)j 2m(j+1) * Besse1£3/2 2 (j+1) ( %) +am2J

a

Going through this same procedure, we can compute the first branch-cut term in Equation (A8) as follows:
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) n e (e e (s
=) D e R () BT

Finally, we arrive at

_ © (-] J 2 w )
ECasimir = 2[ 27[) - Zz ( ) - 2 KBessel (2’2n(j+1)m\/;)+n (_l)j ;4

Y

(A16)

12+ n3+12+am2 5 >
+i i i(_l)/ 2\/( ’ 2) ( 2j KBessel(l,zn(j+l)\/(nz+%j +En3+%) +am2j

s o] ol Y Py Y|

2
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