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ABSTRACT 

The uncertainty relation, which displays an elementary property of quantum theory, was originally described by 
Heisenberg as the relation between error and disturbance. Ozawa presented a more rigorous expression of the uncer- 
tainty relation, which was later verified experimentally. Nevertheless, the operators corresponding to error and distur- 
bance should be measurable in the identical state if we follow the presupposition of Heisenberg’s thought experiment. 
In this letter, we discuss simultaneous measurability of error and disturbance and present a new inequality using error 
and disturbance in the identical state. A testable example of this inequality is also suggested. 
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1. Introduction 

The uncertainty relation, which displays an elementary 
property of quantum theory, was originally described by 
Heisenberg [1] as the relation between the error  and 
disturbance 


  of a particle’s position and momentum as 

,h 

     

                   (1) 

where h is Planck’s constant. 
Subsequently, a more generalized inequality was 

shown [2,3]:  

12 , ,A B A B  

 

           (2) 

where X

 

 is the standard deviation of a self-conju- 
gate operator X, which corresponds to some physical 
quantity, defined as 

 
1 22

X X  ,             (3) 

with  
in in ,X X X  



              (4) 

and ,A B



 as the commutator of A and B. 
In some literature (for example, [4]), (2) is considered 

to be a more formal expression of (1). 
Several decades later, Ozawa presented a more rigor-

ous expression of the uncertainty relation [5-7]. The root- 
mean-square noise A

 

 and root-mean-square distur-
bance  are defined as   B

 
1 22

,A N A

 



 

            (5) 

1 22
B D B .             (6)  

The Noise operator N A
out

 is defined using the me- 
ter-observable inM  of A  as  

  out in ,N A M A 

 D B

              (7) 

with the disturbance operator  as  

  out in ,D B B B                (8) 

where in and out mean just before and just after meas- 
urement, respectively. The new uncertainty relation is 
written by means of (5), (6) and also (3) as 

           A

in in1 2 , .

B A B A B

A B

 

   

    
      (9) 

Recently, it was reported [8] that (9) was verified ex- 
perimentally by a neutron spin experiment. Nevertheless, 
it is not clear whether verification of (9) is possible for 
continuous quantities such as position and momentum. In 
other words, it is not clear whether (5) and (6) are meas- 
urable for such quantities [9,10]. Watanabe et al. [11-13] 
suggested another inequality suitable for practical meas- 
urement. 

Moreover, error and disturbance were defined in the 
identical state in Heisenberg’s thought experiment [1] 
referring to the uncertainty principle. If we follow his 
presupposition, the operators corresponding to error and 
disturbance should be simultaneously measurable. In 
many textbooks on quantum theory, commutativity of 
observables is regarded as a necessary and sufficient 
condition of possibility of simultaneous measurement. 
Ozawa, however, insists in his paper [14] that, in some 
states, two noncommutative observables, A and B, are 
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simultaneously measurable if they satisfy  

    0A B  

s. 

             (10) 

and their meter observables are commutative. Simulta-
neous measurability has been discussed with respect to 
contextuality and weak measurement [14-17]. 

The purpose of this letter is to discuss the simultane- 
ous measurability of error and disturbance. Firstly, we 
define simultaneous measurability from the quantum 
logical aspect. According to our definition, there exists 
no state where noncommutative observables are simulta- 
neously measurable. Then, we define commutative op- 
erators which correspond to the error and disturbance of 
noncommutative observables. This definition leads to the 
uncertainty relation of error and disturbance in the iden- 
tical state. A testable example of this relation is also 
suggested, where definition of error   in [8] is shown 
to be insufficient for other setting

2. Simultaneous Measurability 

To prepare for discussion about simultaneous measur-
ability, we define observables according to a common 
quantum logical approach [18,19]. The proposition that a 
measured value of a physical quantity u belongs to a 
subspace A of space of real number R is written as  u A


. 

When the truth value of u  can be determined ex-
perimentally, u is called measurable. Logic L, which is 
nothing but a 

A

 -complete orthomodular lattice, consists 
of such propositions. Classical logic is a Boolean lattice, 
namely, an orthocomplemented distributive lattice, while 
quantum logic is not. 

We suppose  -field , which consists of all 
open sets belonging to space of real number R. A map u 
from  to logic L is called an observable of L if  

 R

R 
   1, 0,u  

  ,AR R

  ,

r ,

nA

m n

 

 



R

u R             (11) 

    foru A u A
          (12) 

 
11

for

if fo

n n
nn

m n

u A u A

A A



 
 
 

 

 ∨

 u A


     (13) 

where  is the orthocomplement of  u A
 

 and 
 ; 1,2,u A n  n  constitute an orthogonal set of pro- 
jection operators. It is proved that observables are  - 
homomorphism from  to L.  R

 ,A B R

            v B v B u A v B u A


   

There exists a one-to-one correspondence between the 
whole set of bounded observables and the whole set of 
bounded self-conjugate linear operators. If, and only if, 
two such operators, which correspond to observables u 
and v, are commutative, they satisfy for any pair of 

  

    (14) 

and the orthomodular lattice whose elements are u A ’s 
and  v B ’s is Boolean. Here, we assume, as usual, that 
all the measurable quantities are observables. 

We define the simultaneous measurability of observ- 
ables u and v as follows.  

Definition 
u and v are called simultaneously measurable if the 

truth value of    u A v B  can be determined experi- 
mentally. 

We present the following theorem: 
Theorem 
Let u and v be observables of logic L and  

       u A u A v B Ln nv B     , ,nA B R 1,2,n,   
for the fixed  v B . Then,   nv B ,  are 
observables if, and only if, they satisfy (14).  

 u A 1, 2,n  

L

Proof (sufficiency) 
We assume (14) is satisfied. Firstly, we show the 

whole set v B  whose elements are   nv B ,   u A
1, 2,n   is a   -complete orthocomplemented dis-

tributive lattice. Since  nu A ’s and  v B  satisfy the 
distribution law,  

       n n v Bv B
n n

u A u A v B L 
    
 ∨ ∨  

and    u A

         u A v B u A v B
 

  

nv B  also satisfy the distribution law. More- 
over, if we define  

       (15) 

    v Bu A v B Lfor       u A v B


,  is the orthocom- 
plement of    v B Lu A . Thus v B  is a  -complete 
orthocomplemented distributive lattice. It is clear that 

   u A 1, 2,nnv B ,  v BL satisfy (11)-(13) because    
is a distributive lattice. Therefore   nv B ,  u A 1, 2,n  

v bL
 

are observables of   if they satisfy (14). (necessity). 
Let    nv Bu A , 1, 2,n    b

 

e observables. From (13)  

          ,m n m nv B v B v Bu A u A u A A      

if m nA A   . This equation leads to  

         
   
      .

m n

m n

m n

v

v B u A A

v B u A u A

 

  

  

If we put n m

B u A v B u A  

A R A ,  

         
        .

m m

m m

B u A u A

v B u A u A v B


   

   

R
 

QED. 
he above, it is shown that 

v v B

   From t u A v B  is not 
an  that is, two  observable if (14) is not satisfied, observ- 
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ables which correspond to mutually-noncommutative li- 
near operators are not simultaneously measurable. 

For example, let  

1
,

2
x

xP





  

1
,

2
P 






  

be projection operators corres ng to pondi  u A  and 

.

 v B , respectively, where  

cosx y sin       

x  and y  are Pauli spin ma 0trices. Then, if   , 
the tio projec n operator corresponding to    u A   
is 0 , which is not an observable. 

v B

3. Uncertainty Relation 

an say such quantities as  From the previous section, we c

    ,N A D B               (16) 

are not measurable because (7) and (8) are noncommuta- 
tive when  , 0A B  . Note that this fact does not deny 
(9) where ( not appear but (5), (6) and (3) do. 
These are measured separately by using states belonging 
to the same statistical ensemble. What we would like to 
emphasize is that the uncertainty relation should be writ- 
ten by means of commutative quantities if it is thought to 
be the relation between quantities which are measured in 
the identical state. Thus we define  

 

16) does 

out inA M A  ,            (17) 

  out in ,B B B             (18) 

as ope ss error and distur

ine the following 
qu

 



rators which expre bance from 
the expectation values, respectively. 

Using these operators, we exam
antity:  

 
1 22 2

.A B            (19) 

Since outM  and outB  are observab
y  

les in different 
s stems, (19) becomes 

       
1 22 2

A B
1 2 1 22 2

.A B     

If we use 

    
1 22

,A A        (20) 
1 22

A N

    
1 21 2 2

.B B        (21) 
2

B D

and assume  

    0,D B B           (22) 

(19) is written by the use of (3), (5) and (6

N A A 

) as  

   
1 22 2

A B 

         1 2 1 22 2 2 2
.A A B B    
   (23) 

It is clear that (22) is not invariably realized. One of 
the simplest counter examples is the case where outM  
always indicates inA . Nevertheless, we regard (22) as 
a rather reasonable assumption, which means that  AN  
and A  are inde nt stochastic variables, and so are pende
 D B  and B . 
We can calculate the lower bound of (23) by means of 

(2) and (9) to obtain 

      
1 22 2

2 2 , .A B A  B      (24) 

If we use 

     1
,

2
A B A B            (25) 

in place of (9), the minimal value beco
ble: 

   

mes almost dou- 

 
1 22 2

, .A B A B         (26) 

4. A Testable Example 

 experiment with a setting 
 the experiment in [8] as a 

In this section, we suggest an
which is a little modified from
testable example of the inequality (24). We define A, B 
and OA instead of their definition in [8] as  

sin cos ,A x zA O              (27) 

,
2 2
yB


z

        

where  

       (28) 

π
0

2
   

and z   . (22), which is ecessary to conclude 
with (24), is satisfied in this setting. If the root-mean- 

re noise 

n

squa  A  is completely calculable by using A, 
B and OA as insisted in [8],  

  sin ,A                (29) 

  1
,

2
B                (30) 

  0,A                 (31) 

  sinB .                (32) 

Then,  

            2sinA B A B A B          (33) 
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and  
in inA B, 2 sin .            

mes down to that Ozawa’s inequality (9) is not 

  (34) 

It co
realized within sin 1 2  . This fact seems to show 
that  A  includes uncontrollable error. 

Accordingly, we will estimate the range of  A , 
including uncon or, on the assumption that 
(25) o is realized. We redefine  

trollable err
r (9) A  as  

    1 2
out in ,A M M A         (35) 

where M  is the operator which gives uncontrollable 
error and is assumed to satisfy  

 in in 0.M A A    

This assumption may demand that the angular mo-
mentum of the particle should be measured continuously. 
Then, inequalities corresponding to (26) and (24) will be 
derived from (23). 

Firstly, if we assume (25),   1

2
A   independently 

of  . Then,  

     
1 22 2 1 sin

,
2 2 sin 2

A B A B



  
 

   (36)

The minimum value of the coefficient of the ri
hand

 
 

ght- 
 side is 1 when sin 1 2  . 

Next, ed,  if (9) is assum

 

 
 

1
0, sA
   in .

2

sin 1 2 sin 1
, sin .

1 2 sin 2
A



 




 


      


  

Then  


(37) 

     

     

1 2

, ,

, ,

A B

A B
 
 
 

The minimum value of the coefficient of the right-
 side is 

1 22 2 2

21 22 2

1 1
sin

22

1
sin .

2

1 2sin

2 2sin

1
sin .

2

A B

A B










   
 

  
 






  
 

 

 

 (38) 

 
hand 2 2  when sin 1 1 2   . 

If  

   
 

1 22 2
A B

  1
,A B


 

         (39)

at some angles and  

 

   
1 2

 

2 2

2 2
,

A B

A B
 

 
         (40) 

at each angle are shown experimentally, we can conclude 
that Inequality (24) is realized. This is 
mental proof that Ozawa’s inequality is correct. 

easur- 
ability from the quantum logical aspect and conclude that 

ding to the error and disturbance 

chen Inhalt der Quan- 
tentheoretischen Kinematik und Mechanik,” Zeitschrift 
für Physik, Vo 172-198.  
doi:10.1007/B

also an experi- 

5. Conclusion 

To summarize, we have defined simultaneous m

operators correspon
should be commutative if they operate in the identical 
state. Moreover, a new inequality using such operators 
and a testable example are presented. 
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