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ABSTRACT 

We have carried out micro-canonical Monte Carlo simulations of a planar rotator model in 30 × 30 lattice using periodic 
boundary conditions. The energy distribution of the rotator in the lattice shows features that can be associated with spin 
wave and vortex excitations. The results supplement the first-order transition observed in canonical Monte Carlo simu-
lation, due to vortex nucleation. We also see features that can be associated with the in-homogeneity of vortex charge in 
the critical region. 
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1. Introduction 

Simulations of statistical systems have gained much in-
terest, recently [1-4]. The spin-models with continuous 
symmetry, such as the planar rotator model [5], has been 
studied significantly to know its properties and applica-
bility to physical systems. In the past, effort has been 
made to know the type of phase transition in a magnetic 
material through planar rotator model [6]. It has also 
been used to study exotic materials such as high tem-
perature superconductors [7] and super-fluids [8]. It is 
known that the planar rotator model shows several im-
portant properties: such as lack of long range order, the 
presence of topological defects called vortices, the vortex 
unbinding transition called Kosterlitz-Thouless (KT) 
transition, which is topological in nature [9-14]. The be-
havior of the system is known to be accurately described 
at sufficiently low temperatures by the “spin-wave” theo-
ries by Wegner [12] and Berezinskii [13] and later by 
Zittartz [14]. Various theoretical techniques have been 
used to study the spin waves and vortices [14,15]. Sev-
eral canonical Monte Carlo (MC) simulations [16-22] 
have been carried out using the Metropolis procedure 
[23]. There are also studies with canonical MC simula-
tions based on improved techniques [24-26] and the mi-
cro-canonical molecular dynamics algorithm [27]. Being 
of a topological nature, no specific heat anomaly is ob-
served at the KT transition temperature TKT. But the 
temperature dependence of the specific heat shows a 
peak at a temperature, which is about 15% higher than 
TKT. 

It has been found that the vortex unbinding transition 
temperature (Tv) increases by reducing the potential well 
width. On the other hand, local disorder sets in at tem-
peratures near the potential well height 

   π 0 2DT V V J  

 

. 

Therefore, for a sufficiently narrow potential well TD < 
Tv, we expect the continuous transition to yield to a 
first-order vacancy condensation transition. Several 
studies have been carried out to understand the first order 
transition in this system [28-48]. Here we report the 
study of the nature of the first order transition in a finite 
isolated system, which supplements the results observed 
in canonical Monte Carlo simulations [28,29]. 

The Hamiltonian of the planar rotator model with 
modified potential is given by: 

 2
,

2 1 cos 2q
i ji j

H J               (1) 

J in Equation 1 denotes the interaction strength (>0 for 
the ferromagnetic case) and the sum is over all the near-
est neighbors [28]. In Equation (1), q = p2 is the control-
ling parameter and q > 0. As q is raised, it has an in-
creasingly narrow well of width π q  and for 

π q   it is essentially constant at V(π) = 2J. For q = 
1, the Hamiltonian gives rise to the Kosterlitz-Thouless 
transition and for large value of q, the transition is 
first-order in nature. 

We performed micro-canonical Monte Carlo (MC) 
simulations [49,50] on 30 × 30 rotator system using the 
Hamiltonian given in Equation (1). There are also other 
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simulation methods which have been reported recently 
[51,52]. We used periodic boundary conditions. It is 
known from renormalization group theory that fluctua-
tions at all wave lengths are equally important around the 
phase transition [53]. For a 30 × 30 system, the boundary 
to area ratio is nearly 8 and therefore, one expects to see 
features of a large system. In the simulations there is an 
extra degree of freedom which exchanges energy with 
the rotator system. The temperature is directly related to 
the average energy of the extra degree of freedom E : D

D BE k T                  (2) 

where kB is the Boltzmann constant. (Hereafter we re-
place kBT/J by T and E/J by E for simplicity). In these 
simulations the total energy (E) is an input parameter and 
the temperature (T) is determined from the simulations. 
The system was heated in steps across the first order 
transition during which energy was added to the rotator 
system through the demon. Figure 1 shows the energy as 
a function of temperature for q = 55. We used 5 × 105 
Monte Carlo step per rotator (MCSR) for equilibration 
and 5 × 106 MCSR for averaging. We performed block 
averages consisting of 5 × 104 MCSR each and then 
found the standard deviation of the block averages. The 
standard deviation of the estimated temperature is less 
than about 0.5 percent. It is seen that the temperature 
dependence of energy shows a van der Waals-like loop at 
the first order transition, which occurs at T = 1.0. It is 
well known that meta-stability gives rise to van der 
Waals-like loop [54]. For instance; it arises in weak- 
long-range-force models. In the limit of infinite interac-
tion range, the free-energy required towards a change to 
the equilibrium state is extensive and the mean-field ap-
proximation predicts that meta-stability lifetimes are in-
finite in the thermodynamic limit. We expect that such 
situation does not arise in the present study of finite sys-
tems. We note here that the canonical and the micro- 
canonical ensembles are mathematically linked by the 
Laplace transform [55] and the micro-canonical results 
can be obtained from the canonical energy distribution 
Pβ,L(E) by the following equation [56]: 

    ,LP E, lnmicro L E V d dE          (3) 

We studied the system (was studied) for various energy 
values with 5 × 106 MCSR for equilibration and 5 × 106 
MCSR for averaging. The standard deviation of the esti-
mated temperature in this set, is also less than about 0.5 
percent. We studied the energy distribution of a rotator in 
lattice after equilibration. Figures 2-4 show the energy dis-
tribution of the rotator in the lattice for various values of 
total system energy. In Figure 2 the values of E lies below 
that at the transition. It is seen that there is a broad peak after 
which the energy shows an exponential distribution. 

 

Figure 1. Temperature versus energy of the planar rotator 
model. The simulations are carried out on a 30 × 30 square 
lattice using periodic boundary conditions with q = 55. The 
van der Waals-like loop is observed at the first-order tran-
sition. 
 

 

Figure 2. The frequency distribution of a rotator in the lat-
tice for E = 400 (T = 0.717) (■) and E = 700 (T = 0.930) (○), 
which lie at low temperatures, below the first order transi-
tion: The ordinate represents the natural logarithm of the 
number of times out of the 5 × 106 MCSR that the rotator is 
in the corresponding energy bin of width 0.1. 
 
We attribute this as due to the spin waves. In Figure 3 
the values of E corresponds to that at the transition. It is 
seen that a peak at Es = 7.9 develops gradually apart from 
the broad low temperature peak which reduces in mag-
nitude. There are also several intermediate peaks. In 
Figure 4, at high temperatures (above the transition), 
the broad low temperature peak is observed to be 
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Figure 3. The frequency distribution of a rotator in the lat-
tice for a range of system energies (temperatures) at the 
first order transition temperature: E = 1000 (T = 0.994) 
(lowest curve); 1100 (1.001); 1400 (1.006); 1700 (1.001); 
2000 (0.997); 2100 (0.999); 2200 (1.007) (top most curve). 
The solid lines through the data are guide to the eye. The 
successive graphs are shifted along the ordinate by 5 × 105. 
The ordinate represents the number of times out of the 5 × 
106 MCSR that the rotator is in the corresponding energy 
bin of width 0.1.  
 

 

Figure 4. The frequency distribution of a rotator in the lat-
tice for E = 2400 (T = 1.041) (●) and E = 2800 (T =1.273) (□), 
which lie at high temperatures, above the first order transi-
tion. The ordinate represents the number of times out of the 
5 × 106 MCSR that the rotator is in the corresponding en-
ergy bin of width 0.1. The solid lines through the data are 
guide to the eye. 
 
absent and the peak at Es = 7.9 continues to increase, 
along with the intermediate peaks. We attribute the high 
energy peak as due to the vortices. The height (or inten-

sity) of the peaks which arises due to spin waves and 
vortices is shown as a function of system energy in Fig-
ure 5. It is seen that the peak due to the spin waves re-
duces as the energy increases and at the end of the transi-
tion this peak is practically absent. However, on the other 
hand, the peak due to the vortex excitations continue to 
increase above the first order transition. 

It is known that, the spin waves dominate at low tem-
peratures [12-14]. The broad peak at low temperatures 
(Figure 2), can be attributed as due to such excitation. 
The peak at Es = 7.9, is close to the value of energy 
needed to create a vortex-anti-vortex pair. The energy 
needed to create a vortex-anti-vortex pair (2μ) can be 
estimated from the expected exponential temperature 
dependence of vortex density: V~e–2μ/T [18]. We obtain a 
value of 2μ = 7.3 [57]. The low temperature value of 2μ 
corresponds to the energy associated with the closest 
bound vortex-anti-vortex pair. This can be compared 
with the vortex-anti-vortex pair in the absence of a spin 
wave with lowest energy configuration [42]. The corre-
sponding energy is 8 in units of J. Recently, the vortices 
in the classical planar rotator have been studied using 
canonical MC simulations based on an improved tech-
nique. The value of 2μ = 7.55 obtained in the simulations 
are in good agreement with the present results [25]. We 
note here that the analytical value estimated by Kosterlitz 
and Thouless is 9.9. Therefore, this peak at Es = 7.9, can 
be attributed as due to vortices. 

Simulations have shown that the vortex charge distribu-
tion is inhomogeneous [58]. The maximum in-homoge-
neity occurs at a temperature that corresponds to that of 
the coexistence region. Although we have not yet found an 
exact explanation of the observed in-homogeneity 
 

 

Figure 5. The intensities of the peak due to spin waves (●) 
and vortices (■) as a function of system energy. The solid 
lines through the data are guide to the eye. 
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of the vortices, certain features can be understood as fol-
lows. In the low temperature (energy) insulating phase 
the vortices are bound tightly which results in a small 
value of the vortex in-homogeneity. In the high tempera-
ture (energy) Debye-Hűckel regime, the in-homogeneity 
is also small due to the presence of a large number of 
free charges in the liquid phase. We speculate that cluster 
of vortices in the critical region are responsible for the 
peak in the vortex charge in-homogeneity. The interme-
diate peaks seen in Figures 3 and 4 can be attributed as 
due to the vortex-charge in-homogeneity. 

In conclusion, we have studied the energy distribution 
of the rotator in the lattice. The energy distribution of the 
rotator, shows features that can be associated with spin 
wave and vortex excitations. The results substantiate the 
first-order transition observed in canonical Monte Carlo 
simulation, due to vortex nucleation. We also see fea-
tures that can be associated with the in-homogeneity of 
vortex charge in the critical region. 
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