Determination of the Vibro-Rotational Constants, the Dipole Moment's Function and the Intensities of the HTO's v_1 (v_3 by Usual Convention) Band

Modou Tine¹, Diouma Kobor¹, Ibrahima Sakho¹, Laurent Coudert²

¹Laboratoire de Chimie et de Physique des Matériaux (LCPM), Université de Ziguinchor, Ziguinchor, Sénégal ²Laboratoire Inter-Universitaire des Systèmes Atmosphériques, Créteil, France

Email: doumotine@yahoo.fr

Received June 29, 2012; revised October 16, 2012; accepted October 30, 2012

ABSTRACT

In the first part of this paper, an analysis of the high-resolution spectrum of the HTO molecule $v_1(v_3)$ band, from 3630 to 3950 cm⁻¹, was undertaken. The rotational transition of this band was assigned using combination differences. Their wavenumbers were analyzed with a least squares fit program in order to obtain spectroscopic constants. A perturbed state has been evidenced. In the second part, with a view towards building a spectroscopic data base, a calculation of the dipolar momentum function was undertaken.

Keywords: Infrared Spectrum; Energy Level; Rays Intensities; Perturbation

1. Introduction

HTO molecule is important for the environment. It is found in discharges of nuclear power plants with 12.3 years for half-life. It is essential to know its infrared spectrum in order to detect it remotely. It is also interesting to have available database to use this molecule spectroscopy. These were the motivation of our work focused on the fundamental $v_1(v_3)$ looks near 3700 cm⁻¹. The aim of this paper is twofold, firstly we perform a comprehensive analysis of high-resolution spectrum of the $v_1(v_3)$ band, and secondly we determine the dipole moment's function which will permit us to calculate the rays intensities in a wide range of quantum numbers.

We continued with an analysis of the transitions wave numbers to determine the spectroscopic constants that are essential to calculate the positions of such transitions.

2. Theoretical Calculations

2.1. The Vibration-Rotation Hamiltonian

Leaving from the approximations of Born Oppenheimer [1,2] and of the harmonic that consists in separating the movement of the electrons to that of the cores and in describing the molecule while developing only the potential energy to the second order, with the help of the 3N-6 correctly chosen coordinates. The vibration-rotation Hamiltonian, under compact shape, is written, according to Darling and Dennison [3], simplified by Watson [4,5],

by:

$$H = \frac{1}{2} \sum_{\alpha\beta} (J_{\alpha} - P_{\alpha}) \mu_{\alpha\beta} (J_{\beta} - P_{\beta}) + \frac{1}{2} \sum_{k=1} P_{k}^{2} + V(Q) + U(Q)$$
(1)

where the indices α and β correspond to the *xyz* axes of the mobile reference mark. J_{α} and p_{α} quantities are respectively the components of the total angular moment and the internal angular moment of the vibration; $\mu_{\alpha\beta}$ represents the component of the efficient inertia tensor's inverse; p_k with $1 \le K \le 3N - 6$ the conjugated momentum of the normal coordinate of Q_k vibration; V(Q) the potential energy (quadratic) and U(Q) a term of a potential energy type. For the zero-order this Equation (1) becomes:

With

$$H_{\nu} = \frac{1}{2} \sum_{k=1}^{3} \left(P_{k}^{2} + \lambda Q_{k}^{2} \right)$$
(2)

By introducing the dimensionless normal coordinates, we obtain:

 $H_0 = H_v + H_r$

$$q_k = \frac{\lambda_k^{1/4}}{\hbar^{1/2}} Q_k$$
 and $p_k = \frac{-i\partial}{\partial q_k}$

The Equation (2) gets under the shape:

$$H_{v} = hc \sum_{k=1}^{3} \frac{\omega_{k}}{2} \left(p_{k}^{2} + q_{k}^{2} \right)$$
(3)

where $\omega_k = \frac{\lambda_k^{1/2}}{2\pi c}$ is the *k* node energy in cm⁻¹ and the *c*

constant, the light speed. The Equation (3) is the sum of three harmonic oscillators. We deduce easily the wave's function as well as the vibrational energy:

 $\Psi_{v}(v_{1}, v_{2}, v_{3}) = \prod_{k=1}^{3} \Phi_{vk}(q_{k})$

and

$$E_{v} = hc \sum_{k=1}^{3} \omega \left(v_{k} + \frac{1}{2} \right) \tag{4}$$

where $\Phi_{\nu}(q)$ is the harmonic oscillator wave's function for the vibrational quantum number ν . From this equation, the values of the H₂O, HDO and HTO three normal nodes energies are given in the **Table 1**. The calculation has been done taking into account the molecule geometry at the equilibrium state and the surface potential energy of Patridge and Schwenke [6]. To compare our results, some energy levels, coming from the results of the references [7-12], were presented in the same table. We represented the small displacements to the H₂O isitopic in **Figure 1**. The normal modes are labeled using the IUPAC convention [13], followed in brackets by the usual convention. H_r can be written by:

$$H_r = \sum_{\alpha} B_{\alpha} J_{\alpha}^2 \tag{5}$$

where α corresponds to the *x*, *y*, *z* axes and

$$B_{\alpha}\left(\mathrm{cm}^{-1}\right) = \frac{h}{8\pi^{2}c}\frac{1}{I_{\alpha}^{e}}$$

 H_r has been calculated choosing the reference related to the *O'xyz* molecule while the tensor of inertia would be diagonal (Figure 2).

For an asymmetric molecule type, as HTO, the use is to designate by *A*, *B* and *C* the constants of the rotational B_a , with A > B > C. The corresponding axes have been noted *a*, *b*, *c*.

Table 1. Calculated and observed energies of the three normal modes for the isotopic varieties of water.

Variety	Mode	Calculated	Observed
	v_1	3831	3655
H_2O	v_2	1648	1594
	<i>v</i> ₃	3942	3755
	v_1	3889	3707
HDO	v_2	2824	2726
	<i>v</i> ₃	1445	1403
	v_1	3888	3716
НТО	v_2	2369	1648
	<i>v</i> ₃	1370	1332

Figure 1. The small displacements of the three normal nodes of vibration [13] of H_2O , HDO and HTO.

Figure 2. The axes systems of HTO molecule.

Following the I^r representation (x = b, y = c, z = a)the Equation (5) becomes :

$$H_{r} = AJ_{z}^{2} + BJ_{x}^{2} + CJ_{y}^{2}$$

$$= \left[A - \frac{1}{2}(B + C)\right]J_{z}^{2} + \frac{1}{2}(B + C)J^{2}$$

$$+ \frac{1}{4}(B - C)(J_{+}^{2} + J_{-}^{2})$$
(6)

where $J^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}$ and $J \pm = J_{x} \pm i J_{y}$.

To estimate the molecule's asymetry, we introduce the Ray parameter [14] κ , equal to -0.8. This means that the HTO molecule is enough close to a stretching asymmetric rotator ($\kappa = -1$).

There is no analytical forms for the eigenvalues of the Equation (5). To obtain the rotation energy, it is necessary to diagonalize the matrix of this hamiltonian in the basis $|J, K, M\rangle$ of the simultaneous eigenstates of the total angular momentum J^2 and of its projections on the laboratory Z axis and the variable z of the mobile reference, respectively, J_Z and J_z .

$$J^{2} | J, K, M \rangle = J (J+1) | J, K, M \rangle$$

$$J_{Z} | J, K, M \rangle = M | J, K, M \rangle$$

$$J_{z} | J, K, M \rangle = K | J, K, M \rangle$$
(7)

where J, K, M is the quantum numbers corresponding to these three operators. The expression of the wave function $|J, K, M\rangle$ depends on the chosen conventions. In the present case we take the same convention of Bunker [15] and we write it as the following way:

$$\left|J,K,M\right\rangle = \sqrt{\frac{2J+1}{8\pi^2}} D_{KM}^{(J)}\left(\chi,\theta,\phi\right) \tag{8}$$

where

$$D_{KM}^{(J)}\left(\chi,\theta,\phi\right) = \mathrm{e}^{\mathrm{i}K\chi} d_{KM}^{(J)}\left(\theta\right) \mathrm{e}^{\mathrm{i}K\phi}$$

The function $d_{KM}^{(J)}$ is defined in the reference [16]. When the molecule is isolated, the rotational energy doesn't depend on *M* and, to simplify, we use the linear combinations of the following $|J, K\rangle$ functions:

$$|J, K, \gamma\rangle = \begin{cases} \frac{|J, K\rangle + \gamma | J, -K\rangle}{\sqrt{2}} & \text{for } K > 0\\ |J, K = 0\rangle & \text{for } K = 0 \end{cases}$$
(9)

where $\gamma = \pm 1$. When K = 0, only the linear combination with $\gamma = +1$ exists. The non zero matrix elements of the rotational Hamiltonian (Equation (5)), could exist only when the linear combinations and the Equation (9) are in the same type. That means $\Delta K = 0, \pm 2$ and $\Delta \gamma = 0$. We can write the rotational Hamiltonian eigenfunctions as followed:

$$\Psi_{\nu}^{n} = \sum_{K} a_{K,\nu}^{n} \left| J, K, \gamma \right\rangle \tag{10}$$

where *n* is a quantum number varying from 0 to 2*J* and where $a_{K,\gamma}^n$ the related coefficients of the developping wave's functions. Rather than to use the quantum number *n* to identify the rotation levels, we prefer to use the pseudo quantum numbers K_a and K_c of the rotation [17]. Although these latters are not real quantum numbers, all of the three quantum numbers J, K_a and K_c with $0 \le K_a \le J$, $0 \le K_c \le J$ and

$$K_a + K_c = J \text{ or } = J + 1 \tag{11}$$

permit to, unequivocally, identify the 2J+1 rotation levels corresponding to a value of J. Indeed, we have $n = J + K_a + K_c$.

 E_r the rotation energy of the J, K_a , K_c level, we can write:

$$H_r \Psi_r^{J,K_a,K_c} = E_r \Psi_r^{J,K_a,K_c} \tag{12}$$

The **Figure 3** shows the arrangement of first levels of rotation of HTO. We will notice that the energy especially depends on J and K_a . Two levels, character-

Copyright © 2012 SciRes.

Figure 3. Diagram of rotations energies levels of HTO.

ized by the same values of these two quantum numbers with different K_c values, have slightly different energies because of the asymmetry duplication. This latter increases with J but decreases with K_a and it is resulting from the fact that $B \neq C$. So the Hamiltonian of zero-order becomes:

$$\Psi_{0} = \left| v_{1}, v_{2}, v_{3}, J, K_{a}, K_{c} \right\rangle = \Psi_{r}^{v_{1}, v_{2}, v_{3}} \Psi_{r}^{J, K_{a}, K_{c}}$$
(13)

2.1.1. Watson's Hamiltonian

The above given results are only valid in the setting of the zero order approximation. In order to consider the centrifugal distortion effects, we will use the Watson's Hamiltonian [18-20]. However in this equation the rotational energy is not the eigenvalue of the rotational Hamiltonian of the Equation (6) but the eigenvalue of the efficient Hamiltonian depending only on the angular momentum of the rotation.

$$\begin{split} H_{r} &= A^{v}J_{z}^{2} + B^{v}J_{x}^{2} + C^{v}J_{y}^{2} - \Delta_{K}^{v}J_{z}^{4} - \Delta_{KJ}^{v}J^{2}J_{z}^{2} - \Delta_{J}^{v}J^{4} \\ &- \left\{ \delta_{K}^{v}J_{z}^{2} + \delta_{J}^{v}J^{2}, J_{xy}^{2} \right\} + H_{K}^{v}J_{z}^{6} + H_{KJ}^{v}J^{2}J_{z}^{4} + H_{JK}^{v}J^{4}J_{z}^{2} \\ &+ H_{J}^{v}J^{6} + \left\{ h_{K}^{v}J_{z}^{4} + h_{KJ}^{v}J^{2}J_{z}^{2} + h_{J}^{v}J^{4}, J_{xy}^{2} \right\} + L_{K}^{v}J_{z}^{8} \\ &+ L_{KKJ}^{v}J^{2}J_{z}^{6} + L_{KJ}^{v}J^{4}J_{z}^{4} + L_{KJJ}^{v}J^{6}J_{z}^{2} + L_{J}^{v}J^{8} \\ &+ \left\{ l_{K}^{v}J_{z}^{6} + l_{KJ}^{v}J^{2}J_{z}^{4} + l_{JK}^{v}J^{4}J_{z}^{2} + l_{J}^{v}J^{6}, J_{xy}^{2} \right\} \\ &+ P_{K}^{v}J_{z}^{10} + P_{KKKKJ}^{v}J^{2}J_{z}^{8} + P_{KKJ}^{v}J^{4}J_{z}^{6} + P_{KJJ}^{v}J^{6}J_{z}^{4} \\ &+ P_{KJJJ}^{v}J^{8}J_{z}^{2} + P_{J}^{v}J^{10} \\ &+ \left\{ p_{K}^{v}J_{z}^{8} + p_{KKJ}^{v}J^{2}J_{z}^{6} + p_{KJ}^{v}J^{4}J_{z}^{4} + p_{KJJ}^{v}J^{6}J_{z}^{2} + p_{J}^{v}J^{8}, J_{xy}^{2} \right\} \\ &+ \cdots \end{split} \tag{14}$$

where $J_{xy}^2 = J_x^2 - J_y^2$ and $\{,\}$ is the ant-commutator as $\{A, B\} = AB + BA$.

In this equation, all parameters depend on the considered vibrationnal state as indicated by the exhibitor v. The adopted resolution is the A-type which is more adequate for an asymmetric molecule as HTO.

390 transitions have been assigned for *J* values below 15 (**Table 2**).

2.1.2. The Wave Numbers

For every transition, characterized by the rotationnal quantum numbers J', K'_a, K'_c and J'', K''_a, K''_c for the lower and higher levels, respectively, the wave number σ^{cal} has been calculated by:

$$\sigma^{cal} = E_r \left(J', K'_a, K'_c : P^1 \right) - E_r \left(J'', K''_a, K''_c : P^0 \right)$$

+ $E_v^1 - E_v^0$ (15)

Table 2. The transitions assigned in the infrared spectrum of the $v_1(v_3)$ band of HTC
--

J'	K'_a	K_c'	J''	$K_{a}^{\prime\prime}$	K "	Obs	Cal	Diff
2	2	1	3	2	2	3678.521(10)	3721.521	-43
1	0	1	2	1	2	3678.849(10)	3658.849	20
6	1	6	6	1	5	3680.963(10)	3692.963	-12
3	1	3	4	0	4	3682.342(10)	3704.342	-22
2	1	2	3	1	3	3683.105(10)	3696.105	-13
5	0	5	5	1	4	3683.710(10)	3669.710	14
5	2	4	4	3	1	3686.775(10)	3549.775	137*
0	0	0	1	1	1	3688.956(10)	3660.956	28
4	0	4	4	1	3	3689.717(10)	3687.717	2
5	1	5	5	1	4	3690.777(10)	3698.777	-8
5	2	3	4	3	2	3690.777(50)	3714.777	-24
1	1	0	2	1	1	3690.937(10)	3693.937	-3
8	2	7	8	2	6	3691.777(10)	4057.777	-362^{*}
1	0	1	2	0	2	3693.354(10)	3679.354	14
4	2	3	5	1	4	3693.994(10)	3603.994	90^{*}
1	1	1	2	1	2	3694.065(50)	3688.065	6
3	0	3	3	1	2	3694.102(10)	3686.102	8
3	1	3	2	2	0	3694.970(10)	3694.970	0
2	1	2	3	0	3	3695.623(10)	3695.623	0
11	5	7	11	5	6	3696.543(10)	3678.543	18
11	5	6	11	5	7	3696.643(10)	3680.643	16
2	0	2	2	1	1	3697.093(10)	3680.093	17
6	2	5	5	3	2	3697.172(10)	3392.172	305*
10	5	6	10	5	5	3697.518(10)	3665.518	32
10	5	5	10	5	6	3697.518(10)	3703.518	-6
10	6	5	10	6	4	3697.708(10)	3714.708	-17
10	6	4	10	6	5	3697.708(10)	3715.708	-18
9	6	4	9	6	3	3698.242(10)	3655.242	43
9	6	3	9	6	4	3698.242(10)	3655.242	43
9	5	5	9	5	4	3698.360(10)	3693.360	5
9	5	5	9	5	5	3698.360(10)	3703.360	-5
8	6	3	8	6	2	3698.658(10)	3719.658	-21
8	6	2	8	6	3	3698.658(10)	3719.658	-21
1	0	1	1	1	0	3698.941(10)	3665.941	33
8	5	4	8	5	3	3699.149(10)	3699.149	0
8	5	3	8	5	4	3699.149(10)	3702.149	-3
6	6	0	6	6	1	3699.524(10)	3702.524	-3
6	6	1	6	6	0	3699.524(10)	3702.524	-3
6	5	1	6	5	2	3700.508(10)	3697.508	3
6	5	2	6	5	1	3700.508(10)	3697.508	3
5	5	0	5	5	1	3701.061(10)	3694.061	7
5	5	1	5	5	0	3701.061(10)	3694.061	7
4	1	4	3	2	1	3702.410(50)	3694.410	8
9	3	7	9	3	6	3702.935(10)	3718.935	-16
9	4	5	9	4	6	3702.935(10)	3664.935	38
8	4	5	8	4	4	3703.183(10)	3699.183	4
7	4	4	7	4	3	3703.817(10)	3709.817	-6
7	4	3	7	4	4	3703.879(10)	3711.879	-8
6	4	2	6	4	3	3704.358(50)	3738.358	-34
6	4	3	6	4	2	3704.358(50)	3720.358	-16
5	4	1	5	4	2	3704.817(10)	3731.817	-27
5	4	2	5	4	1	3704.817(10)	3727.817	-23
6	2	4	5	3	3	3704.817(50)	3733.817	-29

3	1	2	2	2	1	3704.857(50)	3722.857	-18
0	0	0	1	0	1	2704 020(50)	2694 020	20
0	0	0	1	0	1	3704.939(30)	5084.939	20
4	4	0	4	4	1	3705.197(10)	3676.197	29
4	4	1	4	4	0	3705 197(10)	3734 197	-29
+	-	- -	- -	2	4	2705 210(10)	2417 210	200*
0	2	3	0	2	4	3705.219(10)	3417.219	288
8	3	6	8	3	5	3705.518(10)	3714.518	-9
3	1	3	3	1	2	3705 744(50)	3724 744	-19
5	1	5	5	1	2	3703.144(30)	3724.744	1)
1	3	5	./	3	4	3/07.199(10)	3/13.199	-6
5	1	5	4	2	2	3708.150(50)	3705.150	3
6	2	4		-	-	2708 254(10)	2722.254	15
0	3	4	0	3	3	3708.254(10)	3/23.234	-15
1	1	1	2	0	2	3708.554(10)	3724.554	-16
5	2	4	5	2	3	3708 930(50)	3584 930	124^{*}
5	2	2	5	2	2	2708 020(50)	2720.020	121
3	3	3	3	3	2	5708.930(50)	5/20.950	-12
6	3	3	6	3	4	3709.119(10)	3744.119	-35
4	3	2	4	3	1	3709 373(10)	3716 373	-7
4	5	2	7	5	1	3709.373(10)	3710.373	25
4	3	1	4	3	2	3709.430(50)	3/34.430	-25
3	3	1	3	3	0	3709.685(50)	3700.685	9
2	2	0	3	3	1	3700 605(50)	2701 605	0
5	5	0	5	5	I	3709.093(30)	3701.095	0
8	3	5	8	3	6	3710.114(10)	3737.114	-27
2	1	2	2	1	1	3710 775(10)	3722 775	-12
4	2	2	4	2	2	2711 228(10)	2620 220	72*
4	2	3	4	2	2	3711.338(10)	3038.338	73
6	1	6	5	2	3	3711.866(50)	3672.866	39
3	2	2	3	2	1	3712 651(10)	3699 257	13
2	2	-	2	2	0	2712.057(10)	2742.257	20
2	2	1	2	2	0	3/13.25/(50)	3/42.25/	-29
2	2	0	2	2	1	3713.496(10)	3739.496	-26
3	2	1	3	2	2	3713 832(50)	3694 832	10
5	2	1	5	2	2	3713.832(30)	3074.032	1)
1	1	1	1	1	0	3/14.13/(10)	3/14.13/	0
4	2	2	4	2	3	3714.756(10)	3685.756	29
5	2	3	5	2	4	3716 657(10)	3602 657	24
5	2	5	5	2	7	3710.037(10)	3092.037	24
5	2	3	5	2	4	3716.657(10)	3692.657	24
1	1	0	1	1	1	3717.367(10)	3709.367	8
4	1	2	2	2	2	2710 221(10)	2728 221	0
4	1	3	3	2	2	3719.221(10)	5726.221	-9
4	2	2	5	1	5	3719.327(10)	3692.327	27
6	2	4	6	2	5	3719 865(10)	3700 865	19
Š	1	1	ĵ	1	2	2720 452(50)	2712 452	7
Z	1	1	2	1	2	3720.432(30)	5/15.452	/
2	0	2	1	1	1	3723.518(10)	3698.518	25
2	2	1	3	1	2	3724 079(10)	3725 079	-1
2	2	5	7	2	-	3724.5(9(10)	271(5(9	0
/	2	3	/	2	0	3/24.568(10)	3/10.308	8
3	1	2	3	1	3	3725.042(10)	3735.042	-10
1	0	1	0	0	0	3728 149(10)	3712 149	36
1	0		0	õ	ž	2720.042(10)	2710.042	10
8	2	6	8	2	/	3/30.842(10)	3/18.842	12
4	1	3	4	1	4	3731.131(10)	3740.131	-9
4	3	2	5	2	3	3721 577(10)	3693 577	28
-+	1	2	1	2	1	2722.257(10)	2725.257	20
1	1	0	1	0	1	3/33.35/(10)	3/25.35/	8
5	1	4	4	2	3	3734.056(10)	3735.056	-1
2	1	1	2	0	2	3734 942(50)	37/8 9/2	-14
2	1	1	2	0	-	3734.942(50)	2722.200	14
4	3	1	3	2	4	3/35.299(50)	3/23.299	12
3	0	3	2	1	2	3736.028(10)	3719.028	17
2	1	2	1	1	1	3737 204(10)	3737 204	0
2	1	2	2	1	2	3737.204(10)	3737.204	~
3	1	2	3	0	3	3/3/.549(10)	3/44.549	-/
5	1	4	5	1	5	3738.615(10)	3753.615	-15
2	0	2	1	0	1	3739 500(10)	3723 500	16
2	0	2	1	0	1	3739.300(10)	3723.300	10
2	1	I	1	1	0	3740.513(10)	3/50.513	-10
4	1	3	4	0	4	3741.318(50)	3770.318	-29
1	1	1	0	0	0	2742 228(10)	2747 220	
1	1	1	0	0	0	3743.338(10)	5/4/.556	-4
5	1	4	5	0	5	3746.505(10)	3762.505	-16
6	1	5	6	1	6	3747.373(10)	3765.373	-18
2	1	2	ñ	1	2	3747 669(10)	3750 669	_12
5	1	5	4	1	4	5747.000(10)	5/39.008	-12
3	2	2	2	2	1	3748.046(10)	3725.046	23
3	2	1	2	2	0	3748.544(10)	3738.544	10
-	_	-	2	1	2	37/9 609(10)	3720 600	0
4	U	+	5	1		3740.000(10)	3/39.008	7
6	1	5	5	2	4	3749.199(10)	3755.199	-6
3	0	3	2	0	2	3750 541(10)	3732 541	18
2	1	2	-	1	1	2752 710(10)	2764 710	10
5	1	2	2	1	1	3/32./10(10)	5/04./10	-12
2	1	2	1	0	1	3753.185(10)	3763.185	-10
6	1	5	6	Ο	6	3753 185(50)	3753 185	0
0	1	ر ۸	0	1	~	2754.207(10)	2742 207	10
6	2	4	6	1	5	3/54.39/(10)	3/42.39/	12
7	2	5	7	1	6	3754.468(10)	3754.468	0
5	2	3	5	1	4	3755 434(10)	3730 434	25
5	4	5	5	1	т	5755.757(10)	5150.757	45

M. TINE ET AL.

0	2	6	0	1	7	2755 010(10)	2746 010	0
0	2	0	0	1	/	3733.919(10)	5/40.919	9
4	3	2	3	3	1	3755 994(50)	3740 994	15
	5	-	-	-		5755.55 ((50)	5710.5571	-
4	3	1	3	3	0	3756.024(50)	3746.024	8
4	2	2	4	1	2	2757 218(10)	2725 219	22
4	2	2	4	1	3	3/3/.218(10)	3/35.218	22
4	1	4	3	1	3	3757948(10)	3773 948	-16
-	1	7	5	1	5	5757.540(10)	5115.540	10
9	2	9	7	1	8	3758.901(10)	3850.901	8
2	2	1	2	1	2	2750 222(50)	27(4.222	-
3	2	1	3	1	2	3759.322(50)	3764.322	-5
4	2	3	3	2	2	3759 322(50)	3676 322	83*
	2	2	2	2		27(0,525(10)	3070.522	17
4	2	2	3	2	1	3760.535(10)	3743.535	17
5	0	5	4	1	4	3760 953(10)	3748 953	12
	0	4		0		3760.333(10)	2757.107	12
4	0	4	3	0	3	3761.107(10)	3757.107	4
7	1	6	7	0	7	3761 276(10)	3770 276	- 9
,		0	,	1		3761.276(10)	3770.270	
2	2	0	2	1	1	3/61.348(10)	3/83.348	-22
3	1	3	2	0	2	3762 176(10)	3778 176	-16
5		1	-	4	2	37(2,070(10)	2700.070	10
5	4	1	4	4	0	3/62.8/0(10)	3/80.8/0	-18
5	4	2	4	4	1	3762.870(10)	3776 870	-16
10		2	10	1	0	3762.576(10)	2740.546	14
10	2	8	10	1	9	3763.546(10)	3749.546	14
7	1	6	6	2	5	3764 473(10)	3763 473	1
,	1	õ	õ	1	2	27(1,720(10)	2770 720	1.7
4	1	3	3	1	2	3/64./30(10)	3779.730	-15
2	2	1	2	1	2	3765 979(10)	3783 979	-18
2	2	2	4	2	2	27(7,225(10)	2772.225	(
5	3	3	4	3	2	3/67.325(10)	5//3.325	-6
5	3	2	4	3	1	3765 453(10)	3774 453	-9
2	1	7		1	-	27(0.021(10)	2777.021	ć
5	1	Э	4	1	4	3768.021(10)	3///.021	-9
3	2	2	3	1	3	3768.228(10)	3740 228	28
í í	-	2	5	5	1	27(0.991(10)	2005 001	20
6	2	2	Э	Э	1	3/69.881(10)	3805.881	-36
6	5	1	5	5	0	3769 881(10)	3805 881	-36
11	2	0	11	2	[°]	2770 100(10)	27(2,100	0
11	3	8	11	2	9	3770.189(10)	3/62.189	8
4	1	4	3	0	3	3770 439(50)	3799 439	-29
ż	2		4	õ	2	2770.420(50)	2(01.420	1.00*
5	2	4	4	2	3	3770.439(50)	3601.439	169
8	1	7	8	0	8	3770 593(10)	3768 593	2
5	0	5	4	õ	4	2771 1(2(10))	275(1(2	15
3	0	3	4	0	4	5771.105(10)	3/30.103	15
4	2	3	4	1	4	3771 245(10)	3675 245	96*
10	-	7	10	2	0	2772(0(10))	2791 ((0	0
10	3	/	10	2	8	3772.009(10)	3/81.009	-9
5	2	3	4	2	2	3772.777(10)	3779 777	7
ć	_	(5	1	5	2772.910(10)	2724.910	20
0	0	0	3	1	3	5772.819(10)	3/34.819	38
6	4	2	5	4	1	3774.061(10)	3800.061	-26
Č.	4	2	5	4	r	2774 061(10)	2701.061	17
0	4	3	3	4	2	5774.001(10)	5/91.001	-1/
5	2	4	5	1	5	3775.010(10)	3608.010	167*
0	2	(0	2	7	277(0(1(10)	2702.0(1	17
9	3	0	9	2	/	3770.001(10)	3/93.001	-1/
5	1	4	4	1	3	3776.516(10)	3786.516	-10
10	-	10	10	1	11	2777 710(10)	27(5.710	10
12	2	10	12	1	11	3///./18(10)	3/05./18	12
6	1	6	5	1	5	3777.858(10)	3781.858	-4
Ē	1	5	4	0	4	2779 22((10)	2780.22(11
3	1	Э	4	0	4	3778.220(10)	3/89.220	-11
6	3	4	5	3	3	3778.610(10)	3789.610	-11
č	2	2	5	2	2	2779.050(10)	2901.050	22
0	3	3	3	3	2	3778.950(10)	3801.950	-23
6	2	5	6	1	6	3779.601(10)	3450.601	329*
0	2	5	Q	2	6	3770 004(10)	3704 004	-15
0	3	5	0	2	0	5779.904(10)	3/94.904	-13
6	0	6	5	0	5	3780.716(10)	3735.716	45
7	5	2	6	5	2	3780 874(10)	3778 871	2
<u>′</u>	5	5	0	-	<u>~</u>	3700.074(10)	3770.074	2
7	5	2	6	5	I	3780.874(10)	3778.874	2
6	2	5	5	2	4	3781 421(10)	3446 421	335*
	2	4	-	2	ż	2702 (02(10)	2002 (02	10
/	3	4	1	2	3	5785.693(10)	3802.693	-19
7	0	7	6	1	6	3784 088(10)	3677 088	107^{*}
	č	, A	č,	2	ñ	2705 251(10)	2770.051	15
6	2	4	5	2	3	3785.251(10)	3770.251	15
6	1	6	5	0	5	3785.755(10)	3784.755	1
õ		1	1	1	0	270(0(0(10)	2702.000	-
2	2	1	1	1	0	3780.069(10)	3/93.069	-/
6	3	3	6	2	4	3787 024(10)	3800.024	-13
~	1	7	Ĺ	1	2	2707 470(10)	27(7 470	20
/	1	/	0	1	0	5/8/.4/8(10)	3/0/.4/8	20
2	2	0	1	1	1	3787.775(10)	3809.775	-22
-	-	~	5	1	4	2707.0(2)(10)	2005.072	10
6	1	5	5	1	4	3/8/.963(10)	3805.963	-18
5	3	2	5	2	3	3789 632(10)	3789 632	0
-	~		6	2	<i>c</i>	2700.002(10)	2(00.002	100*
1	0	/	0	0	0	3789.883(10)	3080.883	109
7	3	4	6	3	3	3790.601(10)	3802.601	-12
, ,	2	1	4	ñ	ň	2701 420(10)	2777.001	1.4
4	3	1	4	2	2	3/91.438(10)	3///.601	14
4	3	2	4	2	3	3793 025(10)	3781 025	12
	2	1		-	ň	2702 000(10)	27(2.000	20
3	3	1	3	2	2	3793.088(10)	3/03.088	30
5	3	3	5	2	4	3793,165(10)	3791 165	2
-	1	7	~	~		2702 274(10)	2770.274	22
./	1	/	6	0	6	3/93.2/4(10)	3770.274	23
6	3	4	6	2	5	3793.617(10)	3796 617	-3
0	0	0	ĩ	1	7	2704 200(10)	2652 200	1 4 1 *
8	0	δ	/	1	/	3/94.388(10)	3033.388	141
7	3	5	7	2	6	3794,499(10)	3793 499	1
	2	-	,	-				<u> </u>

where E_v^i is the vibrationnal energy of the *i* state and $E_r(J, K_a, K_c : P^i)$ represents the rotational energy of the *J*, K_a, K_c level, calculated with the efficient Hamiltonian given by the Equation (14) for the P^i spectroscopic parameter of the *i* vibrationnal state.

In this work, the P^0 spectroscopic parameters of the fundamental state have been considered equal to the Helminger's values published in [21] and E_v^0 arbitrarily fixed at zero. The P^1 spectroscopic parameters of the vibrationnal state $v_1 = 1$ has been determined by adjustment using the least squares program. The results of the analysis are in the **Tables 2** and **3**.

2.2. The $v_1(v_3)$ Band Intensity

To calculate the transitions intensity, it is necessary for us to determine, at first, the dipolar momentum function.

2.2.1. Determination of the Dipolar Momentum Function

From the S_1 and S_2 coordinates corresponding respectively to the following small variations Δr_{31} and Δr_{32} of the inter atomic distances and S_3 corresponding to small variations of the valence angle $\Delta \Phi$, the Schrödinger equation for the vibration [22] becomes:

$$H_{\nu} = \frac{1}{2} \sum_{i,j=1}^{3} G_{ij} P_i P_j + \frac{1}{2} \sum_{i,j=1}^{3} F_{ij} S_i S_j$$
(16)

where $P_i = \frac{-1O}{\partial S_i}$ is the conjugated momentum of the co-

ordinate S_i , G and F correspond respectively to the kinetic and potential energies and can be calculated numerically from the Wilson Equation [22] once the molecule's equilibrium configuration is known. The F tensor components can be calculated numerically using Patridge and Schwenke [6] potential energy surface. The H_{ν} eigenenergies were obtained by solving the following equation:

$$FX = \lambda G^{-1}X \tag{17}$$

1951

where λ and X are respectively eigenvalue and eigenvector.

Thus we can deduce the equation permitting the passage from normal dimensionless coordinates q_k to the internal coordinates.

$$S_i = \sum_{k=1}^3 \left(\frac{X_i^k}{\lambda_k^{1/4}} \right) q_k \tag{18}$$

Then we try to obtain the dipolar momentum function according to the internal coordinates:

$$\mu_x = {}^s \mu_x^0 + \sum_{i=1}^{3} {}^s \mu_x^i S_i$$

and

$$\mu_{z} = {}^{s} \mu_{z}^{0} + \sum_{i=1}^{3} {}^{s} \mu_{z}^{i} S_{i}$$
(19)

Table 3. The spectroscopic constants of the fundamental and the $v_1(v_3)$ band of HTO.

Constar	nt value to the $v_1(v_3)$ band	Constant value to the fundamental			
E^1	3716.5475(48)	E^0	0		
A	21.8482(37)	A	22.61061		
В	6.58908(75)	В	6.61116		
C	4.97656(72)	C	5.01889		
$\Delta \kappa$	$13.796(810) \times 10^{-3}$	Δ_{κ}	$9.04872 imes 10^{-3}$		
Δ_{KI}	$2.306(130) \times 10^{-3}$	Δ_{KI}	$1.61856 imes 10^{-3}$		
Δ_I	$0.1628(71) \times 10^{-3}$	Δ_I	$0.17385 imes 10^{-3}$		
δ_{κ}	$-6.710(320) \times 10^{-3}$	δ_{κ}	$1.71208 imes 10^{-3}$		
δJ	$16.670(390) \times 10^{-6}$	δJ	$47.1697 imes 10^{-6}$		
H_{κ}	$888.900(680) \times 10^{-6}$	Нк	29.880×10^{-6}		
$H_{\kappa I}$	$127.500(160) \times 10^{-6}$	$H_{\kappa I}$	-2.110×10^{-6}		
Нік	$-24.000(18) \times 10^{-6}$	Нк	1.316×10^{-6}		
H_{I}	$-0.224(64) \times 10^{-6}$	H_{I}	17.337×10^{-9}		
h_{κ}	$-894.900(360 \times 10^{-6})$	h_{κ}	$17.947 imes 10^{-6}$		
h_{κ_I}	$-35.500(270) \times 10^{-6}$	h_{κ_I}	$0.5713 imes 10^{-6}$		
h_J	$-0.140(16) \times 10^{-6}$	h_J	5.946×10^{-9}		
L_K	$-20.000(24) \times 10^{-6}$	I.,	-0.277×10^{-6}		
L_{KKJ}	$-11.130(50) \times 10^{-6}$		-0.277×10^{-6} 0.0659 × 10 ⁻⁶		
L_{KJ}	$1.906(120) \times 10^{-6}$		-0.018×10^{-6}		
L_{KJJ}	$0.0831(90) imes 10^{-6}$	L_{KJ}	-0.010 ^ 10		
L_J	$0.404(180) \times 10^{-9}$	l_K	-0.2713×10^{-6}		
I_K	$29.781(1600) \times 10^{-6}$	l_{KJ}	$-3.0395 imes 10^{-9}$		
I_{KJ}	$0.924(80) \times 10^{-6}$	D	2.672×10^{-9}		
I_{JK}	$89.840(760) \times 10^{-9}$	P_K	$3.0/3 \times 10^{-5}$		
P_K	$238.400(300) \times 10^{-9}$				
P_{KKKJ}	$115.200(100) \times 10^{-9}$	p_K	0.969×10^{-9}		
p_K	$-196.900(150) \times 10^{-9}$				

where ${}^{s}\mu_{\alpha}^{0}$ with $\alpha = x \text{ or } z$ and ${}^{s}\mu_{\alpha}^{i}$ with $1 \le i \le 3$ are constants.

To determine the HTO dipolar momentum function, we use the unvariability of this function with an isotopic substitution when it is expressed by the internal coordinates. However, it will be necessary to take to account the way from which the molecule depending reference mark *O'xyz* is going to change.

From the Equation (18) and by replacing the S_i by the q_i in the Equation (19), we find the HTO dipolar momentum function expressed in the normal dimensionless coordinates. Considering the Equation (18), the terms X_i^k and λ_k will have the values corresponding to the HTO normal modes and the results are shown in the **Table 4**.

2.2.2. The Absorption Band Intensity

The intensity of a molecular absorption band, in a gas at the thermodynamic equilibrium [23], is given as followed:

$$S_{A}^{B} = \frac{8\pi^{3}g_{A}\sigma_{AB}}{3hcQ}10^{-36}\exp\left(-\frac{hcE_{A}}{KT}\right)$$
$$\cdot \left[1 - \exp\left(-\frac{hc\sigma_{AB}}{KT}\right)\right] \left|\left\langle A \mid \mu_{Z}' \mid B \right\rangle\right|^{2}$$
(20)

where S_A^B is the intensity in cm⁻¹/(molécule·cm⁻²) for a transition from the lower level A to the up level B at the *T* temperature; g_A is the degenerancy due to the nuclear spin of the lower level A; σ_{AB} is the transition wave number in cm⁻¹;

 E_A is the lower energy level in cm⁻¹; Q the distribution's function; K the Boltzmann's constant and μ'_Z is the modified transition momentum in Debye. Its expression [23] is:

$$\mu_Z' = \Phi_x \mu_x + \Phi_z \mu_z \tag{21}$$

where μ_x and μ_z are the dipolar momentum components, in the reference mark related to the molecule, expressed according to the normal dimensionless coordinates. Φ_x and Φ_z are operators [23] depending to the vibrational coordinates which matrix elements are given in the **Tables 5** and **6**.

From the Tables 3 and 5, the wave number and the

 Table 4. Thevalues of the coefficients used in the development of the dipolar momentum function.

Coefficients	Valeur	Coefficients	Valeur
μ_x^0	-1.74117	μ_z^0	-0.84923
$\mu_x^1 \times 2^{1/2}$	-0.01060	$\mu_z^1 \times 2^{1/2}$	-0.03502
$\mu_{x}^{2} \times 2^{1/2}$	0.10583	$\mu_z^2 \times 2^{1/2}$	-0.05269
$\mu_x^3 \times 2^{1/2}$	-0.03039	$\mu_z^3 \times 2^{1/2}$	0.04091

intensity of the authorized transitions have been calculated using Equations (15) and (20), for $J \le 11$, for a temperature of 296 K.

The **Table 7** gives the portion of list covering the region 3630 to 3760 cm⁻¹ for the transitions which intensity is over 10^{-23} cm⁻¹/(molecule \cdot cm⁻²).

3. Results and Discussion

3.1. Analysis of Waves Numbers

In this analysis, the efficient hamiltonian spectroscopic parameters of the Equation (14) and the vibrational energy have been considered.

The mean quadratic gap $q = 0.018 \text{ cm}^{-1}$ is enough close to the experimental one for the observed wave number: 0.010 cm⁻¹. It is also possible to evaluate the quality of the analysis with the standard deviation $\sigma = 1.7$. Ideally, this value should be very close to 1. This excess can be the consequence of the underestimation of the experimental uncertainties and the use of an unadequate efficient Hamiltonian. In this latter, it can come from a perturbation of the superior vibrationnal state. This hypothesis is confirmed by the results in the **Table 2** for the transitions presenting a big gap (Obs.-Cal.) or even those that have been excluded in the analysis (in asterisk in the **Table 2**).

One realizes that these transitions often share the same superior rotationnal level and that the gap (Obs.-Cal.) is practically independent of the low level.

The **Table 8** illustrates well this fact for transitions excluded in the analysis for which the superior rotationnal levels are 8_{08} and 6_{25} .

Presumably, the vibrationnal state $v_1 = 1$ is not isolated. It exists another closed vibrationnal state which is coupled whith it. To make a correct calculation of the vibrationnal energy, it would be necessary to treat simultaneously these two states. A calculation based on **Table 1**

Table 5. The non zero elements matrix [23] operator Φ_z .

ΔJ	ΔK	Γ	$\left\langle J,K,\gamma \left \Phi_{z} \right J',K',\gamma' ight angle$
0	0	$-\gamma'$	$K\left[\left(2J+1\right)/J\left(J+1\right)\right]^{1/2}$
±1	0	$+\gamma'$	$K\Big[\big(m^2-K^2\big)\big/\big m\big \Big]^{1/2}$

Table 6. The non zero elements matrix [23] operator Φ_{x} .

ΔJ	ΔK	Γ	$\left\langle J,K,\gamma \left \Phi_{z} \right J',K',\gamma' \right angle$
0	±1	$-\gamma'$	$\frac{1}{2}\left\{\left[\left(2J+1\right)\left(J-K\Delta K\right)\left(J+1+K\Delta K\right)\right]/J\left(J+1\right)\right\}^{1/2}$
±1	±1	+ \chi '	$-\frac{1}{2}\Delta J\Delta K \big[\big(m + K\Delta K\big) \big(m + 1 + K\Delta K\big) / m \big]^{1/2}$

Table 7. Waves	s numbers and l	ines intensities o	of v ₁ (v ₃)	band of HTO.
----------------	-----------------	--------------------	-------------------------------------	--------------

J'	K'_a	K'_c	J''	$K_{a}^{\prime\prime}$	K "	Cal	S
2	1	1	3	1	2	3678.528	6.47e-20
2	2	1	3	2	2	3678.564	3.24e-20
-	0	1	2	- 1	2	3678.828	2.22e-19
7	ĩ	6	-6	3	3	3679.121	1.00e-2.2
2	1	2	3	1	3	3683.118	6.79e-20
9	2	8	9	2	7	3683 043	1 34e-21
3	0	3	2	2	0	3683 299	7.21e-23
5	0	5	5	1	4	3683.695	7.210 25 2.59e-19
11	4	8	10	5	5	3684 293	1.31e-21
7	4	5	8	2	6	3684 665	$1.510 \ 21$ 1.67e - 20
10	3	5 7	11	2	10	3685 350	2.63 = 21
10	3	7	10	2	6	3685.550	$2.030 \ 21$
8	4	6	10	3	3	3685.975	6.00e-21
5	2	4	1	3	1	3686 796	1.60 = 20
9	2		4	3	1	2699 510	7.022 21
8 0	3	5	1	4	4	2688.027	7.05e=21
0	0	0	1	1	1	2680.420	2.45 - 21
10	4	6	11	3	9	3089.439	2.45e-21
9	3	0	10	2	9	3689.711	5.18e-21 2.22- 10
4	0	4	4	1	3	3689./14	3.32e-19
5	1	5	5	1	4	3690.785	5.34e-21
5	2	3	4	3	2	3690.802	1.65e-20
1	1	0	2	1	1	3690.941	4.38e-20
11	0	11	10	2	8	3692.047	3.26e-21
8	2	7	8	2	6	3691.788	2.66e-21
8	1	7	7	3	4	3692.310	1.28e-22
11	1	11	10	2	8	3692.615	9.26e-22
4	0	4	3	2	1	3693.035	2.21e-22
1	0	1	2	0	2	3693.340	6.41e-20
9	4	6	10	3	7	3693.679	4.01e-21
11	3	9	11	3	8	3693.883	5.50e-22
4	2	3	5	1	4	3693.985	5.86e-20
1	1	1	2	1	2	3694.058	4.49e-20
3	0	3	3	1	2	3694.093	3.70e-19
3	1	3	2	2	0	3694.968	1.73e-20
2	1	2	3	0	3	3695.622	1.67e-19
8	3	5	9	2	5	3696.172	8.99e-21
8	8	1	9	8	2	3696.388	3.63e-23
8	8	0	9	8	1	3696.388	3.63e-23
11	5	7	11	5	6	3696.552	5.29e-22
11	5	6	11	5	7	3696.653	5.29e-22
6	2	5	5	3	2	3697.186	1.96e-20
2	0	2	2	1	1	3697.075	3.45e-19
9	3	7	8	4	4	3697.116	5.87e-21
11	6	6	11	6	5	3697.356	3.24e-22
11	6	5	11	6	6	3697.359	3.24e-22
10	5	6	10	5	5	3697.498	1.08e-21
10	5	5	10	5	6	3697.537	1.08e-21
10	6	5	10	6	4	3697.724	6.62e-22
10	6	4	10	6	5	3697.725	6.62e-22
9	6	4	9	6	3	3698.201	1.29e-21
9	6	3	9	6	4	3698.201	1.29e-21
9	8	2	10	8	3	3698.205	3.99e-23
9	8	1	10	8	2	3698.205	3.99e-23
9	5	5	9	5	4	3698.358	2.11e-21
9	5	4	9	5	5	3698 371	2.11e-21
9	9	0	10	10	1	3698 568	2.66e-23
9	9	1	10	10	0	3698 568	2.66e-23
8	6	2	Q IV	6	2	3698 670	2.000 25
Q	6	2	Q Q	6	2	3608 670	2.370 - 21
0	0	∠ 1	0	1	5	3608 007	2.375-21
1	1	1	1 1	1	2	3600 070	2.40C-19 8.72a-21
4 7	1	+ 2	4 7	1	5	3600 172	0.120-21 1 26a-21
י ד	0	2 1	7	0	1	3600 122	4.200-21
/	0	1	/	0	2	3077.123	4.200-21

M. TINE ET AL.

8 5 4 8 5	2 2600 147 2 04- 21
0 J T 0 J	
	5 5099.147 5.940-21
7 5 3 7 5	2 3699.863 7.03e-21
7 5 2 7 5	3 3699.864 7.03e-21
11 4 8 11 4	7 3700 237 6 63e-22
	1 2700 500 1 21 21
6 5 2 6 5	1 3700.500 1.21e=21
6 5 1 6 5	2 3700.500 1.21e-20
10 0 10 9 2	7 3700 500 7 10e-21
5 5 1 5 5	0 2701.048 2.002-20
5 5 1 5 5	0 3701.048 2.000-20
5 5 0 5 5	1 3701.048 2.00e-20
5 0 5 4 2	2 3701.056 3.72e-22
9 4 5 10 3	8 3701.063 3.95e-21
	5 3701.005 3.950 21
6 3 4 / 2	5 5701.508 2.000-20
10 1 10 9 2	7 3701.418 2.13e–21
10 4 7 10 4	6 3701.470 1.38e-21
9 3 6 8 4	5 3701 986 5 92e-21
	3 3701.700 5.720 21
4 1 4 3 2	1 3/02.401 2.8/e=20
9 4 6 9 4	5 3702.414 2.72e-21
11 4 7 11 4	8 3702.529 6.65e-22
10 4 6 10 4	7 3702 573 1 38e-21
	7 5702.575 1.560-21
9 4 5 9 4	6 3702.899 2.72e-21
9 3 7 9 3	6 3702.953 2.47e-21
8 1 5 8 1	4 3703 180 5 10e-21
8 4 4 9 4	5 2702.270 5.10 21
8 4 4 8 4	5 3/03.3/0 5.10e=21
7 4 4 7 4	3 3703.825 9.14e-21
7 4 3 7 4	4 3703.889 9.14e-21
	$5 \qquad 2702 \ 0.41 \qquad 1 \ 24_{2} - 22$
⁹ 1 8 8 3	5 5705.941 1.346-22
7 3 4 8 2	7 3704.346 1.36e-20
6 4 3 6 4	2 3704.376 1.57e-20
6 1 2 6 4	3 3704393 $157e-20$
	1 2704.942 2.0
5 4 2 5 4	1 3/04.842 2.62e=20
5 4 1 5 4	2 3704.845 2.62e-20
6 2 4 5 3	3 3704 847 2 09e-20
	$1 \qquad 2704.976 \qquad 2.232-20$
<u> </u>	1 3/04.876 2.538=20
0 0 0 1 0	1 3704.918 3.60e-20
6 2 5 6 2	4 3705.251 9.30e-21
A A 1 A A	0 3705 227 4 28e-20
	0 <i>3703.227</i> 4.280 20
4 4 0 4 4	1 3/05.22/ 4.28e-20
8 3 6 8 3	5 3705.528 4.79e-21
9 3 6 10 1	9 3705 534 1 63e-23
$2 \qquad 1 \qquad 2 \qquad 1$	$2 \qquad 2705.762 \qquad 1.42 \circ 20$
5 1 5 5 1	2 3703.705 1.43e=20
7 2 6 6 3	3 3706.308 1.90e-20
9 0 9 8 2	6 3706.420 1.41e-22
6 0 6 5 2	3 3706 744 4 28-22
	5 5700.744 4.28C 22
10 8 3 11 8	4 3706.895 3.13e-23
10 8 2 11 8	3 3706.895 3.13e-23
7 3 5 7 3	4 3707 206 8 77e-21
	6 2707 995 4.602 21
9 1 9 6 2	0 3707.883 4.000-21
10 3 8 9 4	5 3707.903 4.37e-21
5 1 5 4 2	2 3708.146 3.01e-20
6 3 4 6 3	3 3708 269 1 53-20
	$3 \qquad 3700.207 \qquad 1.350.20$
1 1 1 2 0	2 3/08.5/0 9.1/e=20
5 2 4 5 2	3 3708.964 1.62e-20
5 3 3 5 3	2 3708.943 2.57e-20
	6 3700 016 5 762 21
0 4 J 9 J	5 5/09.010 5./0e=21
6 3 3 6 3	5 3709.155 1.53e-20
5 3 2 5 3	3 3709.242 2.57e-20
3 7 7 1	3 3700 316 4 58-20
	5 5709.510 4.560-20
/ 3 4 / 3	5 3/09.3/0 8./8e-21
4 3 2 4 3	1 3709.380 4.21e-20
4 3 1 4 3	2 3709.456 4.21e-20
	5 3700 340 2 492 22
	<i>J J 109.349 2.400-22</i>
0 7 6 2	4 3709.746 3.66e-22
3 3 1 3 3	0 3709.676 6.87e-20
3 3 0 3 3	1 3709 687 6 87-20
J J J J J	1 5707.007 0.076-20
2 2 0 2 2	1 2700 (07 607 607 607

M. TINE	ET	AL.	
---------	----	-----	--

8	3	5	8	3	6	3710 140	4.81_{-21}
0	5	5	0	5	0	5710.140	4.816-21
2	1	2	2	1	1	3710.787	2.45e-20
4	2	3	4	2	2	3711 346	2.74e-20
F Q	2	5	+	2	-	3711.540	2.740 20
9	3	6	9	3	/	3/11.777	2.50e-21
8	1	8	7	2	5	3711.699	9.11e-21
6	1	6	5	2	3	3711 826	2.42 = 20
0	1	0	5	2	5	5711.820	2.420 20
6	2	4	7	1	7	3712.596	1.30e-20
3	2	2	3	2	1	3712 637	4 53e-20
7	2	2	0	-	0	3712.037	7.01 21
/	2	5	8	1	8	3/12.803	/.01e-21
7	1	7	6	2	4	3713.116	1.60e-20
Ŷ	4	4	0	3	7	2712 161	5 72-21
0	4	4	3	5	/	3/13.101	5.720-21
2	2	1	2	2	0	3713.286	7.74e-20
7	7	1	7	7	0	3713 305	2.10e-21
7	7	0	7	7	1	2712.205	2.10 21
/	/	0	/	/	1	3/13.305	2.10e-21
10	1	9	9	3	6	3713.361	1.15e-22
10	5	6	11	4	7	3713 442	1.14 - 21
10	5	0	11	-	/	3713.442	1.140 21
2	2	0	2	2	I	3713.523	7.74e-20
3	2	1	3	2	2	3713.812	4.54e - 20
(2	2	7	2	6	2712 925	1.70- 20
6	3	3	/	2	0	3/13.825	1./9e=20
1	1	1	1	1	0	3714.137	4.97e-20
10	5	5	11	4	8	3714 401	1.14 - 21
10	5	5	11	4	0	3/14.491	1.140 21
10	3	7	10	3	8	3714.599	1.23e-21
8	2	7	7	3	4	3714 328	1 55e-20
0	2	,	,	2	2	3714.320	1.550 20
4	2	2	4	2	3	3/14./2/	2./Se-20
5	2	3	6	1	6	3714.819	2.10e-20
¢.	7	2	8	7	1	2715 212	1.10_{2}
0	/	2	0	/	1	3/13.312	1.196-21
8	7	1	8	7	2	3715.312	1.19e-21
8	2	6	9	1	9	3715 443	3 39e-21
-	2	ç	ó		ó	2715.115	175 00
/	2	5	8	0	8	3/15.54/	4./Se=23
10	3	7	9	4	6	3716.434	4.50e-21
Ŷ	2	5	0	1	8	2716 471	220_{2}
0	5	5	,	1	0	3/10.4/1	2.300 23
5	2	3	5	2	4	3716.633	1.64e-20
6	2	4	7	0	7	3716 660	8 90e-23
ç	2	2		ů		2717.007	2.10 20
2	3	3	6	2	4	3/1/.00/	2.10e-20
8	2	6	9	0	9	3717.241	2.12e-23
1	1	0	1	1	1	3717 358	5.01e-20
1	1	0	1	1	1	5717.558	5.010 20
11	3	9	10	4	6	3718.141	2.93e-21
9	7	3	9	7	2	3718 468	6.41e-22
0	7	2	0	7	2	2710.460	(11 22
9	/	2	9	/	3	3/18.468	6.41e-22
11	3	8	11	3	9	3718.865	5.71e-22
4	1	3	3	2	2	3719 231	$4.78e^{-20}$
7	1	5	5	2	2	5717.251	4.786 20
4	2	2	5	I	5	3719.300	2.80e-20
6	2	4	6	2	5	3719.846	9.53e-21
7	2	5	6	2	4	2710 880	2.17 20
/	2	5	0	5	4	3/19.009	2.176-20
11	1	10	10	3	7	3719.979	8.08e-23
9	2	7	10	1	10	3720 385	1 52e-21
2	-	1	2	1	2	3720.565	2.51 20
2	1	1	2	1	2	3/20.445	2.51e-20
5	2	3	6	0	6	3720.612	1.32e-22
۵	r	8	8	3	5	3721 537	$1.10e^{-20}$
,	2	8	0	5	5	5721.557	1.100 20
10	7	4	10	7	3	3723.159	3.31e-22
10	7	3	10	7	4	3723 159	3 31e-21
7	,	4	0	2	5	2722.139	7.26 21
/	4	4	8	3	5	3/23.3/7	/.36e-21
2	0	2	1	1	1	3723.493	9.64e-20
2	2	1	2	1	2	3724 000	2 422-20
<u>ک</u>	<u> </u>	1	5	1	2	5/24.080	2.426-20
5	3	2	6	2	5	3724.242	1.99e-20
7	2	5	7	2	6	3724 560	5 33e-21
2	1	Š	2		ň	2725.052	1.51 20
3	1	2	3	1	2	3/25.053	1.51e-20
7	4	3	8	3	6	3725.511	7.34e-21
2	r	1	Λ	1	Δ	3725 722	2.86e - 20
5	2	1	т ^	1	т 2	5125.122	2.000 20
10	2	9	9	3	6	3726.797	6.77e-21
9	5	5	10	4	6	3727,181	1.71e-21
Á	2	2	5	0	5	2727 100	1 44- 22
4	2	2	3	U	5	5/2/.190	1.446-22
10	2	8	11	1	11	3727.394	6.52e-22

9541047372.600 $1.71e-21$ 1010003728.112 $3.83e-20$ 7348173729.425 $2.69e-23$ 1121010373729.92787 $3.67e-21$ 11751174 3.77 3729.968 $1.63e-22$ 117411753729.968 $1.63e-22$ 826827370.828 $2.98e-21$ 4134143731.141 $9.50e-21$ 4325233731.549 $1.80e-20$ 11381013 3731.999 $3.12e-21$ 110101 3731.409 $2.71e-19$ 220313 3733.000 $1.85e-20$ 514423 3734.058 $6.69e-20$ 211202 3734.957 $3.84e-19$ 43152 3735.257 $1.75e-20$ 51404 3735.292 $1.07e-22$ 303212 376.011 $1.89e-16$ 643734 3736.954 $8.09e-21$ 212303 3737.943 $8.08e-21$ 10 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
1010003728,1123.83e-207348173729,7873.67e-21117511743729,9681.63e-22117511743729,9681.63e-228268273730,8282.98e-214134143731,1419.50e-214134143731,3491.80e-20113810473731,3492.71e-192203133733,7001.85e-205144233734,0586.69e-202112033735,521.98e-205144233734,0586.69e-202267353735,8521.98e-203214043735,5291.07e-223032123760,0111.89e-166437343736,0548.08e-212121113737,5774.21e-196437353735,8521.98e-2031233737,5774.21e-196437353736,0548.09e-21 </td <td>9</td> <td>5</td> <td>4</td> <td>10</td> <td>4</td> <td>7</td> <td>3727.680</td> <td>1.71e-21</td>	9	5	4	10	4	7	3727.680	1.71e-21
7348173729,787 $2.69e-23$ 112101037 $3729,787$ $3.67e-21$ 11751174 $3729,968$ $1.63e-22$ 11741175 $3729,9268$ $1.63e-22$ 1413414 $3731,141$ $9.50e-21$ 432523 $3731,549$ $1.80e-20$ 11381047 $3731,939$ $3.12e-21$ 110101 $3731,349$ $2.71e-19$ 220313 $3733,040$ $1.85e-20$ 514423 $3734,058$ $6.69e-20$ 211202 $3734,957$ $3.84e-19$ 431524 $3735,292$ $1.07e-22$ 303212 $3736,011$ $1.89e-16$ 643734 $3736,954$ $8.09e-21$ 212111 $3737,943$ $8.08e-21$ 642735 $3735,852$ $1.98e-23$ 92735 $3735,852$ $1.98e-23$ 109111 $3737,943$ $8.08e-21$ 109111 $3738,286$ $1.49e-23$ 92 <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>3728.112</td> <td>3.83e-20</td>	1	0	1	0	0	0	3728.112	3.83e-20
1121010373729,7873.67e-21117511743729,9681.63e-22117411753729,9681.63e-228268273730,8282.98e-214134143731,1419.50e-214325233731,5491.80e-20113810473731,9993.12e-212203133733,7001.85e-205144233734,0586.69e-202112023734,9573.84e-194315243735,2871.75e-208267343736,0548.09e-213032123736,0111.89e-166437343736,0548.09e-212121113737,2438.08e-213123033737,5574.21e-196427353737,9438.08e-211091111023738,2861.49e-239279283738,5891.51e-21514945	7	3	4	8	1	7	3729.425	2.69e-23
117511743729.9681.63e-22117411753730.8282.98e-214134143731.1419.50e-214325233731.5491.80e-20113810473731.9993.12e-211101013733.3492.71e-192203133733.7001.85e-205144233734.0586.69e-202112023734.9573.84e-194315243735.2871.75e-208267353735.8521.98e-203214043735.9291.07e-223032123736.0548.09e-212123033737.5574.21e-196427353739.9438.08e-211092111013738.2861.49e-239279283738.5891.51e-215145153740.5142.27e-214134043739.9438.08e-21109211101	11	2	10	10	3	7	3729.787	3.67e-21
117411753729.968 $1.63e-22$ 8268273730.828 $2.98e-21$ 4134143731.141 $9.50e-21$ 4325233731.549 $1.80e-20$ 113810473731.999 $3.12e-21$ 2203133733.700 $1.85e-20$ 5144233734.058 $6.66e-20$ 2112023734.957 $3.84e-19$ 431523374.058 $6.6e-20$ 2112023734.957 $3.84e-19$ 43153735.852 $1.98e-20$ 303214043735.9593214043736.951 $8.09e-21$ 3032113737.204 $8.04e-20$ 3127353737.943 $8.08e-21$ 1092111013738.286 $1.49e-23$ 9279283738.631 $6.07e-21$ 214513739.433 $8.08e-21$ 1092111013738.286 $1.49e-23$ 927928 <td>11</td> <td>7</td> <td>5</td> <td>11</td> <td>7</td> <td>4</td> <td>3729.968</td> <td>1.63e-22</td>	11	7	5	11	7	4	3729.968	1.63e-22
8268273730.828 $2.98e-21$ 41325233731.549 $1.80e-20$ 11381047 3731.999 $3.12e-21$ 110101 3731.349 $2.71e-19$ 220313 3733.700 $1.85e-20$ 514423 3734.058 $6.69e-20$ 211202 3734.957 $3.84e-19$ 431524 3735.287 $1.75e-20$ 826735 3735.852 $1.98e-20$ 303212 3736.094 $8.09e-21$ 643734 3735.954 $8.09e-21$ 732111 3737.547 $8.06e-20$ 312303 3737.557 $4.21e-19$ 642735 3737.943 $8.08e-21$ 109111102 3738.286 $1.49e-23$ 927928 3737.943 $8.08e-21$ 109211101 3738.861 $6.0e-20$ 853946 3740.514 $2.27e-21$ 413403 3740.514 $2.27e-21$ <	11	7	4	11	7	5	3729.968	1.63e-22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	6	8	2	7	3730.828	2.98e-21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	3	4	1	4	3731.141	9.50e-21
11381047 3731.999 $3.12e-21$ 1101 3731.349 $2.71e-19$ 220313 3733.700 $1.85e-20$ 514423 3734.058 $6.69e-20$ 211202 3734.957 $3.84e-19$ 431524 3735.287 $1.75e-20$ 826735 3735.852 $1.98e-20$ 321404 3735.929 $1.07e-22$ 303212 3736.011 $1.89e-16$ 643734 3736.954 $8.09e-21$ 212111 3737.557 $4.21e-19$ 642735 3737.957 $4.21e-19$ 642735 3737.943 $8.08e-21$ 109111101 3738.286 $1.49e-23$ 92792 8 3738.589 $1.51e-21$ 514515 3740.514 $2.27e-21$ 202101 3749.483 $7.26e-20$ 854945 3740.514 $2.27e-21$ 211110 3740.524 $5.01e-20$ 8 <td< td=""><td>4</td><td>3</td><td>2</td><td>5</td><td>2</td><td>3</td><td>3731.549</td><td>1.80e-20</td></td<>	4	3	2	5	2	3	3731.549	1.80e-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	3	8	10	4	7	3731.999	3.12e-21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	0	1	0	1	3731.349	2.71e-19
5144233734.088 $6.69e-20$ 211202 3734.957 $3.84e-19$ 431524 3735.287 $1.75e-20$ 826735 3735.852 $1.98e-20$ 321404 3735.929 $1.07e-22$ 303212 3736.011 $1.89e-16$ 643734 3736.954 $8.09e-21$ 212111 3737.204 $8.04e-20$ 312303 3737.557 $4.21e-19$ 642735 3737.943 $8.08e-21$ 109111102 3738.286 $1.49e-23$ 109211101 3738.589 $1.51e-21$ 202101 3739.483 $7.26e-20$ 854945 3740.514 $2.27e-21$ 211110 3740.524 $501e-20$ 853946 3740.731 $2.27e-21$ 413404 3741.348 $391e-19$ 11100 3740.514 $2.27e-21$ 413404 3741.348 $391e-19$ 5 <td>2</td> <td>2</td> <td>0</td> <td>3</td> <td>1</td> <td>3</td> <td>3733.700</td> <td>1.85e-20</td>	2	2	0	3	1	3	3733.700	1.85e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	4	4	2	3	3734.058	6.69e-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	1	2	0	2	3734.957	3.84e-19
826735 3735.852 $1.98e-20$ 321404 3735.929 $1.07e-22$ 303212 3736.011 $1.89e-16$ 643734 3736.954 $8.09e-21$ 212111 3737.204 $8.04e-20$ 312303 3737.557 $4.21e-19$ 642735 3737.943 $8.08e-21$ 109111102 3738.286 $1.49e-23$ 927928 3735.582 $1.51e-21$ 514515 3738.631 $6.07e-21$ 202101 3739.483 $7.26e-20$ 854945 3740.514 $2.27e-21$ 211110 3740.524 $5.01e-20$ 853946 3740.731 $2.27e-21$ 413404 3741.348 $3.91e-19$ 11000 3743.732 $2.61e-23$ 331422 3745.083 $1.01e-20$ 220303 3746.205 $4.39e-23$ 514505 3746.522 $3.18e-19$ 3 </td <td>4</td> <td>3</td> <td>1</td> <td>5</td> <td>2</td> <td>4</td> <td>3735.287</td> <td>1.75e-20</td>	4	3	1	5	2	4	3735.287	1.75e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	6	7	3	5	3735.852	1.98e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2	1	4	0	4	3735.929	1.07e-22
643734 3736.954 $8.09e-21$ 212111 3737.204 $8.04e-20$ 312303 3737.557 $4.21e-19$ 642735 3737.943 $8.08e-21$ 109111102 3738.286 $1.49e-23$ 927928 3738.858 $1.49e-23$ 927928 3738.631 $6.07e-21$ 514515 3740.514 $2.27e-21$ 202101 3739.483 $7.26e-20$ 854945 3740.514 $2.27e-21$ 211103740.524 $5.01e-20$ 853946 3740.731 $2.27e-21$ 413404 3741.348 $3.91e-19$ 111000 3743.343 $1.92e-19$ 633716 3743.732 $2.61e-23$ 331422 3746.205 $4.39e-23$ 514505 3746.205 $4.39e-23$ 514505 3746.205 $4.39e-23$ 514505 3746.854 $3.67e-22$ 10 <td>3</td> <td>0</td> <td>3</td> <td>2</td> <td>1</td> <td>2</td> <td>3736.011</td> <td>1.89e-16</td>	3	0	3	2	1	2	3736.011	1.89e-16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	4	3	7	3	4	3736.954	8.09e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	2	1	1	1	3737.204	8.04e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1	2	3	0	3	3737.557	4.21e-19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	4	2	7	3	5	3737.943	8.08e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	9	1	11	10	2	3738.286	1.49e-23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	9	2	11	10	1	3738.286	1.49e-23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	7	9	2	8	3738.589	1.51e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	4	5	1	5	3738.631	6.07e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0	2	1	0	1	3739.483	7.26e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	5	4	9	4	5	3740.514	2.27e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	1	1	1	0	3740.524	5.01e-20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	5	3	9	4	6	3740.731	2.27e-21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	3	4	0	4	3741.348	3.91e-19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	0	0	0	3743.343	1.92e-19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3	3	7	1	6	3743.732	2.61e-23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	1	4	2	2	3745.083	1.01e-20
5 1 4 5 0 5 3746.522 3.18e-19 3 3 0 4 2 3 3746.720 9.99e-21 10 6 5 11 5 6 3746.854 3.67e-22 10 6 4 11 5 4 3746.897 3.67e-22 6 1 5 6 1 6 3747.392 3.86e-21 3 1 3 2 1 2 3747.680 8.08e-20	2	2	0	3	0	3	3746.205	4.39e-23
3 3 0 4 2 3 3746.720 9.99e-21 10 6 5 11 5 6 3746.854 3.67e-22 10 6 4 11 5 4 3746.897 3.67e-22 10 6 4 11 5 4 3746.897 3.67e-22 6 1 5 6 1 6 3747.392 3.86e-21 3 1 3 2 1 2 3747.680 8.08e-20	5	1	4	5	0	5	3746.522	3.18e-19
10 6 5 11 5 6 3746.854 3.67e-22 10 6 4 11 5 4 3746.897 3.67e-22 6 1 5 6 1 6 3747.392 3.86e-21 3 1 3 2 1 2 3747.680 8.08e-20	3	3	0	4	2	3	3746.720	9.99e-21
10 6 4 11 5 4 3746.897 3.67e-22 6 1 5 6 1 6 3747.392 3.86e-21 3 1 3 2 1 2 3747.680 8.08e-20	10	6	5	11	5	6	3746.854	3.67e-22
6 1 5 6 1 6 3747.392 3.86e-21 3 1 3 2 1 2 3747.680 8.08e-20	10	6	4	11	5	4	3746.897	3.67e-22
3 1 3 2 1 2 3747.680 8.08e-20	6	1	5	6	1	6	3747.392	3.86e-21
	3	1	3	2	1	2	3747.680	8.08e-20

Table 8. Putting in evidence of the perturbations in the $v_1(v_3)$ band of HTO spectrum.

J'	K'_a	K_c'	J''	K_a''	K "_c	Obs	Cal	Diff
8	0	8	9	1	9	3614.632	3759.632	-145
8	0	8	9	0	9	3616.432	3759.432	-143
8	0	8	8	1	7	3655.075	3821.075	-166
8	0	8	7	1	7	3794.388	3934.388	-140
8	0	8	7	0	7	3598.449	3741.449	-143
6	2	5	6	3	4	3627.371	3303.371	324
6	2	5	7	2	6	3632.055	3295.055	337
6	2	5	7	1	6	3661.947	3339.947	322
6	2	5	5	3	5	3697.172	3390.172	307
6	2	5	6	2	4	3705.219	3415.219	290
6	2	5	6	1	6	3779.601	3448.601	331

shows that the closest vibrational state is the state $v_2 = v_3 = 1$ ($v_1 = v_2 = 1$), which energy is estimated to 3739 cm⁻¹.

3.2. Discussion

The determination of the the dipolar momentum components (**Table 5**) of HTO by the so-called isotopic substitution method allowed us to calculate rays intensities in the $v_1(v_3)$ band.

The experimental rays intensities have not been determined simultaneously with the spectrum record.

For this reason only theoretical values are shown in **Table 7**. In contrast, it should be noted that in the case high excited levels transitions, the calculated energy level has been replaced by its observed value.

In summary, to estimate the quality of the database generated for HTO, there is shown, in **Figure 4**, some of

Figure 4. Spectrum observed (dash) and calculated (point) of the $v_1(v_3)$ band of HTO.

the observed spectra (dash) and calculated (point). It can be noticed that the results are satisfactory.

4. Conclusions

The satisfactory analysis in terms waves rotational numbers of the $v_1(v_3)$ band permitted us to make in evidence a perturbation of the high vibrationnal state. Also, the theoretical calculation of the dipole momentum function allowed us to calculate the non measured intensities of this band's transitions.

Finally, as announced in the introduction, these results permit us to create a HTO spectroscopy database.

REFERENCES

- M. Born and J. R. "Oppenheimer, Quantum Theory of the Molecules," *Annalen der Physik*, Vol. 84, 1927, pp. 457-484. <u>doi:10.1002/andp.19273892002</u>
- [2] A. Messiah, "Mécanique Quantique," Dunod, Paris, 1964.
- [3] B. T. Darling and D. M. Dennison, "The Water Vapor Molecule," *Physical Review*, Vol. 57, No. 2, 1940, pp. 128-139. doi:10.1103/PhysRev.57.128
- [4] J. K. G. Watson, "Simplification of the Molecular Vibration-Rotation Hamiltonian," *Molecular Physics*, Vol. 15, No. 5, 1968, pp. 479-490. doi:10.1080/00268976800101381
- [5] G. Amat, H. H. Nielsen and G. Tarrago, "Vibration-Rotation Polyatomique of Molecules," Dekker, New York, 1971.
- [6] H. Patridge and D. W. Schwenke, "The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive *Ab Initio* Calculations and Experimental Data," *Journal of Chemical Physics*, Vol. 106, No. 11, 1997, pp. 4618-4639. doi:10.1063/1.473987
- [7] A. Perrin, J. M. Flaud and C. Camy-Peyret, "Calculated Energy Levels and Intensities for the v₁ and 2v₂ Bands of HDO," *Journal of Molecular Spectroscopy*, Vol. 112, No. 1, 1985, pp. 153-162. doi:10.1016/0022-2852(85)90200-0
- [8] J. M. Flaud, C. Camy-Peyret and J. P. Millard, "Higher Ro-Vibrational Levels of H₂O Deduced from High Resolution Oxygen-Hydrogen Flame Spectra between 2800 -6200 cm⁻¹," Molecular Physics, Vol. 32, No. 2, 1976, pp. 499-521. doi:10.1080/00268977600103251

- [9] R. A. Toth and J. W. Brault, "Line Positions and Strengths in the (001), (110) and (030) Bands of HDO," *Applied Optics*, Vol. 22, No. 6, 1983, pp. 908-926. doi:10.1364/AO.22.000908
- [10] C. Camy-Peyret and J. M. Flaud, "Line Positions and Intensities in the v_2 band of H_2 ¹⁶O," *Molecular Physics*, Vol. 32, 1976, pp. 523-537. <u>doi:10.1080/00268977600103261</u>
- [11] O. N. Ulenikov, V. N. Cherepanov and A. B. Malikova, "On Analysis of the v₂ Band of the HTO Molecule," *Journal of Molecular Spectroscopy*, Vol. 146, No. 1, 1991, pp. 97-103. doi:10.1016/0022-2852(91)90373-I
- [12] R. A. Toth and J. W. Brault, "HD¹⁶O, HD¹⁸O, and HD¹⁷O Transition Frequencies and Strengths in the v₂ Bands," *Journal of Molecular Spectroscopy*, Vol. 162, No. 1, 1993, pp. 20-40. <u>doi:10.1006/jmsp.1993.1266</u>
- [13] http://www.chem.gmul.ac.uk/iupac/
- [14] B. S. Ray, "Eigenvalues of an Asymmetrical Rotator," Zeitschrift für Physik, Vol. 78, 1932, pp. 74-91. doi:10.1007/BF01342264
- [15] P. R. Bunker, "Molecular Symmetry and Spectroscopy," Academic Press, Waltham, 1979.
- [16] A. R. Edmonds, "Angular Momentum in Quantum Mechanics," Princeton University Press, Princeton, 1960.
- [17] R. S. Mulliken, "Species Classification and Rotational Energy Level Patterns of Non-Linear Triatomic Molecules," *Physical Reviews*, Vol. 59, No. 11, 1941, pp. 873-889. doi:10.1103/PhysRev.59.873
- [18] J. K. G. Watson, "Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules," *Journal of Chemical Physics*, Vol. 46, No. 5, 1967, pp. 1935-1949. doi:10.1063/1.1840957
- [19] J. K. G. Watson, "Determination of Centrifugal-Distortion Coefficients of Asymmetric-Top Molecules. II. Dreizler, Dendl, and Rudolph's Results," *Journal of Chemical Physics*, Vol. 48, No. 1, 1968, pp. 181-185. doi:10.1063/1.1667898
- [20] J. K. G. Watson, "Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules. III. Sextic Coefficients," *Journal of Chemical Physics*, Vol. 48, No. 10, 1968, pp. 4517-4524. <u>doi:10.1063/1.1668020</u>
- [21] P. Helminger, F. C. De Lucia, W. Gordy, P. A. Straats and H. W. Morgan, "Millimeter- and Submillimeter-Wavelength Spectra and Molecular Constants of HTO and DTO," *Physical Review A*, Vol. 10, No. 4, 1974, pp. 1072-1081. doi:10.1103/PhysRevA.10.1072
- [22] E. B. Wilson, J. C. Decius and P. C. Cross, "Molecular Vibration. The Theory of Infrared and Raman Vibrational Spectra," McGraw-Hill Book Company, New York, 1955.
- [23] J. M. Flaud and C. Camy-Peyret, "Vibration-Rotation Intensities in H₂O-Type Molecules Application to the 2v₂, v₁, and v₃ bands of H₂¹⁶O," *Journal of Molecular Spectroscopy*, Vol. 55, No. 1-3, 1975, pp. 278-310. doi:10.1016/0022-2852(75)90270-2