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Abstract 
We revise the concept of mass of a particle in general relativity initiated by 
Einstein, Brans, and Rosen in the fifties, using the results of P. Havas and J.N. 
Goldberg on the equations of motion for point-like particles. We show how 
one can define a constant inertial mass, and a variable gravitational mass de-
pendent on their gravitational interaction with the rest of particles. The in-
troduced gravitational mass allows us to construct a cosmological model that 
satisfactorily accounts for the observed deficit of mass, the dark energy and 
the cosmological constant, without the assumption of new forms of matter or 
energy: dark matter and dark energy can be explained as a gravitational effect 
in the framework of the standard general theory of relativity. 
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1. Introduction 

We interpret in this paper the cosmological dark matter and energy present in 
the epoch of galactic dominance as a pure gravitational effect, using primarily 
baryonic matter and standard general relativity. 

In a Minkowski spacetime, a fluid is the result of a statistical average of the 
dynamical properties of a system of particles; in a curved space, as it is the case 
when the particles are self gravitating, one needs also to revise the concept of 
mass. The distinction between inertial mass and active and passive gravitational 
mass and its relation with the weak equivalence principle was thoroughly com-
piled in Jammer’s book [1], of which we give a few details in the next section. 
The revision in the framework of general relativity will permit to explain the 
dark components present in the galactic dominant epoch. We shall use the me-
tric generated by a finite system of particles, i.e., a solution of the Einstein’s equ-
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ations, having as source a distribution with support on the world lines of the 
particles. In the sixties, P. Havas and J.N. Goldberg [2] developed a method of 
successive approximations to find it. They used harmonic coordinates, unique 
up to Lorentz transformations [3] [4], and an auxiliary Minkowski tensor η, de-
fined as the one that in harmonic coordinates verifies ( ),a b a bµ ν

µνη η= , with 
( )diag 1, 1, 1, 1µνη = − − − , for any pair of vectors. Serious problems of convergence 

over the particle world lines were easily overcome in the first approximation [2], 
and needed of more efforts in the second one [5]. These results were useful to 
interpret in the eighties the first indirect proves of gravitational radiation by 
compact bodies [6]. Fortunately, we shall have enough with the first approxima-
tion. 

There is some rejection to consider point-like particles (the use of unidimen-
sional Dirac distribution as source), due to the problems of convergence, pre-
dicted by a theorem due to Geroch-Traschen [7] that states a necessary condi-
tion for the existence of regular metrics (locally bounded, with locally square in-
tegrable weak first derivative), by requiring the support of the distributions to be 
tridimensional. However, Katanaev [8] solved exactly the problem in the case of 
only one point-like particle, obtaining, as hoped, a non regular metric in the 
sense of Geroch-Traschen, with an additional coordinate singularity that makes 
necessary a metric extension. Recently, we have obtained [9] a maximal exten-
sion of this metric that is regular and has, as hoped, a distribution with tridi-
mensional support as source, in accordance to the Geroch-Traschen theorem. 
Unfortunately, these results has not been extended to more than one particle, 
and we must use the approximated solutions [2] [5]. 

Following Havas-Goldberg (H-G), we consider the spacetime as a manifold 
provided with two tensors fields (M, g, η): the first is the true metric, generated 
by point-like particles, and the second is an auxiliary tensor used to obtain the 
true metric. In the next section, we show that the paper by H-G [2] tacitly con-
tains valuable definitions for a constant inertial and a time dependent passive 
gravitational mass, though the last one, inexplicably, was not presented as such. 
We shall show that their quotient, though being the same for all the particles, is 
not a constant, because the passive gravitational increases with the particle’s prop-
er time, impeding the equality of inertial and gravitational mass and suggesting 
that their difference might account for both dark components. Section 3 sum-
marizes the dynamical properties of a cosmological fluid made of self gravitating 
particles obtained recently by us [10], and Section 4 shows how the gravitational 
mass introduced in this paper explains satisfactorily both dark matter and dark 
energy. 

2. Inertial and Passive Gravitational Mass  
of Point-Like Particles 

Classical physics distinguishes three kinds of mass: inertial and, active and pas-
sive gravitational mass; but these concepts change when we move from Newto-
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nian mechanics to special and general relativity. 
Newtonian mechanics identifies the three masses, and links them to the law of 

motion as proportionality between force and acceleration or, alternatively, to the 
law of conservation of the total tri-momentum: given an isolated system of N  

interacting particles there exist N real numbers such that the sum 1

d
d

a
aa

N x
m

t=∑  

is constant [1] [11]. 
Special relativity distinguishes the proper inertial mass (or rest mass), related 

to the conservation of the total-four-momentum (where the absolute Newtonian 
time t is substituted by the particle’s proper time τa), and the relativistic mass, that 
in a general inertial frame has the familiar velocity dependence 21a am v− . 

General relativity, as reported in Jammer’s book [1], has not yet achieved 
general agreement with the distinction between inertial mass and active and pas-
sive gravitational mass: 

Einstein in 1950 [12], using a weak field approximation to describe the metric 
due to a finite distribution of matter, concluded that the inertial mass of a body, 
identified with the gravitational mass by principle, is not constant because de-
pends on its gravitational interaction with all the other present masses. 

C.H. Brans in 1962 [13] by studying the motion of a test particle in the field of 
a massive particle, at rest at the centre of a shell with mass MS simulating the ef-
fect of the universe, contrarily argued the equality of inertial and active gravita-
tional mass, and its independence of the gravitational interaction, at variance 
with the Mach’s principle. N. Rosen in 1965 [14] replied analyzing the equation 
of motion of a test particle in the field produced by a more massive particle, im-
mersed now in an true expanding universe, obtaining a variable inertial mass 
(equal to the passive gravitational mass) which increases as the universe ex-
pands, and a constant active gravitational mass. So, in short: Rosen partially ex-
tended the Einstein’s result to a cosmological setting, obtaining a variable iner-
tial mass equal to the passive gravitational mass; and coinciding with Brans 
about the constancy of the active gravitational mass. 

H.C. Ohanian in 2013, [15] defined the inertial mass of an object in an 
asymptotically flat spacetime as the volume integral of an energy density deter-
mined by the canonical energy-momentum tensor, and its gravitational mass by 
the asymptotically Newtonian potential at large distance from it; and, he also 
demonstrated the equality of them. But asymptotic flat conditions are not satis-
fied in cosmology. 

The concept of mass varies when we move from Newtonian mechanics to spe-
cial relativity and to general relativity. 

Not all the authors have considered that in general relativity might exist dif-
ferent definitions of mass. Rosen clearly stated that his definition of inertial 
mass, based on an interpretation of the equation of the geodesics, is not the only 
possible [14]. The aforementioned Einstein, and Rosen models, were developed 
under the tacit assumption of the Mach’s principle: the inertial mass of a body is 
due to its interaction with all the other masses in the universe. Brans abandoned 
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this principle in his critic of these models. 
In this paper we also contradict the Mach’s principle by considering a constant 

inertial mass, and identical active and passive mass depending on the gravitational 
interaction. A satisfactory extension to general relativity of the inertial mass of a 
point-like particle can be proposed, in the framework of the H-G work [2], by link-
ing the concept directly to the Einstein’s field equations (in this way it is linked also 
to the equations of motion). To follow the process it will be convenient to recall the 
two world line parametrizations used by H-G, namely, the physical proper time  

d d ds g z zα β
αβ= , and the Minkowski proper time d d dz zα β

αβτ η= . We shall 

denote by d
da

a

zu
s

µ
µ =  and d

da
a

zv
µ

µ

τ
=  the tangent vectors to the world line of the 

particle “a”, corresponding to both parametrizations. Consequently,  
( ), 1a ag u u = , ( ), 1a av vη = . From the first equation one gets 

( )
( ) ( )( )d 1 , ,

d ,
a

a a a a a
a a a

g v v g x v v
s g v v

µ ν
µν

τ
τ= =            (1) 

We propose to define the particle’s inertial mass ma and enunciate at once the 
field equations for a system of point-like particles: 

Given a system of N self-gravitating particles there exist N real numbers 
{ }, 1, ,am a n=  , such that the metric g of the spacetime is a solution of the 
Einstein’s equations, with a distribution with support on the world lines of the 
particles as energy-momentum tensor: 

( ) ( ) ( )( )4

1

d
8 d , .

d

N
a

a a a a a a a
a a

z
G g G m u u x z s s u

s

µ
µν µ ν µδ

=

= π − =∑∫        (2) 

We shall justify bellow to denote inertial mass to these constants. In order to 
define the passive gravitational mass we consider the particle’s four-momentum 

, 1, 2, ,a a ap m u a N= =  . By a simple calculation: 
d dd
d d d

a a
a a a a a a

a a a

zp m u m m v
s s

µ
µ µ µτ τ

τ
= = = , and substituting (1) we obtain  

( )a a a ap M vµ µτ= , with ( )a aM τ  related to am : 

( )
( ),

a
a a

a a

m
M

g v v
τ =                       (3) 

coinciding with equation (16) in [2]. One can now interpret physically the con-
stants am  and the functions ( )a aM τ  using the equations of motion derived 
by Havas-Goldberg from the null divergence of the energy momentum tensor 
(Equation (14) in [2]): 

( )
( )( ),d 1,

d 2
a aa

a a a a
a a

g v vp
F F M

x
µ

µ µ µτ
τ

∂
= =

∂
             (4) 

that can be rewritten as: 

( ) ( )
d 1, ,
d 2

a a
a a a a a a

a a

u U
m M U g v v

x
µ

µτ
τ

∂
= =

∂
              (5) 
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to the equation of motion of a particle in special relativistic mechanics, justifying 
in this way to consider the constants ma as the inertial masses, and prompting us 
to interpret the functions ( )a aM τ  given in (3) as the passive gravitational 
masses of the particles. The aim of this paper is to show that this gravitational 
mass can explain the dark components and the cosmological constant (Inex-
plicably, H-G [2] did not used this concept). 

Let us outline that the equations of motion (4) or (5) (suppressing subindex a 
for the sake of simplicity) are equivalent to the geodesic equations. The geodesics 
equations generated by the Lagrangian L g x xα β

αβ=   , where dots denote derivatives  

respect the proper time are ( )d 1
d 2

g
g x x x

s x
αβν α β

µυ µ

∂
=

∂
   . Now, inserting the con-

vector p g pνµ µν=  we can write: 
d
d 2
p gm x x
s x
µ αβ α β

µ

∂
=

∂
  , and changing the phys-

ical proper time to the Minkowski proper time we get the Equation (4)  

( )
d 1 d 1
d 2 d 2
p g g

m v v M v v
s x x

µ αβ αβα β α β
µ µ

τ τ
τ

∂ ∂
= =

∂ ∂
. 

The question arises if the definitions of mass given in Equations (2), (3) satisfy 
the weak equivalence principle (WEP). The answer is affirmative. In terms of the 
Hammer’s book [1], pg. 103, the WEP for a point-like particle is stated as fol-
lows: “the world line of a particle, released at an initial space-time event with a 
given velocity is independent of the weight” (it means the passive mass).The 
WEP defines thus a preferred set of geodetic curves, as we have proven above. 

Let us add a comment to the Jammer’s distinction of two versions of WEP: the 
kinematic WEPkin, states that at a given location all bodies fall with the same accele-
ration (principle of universality of free fall), and the dynamic WEPdyn states that the 
ratio p im m  is the same for all the particles, or in appropriate units i pm m= . 

When considering the torsion balance used in Eötvös-like experiments, the 
quotient 001a aM m g=  is a constant, and the same for any of the two small 
masses of the balance, because 00g  corresponds to the metric produced by a 
static earth. So, in this particular case the WEPdyn, in the sense of identity of in-
ertial and gravitational mass, is fulfilled. 

However, in subsection IIIC, where we study the Milne’s universe with mass 
and prove the equality active and passive gravitational mass, we shall find that 
the quotient ( )a a aM mτ  is the same for all the particles, and therefore all them 
with the same initial conditions move equal in the gravitational field in accord 
with the WEPkin, but the quotient of masses is a monotonous increasing function 
of the expansion factor (see Equation (23)) and the WEPdyn does not imply the 
equality of inertial and gravitational mass by choosing appropriated units. In 
section IV we shall develop, using the gravitational mass concept, far reaching 
cosmological consequences. 

3. A Cosmological Model Built with Point-Like Particles 

In this section we study two properties of the gravitational mass: the equivalence 
between active and passive gravitational mass, and finally their time dependence 
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presented in Equation (18); but, the main objective is to construct a cosmological 
model composed of self-gravitating point-like particles. A cosmological model is a 
spacetime locally isotropic everywhere respect a cosmological observer [16], 
whose main characteristics we summarize in the next subsection with notations 
that will be useful to describe both, the standard model with dark components, 
and our model based uniquely on the gravitational mass defined in the previous 
section. It will be useful to start recalling the Milne’s universe without mass, de-
scribed in [16], and then to construct a Milne’s universe with mass in section 
IIIC. 

1) The FRLW cosmological models 
A cosmological model may be characterized by an index of curvature (k = 1, 0, 

−1), and giving the energy density ρF (a) as function of the expansion factor, that 
will be convenient to write in the form 

( ) ( )
2
0

3

3
,

8
M

F
H

a f a
G a

ρ
Ω = + π  

                  (6) 

with 0 1aH a a
=

=   and ( )1 1M fΩ + = . In the current cosmological model the 
first and second summands describe the unknown pressure-less dark matter  
and dark energy densities respectively; the cosmological constant Λ may be con-

sidered as an important particular case of dark energy, with ( ) 2
0

Λ
3

f a
H

= ,  

because a successful cosmological model, the ΛCDM model, has been developed 
with this assumption [17]. The model presented in this paper with a non con-
stant f(a) is equally successful as we show in IV; but, it has the advantage that the 
dark components may be accounted for with the gravitational mass concept. The 
Friedmann equation: 

( )0 3 2 2 2
0 0

d , ,
d

kM
k

a kH a f a
s a a H R

ΩΩ
= + + Ω = −             (7) 

determines the expansion factor as function of the cosmological time s. Hence-
forth we shall take k = 0. Taking into account the equation of continuity  

( )3 0F FH pρ ρ+ + = , and well known calculations, one obtains the pressure 
and acceleration of the model: 

( ) ( )
2
03 1 d

8 3 dF
H fp a f a a
G a
 = − + π  

                 (8) 

( ) ( )2
0 3

4 1 d3
3 2 d2

M
F F

a G fp H f a a
a aa

ρ
Ωπ  = − + = − − + 

 

          (9) 

In the ΛCDM model, ΩM is the sum of the baryonic and dark matter density 
fractions: M ba dmΩ = Ω +Ω ; in our model ( )1M ba αΩ = Ω +  and, accordingly  

with the interpretation of α we shall give bellow in Equation (13), 
2
0

3

3
8

ba

i

H
G a

αΩ
π

 is  

the gravitational mass density present at the beginning of the galactic dominance 
epoch, due to the gravitational interaction of the particles that collapsed to form 
the galaxies in the precedent epoch with a < ai. 
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2) The Milne’s universe 
It is a portion of the Minkowski spacetime formed by a future half-light cone 

filled with a set of straight time like lines concurrent on its vertex. The world 
lines are the integral curves of the cosmological observer, and their points of in-
tersection with any hyperboloid of constant proper time τ define an homogene-
ous Poisson process, with constant number density equal to N/τ3, being N a 
constant; however, the number density of the intersections with the hypersurface 
of inertial coordinate t = constant is not uniform: ( ) 22 2Nt t r

−
− . The change of 

coordinates cosht τ= Ψ , sinhr = Ψ  produces the metric for the Milne’s  

universe ( )( )2 2 2 2 2 2 2 2
2

1d d d sinh d sin ds rτ ψ ψ θ θ ψ
τ

= − + + + . That is a cos-

mological model without mass and therefore with null energy-momentum tensor. 
3) The Milne’s universe with mass 
We consider now the concurrent straight lines of the Milne’s universe as 

world lines of particles (galaxies) with equal inertial mass m, and use the metric 
obtained by H-G [2] at first order in G in harmonic coordinates. To describe the 
recent epoch of galactic dominance we must take into account the evolution of 
the universe from small perturbations to bigger condensations of matter. We 
shall do that, with extreme simplification, by assuming that the galaxies began to 
dominate at some initial Minkowski proper time τi. For times τ < τi the matter 
content was dominated by other particles (“first stars”) that finally did aggregate 
to form the galaxies of the more recent universe. To complete the Einstein’s eq-
uations the energy momentum tensor is written in the form of a distribution 
with support over the world lines of the particles, parametrized with the Min-
kowskian proper time, as given by H-G in Equations (29) and (13) of [2] 

( ) ( ) ( )( )0 4

1

d
d , .

di

N
a

a a a a a a a a
a a

z
gT M v v x z v

µ
τµυ µ ν µ
τ

τ δ τ τ
τ=

− = − =∑∫      (10) 

We have denoted with a subindex the different particles, though all the iner-
tial masses are equal: ma = m. The quantity Ma(τa) is the passive gravitational 
mass introduced in the previous section by the Equation (3). 

The energy density ρ(x) of the fluid formed by the system of interacting par-
ticles can be obtained as result of the action ( ),pp xρ φ  of the point particle dis-
tribution pp gT u uµν

µ νρ = −  over a convenient test function ϕx defined as fol-
low: let A be the neighbourhood of the point x represented in Figure 1, defined 
by two neighbour hypersurfaces: 2t tτ = + ∆  (that are also hypersurfaces of 
constant proper time: ( ) 2s s t s= + ∆ , ( ) 2s s t s= − ∆ ) and a thin time like 
cone; and let S be the intersection of the hypersurface τ = t with the neighbour-
hood A. We choose as test function ϕ(x) the characteristic function of the set A: 

( ) 1x uφ =  if u A∈ , ( ) 0x uφ =  otherwise. One can prove [16], by averaging 
over the ref line L, that 

( )
( )

( ) ( )
( ) ( )

0

00

3

,
i

Δ
l m

x

t

gT
x n t M t

Vol S t

ϕ
ρ

∆ →

−
= =               (11) 

https://doi.org/10.4236/jmp.2021.1213101


M. Portilla 
 

 

DOI: 10.4236/jmp.2021.1213101 1736 Journal of Modern Physics 
 

 
Figure 1. Element of volume A centered at a point over a reference world line, limited by 
two surfaces τ = const. in a Milne’s universe. One shows the tridimensional surface S ne-
cessary to estimate the mass density. 

 
Therefore M(t) is also the active gravitational mass. This result proves that 

passive and active gravitational mass coincide, because according to equation 
(5), M(t) was the passive gravitational mass. Henceforth we shall refer to M(t) as 
the gravitational mass. 

The iterative method involving a power series in G developed in [2] allows to 
determine the metric and the gravitational mass in the form of two functional 
series: ( )1g gαβ αβ αβη= + + , and ( ) ( ) ( )1

a a a a aM m Mτ τ= + + . A regularization 
is necessary at each order of approximation, because the metric diverges over the 
world lines of the particles. In our case, a great simplification is that in harmonic 
coordinates the world lines of the particles are still straight lines, despite the fact 
of having mass. The solution at first order in G obtained by H-G (eq. 62 and 46) 
is the following: 

( ) ( )( ) ( )
1

1
24

,

b b
ret

a
b a b b ret

m v v
g z G

x z v

α β
µα υβ µν

µν

η η η
τ

η≠

 − 
 = −

−∑           (12) 

( ) ( ) ( )1 11
2a a a aM m g v v mα β

αβτ α= − +                 (13) 

where in Equation (13) we have written as maα the constant of integration noted 
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as 2Ci by H-G in their Equation (46). 
We interpret it as the gravitational mass present at time iτ : ( ) ( )1

a a im Mα τ= , 
i.e., as the gravitational mass acquired by the particles that collapsed during the 
anterior phase to form a galaxy in the present epoch; and bellow, in subsection 
IIIC1, this quantity will be identified with the detected dark matter. 

As all the world lines of the Milne’s universe are equivalent, by the Lorentz 
invariance of the equations, we shall obtain the physical metric and the gravita-
tional mass over a world-line of reference L: ( ) ( ),0,0,0x t tα = , with null 
three-velocities vk = 0. Over this line the initial Minkowskian proper time τi 
( 22 2

i i it xτ = − ) coincides with the initial harmonic time ti. The gravitational  

mass at a point ( ),0ip t t L= > ∈  is ( ) ( ) ( )1
00

11
2

M t m m g pα  = + − 
 

, with 

( ) ( )
( )
( ) ( )

2
1

00 2

1 2 1, , .
1 1

b b b
b b

b a b b b b

m r
g p G v

r v t v

γ
γ

γ≠

−
= − = =

+ −
∑        (14) 

The number of summands is finite even if the universe is made of infinite par-
ticles because only intervene the world lines intersecting the part of the past light 
cone of the point p limited by the hyperboloid Σ

iτ
, as shown in Figure 2. The  

 

 
Figure 2. The past light cone at the point p = (t, 0),t > τi on the reference world-line L in-
tersects a finite number of world lines, limited by the hyperboloid τ = τi. When t increases 
the number of particles contributing to its gravitational mass augments, and as a result 
thereof, an increment of their gravitational mass. The cosmological expansion increments 
the volume enclosing a given number of particles in a way (described in section IVA) that 
the gravitational mass density rapidly tends to a constant value, that we shall identify with 
the cosmological constant. 
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sum in Equation (14) was estimated by integration in [10], hence we can obtain 

the metric over the reference line L for t > ti, and the ratio 
( )

d 1
d ,
t
s g v v
=  up to 

first order in G: 

( ) ( ) ( )1 2
00 3

d 11 1 ,
d 2 3 i

i

t GNmg t t g t t
s t

π
= − = +              (15) 

( ) ( ) ( ) ( )
2 2 2

1 2
00 3 2 2 2

2 3, , , 1 4 1
23

i i i i
i i

i

t t t tGNmg t t g t t g t t
tt t t t

    π
= − = + − + −         

 (16) 

where 3
i

N
t

 is the number density introduced in IIIB. It is evident from the last 

equation that ( ),i ig t t . Let us identify in Equation (15) the two first terms of a 

series: ( ) ( )0

d
d

l
l

t F t
s

∞

=
= ∑  with ( ) ( )0 1F t =  and 

( ) ( ) ( )1 2
3 , .

3 i
i

GNmF t t g t t
t

π
=                    (17) 

The time evolution of the passive gravitational mass is ( ) d
d
tM t m m
s

α= + ; 

and, taking into account (15) can be expressed in the form: 

( ) ( ) ( )2 2
31 , ,

3 i
i

GNmM t m t g t t O G
t

α
 π

= + + + 
 

           (18) 

that verifies ( )iM t m mα= + . Let us recall that the constant mα introduced in 
Equation (13) was interpreted as the passive gravitational mass acquired during 
the epoch a < ai. Multiplying (18) by the number density of particles we get the 
energy density valid for the recent universe, at redshift z < zi: 

( ) ( ) ( ) ( )2 2
31 , .

3 i
i

GNmt n t m t g t t O G
t

ρ α
 π

= + + + 
 

          (19) 

a) Construction of a cosmological model with gravitational mass 
As we are considering a model made exclusively of baryons, the term baryonic 

mass should refer to the constant inertial mass m introduced in (2) and  

2
0

8
3ba o

G
H

mnπ
Ω = , be interpreted as the dimensionless baryonic density parameter. 

The baryonic matter, as shown in Figure 2, is continuously acquiring gravita-
tional mass (3) due to the gravitational interaction. To obtain the cosmological 
model, denoted above as Milne’s universe with mass, we need to transform the 
harmonic coordinates used in section II into standard cosmological coordinates, 
but that is not so simple as was in the Milne’s universe without mass treated in 
section IIIB. We shall assume now that t(a) may be expressed as a series 
( ) ( ) ( )0

k
kt a t a∞

=
= ∑  (though we shall need only the first term t(0)) and consider 

that: 

1. It is verified ( )( ) 3
on

n t a
a

= , with no equal to the number density of baryons 

https://doi.org/10.4236/jmp.2021.1213101


M. Portilla 
 

 

DOI: 10.4236/jmp.2021.1213101 1739 Journal of Modern Physics 
 

at the present epoch. Let us recall that 3
i

N
t

 is the constant number density of 

particles over the hyperboloid τi = ti, introduced in IIIB, therefore we can write 

3 3
o

i i

nN
t a

= . 

b) The Equations (15) and (7), with k = 0, determine the functions t = t(s) and 
s = s(a) up to first order in G. 

First we identify in (15) the two first terms of the series ( ) ( )0

d
d

l
l

t F t
s

∞

=
= ∑ , 

namely: ( ) ( )0 1F t = , and ( ) ( ) ( )1 2
3 ,

3 i
i

GNmF t t g t t
t

π
= . Then, from Equation (7) we 

have ( )
1 2

3
0

d 1
d

Ms f a
a H a a

−Ω = + 
 

 and using d d d
d d d

t s t
a a s
=  we obtain the diffe-

rential equation that determines the series ( ) ( ) ( )0
l

lt a t a∞

=
= ∑  

( ) ( )( ) ( ) ( )( )
1 2

3 3
1 00

d 1 .
d

l lbaM

l l

t F t a F t a
a H a a a

−∞ ∞

= =

ΩΩ = + 
 

∑ ∑         (20) 

To order zero one obtains 
( )0 3

0

d 1
d M

t a
a aH

=
Ω

, whose solution is 

( ) ( )
3 2

0
0 1 2

2 ,
3 M

aH t a =
Ω

                      (21) 

and substituting (21) into (16) we have ( ) ( )( ) ( )0 , ,i ig t a t g a a=   with 

( )
33 3 3 3 2

3 3 3 3 2

3, 1 4 1 .
2

i i i i
i

a a a a
g a a

a a a a
    

= + − + −         
            (22) 

Using the prescription 1 given above we get ( )( )
2
0

3

3
8

baH
n t a m

G a
Ω

=
π

, and taking  

into account (18) and (21) we obtain the dependence of the gravitational mass of 
a galaxy on the expansion factor, valid for the galactic dominance epoch a > ai: 

( ) ( )
3

31 , .
18

ba
i

M i

G aM a m g a a
a

α
 Ω

= + + 
Ω 

               (23) 

It is manifest that the quotient M(a)/m is independent of m, but not a con-
stant. This fact prevents from identifying inertial and gravitational mass as 
quoted at the end of section II, but just this un-equality, far of been a drawback, is 
the clue to explain in the next section the origin of the cosmological dark compo-
nents. Now, we can construct a cosmological model with dominant gravitational 
mass. By considering Equations (19) and (21) we obtain ( ) ( )( ):F a t aρ ρ= , with 

( ) ( ) ( )
2 3

20
3 3

3
1 ,

8 18
ba ba

F i
M i

H aa g a a O G
G a a

ρ α
 Ω Ω

= + + + 
π Ω 

        (24) 

that can be written in the form (6) to identify ΩM and f(a) as follow: 

( ) ( )
2
0

3

3
8

M
F

H
a f a

G a
ρ

Ω = + π  
                  (25) 
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( ) ( ) ( )2

3

,
1 , .

18
ba i

M ba
M i

g a a
f a

a
α

Ω
Ω = Ω + =

Ω



             (26) 

Our model has introduced three parameters: Ωba, α, ai, but the identity 
( )1 1M fΩ + =  gives a relation between them: 

( ) ( )
( ) 3

1,
1 1.

18 1
ba i

ba
i

g a
a

α
α

Ω
Ω + + =

+



                  (27) 

The function ( ), ig a a  vanishes at a = ai and rapidly tends to unity for in-
creasing a. From ( ), 0i ig a a =  we obtain, using Equations (23) and (25), that  

( ) ( )1iM a m α= +  and ( ) ( )3 1o
F i

i

n
a m

a
ρ α= + ; hence, we conclude that: at the  

beginning of the galactic epoch, mα  is the gravitational mass contained in a 

galaxy, and 3
o

i

n m
a
α

 
the gravitational mass density. Both were generated during 

the anterior epoch, with a < ai, by the gravitational interaction of the particles 
that collapsed to form a galaxy. 

4) Comparison of the model with gravitational mass with the ΛCDM 
cosmological model 

The success of the ΛCDM cosmological model has been corroborated by the 
Planck 2013 results [17]. This model considers null pressure and introduces the 
cosmological constant Λ, by substituting ( ) 2

03f a H Λ= Λ ≡ Ω  into Equation (6), 

to get 
2
0

3

3
8

M
F

H
G a

ρ Λ
Ω = +Ω π  

. The Equations (8) and (9) imply a constant nega-

tive pressure and a variable acceleration: 
2
03

8
H

p
G Λ= − Ω
π

, 
2
0

3 2
2

MHa
a a Λ

Ω = − − Ω 
 

 .  

The density parameter ΩM contains baryon and dark matter contributions: 

M ba dmΩ = Ω +Ω . The model works well, fitting the observed supernovae mod-
uli-distance redshift relation [18], and the unexpected recent transition from 
decelerated to accelerated universe at redshift z = 0.6. 

However, the problematic physical interpretation of the cosmological constant as 
vacuum energy density, caused the introduction of the new physical field dubbed 
dark energy. A comprehensive review of the new dark components can be found in 
the books [19] [20]. Assuming h = 0.67 for the reduced Hubble constant, one gets 
estimations for the density fractions: ( ) ( ), , 0.049,0.268,0.683ba dm ΛΩ Ω Ω = . 

Let us give our interpretation of the dark matter parameter Ωdm in the ΛCDM 
model: our model use the parameter ( )1M ba αΩ = Ω + , where we have substi-
tuted baαΩ  in place of Ωdm. Accordingly to the interpretation of mα  at the  

end of the anterior section, 
2
0

3 3

3
8

o ba

i i

n H
m

Ga a
α

α
Ω

≡
π

 is the gravitational mass density  

at the beginning of the galactic dominance epoch, acquired by the particles do-
minant in the precedent epoch with a < ai. 

Finally, although we will not use the cosmological constant as parameter, in 
the next section we shall give a physical interpretation of this constant as the 
asymptotic value of the gravitational mass density. 
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4. Gravitational Mass Density in the Galactic Dominance 
Epoch: An Interpretation of Dark Matter and Dark Energy 

The objective of this section is to show that the notion of gravitational mass, in-
troduced in this paper to construct the Milne’s universe with mass, affords a sa-
tisfactory explanation, at cosmological scales, of both dark components. 

1) Gravitational mass instead of dark matter, cosmological constant, and 
dark energy 

The gravitational mass fraction f(a) obtained in (26) depends of three parameters 
(Ωba, α, ai) constrained by the Equation (27). We can obtain good values for them 
identifying our parameter ( )1M ba αΩ = Ω +  with the equivalent in the ΛCDM 
model M ba dmΩ = Ω +Ω  described in IIID, obtaining the relations 0.049baΩ = ,  

and 0.268ba dmαΩ = Ω =  and from the last one we get 5.47dm

ba

α
Ω

= =
Ω

. To  

determine the remaining parameter ai we observe that, as it is shown in Figure 
3, f(a) is a monotonous increasing function of the expansion factor, verifying 
( ) 0if a = , that rapidly tends to a constant value f(1). If we identify  

( ) 2
01 3 0.683f H Λ= Λ = Ω =  we obtain the equation 

( )
3 2

1, 18i M

i ba

g a
a

ΛΩ Ω
=

Ω
, that  

determines the beginning of the galactic epoch at 0.085ia = , that corresponds 
to redshift 10.76iz = . This is our explanation of the cosmological constant Λ as 
a limit value of the gravitational mass density introduced in this paper, that 
makes unnecessary to surmise the existence of a new physical field, so-called 
dark-energy. This is a physical interpretation of the cosmological constant Λ as 
the limit of the gravitational mass density. This interpretation of the constant ΩΛ 
has no problem, unlike the dark energy assumption, with the coincidence of the  

densities 3
m

a
Ω

 and f(a) at a so recent epoch as 0.3iz =  [20], because in our  

 

 
Figure 3. The gravitational mass fraction as function of the expansion factor. The gravita-
tional mass fraction (f(a) = gravitational mass density/ρcri) of our model is a function of the 
expansion factor a. In a neighbourhood of a = 1 the function f(a) is practically constant. 
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case, 3
M

a
Ω

 and f(a) should not be considered as two unrelated magnitudes, ra-

ther they are two components of a sole gravitational mass density. Though 

( )0if a = , f(a) increases rapidly, the 3
m

a
Ω

 is a decreasing function, and the 

graphs of both components cross for 1
1.3ca = . 

In the next subsections we show how using the values  
( ) ( ), , 0.049,5.47,0.085ba iaαΩ =  obtained in this section, one can reproduce 
with great exactitude the main predictions of the ΛCDM model. 

2) The moduli-distance redshift relation 
With the gravitational mass density ( )f a  we can explain the luminosity 

distance ( )Ld z , or the equivalent logarithmic moduli-distance  
( ) ( )5log 25Lz d zµ = + , to a source with redshift z. The difference between our 

prediction ( )f zµ  and the ΛCDM prediction ( )Λ zµ  for the supernovae ob-
servations accounted in [18] is of the order of 10−5. The discrepancy,  

( ) ( )
( )

Λ

Λ

f z z
z

µ µ
µ
−

, between both models is represented in Figure 4. 

3) The accelerated universe 
With the Equation (9) without cosmological constant it is impossible to ex-

plain an accelerated universe, unless the pressure of the cosmological fluid be 
negative, but an important consequence of the gravitational interaction between  

the particles is that the gravitational mass density, ( )
2
03

8
H

f a
Gπ

, given in (26),  

when substituted into the Equations (8) and (9), gives the necessary negative 
pressure. We can conclude that the gravitational pressure is the cause of the  

 

 
Figure 4. Our prediction of the moduli-distance redshift relation about the supernovae 
observations [18], is practically indistinguishable from the one based on the ΛCDM cos-
mological model. 
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acceleration of the universe. As it is shown in Figure 5, the deceleration factor 
2q aa a= −    becomes negative recently because ( )f a  corresponds to the ga-

lactic dominance epoch with expansion factor 1ia a< < . 
4) The pressure to density ratio w(a) 
Let us decompose in two summands the energy density given in (25), (26): 

( ) ( ) ( )F M fa a aρ ρ ρ= + , with ( )
2
0

3

3 Ω
8

M
M

H
a

G a
ρ =

π
 and ( ) ( )

2
03

8f
H

a f a
G

ρ =
π

. 

As only the component ρf(a) contributes to the pressure given in (8), it is 

worthwhile to know our prediction for the ratio ( ) ( )
( )f

f

p a
w a

aρ
= . Using (8) one 

gets: 

( ) d ln 1.
3 d
a fw a

a
= −                       (28) 

In Figure 6 we have represented the function ( )w a  predicted by our model. 
It is manifest a linear dependence for values close to unity (very low redshifts) 
and a rapid increase when a decreases (for high redshifts). 

The variability of the ratio w(a) has been tested in [21] under a linear depen-
dence hypothesis: ( ) ( ) ( )0 1w a w a w a= + − , obtaining the constraint  

01.33 0.79w− < < −  for the present value ( )0 1w w=  of the pressure density 
ratio. With equation (28) we get ( )1 0.998w = −  that satisfies the constraint, but 
the linear dependence in our prediction, showed in Figure 6, clearly fails for 

0.4a <  ( 1.5z > ). Let us remark that in the today vast literature on dark energy 
one has introduced, besides the scalar field language with the quintessences, 
some barotropic fluid models as origin of the acceleration [22], whose w(a) ratio 
are qualitatively similar to our prediction. The pressure given in (8) has dynamic  

 

 
Figure 5. The deceleration factor q becomes negative recently at redshift 0.6. The upper 
curb corresponds to our model, as a consequence of the gravitational energy density f(a), 
the lower one is the prediction made by the ΛCDM model based on the assumption of a 
cosmological constant. 
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Figure 6. This figure shows the pressure to density ratio w(a) = p(a)/ρf(a) predicted by 

our model for the galactic dominance epoch, 1 1
11.7

a≤ ≤ . 

 
character rather than kinetic, because it is linked to the gravitational energy den-
sity f(a) described in section IVA. The potential energy contribution to a dy-
namic pressure is well known in classical mechanics, see Chp.17.2 in [23] and 
Chp. 7.4 in [24], but little is known about that in general relativity. 

5) Time evolution of the gravitational mass fraction 
A very interesting result comes from Equation (23), that describes the depen-

dence of the gravitational mass of a point-like particle on the expansion factor. 
We can estimate the evolution of the gravitational mass fraction of a generic ga-
laxy with the expression 

( ) ( ) ( )
( )

1
.GM

M a m
f a

M a
α− +

=                   (29) 

Our interpretation of dark matter as the gravitational mass acquired by the 
particles that collapsed to form a galaxy implies that we must compare ( )GMf a  
with dark matter observations at different redshifts. The observed redshift de-
pendence of the dark matter fraction ( )DMf z  can be accounted for with the  

function ( )GMf a , after substituting 1
1

a
z

=
+

, showed in Figure 7 as a continuous  

curve. The two first fractions were observed by Dutton [25] in 2011 and Suyu 
[26] in 2012, and the last six, correspond to more recent observations by Gencel 
et al. [27]. 

5. Conclusions 

We have used P. Havas and J.N. Goldberg results on dynamics of a finite number of 
gravitating point-like particles to revise the concepts of inertial and gravitational  
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Figure 7. The gravitational mass fraction fGM(z) as function of the redshift calculated with 
our model for point-like particles fits well to a sample of observed values in different ga-
laxies up to redshifts of the order 2. 

 
mass in general relativity and derive their cosmological consequences: 

a) Inertial and gravitational mass. The law of motion of a particle (5) suggests 
definitions for a constant inertial mass, m, and a passive gravitational mass, 

( ),M m g v v= , depending on the metric generated by the particles. In section 
IIIC, we proved the equivalence of passive and active gravitational mass, and 
obtained its monotonous increasing dependence on the expansion factor M(a). 
In Figure 2, we show how the excess of gravitational mass, ( )M a m− , at an 
event P on a world line L is due to the gravitational interaction with the world 
lines intersecting its past light cone. When time passes, the number of inter-
sected lines, and M(a), increases. 

b) Dark matter, dark energy and cosmological constant as different aspects of 
the gravitational mass. In section IVA, we have estimated the beginning of the 
galactic dominance at 0.085ia =  ( 10.76iz = ). The gravitational mass fraction 
f(a), showed in Figure 3, verifies ( ) 0if a =  and is practically a constant in the 
interval 0.4 1a< ≤ . The value f(1) is identified with the cosmological constant. We 
have reinterpreted the ΛCDM density parameters ( ) ( ), 0.268,0.683dm ΛΩ Ω =  in  

terms of gravitational mass: Ωdm is now the gravitational mass density, 2
0

8
3 o

G n m
H

απ ,  

acquired by the dominant particles before the galactic era; ΩΛ is the present val-
ue, f(1), of the time dependent gravitational mass density. Therefore, in our model, 
the universe is roughly formed by 5% of baryonic and 95% of gravitational mass: 
a 27%, usually referred as dark matter, was acquired during the epoch ia a<  
previous to the galactic dominance, and a 68%, usually described as dark energy, 
is the gravitational mass generated in the galactic dominance era ia a> . This 
interpretation is free of the coincidence problem [20]: the value of ΩΛ is close to 

M ba dmΩ = Ω +Ω , because having a common origin, they are not unrelated mag-
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nitudes. 
c) Relation distance-redshift. As showed in Figure 4, we have obtained the 

moduli-distance as function of the redshift that explains the supernova observa-
tions. It is indistinguishable from the one obtained with the ΛCDM model using 
a cosmological constant. 

d) The accelerated universe. The pressure of the non ideal gas filling the un-
iverse given in (8) is not kinetic. It is a functional of the gravitational mass density  

( ) ( )
2
03

8f
H

a f a
G

ρ =
π

. This pressure is liable of the recent acceleration of the un-

iverse: substituted in (9) produces the deceleration factor q showed in Figure 5. 
e) The equation of state of the cosmological fluid. We have obtained the equation 

of state of the cosmological fluid by the pressure to density ratio ( ) ( )
( )f

p a
w a

aρ
=  

given in (28) and shown in Figure 6, satisfying the observational constraint 
( )1.33 1 0.79w− < < − . 

f) Time evolution of the gravitational mass fraction. We have given the time 
evolution of the gravitational mass of a point-like particle in Equation (23) and 
the consequent gravitational mass fraction (29). They are in good agreement, as 
shown in Figure 7, with the mass measurements of galaxies up to redshift z ~ 2, 
usually reported as dark matter fractions. 

We conclude that the gravitational energy density introduced in this paper 
explains the large scale cosmological observations in the galactic dominance 
epoch, making unnecessary either the cosmological constant or the dark matter 
and energy assumptions. To extend the analysis of the gravitational mass to an 
inhomogeneous universe is more complicated, but necessary to predict its dis-
tribution inside the galaxies. 
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Abstract 
A theory of gravitation in flat space-time is shortly summarized and applied 
to cosmological models. These models start with a gravitational field and 
without matter. Gravitational energy is converted to matter and the total en-
ergy is conserved. The arising universe has no singularity (no big bang) and is 
not expanding. The redshift is a gravitational effect. It follows by converting 
gravitational energy to matter changing the gravitational field. This is another 
gravitation theory different from general relativity which also gives the pres-
ently most accepted results of general relativity for weak gravitational fields 
but has not the problems of general relativity with a big bang. 
 

Keywords 
Gravitation, Flat Space-Time, Field Theory, Gravitational Energy, Matter Arises, 
No Big Bang, Conservation of Total Energy, Non-Expanding Space, Redshift 
Is a Gravitation Effect 

 

1. Introduction 

The presently most accepted universe is based on Einstein’s general theory of 
relativity (GR). The application of GR to flat cosmological models gives an ex-
panding universe with a singularity in the beginning, the so-called big bang. The 
universe must have cosmic inflation in the beginning to explain our big universe. 

In this article, a theory of gravitation in flat space-time (GFST) which has till 
now not received attention by cosmologists is applied to cosmological models. 
The universe starts with gravitational energy and not with matter. In the course 
of time, gravitational energy is converted to matter implying the observed red-
shift of distant objects by virtue of the change of the gravitational field. The total 
energy is always conserved. The universe is not singular and it doesn’t expand. 
Spherically, symmetric perturbations in the universe can arise in the beginning 
of the universe and they grow quickly in the matter dominated universe. This 
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may explain the big galaxies in the universe whereas the big bang gives only 
small galaxies in contradiction to observations. 

2. The Universe 

GR is a theory of gravitation giving for weak gravitational fields agreement to 
experimental accuracy of theory and experiment. This may be the high accep-
tance of GR by many scientists. GR is also applied to homogeneous, cosmologi-
cal models to get origin and development of the universe. The universe begins 
with a big bang (singularity) and it must expand very quickly (cosmic inflation) 
by virtue of the observed big universe and the many galaxies. 

More than forty years ago, in the year 1979, I published a theory of gravitation 
in flat space-time. This theory can be described by a gravitational field in the 
pseudo-Euclidean geometry. Gravitation is a field theory and not a geometry as 
by GR. GFST gives for weak gravitational fields to measurable accuracy the same 
results as GR. Hence, we get the same acceptance of GFST as GR for weak gravi-
tational fields. But the results of cosmological models are very different by these 
two theories. The universe starts with uniformly distributed gravitational field by 
GFST (no big bang). Gravitation is attracting. The densified gravitational field 
contracts to matter and a part of the gravitational field surrounds the originated 
object. Every object is surrounded by a gravitational field. Hence, objects attract 
one another by the surrounded gravitational field and not by their masses. In the 
course of time matter and other types of energy arise at coasts of gravitational 
energy. The sum of all types of arising energies is conserved. The universe is not 
singular and doesn’t expand. The redshift follows by converting gravitational 
field to matter. 

3. Gravitation in Flat Space-Time 

Nearly all cosmologists use GR and the results of this theory to describe and 
study the universe. This theory is well known and gives a singularity, the big 
bang in the beginning of the universe. In addition cosmic inflation is needed to 
explain the observed big universe. Therefore, we will use another theory of 
gravitation, namely gravitation in flat space-time, to study the universe (com-
pare the book [1]). 

This theory is not a geometry as GR but a field theory of gravitation in flat 
space-time. The metric is given by 

( )2d d di j
ijs x xη= −                        (1) 

where ( )ijη  is a symmetric tensor. A special case is the pseudo-Euclidean ge-
ometry with 

( ) ( )4 4 44, 1, 2,3 , 0 1,2,3 , 1i
ij j i ii j iη δ η η η= = = = = = − .         (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct . Put 

( )det ijη η= .                         (3) 
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The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  be 
defined by 

kj j
ik ig g δ= .                          (4) 

Put 

( )det ijG g= .                         (5) 

The proper-time τ is defined by 

( )2d d di j
ijc g x xτ = − .                      (6) 

The Lagrangean of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −   −   
.           (7) 

Here, the bar/denotes the covariant derivative relative to the flat space-time 
metric (1). 

The Lagrangean of dark energy (given by the cosmological constant Λ) has the 
form 

( )
1 2

8 GL
η

 −
Λ = − Λ − 

.                      (8) 

Let 
44 k cκ = π                           (9) 

(k: gravitational constant) and assume that matter is a perfect fluid. Then, the 
mixed energy-momentum tensors of gravitation, of dark energy and of matter 
for a perfect fluid are 

( ) ( )
1
21 1 1

8 2 2
i i km ln kl mn i
j kl mn j j j

GT G g g g g g g g L Gν
ν ν δ

κ η

 
 −   = − +    −     

   (10a) 

( ) ( )1
16

i i
j jT Lδ

κ
Λ = Λ                     (10b) 

( ) ( ) 2i k i i
j jk jT M p g u u pcρ δ= + + .               (10c) 

where , pρ  and ( )iu  denote density, pressure and four-velocity of matter. It 
follows by (6) 

2 i j
ijc g u u= .                        (11) 

Let us define the covariant differential operator 
1 2

/

/

i kl mi
j jm l

k

GD g g g
η

  −
=   −   

.                  (12) 

Then the field equations for the gravitational potentials ( )ijg  have the form 
1 4
2

i i k i
j j k jD D Tδ κ− = .                     (13) 

Here, i
jT  is the sum of the energy-momentum tensors of gravitation, of 
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matter and of dark energy 

( ) ( ) ( )i i i i
j j j jT T G T M T= + + Λ .                 (14) 

Define the symmetric energy-momentum tensor 

( ) ( )ij ik j
kT M g T M= ,                     (15) 

then the equations of motion are (in covariant form) 

( ) ( )/ /
1
2

k kl
i k kl iT M g T M= .                   (16) 

In addition to the field Equation (13) and the equations of motion (16) the 
conservation of the total energy-momentum holds, i.e. 

/ 0k
i kT = .                          (17) 

The field Equation (13) are formally similar to those of GR where i
jD  corre-

sponds to the Ricci tensor and i
jT  is the total energy-momentum without that 

of gravitation which is no tensor by GR. These results can be found in the book 
[1] and in the article [2]. 

4. Homogeneous, Isotropic Universe 

We follow along the lines of article [2]. 
Let us use the pseudo-Euclidean geometry (2), (3) as metric. The matter ten-

sor is given by perfect fluid with 

( )0 1,2,3iu i= =                       (18) 

and pressure p and density ρ  with 

m rp p p= + , m rρ ρ ρ= + .                  (19) 

Here, the indices m and r denote matter and radiation. The equations of state 
for matter (dust) and radiation are 

0mp = , 
1
3r rp ρ= .                      (20) 

The potentials are given by virtue of (18), homogeneity and isotropy 

( ) ( )

( ) ( )

( )

2 1, 2,3

41

0

ij

a t

g
h

i j

i
t

i j

j



=

= =

= =−

 ≠

                  (21) 

The four-velocity is by Equation (18) 

( ) ( )0,0,0,iu c h= .                     (22) 

Let 0 0t =  be the present time and assume as initial condition at present 

( ) ( )0 0 1a h= = , ( ) 00a H= , ( ) 00h h=  , ( ) 00 mρ ρ= , ( ) 00r rρ ρ= .   (23) 

Here, the dot denotes the time-derivative, 0H  is the Hubble constant and 0h  
is a further constant, 0mρ  and 0rρ  are the present densities of matter and ra-
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diation. It follows by (16) under the assumption that matter and radiation do not 
interact 

( )0 0m m r rh a hρ ρ ρ ρ= = .                 (24) 

The field Equation (13) implies by the use of (21) the two non-linear differen-
tial equations 

3
3 4

2

d 1 12
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

 Λ  = + +  
   



,         (25a) 

( )
3

3 4
2 2

d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  



     (25b) 

where 

( )
22

3
2

1 16 6
2

a a h hL G a h
a a h hc

    = − + +        

 

 

.           (26) 

The expression ( )1
16

L G
κ

 is the density of the gravitational field. The con-

servation of the total energy gives 

( ) ( )
3

2 21 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =              (27) 

where λ  is a constant of integration. The Equations (25), (26) and (27) give by 
the use of the initial conditions (23) 

4
0

4 2
0

4
6 2

2 1
c th a

h a c t
κ λ ϕ

κ λ ϕ
+

= − +
+ +



                   (28) 

with 

0
0 0

0

13 1
6

h
H

h
ϕ

 
= + 

 



.                     (29) 

Integration of (28) yields 
3 4 2

02 1a h c t tκ λ ϕ= + + .                   (30) 

Equation (27) gives at present time 0 0t =  by using the initial conditions (23) 

( )
2

4 2 2
0 0 0 0

1 8 Λ8 4
3 3 8m r

cc k H
k

κ λ ϕ ρ ρ
  

− = π + + −   π  
.         (31) 

Let us define as usually the density parameters 

0
2
0

8
3

m
m

k
H
ρπ

Ω = , 0
2
0

8
3

r
r

k
H
ρπ

Ω = , 
2

2
03

c
HΛ
Λ

Ω =  

and put 

( )0 1m r mK Λ= Ω +Ω +Ω − Ω ,                 (32) 

then relation (31) can be rewritten 
24

0
02

00

8 12 m
kc K

HH
ϕλ  

− = Ω 
 

.                  (33) 
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It follows from (27) by the use of (28), (30) and elimination of h and h  the 
differential equation 

( )
2 2

2 3 60
024 2

02 1
m r m

Ha K a a a
a c t tκ λ ϕ

Λ
   = −Ω +Ω +Ω +Ω     + +



    (34a) 

with the initial condition 

( )0 1a = .                         (34b) 

A necessary and sufficient condition to avoid singular solutions of (34) is the 
condition 

0 0K > .                          (35) 

This yields 
4 2

02 1 0c t tκ λ ϕ+ + >                      (36) 

for all t∈R . Hence, we get a non-singular solution, i.e. we receive a non-singular 
universe for all t∈R . It exists 1 0 0t t< =  such that 

( )1 0a t = .                         (37) 

Put ( )1 1a a t=  then it follows from (34a) with 1t t=  
2 3 6
1 1 1 0r m ma a a KΛΩ +Ω +Ω = Ω .                 (38) 

It follows for all t∈  

( ) 1 0a t a≥ > .                        (39) 

Subsequently let us assume 

( )1 0 1a a = ,                        (40) 

then we get by (38) 

0 1K  .                          (41) 

It follows from (32) by the use of (41) 

01r m mKΛΩ +Ω +Ω = +Ω .                   (42) 

That is the sum of the density parameters is a little bit greater than 1. The so-
lution of (34) is by longer calculations and under the assumption 0 0rp =  

( ) ( )( )3 3 3 3
1 1 12 1 1 1 2 cos 3

m m

a t a a a tβΛ Λ
    Ω Ω

= + + +     Ω Ω    
,    (43a) 

( ) ( )

( )
0 0 1

0
1 0

0

3
arctg

11
2

mK H t t
t

t B H t
H

β
ϕ

 
 Ω − =
 + + 
 

, ( )
2

0 0
0 0 1

0 0

1 13
2 2mB K H t

H H
ϕ ϕ     = + Ω +      

. (43b) 

We get as t → −∞  

( )
( )( )

1
3

1 1
2 1.81

1 cos 3
a a a

 
 −∞ ≈ ≈ − π 
 

. 
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Hence, ( )a t  starts at t = −∞  with ( ) 11.81a a−∞ = , decreases to 1 0a >  
and then increases for all t. It follows from (30) by the use of (43b) for t suffi-
ciently large 

( ) ( )
2

30

0

1 1
2

h t t a
H
ϕ 

≈ + −∞ 
 

.                (44) 

Hence, ( )a t  starts from a small positive value decreases to a small positive 
value and then increases for all t∈ . The function ( )h t  can then be calcu-
lated by relation (30). 

The proper-time from the beginning of the universe till time t is 

( ) ( )1 d
t

t h t tτ
∞−

= ∫ ,                     (45) 

i.e. the age of the universe is finite by GFST analogues to that of GR. 
The metric (1) is not expanding, i.e. the universe is not expanding and not 

singular. In the beginning of the universe it consists only of gravitational energy 
and no matter and no radiation exist. They arise in the course of time at coasts 
of gravitational energy and the sum of the total energy is always conserved. 

Introducing the proper-time �̃�𝜏 into the differential Equation (34a) we get by 
the use of (30) the differential equation (see [1]) 

2
0

6
2
0 4 3

1 d
d

m mrKa H
a a a aτ Λ

Ω ΩΩ   = − + + +Ω      

.            (46) 

This differential equation is for ( )a t  sufficiently large (that is: away from the 
beginning of the universe) by virtue of (41) identical with that of GR. Hence, the 
function ( )a t  approximates the scaling factor of GR. In the beginning of the 
universe the function ( )a t  is positive whereas the scaling factor of GR is zero 
what implies by GR the singularity of the expanding universe in the beginning. It 
is worth to mention that the resulting universes of GR and of GFST are very dif-
ferent. The results of GFST are contained in the book [1] and in article [2]. Ad-
ditional results about the universe by GFST are found in the articles [3] [4] [5] 
[6]. 

A non-expanding universe is experimentally stated by Lerner [7] [8]. The 
redshift in a non-expanding space is given in [9] and Siegel [10] also asked the 
question of an expanding space. I must also mention the book of Fahr [11] 
where a universe without big bang is propagated. In article [12], the redshift of 
distant objects is derived from the frequency shift of the gravitational field which 
is changed by converting gravitation to matter. 

5. Redshift of Distant Objects 

It is useful to introduce the absolute time to simplify the calculations of the red-
shift in the universe. The absolute time t′  of the universe is given by 

( ) ( ) ( )
1 1d d dt t

a ta t h t
τ′ = =  .                 (47) 

The proper-time (6) with (21) by the universe is 
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( ) ( ) ( )( )22 2 2
1

3d d di
ic a t x ctτ
=

′= − −∑ .              (48) 

The energy of a photon emitted at a distant object at time et′  is given by  

( ) ( )44 0
d~
de e
tE t g a t E
τ
′

′ ′− →


, which means for the frequencies 

( ) 0e ea tν ν′= .                        (49) 

Here, 0ν  is the frequency of the same atom emitted at present. This gives for 
the frequency moving in the universe by virtue of constant light velocity (see 
(48)) 

( ) ( ) 0e et a tν ν ν′= = . 

The redshift is 

( ) ( )
0 11 1
e e

z
t a t

ν
ν

= − = −
′ ′

.                   (50) 

Light emitted at distance r at time et′  and received at 0r =  at time 0t′  
holds by the constant velocity of light 

( )0 er c t t′ ′= − . 

This gives by Taylor expansion of ( )ea t′  and relation (50) 

( ) 22

0 022
0

d1 11
2 d

e

e

a tr rz H H
c cH t

 ′  = + −   ′   
 

The differential Equation (46) is by introducing the absolute time t′  rewrit-
ten 

( )
2

2 3 6
0

2
0
2

d
d m r m

Ha K a a a
t a Λ

  = −Ω +Ω +Ω +Ω ′ 
. 

Differentiation of this relation implies by neglecting small expressions 
2

2
02

d 11
2d e

m
a H

t Λ
 = − Ω +Ω ′  

. 

Hence, we get by introducing this expression in the relation for z 
2

0 0
3
4 m

r rz H H
c c

 ≅ + Ω  
 

.                   (51) 

This expression for the redshift is derived by the use of the frequency caused 
by the change of gravitation and not by a Doppler effect. It was already derived 
in previous articles (see e.g. the book [1]). 

Some additional remarks to GFST: 
Gravitational field is attracting. Spherically symmetric perturbations of the 

gravitational field in the universe attract and are partly converted to matter, an 
object arises. The rest of this gravitational field surrounds the object and may at-
tract other objects. This seems that matter attracts matter but it is the gravita-
tional field which is attracting. The process of arising objects is fast and implies 
big objects and may explain the galaxies in our universe. This result can be 
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found in [13] and in the book [1]. This gives also an explanation of gravitation. 
Gravitational field is attracting and not the mass. The densified gravitational 
field is converted to matter. Matter is the result of the attracting gravitation. This 
result can be found in article [14]. 
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Abstract 
An exact time-dependent solution of a black hole is found in a conformally 
invariant gravity model on a warped Randall-Sundrum spacetime, by writing 

the metric 
4

2ng gµν µνω −=  . Here, gµν  represents the “un-physical” space-
time and ω  the dilaton field, which will be treated on equal footing as any 
renormalizable scalar field. In the case of a five-dimensional warped space-

time, we thereafter write ( ) ( )4 42g gµν µνω= . The dilaton field ω  can be used 
to describe the different notion the in-going and outside observers have of the 
Hawking radiation by using different conformal gauge freedom. The disa-
greement about the interior of the black hole is explained by the antipodal 
map of points on the horizon. The free parameters of the solution can be 
chosen in such a way that gµν  is singular-free and topologically regular, 
even for 0ω → . It is remarkable that the 5D and 4D effective field equations 
for the metric components and dilaton fields can be written in general di-
mension 4,5n = . From the exact energy-momentum tensor in Edding-
ton-Finkelstein coordinates, we are able to determine the gravitational wave 
contribution in the process of evaporation of the black hole. It is conjectured 
that, in context of quantization procedures in the vicinity of the horizon, un-
itarity problems only occur in the bulk at large extra-dimension scale. The 
subtraction point in an effective theory will be in the UV only in the bulk, 
because the use of a large extra dimension results in a fundamental Planck 
scale comparable with the electroweak scale. 
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1. Introduction 

It is believed that the understanding of the quantum mechanical property of a 
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black hole is one of the major challenges of modern physics. The quantum fea-
tures of a black hole were investigated, decades ago, by Hawking in his epic work 
on radiation effects of a black hole [1] [2]. The thermal emission from the black  

hole can be described by a temperature 1
8

T
M

=
π

, where M is the mass of the  

black hole. Hawking considered the collapsing body on a background spacetime, 
which is time dependent and not symmetrical with respect to time reversal. 

Vacuum pair-production at the horizon causes the Hawking radiation, which 
is thermal and contains no information. The anti-particle falls into the black 
hole. So when the black hole evaporates completely, it seems that information is 
lost, which is against Quantum Mechanics (QM): it dictates that the initial and 
final stage of a system is related to a unitary S-matrix. This is a first indication 
that there is a problem with QM when applied to a black hole spacetime. This is 
the information paradox. 

Related to this issue, is the holographic principle [3], which states that the in-
terior volume of spacetime of a black hole containing the information of the 
in-going particles is dual to the surface of the horizon. Could it be that the in-
formation is still at the horizon? The idea was extended to the well-known An-
ti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence: in some way, 
the information must be present in the Hawking radiation. This model relies 
heavily on string theory, but would solve the information paradox, by introduc-
ing the notion of complementarity of the in- and out-side of the black hole. The 
in-going and out-going particles are entangled and the information of the in-going 
particle is also reflected back. However, this viewpoint conflicts with causality [4]. 
The previously emitted Hawking radiation and the corresponding in-going par-
ticles are independent systems and at the same time indirect entangled. 

Another solution for the information paradox, which doesn’t rely on string 
theory, is the introduction of a firewall [5]. The entanglement between the 
in-going and out-going particles is broken by a high energetic shield. The freely 
in-falling observer encounters high-energy particles at the horizon. This view-
point conflicts with general relativity, i.e., violation of the equivalence principle. 
Free falling observers, when falling through the horizon, perceive spacetime as 
Minkowski, so will not notice the horizon at all. 

A fundamental issue which is omitted in all the treatments as described above, 
is the time-dependency of the spacetime structure near the horizon. The emitted 
Hawking particle will have a back-reaction effect on the spacetime [6] [7]. Could 
it be possible, that the topology of the black hole must be revised? It is well 
known that quantum field theory on a curved spacetime opens the possibility 
that a field theory can have different vacuum states. It can have intrinsic statis-
tical features from a change in topology and not from a priori statistical descrip-
tion of the matter fields. 

A spacetime with a given local geometry admits in principle, different possible 
global topologies. One can consider the modification of the spacetime topology 
of the form ˆ Γ , where Γ  is a discrete subgroup of isometries of   [8] 
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[9] [10] [11], without fixed points. ̂  is non-singular and is obtained from its 
universal covering   by identifying points equivalent under Γ . A particular 
interesting case is obtained, when Γ  is the antipodal transformation on   

( ) ( )ˆ ˆ: .J P X P X→                        (1) 

where the light-cone of the antipode of ( )P X  intersects the light-cone of 
( )P X  only in two point (at the boundary of the spacetime). This is the so-called 

“elliptic interpretation” [12] of spacetime, where antipodal points represents in 
fact the same world-point or event. The future and past event horizon intersect 
each other as a projected cylinder 1 1 2

|S×  1. At the intersection one then 
identifies antipodal points. One must realize that the antipodal map is a boun-
dary condition at the horizon, only observable by the outside observer. On a 
black hole spacetime, the inside is removed. So nothing can escape the interior, 
since there is no interior. The field theories formulated on   and ̂  are 
globally different, while locally   and ̂  are identically. The emitted radia-
tion is only locally thermal. Antipodal identification, however, destroys the 
thermal features in the Fock space construction. In the construction, one needs 
unitary evolution operators for the in-going and out-going particles [13]. 

In order to avoid wormhole constellations or demanding “an other universe” 
in the construction of the Penrose diagram, it is essential that the asymptotic 
domain of   maps one-to-one onto the ordinary spacetime in order to pre-
serve the metric. In fact, one deals with one black hole. A consequence is that 
time-inversion takes place in region II of the Penrose diagram, so interchange of 
the creation and annihilation operators and entangling positive energy particles 
at the horizon with positive energy antiparticles at the antipodes. So the antipo-
dal identification is not in conflict with the general CPT invariance of our world. 
Further, for the outside observer, the thermodynamically mixed state is replaced 
by a pure state. So the Hawking particles at opposite sides of the black hole are 
entangled. 

The former representation that observers have no access to the inside of the 
black hole is no longer valid. One arrives by this new geometrical description at 
pure quantum states for the black hole. It will solve, moreover, the information 
paradox and firewall problem as well2. 

The gravitational back-reaction as proposed by’t Hooft [14] [15], suggests a 
cut-off of high momenta, which avoids the firewall. The in-going particle has a 
back-reaction on the other particles, leading to a unitary S-matrix. The gravita-
tional interaction between the in-going and out-going particles will be strong, 
because we are dealing here with a strongly curved spacetime near the horizon. 
Using a “cut-and-paste” procedure, one replaces the high-energy particles 
(“hard”), i.e., mass or momentum of the order of the Planck mass, by low-energy 

 

 

1We work here in polar coordinates, because the spinning black hole we will consider, has a pre-
ferred spin axis. The antipodal identification is then ( ) ( ), , , , , ,U V z U V zϕ ϕ→ − − − π + . 
2The technical aspects in constructing the unitary S-matrix can be found in the literature, as pro-
vided by the references. 
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(“soft”) particles far away. These hard particles just caused the firewall problem. 
Hard particles will also influence the local spacetime (to become non-Schwarzschild) 
and causes the Shapiro effect. The interaction with the soft particles is described 
by the Shapiro delay. Effectively, all hard particles are quantum clones of all soft 
particles. By this “firewall-transformation”, we look only at the soft particle 
clones. They define the Hilbert space and leads to a unitary scattering matrix. 
The net result is that the black hole is actually in a pure state, invalidating the 
entanglement arguments in the firewall paradox. The entanglement issue can be 
reformulated by considering the two regions I and II in the maximally extended 
Penrose diagram of the black hole, as representing two “hemispheres” of the 
same black hole. It turns out that the antipodal identification keeps the wave 
functions pure and the central 0r =  singularity has disappeared. This gravita-
tional deformation will cause transitions from region I to II in the Penrose dia-
gram. The fundamental construction then consists of the exchange of the posi-
tion operator with the momentum operator of the in-going particles, which turn 
them into out-particles. Hereby, ‘t Hooft expands the moment distributions and 
position variables in partial waves in ( ),θ ϕ . So the Hawking particles emerging 
from I are entangled with the particles emerging from II. An important new as-
pect is the way particles transmit the information they carry across the horizon. 
In the new model, the Hawking particles emerging from I are maximally entan-
gled with the particles emerging from II. The particles form a pure state, which 
solves the information paradox. 

In order to describe the more realistic black holes, such as the axially symme-
tric Kerr black hole, it is not possible to ignore the dynamics of the horizon. 
Moreover, one must incorporate gravitation waves. There is another reason to 
consider axially symmetry. A spherical symmetric system cannot emit gravita-
tion waves [16]. Astronomers conjecture that most of the black holes in the cen-
ter of galaxies are of the Kerr type. A linear approximation is, of course, inade-
quate in high-curvature situations. In the linear approximation, the waves don’t 
carry enough energy and momentum to affect their own propagation. The no-
tion of the “classical” Hartle-Hawking vacuum thermal state, with a temperature  

1T
M

κ   and the luminosity 2

d 1
d
M
t M

−  must also be revised when the  

mass reaches the order of the Planck mass. On the Kerr black hole spacetime no 
analog of the Hartle-Hawking vacuum state exists. The Killing field µξ  gene-
rates a bifurcate Killing horizon ( 1µ

µξ ξ = −  at infinity) and possesses space like 
orbits near infinity [17]. 

Another aspect of the huge curvature in the vicinity of the horizon, will be the 
problem of constructing a renormalizable (and maintaining unitarity) quantum 
gravity model of the Standard Model fields, which must be incorporated in the 
Lagrangian. Up till now, no convincing theory of quantum gravity is available. 
Many attempts were made in order to make a renormalizable and unitary quan-
tum gravity model. One also can try to construct a renormalizable model, by 
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adding fourth order derivative terms of the curvature tensor (Euler-term). 
However, one looses unitarity. Also the “old” effective field theory (EFT) has its 
problems. One ignores what is going on at high energy. In order to solve the 
anomalies one encounters in calculating the effective action, one can apply the 
so-called conformal dilaton gravity (CDG) model [6] [7] [18] [19]. CDG is a 
promising route to tackle the problems arising in quantum gravity model, such 
as the loss of unitarity close to the horizon. One assumes local conformal sym-
metry, which is spontaneously broken (for example by a quartic self-coupling of 
the Higgs field). Changing the symmetry of the action was also successful in the 
past, i.e., in the SM of particle physics. A numerical investigation of a black hole 
solution of a non-vacuum CDG model, was recently performed [20]. The key  

feature in CDG, is the splitting of the metric tensor 
4

2ng gµν µνω −=  , with ω   

the dilaton field. Applying perturbation techniques (and renormalization/ 
dimensional regularization), in order to find the effective action and its diver-
gencies, one first integrate over ω  (shifted to the complex contour), considered 
as a conventional renormalizable scalar field and afterwards over gµν  and 
matter fields. The dilaton field is locally unobservable. It is fixed when we choose 
the global spacetime and coordinate system. If one applies this principle to a black 
hole spacetime, then the energy-momentum tensor of ω  influences the Hawking 
radiation. When gµν  is flat, then the handling of the anomalies simplifies con-
siderably [15]. When gµν  is non-flat, the problems are more deep-seated. 

It is well known, that the antipodal transformation, or inversion, is part of the 
conformal group [21]. So conformal invariant gravity models could fit very well 
the models of antipodal mapping as described above. In this context, the mod-
ification of GRT by an additional spacetime dimension could be an alternative 
compromise, because Einstein gravity on the brane will be modified by the very 
embedding itself and opens up a possible new way to address the dark energy 
problem [22] [23] [24]3. These models can be applied to the standard Fried-
mann-Lemaître-Robertson-Walker (FLRW) spacetime and the modification on 
the Friedmann equations can be investigated [25]. Recently, Maldacena, et al. 
[26], applies the RS model to two black hole spacetimes and could construct a 
traversable macroscopic wormhole solution by adding only a 5D U(1) gauge 
field (see also Maldacena [27]). However, an empty bulk would be preferable. 
Instead, one can investigate the contribution of the projected 5D Weyl tensor on 
the 4D brane. It carries information of the gravitational field outside the brane. 
If one writes the 5D Einstein equation in CDG setting, it could be possible that 
an effective theory can be constructed without an UV cutoff, because the fun-
damental scale 5M  can be much less than the effective scale PlM  due to the 
warp factor. The physical scale is therefore not determined by PlM . 

In this manuscript we will apply the antipodal map on a spinning black hole 
spacetime in conformal dilaton gravity applied to a warped 5D spacetime. 

 

 

3There is another argument in favor of a (warped) 5D spacetime. It turns out, as we shall see, that a 
surface in 4D can be immersed to 5D, like a Klein bottle. 
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2. Conformal Transformations and Antipodal Mapping 
2.1. The Origin of the Antipodal Mapping 

The antipodal map originates from the so-called “elliptic” interpretation [12]. If 
one considers the hyperboloid H, 2 2 2 2 2 2t x y z w R− + + + + = , then the space- 
like sections through the origin are ellipses and the time-like sections are hyper-
bola branches. 

Since the de Sitter spacetime can be isometrically embedded as a hyperboloid 

in 5 , one can take 2 3R = −
Λ

. If one suppresses the coordinates ( ),z w , we  

have the 3  Minkowski metric. Lorentz transformations (LT’s) around the 
origin transform H into itself. Circles on H represent space at different epochs. 
The bottle-neck parallel is a spatial geodesic, while the others are not. Further, 
the circumferences contract from z = −∞  to 0z =  and then expand. A LT of 

3  turns the bottle-neck into an ellipse, cut out of H with an angle < 45˚ with 
the ( ),x y -plane. See Figure 1. All the ellipses are equivalent space-like geodes-
ics since each of them is transferred by a suitable automorphism into the bot-
tle-neck, which is one of them. One defines the antipodal map 

( ) ( )ˆ: , , , , ,J P t x y P t x y→ − − −                   (2) 

on H. The antipodicity is Lorentz invariant. When the angle approaches 45˚, 
then the ellipses degenerate into a couple of parallel generators ( )1 2,g g  (null 
geodesics). The other plane of 45˚ delivers the set ( )3 4,g g . The sets ( )1 4,g g  
and ( )2 3,g g  form, for example, the light-cones at the points M and M̂ . If one  

 

 
Figure 1. Hyperboloid H representing the 3  spacetime of the compactified de Sitter universe 5  ( ( ),z w  suppressed) 

(a). In the Penrose diagram, the antipodal points P and ( )J P  are spacelike separated. An observer moving in de Sitter 

spacetime cannot meet both P and ( )J P  (b). He cannot receive a message from ( ),P J P . Moreover, he cannot receive a 

message from P and send a message to ( )J P . 
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moves upwards along t, the inner angles of the light-cones decrease. Note that 
the light-cones at P and P̂  has no point in common and the antipodes are 
joined by a space-like geodesic. Now Schrödinger proposed to identify P and P̂  
with the same physical world-point or event. One half of H, containing no an-
tipodal points, represents the “whole world”. Thereafter, Schrödinger argues in a 
clever way that the total potential of experiences of any observer is complete and 
embraces the same events for any two observers, whatever their world lines be. 
But there is a price we have to pay for4. The direction of the arrow of time is lost 
(or the distinction between the “fore-cone” and “after-cone” is lost). The allot-
ment of past and future is undecidable. The elliptic model is time-reversible. 
This can open perspective to the general CPT invariance of our world. The real 
problems arise, when one considers thermodynamical systems, as is the case for 
the Hawking effect in the vicinity of the horizon of a black hole. Then the en-
tropy comes into play. Note, quoting Schrödinger, “the irreversible laws of 
thermodynamics can only be based on the statistical microscopically reversible 
systems on condition that statistical theory be autonomous in defining the arrow 
of time. If any other law of nature determines this arrow, the statistical theory 
collapses.” 

In a pseudo-polar frame ( ), , ,Tχ θ ϕ  we can write the line element 

( )2 2 2 2 2 2 2 2 2 2d d cosh d sin d sin d ,s R T R T χ χ θ θ ϕ = − + + +        (3) 

where 0 2χ< < π . The antipodal map becomes now 

( ) ( ): , , , , , , .J T Tχ θ ϕ χ θ ϕ→ − + − π+π π               (4) 

We already mentioned that de Sitter can be embedded as a hyperboloid in 5D 
Minkowski. We then say that :J X Xµ µ→ −  is an inversion5. There exist 
another coordinate system (introduced by de Sitter himself) in which the line 
element is written as 

( )
2

2 2 2 2 2 2 2
2 2

2

1d 1 d d d sin d ,
1

s T
R

R

ρ ρ ρ θ θ ϕ
ρ

 
′ ′ ′ ′= − − + + + 

  −
      (5) 

where we have taken the velocity of the LT tanh tT
y

= . This is the static de Sitter  

and the spaces of constant time are all equivalent. There are singularities for 
x R= ±  ( 90χ = ± ), i.e., the points ( )ˆ,M M . However, as also observed by 
Schrödinger, this static model is not adequate for applying the antipodal map. In 
order to apply the antipodal map on a black hole spacetime in a more general 
setting, one needs a time dependent spacetime.  

 

 

4This price is worth paying in the black hole situation, when the information paradox will be solved 
by the antipodal map. The antipodal half is not time orientable. There is a breakdown of the global 
distinction between past and future in the interior of the black hole. 

5The inversion 2

X
X

X
µ

µ → −  (as well as the dilatations) is part of the conformal group [21]. We 

shall see in the next sections that in general the conformal group is a projective group from 5D. The 
fifth “degree of freedom” is a sort of gauge space. 
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2.2. The “Classical” Hawking Effect and Its Problems 

The famous result of Hawking states, that a black hole will radiate at “sufficient-
ly” late times like a black body at a temperature 

3

~ ,
2 8

ckT
GM

κ
=

π π


                       (6) 

with κ  the surface gravity and M the mass. The entropy should then be 
3

4bh
kcS A=


, with A the area of the horizon. However, one runs into problems  

by the back-reaction effect of the particle creation, which will alter the area. It is 
questionable if the ordinary laws of thermodynamics can be applied to a black 
hole. It is clear that these laws must be constrained to form quantum states with 
orthonormality and unitarity conditions. Suppose that an isolated black hole 
completely evaporate within a finite time. Loss of quantum coherence should 
then occur i.e., an initially pure quantum state should evolve to a mixed state. In 
general, in the classical picture, a black hole cannot causally influence its exterior, 
so it is hard to understand the mechanism by which thermal equilibrium could be 
achieved. Observe that the state of the field at late times in the region I of the Pe-
nrose diagram (and so the particles flux reaching infinity) is described by a density 
matrix by the S-matrix analysis. The particles present in region I are strongly cor-
related with the particles which entered the black hole at earlier times. 

Consider now in Figure 2 the evolution of two Cauchy surfaces (“time” 1Σ   
 

 
Figure 2. The formation and evaporation of the Schwarschild black hole. The contour 0M =  lies at the 
retarded time corresponding to the final evaporation (a). The geometry is flat above this contour. It turns 
out that there will be loss of quantum coherence, i.e., an evolution from a pure state to a mixed state [17], 
as can be observed by the two Cauchy surfaces 1Σ  and 2Σ  (b). 
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to “time” 2Σ ). When the black hole disappears from the spacetime, then at late 
times, the entire state of the field is mixed. If one takes the “out” Hilbert space to 
be the Fock space of the particles propagating out to infinity at late times, one 
cannot describe particle creation and scattering by an ordinary S-matrix. The in-
itial pure state will evolve to a final density matrix. So we have a breakdown of 
quantum theory. The antipodal model, however, could “repair” this breakdown. 

2.3. Conformal Map between Manifolds and the Antipodal Map 

Let us consider a smooth regular map : n nf M N , with metrics 1g  and 2g  
[21]. This represents a local isometry if it preserves the metric, i.e., 2 1f g g∗ =  
and a global isometry if it is a diffeomorphism too. It is a conformal map if it 
rescales the metric, i.e., ( )2

2 1f g x g∗ = Ω , with 2Ω  a positive scalar field. 
Moreover, it preserves the light-cone structure. Further, an isometry maps geo-
desics into geodesics and preserves the affine parameter. Conformal maps pre-
serve null geodesics. In many physical applications, it is preferable to consider 
global isometries: they constitute a group of the manifold. On Minkowski space-
time, the diffeomorphism is of the form y A bα α α

β= + , with Aα
β  a Lorentz ma-

trix. In this context, one must not confuse this transformation with the Poincare 
transformations, which are of the same form. They connect two inertial frames. 
They are the basic of special relativity. They are coordinate transformations and 
are linear. Conformal maps in Minkowski spacetime do not act as linear trans-
formations. Nevertheless, one can generate them from linear transformations in 
a higher-dimensional spacetime. Now the antipodal map can be represented as a 
conformal transformation generated from pseude-othogonal matrices of ( )3O , 
i.e., the conformal group. Each conformal transformation in this group can be 
presented by a pair of antipodal matrices. In language of group theory, the map 
of a pair of antipodal points into a pair of antipodal points can be considered as 
a conformal transformation on ( )1 1M ⊗R R  and is represented by the pseu-
do-orthogonal group of matrices ( )2,2O . The matrix −  will interchange an-
tipodal points. Details can be found in Felsager [21]. A very illuminating pres-
entation of conformal transformations, in particular the inversions, can be given 
by the stereographic projection ( 2 |: CSP S ∞→ ) by using complex numbers 

|Cz ∈ . If one extend the complex plane, | |C C∞ = ∪∞ , then one has a bijection 
between |C∞  and 2S . This is the Riemann sphere and one says that |C∞  is a 
one-point compactification. Moreover, the map is a homeomorphism. Further,  

1SP−  are conformal maps. The inversion map ( ) 2

1 zT z
z z

= =  is a conformal  

map in | |C C∞ ∞→ . One can proof that the Möbius transformations ( )|CM  
| |: C Cf ∞ ∞→  with ( )f z az b cz b= + + , are the conformal maps of |C∞ . The 

set ( )|CM  is a surjective group with a homomorphism ( ) ( )| |
2: C CGL M ∞Γ →  

and kernel the diagonal matrices. The group ( )|
2 CGL kI  is the ( )|

2 CPGL
∞

, 
with k a constant. If ( )|

2 CSL  represents the complex matices with determinant 
1, then ( ) ( )| |

2: C CSL M ∞Γ →  is onto and has kernel I± . One then has an 
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isomorphism ( ) ( )| |
2: C CSL I M ∞Γ ± → . The class of the Möbius transforma-

tions where , , ,a b c d  are ∈ , are interesting, because they apply to hyperbolic 
geometry. The group ( )|

2 CPSL  can then be defined, in order to define conju-
gate classes and to classify the fixed points, that means in our situation, no fixed 
points. If an element ( )|Cf ∈  has period m with ( )Mf z z=  for the smallest 
m, then f has no fixed points. Rotations in ( )|C

∞
 are also Möbius transforma-

tions. A rotation of 2S  is a linear map with positive determinant that maps 
2S  

onto itself. Because there is a fixed axis, one can represent the rotation in 
3  

(the ( )3SO , the orthogonal matrices with determinant 1) by 

cos sin 0
sin cos 0
0 0 1

A
θ θ
θ θ

 
 = − 
 
   

They are conformal maps of 3 . A map | |: C Cf →  is a rotation in |C  if 
1 2 2:SP f SP S S− →  . So f is conformal too. Suppose ( ) 2, ,P u v w S= ∈ , and 
( ) 2, ,P u v w S= − − − ∈  is the antipodal point in 2S . Then, if  

( )( ) |, , Cz SP u v w ∞= ∈ , the antipodal point of |, Cz z ∞∈  is given by 
1

z
−

. So if 

( )|Cf Rot ∞∈
, then the antipodal pair ( ),z z  is mapped to an antipodal pair 

( ) ( )( ),f z f z . Further, one proofs that 
( )

1 1f
z f z
− −  = 

 
 and  

( ) ( )||
2C CRot PSU∞ =  is isomorphic with ( )3SO . So ( )3SO  will generate the 

conformal group. which can be used in our 4D spacetime, specially the inversion 
(by defining self-dual and anti-self-dual forms). One then can formulate the 
Cauchy-Riemann equations. In physics, they play an important role, because the 
solution of these equations is automatically a harmonic function of the Laplace 
equation. Moreover, the equations are conformally invariant. 

There is another interesting application of the Möbius presentation: define a 
complex manifold in 4D. This is the Ernst formulation [28]. If one introduces 
two complex metric components, one reformulates the Kerr spacetime in a very 
transparent way. Non-vacuum models can then be generated from the vacuum 
situation. Just as the holomorphic smooth mappings on the complex manifold of 
the Riemann sphere 2 2:f S S→ . These mapping are conformal if they are ho-
lomorphic. It could be well possible to extend this approach to 4D. A holomor-
phic map has interesting properties. It can be represented by an algebraic func-
tion ( ) ( ) ( )f z P z Q z= , with ( ),P Q  polynomials. So smooth function can be 
replaced by a holomorphic one. Further, the polynomials can have zero’s or 
singular points, real or complex. Compare this with the conformal maps on the 
Riemann sphere (generated by the inverse stereographic projection), where the 
north and south poles causes poles. Some notes must be made about the antipo-
dal map when one uses polar coordinates ( ),θ ϕ  on 2S  of ( ) ( )0 0, ,nθ ϕ θ ϕ→  
(rotation over the azimuthal angle nϕ , with n the winding number). It is singular 
at the poles, unless we take 2 2cos sin 1n nϕ ϕ+ = , which is true for 1n = ± . For 

https://doi.org/10.4236/jmp.2021.1213103


R. J. Slagter 
 

 

DOI: 10.4236/jmp.2021.1213103 1768 Journal of Modern Physics 
 

1n = −  we have the antipodal map! 
Remember, when adding a scalar gauge field to the Lagrangian (which be-

comes the axially symmetric Nielsen-Olesen vortex), n represents the number of 
magnetic flux quanta. It is conjectured that the antipodal map can be applied to 
our exact solution presented in the next sections. 

3. The Black Hole Solution on a 5D Warped Spacetime in 
Conformal Dilaton Gravity 

3.1. The 5D Warped Spacetime 

Instead of considering the static metric of de Sitter, i.e., Equation (5), we will 
now investigate the dynamical 5D spacetime warped spacetime [23] [24] [25] 
[29] 

( ) ( )
( )

( )( )22 22 2 2 2 2 2
2

1d , , , d d d d , d d ,
,

s t r y N t r t r z r N t r t y
N t r

ϕω ϕ
 

= − + + + + + 
  

(7) 

where y is the extra dimension and ω  a warp factor in the formulation of 
Randall-Sundrum’s (RS) 5D warped spacetime with one large extra dimension 
and negative bulk tension 5Λ . The Standard Model (SM) fields are confined to 
the 4D brane, while gravity acts also in the fifth dimension. Originally, the RS 
model was applied to a 5-dimensional anti-de Sitter (AdS) spacetime with a pos-
itive brane tension. This is the so-called RS-1 model, with one brane. The RS-2 
model treats two branes with 2  symmetry. However, the effective cosmologi-
cal constant on the brane can be zero by fine tuning with the negative 5Λ . In 
the RS model there is a bound state of the graviton confined to the wall as well as 
a continuum of Kaluza-Klein (KK) states. Four dimensional gravity is then re-
covered on the brane and the hierarchy problem seems to be solved. Since the 
pioneering publication of RS, many investigation were done in diverge domains. 
In particular, Shiromizu et al. [30], extended the RS model to a fully covariant 
curvature formalism. See also the work of Maartens [31]. It this extended model, 
an effective Einstein equation is found on the brane, with on the right-hand side 
a contribution from the 5D Weyl tensor which carries information of the gravi-
tational field outside the brane. So the brane world observer may be subject to 
influences from the bulk. The field equations are (were we took an empty bulk) 
[20] 

( ) ( )5 5
5 ,G gµν µν= −Λ                        (8) 

( ) ( ) ( )4 4 42 4
4 5 ,effG g Tµν µν µν µν µνκ κ= −Λ + + −              (9) 

where we have written 
( ) ( )5 4 ,g g n nµν µν µ ν= +                      (10) 

with nµ  the unit normal to the brane. Here ( )4 Tµν  is the energy-momentum 
tensor on the brane and Sµν  the quadratic contribution of the energy-momentum 
tensor ( )4 Tµν  arising from the extrinsic curvature terms in the projected Eins-
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tein tensor. Further, 
( ) ( ) ( )5 4 4 ,C n n g gα ρ β σ

µν βρσ α µ ν=                  (11) 

represents the projection of the bulk Weyl tensor orthogonal to nµ . The effec-
tive gravitational field equations on the brane are not closed. One must solve at 
the same time the 5D gravitation field in the bulk. 

3.2. The Conformal Dilaton Gravity (CDG) Model on a 5D Warped 
Spacetime 

One can distinguish several possible “routes” to the unification of GR and QFT. 
One can start, for example, with a given classical theory and applies heuristic 
quantization rules. One then can make a division in canonical and covariant ap-
proaches, i.e., uses a Hamiltonial formalism or employs covariance at some 
stage. The CDG model we consider here, is part of the covariant approach to 
quantum gravity. The key feature in CDG, is the splitting of the metric tensor 

4
2 ,ng gµν µνω −=                         (12) 

with ω  the dilaton field and gµν  the ““un-physical” spacetime. At high 
energy, ω  will be treated as a (renormalizable) quantum field. One can prove 
that the action (without matter terms for the time being) 

4 2
2 2 2 21 1d ,

2 2

n n
n n n nS x g R g µν

µ νξω ω ω κ ξ ω− − −
 

= − + ∂ ∂ + Λ 
 

∫ 

        (13) 

is conformal invariant under 
4 2

2 2, .
n

ng gµν µν ω ω
−

−
−→ Ω →Ω                  (14) 

The covariant derivative is taken with respect to gµν . For details, see Slagter 
[20]. Now we implement the 5D warped spacetime Equation (7). So 

( ) ( ) ( ) ( )5 5 5 44 3 , ,g g g g n nµν µν µν µν µ νω= = +               (15) 

and write again 
( )4 2 .g gµν µνω=                        (16) 

Variation of the action leads to the field equations 
4 2

2 2 22 0
2

n n
n n nnR g

n
µν

µ νξω ω κ ξ ω
+

− − −− ∇ ∇ − Λ =
−

  

            (17) 

and 
4 2 2

2 2 2 2 ,
n

n n nG T gω
µν µν µνω κ ξ ω− − −= −Λ

                 (18) 

with 

2 2 2 1 1 .
2

T g g g g gω α β
µν µ ν µν αβ µν µα νβω ω ω ω

ξ
 = ∇ ∇ − ∇ + − ∂ ∂ 
 

  

          (19) 

From the 5D Einstein equations Equation (8) one obtains  
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( ) ( ) ( )1 2, , ,t r y t r yω ω ω= , with ( )2 constanty lω = =  (the length scale of the 
extra dimension). The dilaton equations Equation (17) is superfluous. Note that 
the effective Einstein equations Equation (9) contains the µν , while Tµν  and 

µν  are taken zero in our case. The dilaton equation is again superfluous. 
It turns out that one can write the field equations for ω  and N in the form 

(n = 4, 5) 

( ) ( )4 4 2 2 ,
2

nN N
n

ω ω ω ω
ω

′′ ′= − + +
−

                (20) 

( )

2 2
4

2
5 4

3 3

1 .
3 2

N N NN N N
N r N

n nN N N N
n r n

ω ωω ω ω
ω ω

 ′ ′
′′= − + + 

 
  ′ ′− ′′ ′ ′− + + + +  − −   









     (21) 

One can solve these equations exact (we took 0effΛ = ): 

( ) ( )

1 1 3 2 2 3 4 52
21 2 2 2 1

2 4
2 3 4 2 3 3

10 20 15 41, ,
5

n
a a r a r a r r CN

r a t a r a r C a t C
ω

−
  + + + +

= =  + + + + + 
(22) 

with ia  some constants. There is a constraint equation 

( )
24 2

4 1 2( 2 2

2 4 5

2 4 ,
2 2 2

n n
nn nn l N N

n N r nN N N
κ ξ ω ω ω ω ωω

ω

− +
−− − ′ ′ ′Λ′′ = − − − + −

− −

 

    (23) 

which l the dimension of y. The solution for the two dilaton fields ω  and ω  

differs only by the different exponent 
3
2

 and 1 respectively. The solution for 

the metric component is the same (apart from the constants). The solution for 
the angular momentum component is 

( ) 1
3 3

1 d .n n
n

N F t r
r

ϕ

ω
−
−

= + ∫                    (24) 

The Ricci scalar for gµν  ( 0Λ = ) is given by 

2 4 2
2

12 ,R N
N

ω ω ′= − 
                     (25) 

with is consistent with the null condition for the two-dimensional ( ),t r  line 
element, when 0R = . One can easily check that the trace of the Einstein equa-
tions is zero. Note that 2N  can be written as 

( )
( )

3
22

42
2 3 3

4 d
.

r r a r
N

r C a t C

+
=

 + + 

∫                   (26) 

So the spacetime seems to have two poles. However, the 0r =  is questiona-
ble. The conservation equations become 

( ) ( ) ( )( )4 42 4
2

1 ,g T ωµ µ
µν µν µνκ ω

ω
 ∇ = ∇ −Λ +  

             (27) 

which yields differential equations for N ′  and N  as boundary conditions at 
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the brane. It can be described as the non-local conservation equation. In the high 
energy case close to the horizon, one must include the µν  term. So the diver-
gence of µν  is constrained. In the non-conformal case, Equation (27) contains 
on the right hand side also the quadratic correction µν  of the matter fields on 
the brane. The effective field equations, Equation (9), are then not a closed sys-
tem. One needs the Bianchi equations. In fact, µν  encodes corrections from 
the 5D graviton effects and are for the brane observer non-local. In our model 
under consideration, we have only the ( )T ω

µν  term and no source terms (only the 
5D 5Λ ). But it still sources the KK modes. The dilaton ω  plays the role of a 
“scalar field”. But we don’t need the 5D equations themselves, because the solu-
tion for N is the same! It is only the 4 3ω  which represents the 5D contribution. 
There is no exchange of energy-momentum between the bulk and brane. If one 
applies the model to a FLRW model [31], then the evolution equations are very 
complicated. Inhomogeneous and anisotropic effects from the 4D matter radia-
tion distribution on the brane are sources for the 5D Weyl tensor µν  and cause 
non-local back-reaction on the brane. One needs an approximation scheme in or-
der to find the missing evolution equation for µν . 

The locations of the horizon’s and ergo-spheres are found by solving 2 0N =  
and 0ttg =  respectively. 2N  becomes singular at coordinate time  

343
2

H
C

t t b
C

= = − + − . However, gµν  can be made regular everywhere and singu-

lar free by suitable choices of the parameters ,i ib c  and iC . For 1 0C = , gµν   

has one real zero 21.606Hr b=  and two complex zero’s ( ) 20.178 0.638I b±
. 

In Figure 3, we plotted the possible graphs. If one ignores the contribution from 
the bulk, then 2N  has for 1 0C =  no real roots, so only naked singularities. 
The contribution from the bulk then generates at least one horizon. 

3.3. Penrose Diagram 

If we define the coordinates, 
( )

*
2

1

1d dr r
N r

≡  and ( )2*
2d dt N t t≡ , then our 

induced spacetime can be written as 

( )
22

2 4 3 2 *2 *2 2 2 *1
2 2
2 2

d d d d d d ,
N Ns t r z r t
N N

ϕ

ω ω ϕ
  
 = − + + + + 
   

      (28) 

with 

( )

3 2 2 3 4 5
2 22 2 2 1
1 22 4

2 3 3

10 20 15 4 1,
5

b r b r b r r CN N
r C t b C

+ + + +
= =

+ +
    (29) 

and 

( )
( )

( )
( )

* *
3 3

22 3

log log1 1, .
4 4H H

i i

H H H
i i i

H Hr ti i

r r r t t
r t

Cr b t b

− −
= =

+ +
∑ ∑          (30) 

The sum it taken over the roots of ( )3 2 2 3 4 5
2 2 2 110 20 15 4b r b r b r r C+ + + +  and  
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Figure 3. Four possible plots of N2 as function of r. 

 
( )4

2 3 3C t b C+ + , i.e., H
ir  and H

it . This polynomial in r defining the roots of 
2
1N , is a quintic equation, which has some interesting connection with Klein’s 

icosahedral solution (see appendix). Further, one can define the azimuthal  

angular coordinate * *
2
2

d d dN t
N

ϕ

ϕ ϕ
 

≡ + 
 

, which can be used when an incoming  

null geodesic falls into the event horizon. *ϕ  is the azimuthal angle in a coor-
dinate system rotating about the z-axis relative to the Boyer-Lindquist coordi-
nates. Next, we define the coordinates [32] (in the case of 1 3 0C C= =  and 1 
horizon, for the time being) 

( ) ( )

( ) ( )

* * * *

* * * *

e , e

e , e ,

r t r t
H

r t r t
H

U V r r

U V r r

κ κ

κ κ

− +

+ +

− +

− −

= = >

= − = − <
             (31) 

with κ  a constant. The spacetime becomes 

( )
2 1

2 4 3 2 2 2 *21 2
2
2

d log d d d d .
Ns UV U V z r
N

κω ω ϕ
 

= + + 
 

        (32) 
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In Figure 4, we plotted the Penrose diagram (a). The antipodal points ( )P X  
and ( )P X  are physically identified. If we compactify the coordinates, 

tanh , tanh ,U U V V= =                     (33) 

then the spacetime can be written as 

( )2 4 3 2 2 2 *2d , d d d d ,s H U V U V z rω ω ϕ = + + 
               (34) 

with 

( )( )
2
1
2 2 2 2
2

1 .
arctanh arctanh 1 1

NH
N U V U Vκ

=
− −   

          (35) 

We can write r and t as 

( )
1

1 2
2 arctanharctanh arctanh , ,

arctanhH H
Vr r U V t t
U

κβ
κα

 
= + = +  

 



 



     (36) 

with 

( ) ( )3 3
2 2 3

1, .
4 4

H

H H

r
r b C t b

α β= =
+ +

              (37) 

Observe that 1N  and 2N  can be expressed in ( ),U V  . The Penrose dia-
gram is drawn in Figure 4(b). Note that 2ds  and H are invariant under 
U U→ −   and U U→ −  . gµν  is regular everywhere and conformally flat. The 
“scale-term” H is consistent with the features of the Penrose diagram. Now we 
have still the ϕ  dependency. We assume no z-dependency. It is expected that 
the differential equation for ω  can be separated in a ( ),U V  part and a ϕ   

 

 
Figure 4. Plot of the Kruskal diagram for gµν  in ( ),U V  coordinates (a). The antipodal map between region I and II is 

quite clear here. If one approaches the horizon from the outside and passes the horizon, one approaches from the “other 
side” the horizon. One can also plot the Kruskal diagram for gµν  in ( ),U V   coordinates (b). 
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part. The method of ’t Hooft can then be applied. In the next sections, we will 
briefly come back to this issue. 

4. Related Issues of the New Black Hole Solution 
4.1. Treatment of the Quantum Fields 

The physical identification in the de Sitter spacetime of ( )P X  and ( )ˆ ˆP X  are 
considered as different representations in Kruskal space of one and the same 
Schwarzschild event. There is only one world with one singularity and one exte-
rior region. Fields which are symmetric under J are identified as 

( ) ( )1 ˆ ˆ .
2JS X X Ψ = Ψ +Ψ                     (38) 

One then builds these fields from fields with arguments specified in [9]. Each 
of these fields, positive or negative frequency in I, can be extended to global 
spacetime surfaces. However, due to the time reversal, the inner product on the 
full Hilbert space has zero norm for the symmetric fields. One then defines neg-
ative frequency functions ( ) ( ) ( ) ( )X JX↑ ↓

− +Ψ = Ψ  and ( ) ( ) ( ) ( )X JX↓ ↑
− +Ψ = Ψ , 

where the arrows stands for the solutions on the future/past singularity. The 
symmetric (anti-) solutions ( 1ε = ± ) are then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 1, .
2 2JS JSX X X X X Xε ε↑ ↓ ↓ ↑

+ − + −
   Ψ = Ψ + Ψ Ψ = Ψ + Ψ    (39) 

Introducing then reflection and transmission coefficients, one can construct a 

wave function regular at the singularities, ( )

( )
( ) ( )1 2

2
r

JS JS JS
K

K
ε ε
ε

 Ψ = Ψ + Ψ +
, with  

eK ω κπ= , 1 4Mκ = . Thereafter, one constructs hermitian field operators for the 
Fock space. Next, one needs the renormalized expectation value of the stress-energy 
tensor Tµν  in the “semiclassical” equations of Einstein 8G G Tµν µνπ= . If one 
assumes that there is a 0r =  singularity, then back-reaction will be small in the 
vicinity of the horizon (at least for massless fields). The spacetime can then be 
approximated by Schwarzschild geometry. The mass will decrease slowly with 
time and evaporates. In a flat spacetime, this is easily done, because the vacuum 
is well defined. One can calculate the zero-energy state and can construct finite 
quantum operators. In curved spacetime, the vacuum state is dependent of the 
boundary condition for the propagators (positive frequency modes). In prin-
ciple, we can follow the method of Sanchez (for the de Sitter spacetime) for the 
dilaton field and our “un-physical” spacetime gµν  ( 0Λ = ), 

( ) ( )2 2, ,G T gω
µν µν µν µνω ω ω= −                (40) 

where ( )T ω
µν  depends on the geometry and boundary conditions (see Equation 

(19)). Further, ( ) 2T Rω ω= − , because µν  is traceless. We have now con-
tributions from the antipode: 

( ) ( ) ( ) 2 2 2ˆ , .T T Tω ω ω
µν µν µν ω ω ω→ ± → ±           (41) 

In the simplified de Sitter space, one then easily construct Green functions [10] 
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( ) ( ) ( )
( ) ( ) ( )

2

2

, e , , ,

, e , , ,
JS

JA

G X X G X X G X JX

G X X G X X G X JX

α
α

α
α

′ ′ ′= +  
′ ′ ′= −  

           (42) 

with α  labels the one parameter family of the de Sitter vacua. The expectation 
values for a scalar field and the energy momentum tensor can then be calculated. 
One obtain, for example [9], 

2 2
,

1 1 ,
16 cos 6JS JA m Rξ

ν
  Φ = + −    π π

             (43) 

with ( )1 22 2 2 29 4 ,M H M m Rν ξ= − = + , m the mass of the field and H Λ . 
Recently, a different analysis of perturbative quantum gravity on the de Sitter 
spacetime was done by Sofi, et al. [33]. 

In our case we have no scalar field, but instead ω . The expression for UUT
 

 
becomes [34] 

( )

( )
( )( )

12
2 2 2 2 21

2 3 1 2 1 322 2
3 4 2 3

e
,

c U

UU
cT c c F U c c c c

c c c c
ω ρ ρ

ρ

−

= − +
+

        (44) 

which can be used to evaluate the expectation value. In order to apply the full 
antipodal map, one includes the ϕ -dependency in the dilaton equation. The 
relevant operator (d’Alembertian) can be separated in the used coordinate sys-
tem. The relevant ϕ  contribution comes from periodic Mathieu functions (in 
variable ϕ ). They converge uniformly on all compact sets in the z-plane. Next, 
one applies the method of ’t Hooft, by expanding the position variables 

( ),u z ϕ±  and momentum distributions ( ),p z ϕ±  in the partial waves of Ma-
thieu functions6. Further, one then calculates the gravitational shift ( ),U zδ ϕ , 
in order to carry a particle over from I to II, or back [7], using the Shapiro delay. 

4.2. The Surface Gravity and the Conformal Gauge 

Since we have now the description of the antipodal map in our black hole space-
time, we will look more closely at the conformal invariance. First of all, one 
should rely in the dynamical situation on (conformal) Killing vectors in order to 
describe the spacetime symmetries. Our Lagrangian is conformal invariant un-
der Equation (14), so we can use the freedom of the conformal factor Ω . Re-
member, different ω  means different notion of the vacuum state for the 
in-going and outside observer, so they will use different conformal gauge free-
dom. It is desirable that for the out-going observer, the surface gravity of the ho-
rizon is conformal invariant. Further, conformal transformations must preserve 
affinely parameterized null geodesics. This will deliver Ω  for the in-going ob-
server. We can define out-going and in-going null normals [20] for gµν  

( )2 2 2

2 2 2 2 2 2

1, ,0,0 ,

1 , ,0,0 .
2 2 2

l N N r N

Nm
r N N N r N

µ ϕ

µ
ϕ ϕ

= −

 
= − −  − − 

          (45) 

 

 

6So the spherical harmonics are replaced by the Mathieu harmonics. 
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with 0l l m mµ µ
µ µ= = , 1l mµ µ = − . The surface gravity then becomes 

( ) ( )2 2 2 12 2 .r t t rr r ttN N r N N g g
N

ϕκ   = ∂ − + ∂ = ∂ − ∂  
  

    (46) 

This is consistent with the metric definition of κ . 

4.3. The Meaning of the Warped Spacetime 

Let us now return to 4 3 2g gµν µνω ω= . In the CDG setting, the evaporation of 
the black hole is also determined by the complementarity transformation of ω  
between the in-going and outside observer. Our spacetime is now ( 4 3 2b b b= ) 

( )( )

( )

3 2 2 3 4 5
42 4 3 2 2 2 2 1

2 3 3 2

2
*2 *2 2 2 *

2
2

10 20 15 4
5

d d d d d ,

b r b r b r r Cds C t b C
r

Nt r z r t
N

ϕ

ω ω

ϕ

 + + + +
= + +


 
⋅ − + + + + 
  

  (47) 

with 

( ) ( ) ( ) ( )
4 3 2

2 22 2
2 3 2 3

1 ,
r c t c r b t b

ω ω =
+ + + +

           (48) 

We observe that 4 3 2ω ω  approaches zero for coordinate time t →∞ , so 
gµν  shrinks to zero, so the distant observer sees a gradually shrinking black 
hole when the metric time runs to infinity. Further, the only contribution from 
the 5D spacetime is the 4 3ω . Remarkable, the projected Weyl component is 
necessary in order to obtain the same form of 2N  and to avoid naked singular-
ities. So ( ) ( )

1224 3
2 3r c t cω

−
 = + +   is the “scale” term from the 5D warped 

spacetime (the warpfactor in the RS model is the product of y-dependent part 
and ω  part). Suppose one wants combine the conformal transformation with 
an internal symmetry transformation, i.e., a spacetime transformation. In par-
ticular, the scale transformations. One can proof in that case, log 0Ω =  [21], 
which is consistent with our 2D null hypersurface of Equation (32). Further, in 
dimension 4n ≠  only the scale-invariant theories based upon scalar fields (so 
ω  from 5D) are conformally invariant. Conclusion: ω  of our gµν  can be 
used in non-vacuum models. An additional advantage of the warped spacetime 
in connection with cosmology and hierarchy problem was already mentioned in 
the introduction. A new aspect will be the embedding of the 5D in the 4D space-
time and the relation with the 3D BTZ blackhole solution. 

4.4. The Relation with the 3D Baňados-Teitelboim-Zanelli Black 
Hole 

In the spacetime under consideration, the 2dz  term can be omitted. One ob-
tains then the 3D Baňados-Teitelboim-Zanelli (BTZ) black hole spacetime. It 
solves the Einstein equations with a negative cosmological constant [35]. The 
BTZ solution is related to the AdS/CFT correspondence and intensively studies 
in connection with black hole entropy issues. However, we should like to take 
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the cosmological constant zero. In a former study [34], an exact solution was 
found in a CDG setting in Eddington-Finkelstein retarded coordinates ( ),U ρ  
(or advanced V) where the antipodal map ( ) ( ), , , ,U V U Vϕ ϕ→ − − + π  is ap-
plicable: 

( )
( )

( )( )
1

2 2 22
21 3 22 2 2 2

2
2 32 3

ed d 2d d d d d ,
c U c c c

s U U z F U U
c cc c

ρ
ρ ρ ξ

ρ

−  −
 = ± − + + +
 +  

(49) 

which is Ricci flat, while ( )4 1 2

3

6c cR
c

= . The function ( )F U  will be fixed when 

matter terms are incorporated (i.e. for example, a scalar gauge field). The metric 

Equation (49) will then contain a term ( )2 2, db U ρ ϕ  and a relation like 

( ) 2 2 2

bN
X

ξ

η ω
′ =

+
 will be obtained. It has no curvature singularity. The loca-

tion of the apparent horizon in U: 

( )

3

23
2 2

1

,AH
c

cc c F U
c

ρ = ±
 

+ 
 

                 (50) 

with 

( )1

1

2 3
22

3 1 2
2
2 3

0

d 1 e
d 2

0

c U

AH

c
c c

c F U c c
U

c c

ρ

ρ
ρ

ρ ρ

−

− →
= ⋅ +

→ ∞

 =

            (51) 

which is independent of ω . Here iC  are constants and ( )F U  a function de-
termined by the non-diagonal contribution. Further, we have 

1

1
20

2 3

lim ,
eUU c U

cg
c cρ→

→ ±                     (52) 

So when the evaporation speeds up, it approaches zero. We are dealing here 
with null-radiation in the ( ), zρ -plane. One could compare this solution with 
that found by Chan [36] in standard GR of a spinning black hole. They also find 
a solution for ( )F U  which is determined by an energy-momentum tensor of 
null spinning dust. It is again curious that the “uplifted” BTZ has a solution, 
comparable with the “up-lifted” 5D solution. 

5. Metric Fluctuation and Hawking Radiation 

In the original deviation of the Hawking radiation, one uses the propagation of a 
linear quantized field in a classical background metric. However, near the hori-
zon, high-frequencies metric fluctuations can contribute to the vacuum polariza-
tion and the impact of gravitational back reactions can be large. These ze-
ro-point fluctuations result in a modification of the Hawking radiation by gravi-
tational waves [37]. One could question what the effect is of these waves in our 
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CDG model, where we have instead the dilaton field. Of course, one should need 
a quantum gravitational approach, which is not available yet. So need some ap-
proximation. However, effect of the scattering of these quanta at the horizon can 
be investigated in the context of the antipodal mapping considered here.7 With-
out the contribution of the metric fluctuations, the mean number of quanta 
reaching +  takes the form 

20

1 ,
e 1Enλ κ+π −


                      (53) 

with E+  the energy measured at +  for the out modes. This is the Planck 
distribution with temperature ( ) 12 8T Mκ −= =π π . The correction terms can 
then be calculated by using the s-modes of a quantum massless scalar field and 
by using the fact that the in-going and out-going modes decouple [37]. One 
makes use of the mean energy flux, by calculating 2d d 4 UU renE U r Tπ= , where 
the renormalized surface gravity is used. However, in this approximation, the 
reflection conditions are at r = 0, with in our antipodal map must be revised (we 
have no inside). We can use the ( ),U U  energy-momentum component of our 
model and can apply Equation (41) for the antipodal contribution. 

Notice that the meaning of the local dilaton ω , is twofold. First, it deter-
mines the metric fluctuations (one also must incorporate in the dilaton equation 
the ϕ -dependency). Secondly, the in-going observer will use a different con-
formal gauge freedom Ω  on ω  to describe the vacuum. Further, ω  is lo-
cally unobservable, unless we include metric fluctuations (gravitational waves. It 
will be necessary to compare this with the usual contribution using the Bunch- 
Davies method (and to taken into count the antipodal contribution). Note that 
the outside observer will use a different gauge and he/she experiences a mass 

2 2Nω  and Hawking radiation ( )2 2
U Nω∂ , while for the in-going observer 

it is part of his vacuum. On the other hand, the outside observer is not aware of 
the antipodal identification. One could also say that they disagree about the ob-
served scales. Or differently stated, they disagree about the back reaction from 
the Hawking radiation. 

6. Conclusions 

We investigated the conformal dilaton gravity model on a warped 5D spacetime, 
where the warp factor is interpreted as a dilaton field, to be treated as a renor-
malized quantum field. This approach is very suitable when one is dealing with a 
high curvature situation, for example, in the vicinity of the horizon of a black 
hole spacetime. It is a promising route to tackle the problems arising in quantum 
gravity models, such as the loss of unitarity when one investigates the Hawking 
radiation, emitted during the final stage of a black hole. Moreover, it could solve 
the information and firewall paradox. The basic concept behind the model is 

 

 

7A suitable approximation is the high-frequency approximation applied to a Vaidya spacetime, 
where the not-flat background spacetime is distorted by the gravitational waves [38]. A recent ap-
plication was provided by Slagter [39] [40]. 
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conformal invariance, spontaneously broken when matter fields are incorpo-
rated in the Einstein-Hilbert action. The conformal symmetry group contains 
the antipodal map, so it is quite natural to apply the antipodal map on the black 
hole spacetime. It then turns out that the notion of the interior of the black hole 
changes dramatically, i.e., there is no inside. 

In this manuscript, we find an exact time dependent solution in the conformal 
dilaton gravity model on a warped 5D spacetime. The spacetime is written as 
( ) ( )5 54 3g gµν µνω=   and ( ) ( )4 42g gµν µνω= . In our model, ω  can be seen as the 
contribution from the bulk, while ω  is the brane component. It is conjectured 
that the different conformal gauge freedom, Ω , the in-going and outside ob-
servers possess, can be calculated by demanding a conformal invariant surface 
gravity and the preservation of affinely parameterized null geodesics. This means 
that the complementarity is expressed by the different notion of the vacuum 
state. The solution guarantees regularity of the action when 0ω → . We don’t 
need a Weyl term in the action (generates negative metric states). Instead, we 
have a contribution from the bulk, i.e., the electric part of the 5D Weyl tensor. It 
is remarkable that the 5D field equations and the effective 4D equations can be 
written for general dimension n, with 4,5n = . The energy-momentum tensor 
of the time-dependent dilaton, determining also the Hawking radiation, can be 
calculated exactly. By suitable choice of the parameters, the spacetime gµν  can 
be regular and singular free. In context of quantization procedures, counter 
terms in an effective action will cause problems, only in the bulk spacetime of 
the “large” extra dimension and not for the brane spacetime. When the extra 
dimensional volume is significantly above the Planck scale, then the true funda-
mental scale can be much less than the effective scale 1019 GeV. This means that 
no UV cut-off is necessary on the brane. This exact solution, nonetheless with-
out mass terms, can be used to tackle the deep-seated problem of the black hole 
complementarity: the infalling and outside observer experience different ω  by 
the choice of Ω . The solution fits also very well in the antipodal mapping, 
when crossing the horizon. The Penrose diagram for gµν , in suitable Kruskal 
coordinates, shows the features of the antipodal map of region I on region II: the 
inside of the black hole is removed. The in-going observer, when crossing the 
horizon, turns up at “the other side” of the horizon. The next task is to incorpo-
rate mass into our model and investigate the dilaton-scalar field interaction. The 
conformal invariance will then spontaneously be broken. 
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Appendix: The Quintic Horizon Equation and Related Issues 

Our quintic polynomial, determining the horizons, 

5 4 2 3 3 2 1
2 2 2

15 55 0,
4 2 4

Cf r b r b r b r= + + + + =              (54) 

can be written by a, so-called Tschirnhaus transformation, in the form 

( ) ( ) ( )
3 25 5 2 5 52 2

1 2 1 2 1 2
15 125 1 0
16 256 16
b br C b r C b r C b− + − + − + =       (55) 

By scaling, this form can be reduced to the Bring-Jerrard form 5r r c+ − , 
with c a function of 2b  and 1C  [41]. There is an interesting relation between 
the symmetry group of the icosahedron and our quintic equation. The symmetry 
group is isomorphic with the Galois group 5A  (of an irreducible quintic poly-
nomial). The icosahedron is dual to the dodecahedron, i.e., their symmetries are 
isomorphic. The 5A  is interesting in physics, because it is a simple group hav-
ing no invariant subgroups. It has three orbits, which are invariant under the an-
tipodal map. So the connection with the Möbius group is clear (see section 2.3). 
For details, we refer to Toth [41]. It was Klein [42], who first became aware of 
the relation between the solutions of the quintic equation and the icosahedron. 

It is conjectured that our quintic polynomial (Equation (54)) has a deep-seated 
relation with the 5D spacetime solution. Further, it is remarkable that the re-
sulting quintic equation is independent of the dimension of our manifold 
( 4,5n = ). Moreover, the nice fitting of the antipodal map in our model cannot 
be a coincident. From Equation (26) we observe that the derivative of f is 

( )3
25r r b+ . So it is expected that our quintic equation results from a immersion8 

of a closed surface S in 3  into 4 . 
This is currently under investigation by the author. 

 

 

 

8An immersion is a differentiable function between differentiable manifold whose derivative is eve-
rywhere injective. It is also a topological embedding. 
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Abstract 
Two anomalies observed during lunar eclipses, the enlargement of the Earth’s 
shadow and the excessive clarity of the penumbra, possibly attributed to in-
sufficient causes if not doubtful, would refute the assertion of certain experi-
menters according to which the lunar Allais eclipse effect would be almost 
impossible to detect. The Earth’s umbra seems to be 2% larger than what is 
expected from geometrical considerations and it is believed that the Earth’s 
atmosphere is responsible for the extent of the enlargement, but it is realized 
that the atmospheric absorption cannot explain light absorption at a height as 
high as 90 km above the Earth, as required by this hypothesis. It was also ar-
gued that the irradiation of the Moon in the Earth’s shadow during the eclipse 
is caused by the refraction of sunlight in the upper regions of the Earth’s at-
mosphere. However, the shade toward the center is too bright to be accounted for 
by refraction of visible sunlight. Although these assumptions are not trifling, 
we attribute the majority of these abnormalities to the Allais eclipse effect. 
This effect would cause a slight decrease of gravity during the eclipse: the ge-
odesics would be displaced a small amount outwards; the ray of light coming 
from the Sun, passing close by the Moon would be less attracted, which 
would expand the shadow cone of the Moon. On the other hand, the rays 
emanating from the Moon would have a shorter wavelength and therefore the 
luminescence would increase by anti-Stoke Raman effect: the scattered pho-
ton has more energy than the absorbed photon. 
 

Keywords 
Lunar Eclipses, Enlargement of the Earth’s Shadow, Luminescence, Allais 
Eclipse Effect, Anti-Stokes Raman Effect 

 

1. Introduction 

We know that astronomical data give us accurate values of the radii of the Sun, 
the Earth and the Moon. Furthermore, the knowledge of their relative distances 
predicts quite accurately the instant when the umbra-penumbra limit sweeps 
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some specific craters on the Moon during lunar eclipses. Since the 1830s, crater 
timing has been used during lunar eclipses to measure the length of the Earth’s 
shadow. The method is simple: one takes the timing of lunar features (craters, 
limbs, ridges, peaks, bright spots) as they enter and exit the umbra. The Sun- 
Earth-Moon geometry being known quite precisely is then possible to calculate 
the size and shape of the Earth’s umbra at the Moon. Measurements that vary 
from one eclipse to the next can now be made with low-power telescopes or a 
clock synchronized with radio time signals. However, it has systematically been 
found that the shadow of the Earth seems to be 2% larger than what is expected 
from geometrical predictions. 

Even, if it is believed that the thickness of the Earth atmosphere is responsi-
ble for that displacement [1], it was realized that the atmospheric absorption 
cannot explain the absorption of light at a height of up to 90 km above the 
Earth, as required by this hypothesis. It may be noted in particular that Link 
[2] has firmly established a relationship between the enlargement of the 
Earth’s shadow during lunar eclipses and the presence of meteors, which have 
the ability to distort the optical properties of the atmosphere when they are 
braked at high altitudes [3]. 

It has been said that the pronounced red colour in the inner portions of the 
umbra during an eclipse of the Moon is caused by refraction of sunlight through 
the upper regions of the Earth’s atmosphere, but the umbral shadow towards the 
centre is too bright to be accounted for by refraction of visible sunlight. 

In Sections 2 and 3, we give a brief history of the enlargement of the Earth’s 
umbra and the excess of light into the Earth’s shadow onto the Moon during lu-
nar eclipses. We present some accepted interpretations and we show how the 
Allais effect, which occurs at the time when problems arise related to these 
anomalies, leads us to reject these interpretations. In Section 4, it emerges from a 
discussion that, failing to have an answer that would explain the two coexisting 
anomalies, the Allais eclipse effect currently remains the only viable option. Ex-
periments are proposed as much to corroborate the observations of the two 
anomalies as to test the Allais eclipse effect. We conclude that both anomalies 
during lunar eclipses are caused by a lunar Allais effect. 

2. Enlargement of the Earth’s Umbra 
2.1. Brief History of the Enlargement of the Earth’s Umbra on the 

Moon during Lunar Eclipses 

In the early 1700s, Philippe de La Hire made a curious observation about Earth’s 
umbra. The predicted radius of the shadow needed to be enlarged by about 1/41 
in order to fit timings made during an eclipse of the Moon (La Hire 1707). Additional 
observations over the next two centuries revealed that the shadow enlargement was 
somewhat variable from one eclipse to the next [4]. 

Chauvenet (1891) adopted a value of 1/50, which has become the standard 
enlargement factor for lunar eclipse predictions published by many national in-
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stitutes worldwide. Some authorities dispute Chauvenet’s shadow enlargement 
convention [5]. Danjon (1951) notes that the only reasonable way of accounting 
for a layer of opaque air surrounding Earth is to increase the planet’s radius by 
the altitude of the layer [6]. This can be accomplished by proportionally increasing 
the parallax of the Moon. The radii of the umbral and penumbral shadows are 
then subject to the same absolute correction and not the same relative correction 
employed in the traditional Chauvenet 1/50 convention. Danjon estimates the 
thickness of the occulting layer to be 75 km and this results in an enlargement of 
Earth’s radius and the Moon’s parallax of about 1/85. Since 1951, the French al-
manac Connaissance des Temps has adopted Danjon’s method for the enlargement 
Earth’s shadows in their eclipse predictions 

Danjon’s method correctly models the geometric relationship between an 
enlargement of Earth’s radius and the corresponding increase in the size of its 
shadows. Meeus and Mucke (1979), and Espenak (2006), both use Danjons method. 
However, the resulting umbral and penumbral eclipse magnitudes are smaller by 
approximately 0.006 and 0.026 respectively as compared to predictions using the 
traditional Chauvenet convention of 1/50. 

For his part, in an analysis of 57 eclipses over a period of 150 years, Link (1969) 
found an enlargement of the shadow of 2.3% on average. Furthermore, schedules 
inputs and outputs of the crater through the umbra for four lunar eclipses from 
1972 to 1982 strongly support the Chauvenet value of 2%. Of course, the small 
magnitude difference between the two methods is difficult to observe because 
the edge of the umbral shadow is diffuse. From a physical point of view, there is 
no well defined border between the umbra and the penumbra. The shadow den-
sity actually varies continuously as a function of radial distance from the central 
axis out to the extreme limit of the penumbral shadow. However, the density 
variation is most rapid near the theoretical edge of the umbra. Kuhl’s (1928) 
contrast theory demonstrates that the verge of the umbra is perceived at the 
point of inflexion in the shadow density. This point appears to be equivalent to a 
layer in Earth’s atmosphere at an altitude of about 120 to 150 km. The net 
enlargement of Earth’s radius of 1.9% to 2.4% corresponds to an extension of the 
umbra of 1.5%, to 1.9%, in reasonably good agreement with the conventional 
value. 

It seems that the increase of the Earth’s umbral shadow during eclipses of the 
Moon is the classical value of 2% (the rule of the fiftieth) used in most calcula-
tions of lunar eclipses [7]. 

2.2. Accepted Interpretation of the Enlargement of the Umbra 

Numerous reports show that the umbra-penumbra limit appears significantly 
displaced on the moon during an eclipse. It is believed that the thickness of the 
Earth atmosphere is responsible for that displacement [8] [9] [10]. In order to 
study more deeply the phenomenon showing that the umbra-penumbra limit 
appears significantly displaced on the Moon during an eclipse, it is important to 
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evaluate if the reported increase of 2% of the Earth’s shadow on the Moon cor-
responds to a reasonable value of the height at which the atmosphere is opaque. 
Calculations indicate that this enlargement corresponds to a terrestrial altitude 
of 92 km. 

This usual interpretation of the umbral enlargement forces us to believe that 
the atmosphere is normally opaque up to 92 km or so. But how is this possible 
when, at this altitude, the air is extremely rarefied? It is the altitude close to the 
orbit on which a satellite travels around the Earth.  

In fact, according to data [11], the atmospheric pressure at 90 km above sea 
level is about half a million times smaller than that at sea level. Above 15 km, the 
atmosphere becomes relatively transparent to light, since 90% of the air and al-
most all the humidity and pollution are below that level. That makes an enlarged 
obscuration due to the opacity of the atmosphere of only 0.3% which is much 
smaller than the 2.0% reported.  

Furthermore, the eruption of volcanos cannot explain the larger shadow. Ac-
cording to some, the altitude reached by some material ejected from volcano El 
Chichon is in the stratosphere, some 26 kilometers (16 miles) above Earth’s sur-
face – roughly 50% higher than material from the famous Mount St. Helens [12]. 
Since the atmosphere does not appear to be responsible for the umbra-penumbra 
limit displacement of 2% on the Moon, then what is the cause? 

F. Link argues that the meteoric dust in the upper atmosphere of the Earth is 
at the origin of the additional weakening of the light and the expansion of the 
Earth’s darkness [13] [14]. We might point out, in particular, that Link has actu-
ally established a concomitance between the enlargement of the Earth’s umbra 
during lunar eclipses and the presence of meteors, which are capable of distort-
ing the optical properties of the atmosphere when they are decelerated at high 
elevations [3] [15]. 

Paul Marmet and Christine Couture [1], for their part, believe that the actual 
umbra of the Earth projected on the Moon is not as big as observed, that the 
sensitivity of the eyes is a factor leading necessarily to an umbral enlargement 
and that almost the totality of the reported umbra-penumbra limit displacement 
is an optical effect that has nothing to do with the thickness of the Earth atmos-
phere. 

For our part, we believe that the observed times to browse the path of the 
Moon through the Earth’s obscurity deviate from the predicted times and that 
some variations in colour, size and shape of the umbra occur in the darkness. 
We attribute this deviations and variations to the Allais eclipse effect. 

2.3. Umbral Enlargement and the Allais Eclipse Effect 

During an eclipse of the Moon, it is predicted geometrically that the photons 
from the Sun describe a rectilinear trajectory as if they were little deflected and 
pass at a minimum approach distance ER′  from the centre of the Earth (slightly 
larger than the radius ER  of the Earth), before moving to the Moon. A ray of 
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sunlight passes close to the Moon at point MR′  of minimum approach to arrive 
at the point P at the end of the shadow cone of the Earth. The trajectory followed 
by the solar photons shapes the curvature of minimum approach of the Earth 
and the Moon. 

However, we have serious reasons to believe that during a lunar eclipse, with 
the Earth interposed between the Moon and the Sun, there would be a kind of 
anti-gravity on the Moon which would be manifested by a deviation of light. 
This is precisely the Allais effect [16] [17] [18]. 

The orbital radius seems longer, which means that the curvature of minimum 
approach of the Earth and the Moon is shifted outward. Since the curvature is 
the inverse of the square of the radius, the curvature is even smaller than the ra-
dius is large. This is grounded in the Newtonian logic stating that gravity identified 
to the curvature is all the more weak as the orbital radius is large. The deviated 
photons will pass at a distance of minimum approach ( )E E E ER R R R′′ ′′ = + ∆  from 
the centre of the Earth and at the point ( )M M M MR R R R′′ ′′ = + ∆  of minimum 
approach of the Moon to end at the point ( )P P P P′′ ′′ = + ∆ , casting an enlarged 
umbra cone. It matches with the observed cone of the enlargement of the Earth’s 
umbra. 

During a lunar eclipse, it is predicted geometrically that the photons from the 
Sun describe a rectilinear trajectory as if they were a little deflected (Figure 1). 

Inevitably, sunlight, observed on the eclipsed Moon, will tend to move away. 
The photon has an “inertial mass” equal to 2hv c  equivalent to a “gravitational 
mass” also equal to 2hv c . The energy of the “fallen” photon from the Sun will 
be ( )m g g H′−  instead of mgH (m = inertial and gravitational mass of the 
photon; g = acceleration due to gravity, H = height). The gravitational mass of 
photons, lessened, takes distance, so increasing the darkness. 

We are witnessing an abnormal gravitational frequency shift. 
Suppose that in normal times the light is emitted by the Sun at the height H 

(distance Sun-moon) [19]. The total energy of a photon of frequency v and 
 

 
Figure 1. Exaggerated diagram (for comprehension) of the cones of the umbra. The illu-
mination of the Earth by the Sun projects into space a converging cone of umbra and a 
divergent cone of penumbra whose conical generators are tangent to the Earth and the 
Sun. We represent here that the converging cone of umbra to illustrate the enlargement 
of the earth’s shadow. The umbra cone does not completely obscure the Moon and, as 
early as the 18th century, astronomers knew that the shadow limit was a little further 
( P′′ ) than according to the geometric path of the rays (P). The quasi-parallel interior 
tangents to the Sun and the Earth give the two interior cones, predicted and observed, of 
the umbra. The tangent S E MR R R P′′ ′′ ′′ ′′  gives the observed cone of the umbra while the 

tangent S E MR R R P  gives the calculated cone of the umbra. 
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energy hv, reaching the lunar surface has become 
2hv hv hvgH c′ = +                       (1) 

The receiver, placed on the lunar ground, detects a frequency v′  greater than 
v of the solar source (g designates the lunar gravitational field): 

21v v gH c ′ = +  .                       (2) 

During a lunar eclipse, due to a potential loss of attraction, the lunar gravita-
tional field g amounts to g g ′− . When a photon emitted by the Sun reaches the 
surface of the Moon, he lost potential energy ( )( )2hv c g g H′−  and won the 
kinetic energy ( )( )2hv c g g H′− . Its total energy has become 

( ) ( )( )2h v v hv hv c g g H′ ′′ ′− = + − .                (3) 

The frequency v v′ ′′−  of the photon at its arrival at the surface of the eclipsed 
Moon is less red-shifted relative to its initial frequency, according to the relation 

( ) 21v v v g g H c ′ ′′ ′− = + −  .                  (4) 

The receiver detects a frequency v v′ ′′−  slightly smaller than v′  of not 
eclipsed Moon. This means a small blue shift for the Sun during the eclipse. 

If this hypothesis is correct which consists to declare that the Allais effect 
causes a kind of repulsion between the three celestial bodies involved, there 
should be a variation of the gravitational potential. This means that the gravita-
tion will influence the geometry of space-time: the time of clocks and the length 
measured by a rule will be affected depending on whether there is more or less 
gravity. Einstein’s general theory of relativity predicts that a clock in the pres-
ence of weak gravity runs more rapidly than one located where gravity is 
stronger. Consequently, the frequencies of radiation emitted by atoms in the 
presence of a weak gravitational field are shifted to higher frequencies when 
compared with the same emissions in the presence of a strong field. The light of 
the Sun observed on an eclipsed Moon should be blue shifted; a fraction of the 
solar gravitational redshift ( 2g R c′ ) which is about two parts in a million [20]. 

The widening of the Earth’s shadow on the Moon would not be due to a 
greater density of the upper atmosphere of the Earth, which would make it as 
opaque as the lower atmosphere, it would be caused by a gravitational potential 
temporarily decreased. An “alleviated” matter would dictate to space-time a 
smaller degree of curvature; the space-time would in turn impose to matter to 
move on a larger orbital radius. 

3. Excess of Light into the Earth’s Shadow 
3.1. Brief History of the Excess of Light into the Earth’s Shadow on 

the Moon during Lunar Eclipses 

The first work on the variation in brightness of eclipses was executed by 
André-Louis Danjon in 1920. He devised a scale of brightness for total lunar 
eclipses, from 0 for invisible to 4 for very brilliant. He used it to analyze data on 
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eclipses extending back over three and a half centuries, and showed a correlation 
between the eclipse brightness and the solar activity. But a series of three-color 
photometric observations of Moon eclipse, made by him and his associates be-
tween 1932 and 1957, appears to show a clear correlation between the eclipse 
brightness and the geomagnetic planetary index Kp [21]. So the new data seems 
to contradict the first Danjon’s conclusion. 

An attempt to interpret the relation with Kp in terms of lunar luminescence 
indicates that the change in the eclipse brightness is in accord with the rate of 
increase of the plasma energy, as predicted by the experiment of Snyder et al. 
(1963) [22]. However, there is some difficulty in the required proton density be-
ing greater than the observed value by an order of magnitude. The same calcula-
tions show that luminescence to be visible in ordinary moonlight requires a 
plasma energy at least three orders of magnitude greater than the maximum 
value predicted by Snyder et al. They also show that the reported dates of these 
observations fall on geophysically quiet days, as well as on dates of high Kp. The 
above conclusion agrees with the result of calculations by Ney et al. in 1966. 

On the other hand, J. Dubois and F. Link in 1969 found a correlation between 
the brightness of the eclipsed Moon and the solar activity, as had been suggested 
by Danjon on the basis of its first observations. They demonstrated that the 
brightness of eclipse was related not only to the sunspots number but also to the 
height of the latitude. They showed an annual correlation between the helio-
graphic latitude of the apparent centre of the Sun’s disk and eclipse brightness 
[23] [24]. 

It was suggested that the brightness anomaly of the umbral region during an 
eclipse of the Moon would be caused by refraction of sunlight through the upper 
regions of the Earth’s atmosphere. The red coloring arises because, they say, 
sunlight reaching the Moon must pass through a long and dense layer of the 
Earth’s atmosphere, where it is scattered. Shorter wavelengths are more likely to 
be scattered by the small particles and so, by the time the light has passed 
through the atmosphere, the longer wavelengths dominate. This resulting light 
we perceive as red. The amount of refracted light depends on the amount of dust 
or clouds in the atmosphere; this also controls how much light is scattered. In 
general, the dustier the atmosphere, the more that other wavelengths of light will 
be removed (compared to red light), leaving the resulting light a deeper red color 
[25]. 

Despite this reasoning, it has been found that towards the centre the umbra is 
too bright to be accounted for by refraction of visible sunlight. F. Link proposed 
that this excess be interpreted as luminescence [26]. He concluded that about 10 
percent of the Moon’s optical radiation is caused by luminescence. Observations 
seem to confirm the existence of lunar luminescence. The term luminescence 
can be applied to any object that emits light in addition to the usual reflected 
light [27]. The main characteristic of luminescence is that the emitted light is an 
attribute of the object itself, and the light emission is stimulated by some internal 
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or external process. As external process, Link suggested the luminescence of the 
lunar surface by X-ray bombardment from the uneclipsed regions of the solar 
corona, as suggested by Link. This theory is supported by the variation of a fac-
tor of 100, between solar maximum and minimum, of the intensity of certain 
wavelengths of X-rays [28]. 

Another possible mechanism by which the eclipsed Moon shines results from 
the fact that the Moon is covered by a fine layer of meteoric dust, and would 
therefore contain quantities of the achondritic enstatites. This type of stony me-
teorite produces the luminescence when protons and electrons of the solar wind 
are deflected and impinge on the lunar surface during a total eclipse. An experi-
ment performed by Zdenek Kopal, C. J. Derham and J. E. Geakel in 1963 showed 
that certain meteorite specimens glowed with a strange red light, same colour as 
the umbra in eclipse, when bombarded by high energy protons in the laboratory 
[24]. 

It appears to us that the excess of irradiation of the Moon in the shadow of the 
Earth during the eclipse is partially caused by refraction in the atmosphere, but 
that it prevailingly depends of the light emission stimulated by an internal proc-
ess linked to the Allais eclipse effect. 

3.2. Luminescence of the Eclipsed Moon and Allais Effect 

The time of vibration (T) of atoms and molecules of luminescent gases in the 
fieldless region of space is T τ=  (T is the time of vibration in the atom at rest; 
τ  is the modified time of vibration) [29]. In a region of space with the gravita-
tional field, the time of vibration is altered to 

( ) ( ) ( )2 2 21 2 1 1T T v c T cτ γ φ= − = − = −             (5) 

[ γ  contains the gravitational potential φ   
( 2 2 2 22 2 2GM Rc v c cγ φ= = = )]. 

Our assumption is that at the surface of an eclipsed Moon there is a weaker 
gravitational field than in a frame of reference without eclipse ( γ γ′ < ) 

( ) ( )
with

1

 eclipse without eclip

1

s

2 2

e

T Tτ γ τ γ′= − < = −                      (6) 

During the lunar eclipse time, the gravitational potential φ  of the Moon is 
conjecturally diminished; the time τ  of the vibration of the atom is shorter. 
The metric of the obscured Moon is affected and the ticking of time accelerates 
relative to the system without eclipse in which the atom is considered at rest. 

Consequently, the red shift of the spectral lines of light that comes from the 
layer of particles on the ground will have a small additional blue “Allais” shift 
which reduces the “Einstein” redshift [19]. As the Einstein effect (i.e. the tiny 
frequency shift of spectral lines in a gravitational field) is directed towards the 
blue, there is thus more internal electromagnetic energy. It appears that this 
blueshift by variation in the reduction of the mass could be a form of atomic ex-
citement at the level of electrons, as Brownian motion. More specifically, we 
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would say that the Allais eclipse effect would have engendered a significant 
change of wavelength within the molecules of matter [30]. The excess of lumi-
nescence would be the imprint left on the light by the intramolecular oscillation 
of the atoms constituting the molecules of the lunar soil which spreads it. A Ra-
man effect caused by an Allais effect, in some way. 

3.3. An Anti-Stoke Raman Effect Induced by an Allais Effect 

We assume that the lunar gravitational potential φ  can be reduced in times of 
eclipse, what would accelerate the vibration of atoms. 

A molecule can be excited to a very high energy state. The amount of energy 
necessary to reach this excited state is ohv . Therefore, the relaxation of the 
molecule to the ground-state vibrational energy level 0v =  results in the emis-
sion of a photon of energy ohv . This emission is usually observed in the visible 
spectral region and is called Rayleigh scattering. We think that the rapid oscilla-
tion of a light wave passing by the intramolecular level of atoms which constitute 
the molecules diffused by the lunar soil could be similar to an effect Raman 
anti-Stoke [31]. 

The scattering of light on the optical modes is designated Raman effect. It is 
different from the Rayleigh scattering because the scattered light changes the 
frequency of the spectrum active vibration. Historically, the effect was first ob-
served with molecules. Molecules vibrate, and each molecular oscillation corre-
sponds to a certain amount of energy. In the scattering process, this energy is 
added or subtracted from the incident light. An anti-Stokes Raman effect occurs 
when the molecule absorbs an incident light of frequency ov  and reemits it at a 
higher frequency. 

Thus, during the eclipse of the Moon, the excited molecule would oscillate 
from a superior vibrational energy level, say 1v = . The energy absorbed in this 
process is still ohv . The molecule can relax to the original 1v =  vibration en-
ergy level and emits a photon ohv ; however, the relaxation can be to the ground 
state. The return to the state 0v =  results in the emission of a photon which is 

1hv  greater than the exciting energy ohv  from level 1. The photon energy emit-
ted is ( )1oh v v+ . Spectral lines with frequencies higher than ov  are labeled 
anti-Stokes lines [32]. This Raman shift induces a brighter electromagnetic ra-
diation. 

4. Discussion and Conclusion 

In 2009, NASA’s Lunar Reconnaissance Orbiter (LRO) was launched with the 
Lunar Crater Observation and Sensing Satellite (LCROSS) on the first U.S. mis-
sion to the Moon in over 10 years. LRO gathered information on day-night 
temperature maps, contributed data for a global geodetic grid, and conducted 
high-resolution imaging. During lunar eclipses, the solar-powered orbiter also 
falls in Earth’s shadow, cutting it off from the source of its power. The mission 
controllers can then use an instrument—called Diviner—that can watch how the 
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lunar surface responds to the rapid change in temperature caused by a lunar 
eclipse. These data which help scientists better understand the composition and 
properties of the surface could be a scientific boon for understanding both 
anomalies [33] [34] [35]. 

We believe that almost the totality of the reported umbra-penumbra boundary 
shift and the excessive clarity of the penumbra reveal a lunar Allais effect on the 
Moon’s shadow that has nothing to do with the thickness of the Earth’s atmos-
phere. Both phenomena were reported during each and every lunar eclipse re-
corded for the past 180 years. They occur during lunar eclipses and are corre-
lated. Dr Marmet demonstrated that the Earth’s atmosphere cannot be the cause 
of the enlargement of the Earth’s shadow. He concludes that it is an optical illu-
sion, but neither addresses nor explains the second offset: the excessive bright-
ness of the penumbra [1]. If he is right to say that the Earth’s atmosphere is not 
responsible for the 2% umbra-penumbra limit shift on the Moon, he is wrong to 
evoke the optical illusion. NASA records anomalies without providing an expla-
nation, the priorities being elsewhere. The door is open to researchers to probe 
the reasons and suggest fields to explore. The list of our references shows that 
they cannot be explained by current science, which leaves only one option: the 
lunar Allais effect. 

But the bottleneck, which means that this aspect of science remains specula-
tive even as Professor Allais’ experiments have validated the solar eclipse effect, 
is the question of a lack of willingness to experiment. How can interest be aroused 
in experimenters for whom the scientific value of precise experience is dependent 
on their theoretical interpretation? Classical conservative physical thought cannot 
tolerate the defeat of the current theory of gravitation when applied to the case of 
the influence of the attraction of the Sun and the Moon on the motion of the 
paraconic pendulum, whether these are the amplitudes of the lunisolar periodic 
components or the anomalies observed during the total eclipses of the Sun [16]. 

However, the most accommodating physicists say they do not rely on the 
more or less contradictory experiments carried out so far; they would like ex-
periments operated with a paraconic pendulum at any point similar to the pen-
dulum used by M. Allais, or they would like to turn to more radical experiments, 
like those intended for modern theories. For example, the atomic clock cooled 
by cesium laser (PHARAO) [36] placed by the European Space Agency (ESA) on 
the International Space Station (ISS) could have been used. In default of confirm 
doubtful fashionable theories, this high technology could test the Allais effect 
and supply the way to tie, by a new theoretical link, the facts observed during the 
eclipses to the physical laws having received the sanction of a rigorous experi-
mental control. 

In conclusion, it seems that two noticed anomalies during lunar eclipses, the 
enlargement of the Earth’s shadow delineated onto its satellite and an excessive 
illumination of the penumbra, adjusted ad hoc to the Earth’s atmosphere, would 
rather be caused by an Allais eclipse effect, i.e., a repulsion that occurs when the 
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Moon passes directly behind the Earth into its umbra, when Sun, Earth and 
Moon are closely aligned in space. This is consistent with our knowledge of the 
solar eclipse, with the calculation of the abnormal spontaneous acceleration of the 
Moon during the solar eclipse in June 1954 (paraconical pendulum of Maurice Al-
lais) and the result recorded by a gravimeter during the solar eclipse of 1997. 

(To know more about lunar eclipses by pictures, references [37] [38] [39] [40] 
have been added). 
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Abstract 
The 2 + 1d Gross-Neveu model with finite density and finite temperature is 
studied by the staggered fermion discretization. The kinetic part of this stag-
gered fermion in momentum space is used to build the relation between the 
staggered fermion and Wilson-like fermion. In the large fN  limit (the 

number fN  of staggered fermion flavors), the chiral condensate and fer-
mion density are solved from the gap equation in momentum space, and thus 
the phase diagram of fermion coupling, temperature and chemical potential is 
obtained. Moreover, an analytic formula for the inverse of the staggered fer-
mion matrix is given explicitly, which can be calculated easily by paralleliza-
tion. The generalization to the 1 + 1d and 3 + 1d cases is also considered. 
 

Keywords 
Gross-Neveu Model, Phase Diagram, Staggered Fermion, Gap Equation 

 

1. Introduction 

The chiral phase transition in quantum chromodynamics (QCD) from the ha-
dronic phase at low temperature T (low density Bµ ) to the quark-gluon plasma 
phase at high temperature (high density) has been studied intensively in the last 
decade. Although the relative firm statements for the phase structure can be 
made in two limit cases: finite T with small baryon density B Tµ   and asymp-
totically high density QCDBµ Λ , the phase structures at the intermediate ba-
ryon density are not clear. For a recent and review and related work of QCD 
with finite density, see Ref. [1]-[9]. 

Since the chiral symmetry breaking and restoration are intrinsically non- 
perturbative, the number of techniques is limited and most results come from 
the lattice QCD. Unfortunately, the lattice QCD at finite density suffers from the 
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notorious sign problem, especially for the intermediate or large baryon density. 
For some simpler quantum field models, e.g., the dense two-color QCD [10], the 
sign problem can be avoided. The recent progress of the sign problem in lattice 
field models can refer to [11] and references therein. In the last decades, the 
tensor network becomes very popular in condensed matter physics and high 
energy physics, especial for lower dimension models, since probability is not 
used and thus it is free of sign problem [12] [13] [14] [15]. 

This paper addresses a simplest four-fermion model with 2Z  symmetry: 
Gross-Neveu model at non-zero temperature and density [16] [17] [18] [19] 
[20]. The 2 + 1d Gross-Neveu model has an interesting continuum limit and 
there is a critical coupling indicating the threshold for the symmetry breaking at 
zero temperature and density. Although the 2 + 1d Gross-Neveu model is not 
renormalisable in the weak coupling expansion, it is renormalisable in 1 fN  
expansion [16], where fN  is the number of flavors of fermions. 

The symmetry breaking of Gross-Neveu model for the 1 + 1d case has been 
studied extensively [21]-[29]. Recently, 2 + 1d Gross-Neveu model is used to 
study the inhomogeneous phases [30] and the symmetry breaking [31]. 

Compared with the Wilson fermion, the staggered fermion is more adequate 
for studying spontaneous chiral symmetry breaking. Another advantage of the 
staggered fermion is due to the reduced computational cost since the Dirac ma-
trices have been replaced by the staggered phase factor. The reconstruction of 
the Wilson-like fermion from the staggered fermion is rather technique, thus 
needing a careful explanation of the physical fermions for lattice QCD [32] and 
for Gross-Neveu model [18]. 

In this paper, we revisit the staggered fermion for the 1 + 1d, 2 + 1d and 3 + 
1d Gross-Neveu model at non-zero temperature and finite density. The gap eq-
uation, which is based on the large fN  limit, is solved in the momentum space. 
Moreover, we derive an explicit formula for the inverse matrix of the staggered 
fermion matrix, which is easy to be implemented by parallelization and thus 
make the large scale calculation of the gap equation feasible. 

The arrangement of the paper is as follows. The continuum 2 + 1d Gross- 
Neveu model at finite density and non-zero temperature is introduced in Section 
2. In Section 3, the 2 + 1d staggered fermion is shown and non-dimensional 
quantities are introduced. The kinetic part of staggered fermion in the momen-
tum space is given in Section 4, where the trace of the inverse matrix and ele-
ments of inverse matrix are given explicitly in momentum space. In Section 5, the 
results in Section 4 are generalized to the 1 + 1d and 3 + 1d staggered fermion. 
The gap equation is given in Section 6, where the chiral condensate and fermion 
density are calculated. The simulation results in the large fN  limit are ob-
tained in Section 7. Finally, the conclusion is given in Section 8. 

2. The Gross-Neveu Model 

The Gross-Neveu model for interacting fermions in 2 + 1d is defined by the con-
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tinuum Euclidiean Lagrangian density at finite density 

( ) ( )
2

2
0 2 f

gm
N

ψ µγ ψ ψψ= ∂/ + + −


                  (1) 

where 2
0 ν νν γ

=
∂/ = ∂∑ , µ  is the chemical potential, m  the bare mass, ψ  and 

ψ  are an fN -flavor 4 component spinor fields. Here we choose the Gamma 
matrices 

1

1

0
, 0,1, 2

0
ν

ν
ν

σ
γ ν

σ
+

+

 
= = − 

                  (2) 

2 2
3 5 0 1 2 3

2 2

,
i

i
γ γ γ γ γ γ

−   
= = =   
   

 
 

            (3) 

where ( )1,2,3i iσ =  are the Pauli matrices. The Gamma matrices satisfies 

42 , , 0,1, 2,3,5µ ν ν µ µνγ γ γ γ δ µ ν+ = =  
There is a discrete 2Z  symmetry 5ψ γ ψ→ , 5ψ ψγ→ − , which is broken by 

the mass term but not the interaction. Introducing the bosonic field σ , the in-
teraction between fermions is decoupled with the Lagrangian density, 

( ) 2
0 22

fN
L m

g
ψ µγ σ ψ σ= ∂/ + + + + 



                (4) 

The dimension of quantities for the 2 + 1d Gross-Neveu model is as follows 

[ ] [ ] [ ] [ ] [ ] [ ]1 1 2length , lengthm gψ ψ µ σ −= = = = = =           (5) 

The partition function for this model is 

( )

( )

2
22

0

2
02

d d d e

d e det

d exp ln det
2

f

f

N
Ng

f
f

Z

m

N
N m

g

σ

ψ ψ σ

σ µγ σ

σ σ µγ σ

−

−

∫

∫

=

 = ∂/ + + + 
 

 = − + ∂/ + + +  
 

∫

∫

∫ ∫



 

 





        (6) 

where 0 1 20 0
d d d

L
x x x

β
≡∫ ∫ ∫  with the inverse temperature 1 Tβ =  and the space 

size L. ψ  and ψ  are antiperiodic in 0x  direction, and are periodic in 1x  and 

2x  directions. We want to calculate the chiral condensate for one flavor 

2 2

1 ln 1 1 1 1
i i

f

Z
N V m V Vg g

ψ ψ σ∂
= − = ≡ Σ

∂ ∫ ∫
  

           (7) 

where 2V Lβ=  is the volume of 2 + 1d system. In the second equality we used 

( ) ( ) ( )20 d d d e d d d e 1 N x
x g

δψ ψ σ ψ ψ σ ψψ σ
δσ

− −∫ ∫  
= = − + 

 
∫ ∫



 

 
Since the Lagrangian density is translation invariant, ( ) ( )x xψ ψ  and 
( )xσ  does not depend on x. This model in the large fN  limit can be solved 

exactly [18] in the chiral limit 0m = , which is based on the saddle approxima-
tion (gap equation) in (6) 
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( )

( )

( )

( ) ( ) ( )

02

1
02

1
02

1
2 22

02
1,2

d0 ln det
d

Tr

tr

4

k

k

V m
g
V m
g
V ik m
g

V m k i k m
g ν

ν

µγ

µγ

µγ

µ

−

−

−

=

 = − Σ + ∂/ + + + Σ Σ

= − Σ + ∂/ + + + Σ

/= − Σ + + + + Σ

 
= − Σ + + Σ − + + + Σ 

 

∑

∑ ∑

 



 



 



  



       (8) 

where in the third equality we write the trace of operator in momentum space 
and the summation over ( )0 1 2, ,k k k k=  

( )0 2 1 , 2 , , , 1, 2k n T k n L n nν ν ν ν= = ∈π =π− Z  

3. The Staggered Fermion 

The staggered fermion discretization of the action ∫  is 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

,2
ˆ ˆ, ,

, 1,2

,02 1 2
ˆ ˆ0, , 0

,

22 2
2

2

e e
2

2

t t

x
t x y x y

x y

x a a
t x xx y x y

x y t

f
t t

x x

S a a x y
a

a a x s s y
a

N
a a m x x x a a x

g

α
α α

α

µ µ

η
ψ δ δ ψ

η
ψ δ δ ψ

φ ψ ψ σ

+ +
=

−
+ +

 
= − 

 
 

+ − 
 

+ + +

∑ ∑

∑

∑ ∑

 



 



       (9) 

with staggered phase factor ,0 1xη = , ( ) 0
,1 1 x a

xη = − , ( )( )0 1
,2 1 x x a

xη
+= − . 

xaN L= , 1t ta N Tβ= = . The boundary condition for ψ  and ψ  are ac-
counted for by the sign 1s  and 2s  

0 01 21 if 1 1 if 0
,

1 Otherwise 1 Otherwise
t

x x

x N x
s s

− = − − = 
= = 
 

          (10) 

Here φ  is defined on lattice x  by ( )xσ   

( )
[ ]

( ) ( )
[ ]

( )
, ,

1 1
8 8x x x x

x x x xφ σ σ φ= ⇔ =∑ ∑
 

              (11) 

where [ ],x x  denotes 8 dual lattices x  which is neighbour to x . The auxiliary 
field on dual lattice for two dimensional Gross-Neveu model was first studied in Ref. 
[33]. 

According to (5), the non-dimensional quantities are introduced by 
, , ,a a a aσ σ φ φ ψ ψ ψ ψ→ → → →              (12) 

1 2
1, , , , ta am m a g g x a x a a aµ µ −= = = → =           (13) 

and thus the action in (9) can be rewritten as 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

1 1

,
ˆ ˆ1 , ,

, 1,2

,0 1 2
ˆ ˆ0, , 0

,

2
1 1 2

2

e e
2

2

x
x y x y

x y

x a a
x xx y x y

x y

f

x x

S a x y

x s s y

N
a m x x x a x

g

α
α α

α

µ µ

η
ψ δ δ ψ

η
ψ δ δ ψ

φ ψ ψ σ

+ +
=

−
+ +

 
= − 

 
 

+ − 
 

+ + +

∑ ∑

∑

∑ ∑
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The partition function for the Gross-Neveu model with fN  flavors is: 

d d d e S
i i

i
Z ψ ψ σ −= ∏∫                     (14) 

where iψ  and iψ  denote the Grassmann fields of flavors 0, , 1fi N= −  at 
the sites x , σ  is the real field defined at the dual lattice sites x . The action is 

( ) ( ) ( ) ( ) ( ) ( )21
, 1 2

, , , 2
f

i x y i i i
i x y i x x

a N
S x D y a x x x x

g
ψ ψ φ ψ ψ σ= + +∑ ∑ ∑



    (15) 

where 

1

1

,
1

,
1

,0 1
,

,0 2

1

ˆif , 1, 2
2

ˆif , 1, 2
2

ˆe if 0
2

ˆe if 0
2

if
0 otherwise

x

x

x a
x y x

x a
x

a y x

a y x

D s y x

s y x

a m y x

α

α

µ

µ

η
α α

η
α α

η

η −


= + =


− = − =

= = +


− = −


=


          (16) 

The derivative of this matrix D with respect to the chemical potential and bare 
mass are rather simple 

( ) ( )
1 1

, ,1 2
ˆ ˆ ,0, , 0

1 1

e e ,
2 2

a a
x y x y

x x x yx y x y

D D
s s

a a m

µ µ

δ δ δ
µ

−

+ +

∂ ∂
= + =

∂ ∂  
The real matrix ( ),D mµ  satisfies the following symmetry 

( ) ( ), ,, ,x y y xD m D mµ µ= − − −
 

( ) ( ) ( ), , ,, , ,x yx y x y y xD m D m D mε µ ε µ µ= − − = −
 

where ( ) 0 1 21 x x x
xε

+ += −  is the parity of site x . 
By integrating the Grassmann fields, the partition function in (14) can be re-

written as 

( ) effd e S

x
Z xσ −= ∏∫



                      (17) 

with the effective action 

( ) [ ]1 2
eff 2 ln det

2
f

f
x

a N
S x N D

g
σ φ= −∑



               (18) 

and 

[ ]( ) ( ), 1 ,, x y x yx y
D D a xφ φ δ= +                   (19) 

The computational results, e.g., non-dimensional chiral condensate and fer-
mion density, depend on the non-dimensional quantities 

( ), , , , ,f x tN g m N Nµ
 

The physical dimensional quantities can be recovered from the non-dimensional 
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ones by introducing lattice size a according to (12), (13). For notation simplicity, 
we set ta a=  and thus 1 1a =  in the following discussion. 

4. Staggered Fermion in Momentum Space 

The kinetic part in (15) in one flavor is ( ) ( ),, x yx y x D yχ χ∑  where 

,

,

,0 1
,

,0 2

ˆif , 1, 2
2

ˆif , 1, 2
2

ˆe if 0
2

ˆe if 0
2

if
0 otherwise

x

x

x
x y x

x
x

y x

y x

D s y x

s y x

m y x

α

α

µ

µ

η
α α

η
α α

η

η −


= + =



− = − =

= = +


− = −


=



           (20) 

χ  and χ  are the Grassmann fields defined on lattices. A Wilson-like fermion 
can be obtained from the stagger fermion ( ) ( ),, x yx y x D yχ χ∑  [18]. 

Assume that xN  and tN  are even integers. Let ( )0 1 2, ,Y Y Y Y=  denotes a 
site on a lattice of twice the spacing of the original, and ( )0 1 2, , , 0,1iA A A A A= =  
is a lattice vector, which ranges over the corners of the elementary cube asso-
ciated with Y, so that each site on the original lattice x  uniquely corresponds 
to A and Y: 2x Y A= + . Introducing notation 

( ) ( ) ( )2 ,x Y A A Yχ χ χ= + =  
A shift along µ  direction can be represented by 

( ) ( ) ( )( )
( ) ( )( )ˆ ˆ, ,

ˆ ˆ ˆ ˆ2 2

ˆ, ,A A A A
A

x Y A Y A

A Y A Yµ µ

χ µ χ µ χ µ µ

δ χ δ χ µ′ ′+ −
′

+ = + + = + + −

′ ′= + +∑
        (21) 

Similarly, 

( ) ( ) ( )( )ˆ ˆ, ,ˆ ˆ, ,A A A A
A

x A Y A Yµ µχ µ δ χ δ χ µ′ ′− +
′

′ ′− = + −∑         (22) 

( )xχ  is defined on the fine lattice sites x  with lattice size 1a =  

( ){ }0 1 2 0 1 2, , ,0 ,0 ,t xx x x x x N x x N= ≤ < ≤ <             (23) 

while ( ),Aχ ⋅  on the coarse lattice sites Y with lattice size 2 2a =  

( ){ }0 1 2 0 1 22 2 , , ,0 2, 0 , 2t xY Y Y Y Y N Y Y N= ≤ < ≤ <          (24) 

A unitary transformation of ( ),Aχ ⋅  is defined by [34] 

( ) ( ) ( ) ( )1 1, , ,
4 2 4 2

a a a a
A A

A A
u Y A Y d Y B A Yα α α αχ χ= Γ =∑ ∑      (25) 

( ) ( ) ( ) ( )1 1, , ,
4 2 4 2

a a a a
A A

A A
u Y A Y d Y A Y Bα α α αχ χ∗ ∗= Γ =∑ ∑     (26) 

where 2 2×  matrices AΓ  and AB  is given by 
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( ) ( ) ( ) 20 10 1 2
1 2 3 1 2 3, AA AA A A

A ABσ σ σ σ σ σΓ = = − − −           (27) 

AΓ  and AB  satisfies the following properties (The indices , , , ,a aα α β′ ′  and 
b always run from 1 to 2) 

( ) ( )( )ˆ ˆ1 1, , 0,1, 2A A A AA B A Bµ µ µ µ µ µη σ η σ µ± + ± +Γ = Γ = − =      (28) 

( )† †Tr 4A A A A AAB B δ′ ′ ′Γ Γ + =                    (29) 

4 ,

0

a b a b
A A A A ab

A A
a b a b

A A A A
A A

B B

B B

α β α β
αβ

α β α β

δ δ∗ ∗

∗ ∗

Γ Γ = =

Γ = Γ =

∑ ∑

∑ ∑
               (30) 

( ) ( )* *

, 1 , 0
, 0,1, 2

a aa a
A A A A

A A A Aµ µ

α αα α µ
′ ′ ′ ′

= =

Γ Γ = Γ Γ =∑ ∑           (31) 

Equation (31) is also valid if Γ  is replaced by B. 

( )1 1
, 1

2
aa aa

A A
A A

B
µ

αα
µ µ αασ σ δ

′ ′ ′∗ ∗ ∗
′+ +

=

Γ = −∑                 (32) 

( )1 1
, 0

2
aa aa

A A
A A

B
µ

αα
µ µ αασ σ δ

′ ′ ′∗ ∗ ∗
′+ +

=

Γ =∑                 (33) 

See Appendix A for these properties. 
Using (29), the inverse transformation of (25) and (26) are 

( ) ( ) ( )
,

, 2 a a a a
A A

a
A Y u Y B d Yα α α α

α
χ ∗ ∗ = Γ + ∑            (34) 

( ) ( ) ( )
,

, 2 a a a a
A A

a
A Y u Y d Y Bα α α α

α
χ  = Γ + ∑             (35) 

Let us introduce the two Dirac fields with 4 components ( 1,2a = ) 

( ) ( )
( )

( )
( ) ( ) ( ) ( )( ) ( ) ( )( )1

1 2
2

, , ,
a a

a a a a a a
a a

q Y u Y
q Y q Y q Y q Y u Y d Y

q Y d Y

α
α α

α

   
= = = =      
     

From the properties (30), it is easy to show that 

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

, , ,

,

,

2 2

8

8 8 8

x

a a a a a a a a
A A A A

A Y a a

a a a a

Y a

a a

Y a Y k

x x

u Y d Y B u Y B d Y

u Y u Y d Y d Y

q Y q Y q Y q Y q k q k

α α α α α α α α

α α

α α α α

α

χ χ

′ ′ ′ ′ ′ ′ ′ ′∗ ∗

′ ′

 = Γ + Γ + 

= +

= = =

∑

∑ ∑ ∑

∑∑

∑ ∑ ∑
 

where in the last equality the inner produce between q  and q is given in mo-
mentum space corresponding to the coarse lattice with lattice size 2 

0
1 2

0 1 2

1
22 , , , 0 2, 0 , 2t x

t x x

m m mk m N m m N
N N N

 + 
= ≤ < ≤ < 

 
 

π


     (36) 

For any fixed 0,1,2µ = , 
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )(
( ) ( )( ))

( ) ( ) ( )

( )

ˆ ,
, ,

ˆ ,

ˆ ˆ, ,
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2 2

,
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A A Y
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x x x x

A A Y A Y A Y

A Y A Y

A A Y A Y

A Y
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µ µ
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µ µ
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µ

η χ χ µ χ µ
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+ − −
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ˆ ˆ, ,

,
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1 2
2

2
2

2
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A A Y a
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A A
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a
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µ

α
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α
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α

η
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′

′ ′+ − ′ ′ ′ ′ ′ ′ ′ ′∗ ∗
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′ ′

′ ′− + ′ ′ ′ ′ ′ ′ ′ ′∗ ∗
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′ ′

= Γ +

+
× Γ ∂ + ∂


− 
+ Γ ∂ + ∂ 



∑ ∑

∑

∑
 

where in the second equality (21) and (22) are used. According to the properties 
of AΓ  and AB  in (30) (31) (32) and (33) 

( ) ( ) ( ) ( )( )

( )( ) ( )( ( )( ) ( )

( )( ) ( ) ( )( ) ( ))
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1

* 2 * 2
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2 3 1

2
*
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2

2

2

8
4 4
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a a a a
aa aa

Y
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Y

Y
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u Y u Y d Y d Y

u Y d Y d Y u Y

q Y q Y q Y i q Y

q Y q Y
q Y q Y i

µ

αα ααα α α α
µ µ µ µ

α α α α
µ αα µ µ αα µ

µ µ µ µ

µ µ
µ µ

η χ χ µ χ µ

σ δ σ δ

σ δ σ δ

γ γ σ

γ γ σ

′ ′′ ′ ′ ′
′ ′+ +

′ ′′ ′ ′ ′
′ ′+ +

+

+

+ − −

= ∂ + − ∂

+ ∂ + − ∂

 = ⊗ ∂ + ⊗ ∂ 

 ∂ ∂
= ⊗ + ⊗



∑

∑

∑

∑





( )( ) ( ) ( ) ( )( ) ( ) ( )*
2 3 1

18 sin 2 cos 2 1
2 2k

iq k k q k q k i k q kµ µ µ µγ γ σ +




  = ⊗ + ⊗ −   
∑ 

(37) 

where we used the notations 

( ) ( ) ( )ˆ ˆq Y q Y q Yµ µ µ∂ = + − −  

( ) ( ) ( ) ( )2 ˆ ˆ2q Y q Y q Y q Yµ µ µ∂ = + − + −  

and the summation over k  is taken for all modes in (36). Similarly, we have 
(see Appendix B) 

( ) ( ) ( )( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( ) ( ) ( )

* 1
3 1 0

1
0 2 0

1 ˆ ˆ0 0
2

8 2 sin 2

2 cos 2 1

8

x

k

k

x x x

q k i i k q k

q k k q k

q k A k q k

χ χ χ

γ σ

γ

−

−

+

+ + −

= ⊗

 + ⊗ +  
≡

∑

∑

∑


            (38) 
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Using 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 ˆ ˆe 0 e 0
2

1 ˆ ˆcosh 0 0
2
1 ˆ ˆsinh 0 0
2

x

x

x

x x x

x x x

x x x

µ µχ χ χ

µ χ χ χ

µ χ χ χ

−+ − −

 = + − −  
 + + + −  

∑

∑

∑
 

and (37) (38), the kinetic part ( ) ( ),, x yx y x D yχ χ∑  can be rewritten as in the 
momentum space 

( ) ( ) ( ) ( ) ( ),
,

8x y
x y k

x D y q k D k q kχ χ =∑ ∑              (39) 

where the summation over k  is taken for all momentum mode of coarse lattice 
according to (36), and the staggered matrix in the momentum space is diagonal 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ){

( ) ( ) ( )( )}
( ) ( )

*
2 3 1

1,2

0 2 0 0

*
3 1 0 0

*
2 3

0,1,2 1,2,3

sin 2 cos 2 1
2

1 cosh sin 2 sinh cos 2 1
2

cosh cos 2 1 sinh sin 2

c c
c

iD k m k k

i k k

i k k

m a b

µ µ µ µ
µ

µ µ
µ

γ γ σ

γ µ µ

γ σ µ µ

γ γ σ

+
=

= =

 = + ⊗ + ⊗ − 

 + ⊗ + + 

 + ⊗ − − 

≡ + ⊗ + ⊗

∑

∑ ∑







   (40) 

where aµ  and cb  depends on k. The inverse matrix of ( )D k  is 

( ) ( ) ( ) ( )1 *
2 3

0,1,2 1,2,3

1
c c

c
D k m a b

N k µ µ
µ

γ γ σ−

= =

 
= − ⊗ − ⊗ 

 
∑ ∑       (41) 

where 

( ) ( ) ( )2 22

0,1,2 0,1,2

2
0 0

1 1sin 2 1 cos 2
4 4

sinh cos 2 cosh sinh sin 2

N k m k k

k i k

µ µ
µ µ

µ µ µ
= =

= + + −

− −

∑ ∑
        (42) 

We can calculate the trace of inverse matrix D in (20) from (39) 

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( )

( ) ( )

1
,

8

8

8

8

1

1

e

e

e 8

e

e
8

e

8 tr 8

8tr

k

k

D
x

x x D
x

q k D k q k
k

q k D k q k

q k D k q k

q k D k q k
k

k

k k

x x
D

q k q k

q k q k

D k

mD k
N k

χ χ

χ χ

χ χ−
−

−

−

−

−

−

−

−

∑

∑

= −

= −

= −

 =   

 = = 

∑∫∑
∫

∑∫
∫

∫∑
∫

∑

∑ ∑

            (43) 

where the summation over k  is given by (36). Note that the right hand side of (43) 
is real since ( )

0

2
0sin 2 0k k N k =∑  for any 1k  and 2k  modes in (36). Similar-
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ly, 

( ) ( )
( )

1 0 0 01 1 1 2
ˆ ˆ0, 0,

sin 2 cos 2 1
8x xx x x x

x k

b k a k
D s D s

N k
− −
+ −

− +
+ =∑ ∑        (44) 

and 

( ) ( ) ( )
( )

0 0 1 01 1 1 2
ˆ ˆ0, 0,

sin 2 cos 2 1
8x xx x x x

x k

a k b k
D s D s i

N k
− −
+ −

+ −
− = −∑ ∑       (45) 

The inverse matrix of D in (20) is 

( ) ( )

( ) ( )

1 1 1
, 1; 1 2; 1

, , ,

1 1
1; 2 2; 2

1
4

a a a a
x x A A A AY a Ya Y a Ya

a a

a a a a
A A A AY a Ya Y a Ya

D D B D

B D B B D

α α α α
α α α α

α α

α α α α
α α α α

′ ′ ′ ′− ∗ − ∗ −
′ ′ ′′ ′ ′ ′ ′ ′

′ ′

′ ′ ′ ′∗ − ∗ −
′ ′′ ′ ′ ′ ′ ′

= Γ Γ + Γ

+ Γ + 

∑
      (46) 

See Appendix C for the derivation of (44)-(46). 
Since D is diagonal in momentum space, the inverse matrix in the qq  basis is 

( )
( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

21 1
; 2

2 *
2 32

0,1,2 1,2,3

*
4 2 2 3

0,1,2 1,2,3

1 e
2 2

1 1e
2 2

1

ik Y Y
Y Y

kt x

ik Y Y
c c

k ct x

c c
c

D D k
N N

m a b
N kN N

m Y Y a Y Y b Y Y

µ µ
µ

µ µ
µ

γ γ σ

γ γ σ

′⋅ −− −
′

′⋅ −

= =

= =

=

 
= − ⊗ − ⊗ 

 

′ ′ ′≡ ⊗ − − ⊗ − − ⊗ −

∑

∑ ∑ ∑

∑ ∑ 





  
 

where the notation with tilde denotes the inverse Fourier transformation, e.g., 

( ) ( )
( )

( )
( )

0 0 1 1 2 20

0 1 2

2
2

1 1 12 22 2 2 0 1 22 2 2
2

0 0 0 0 1 2

1 e

2 2

, ,1e e
, ,

2 2

t x x

t x xt

ik Y

kt x

N N N m Y m Y m YY ii
N N NN

m m mt x

a k
a Y

N kN N

a m m m
N m m mN N

µ
µ

µ

⋅

 − − −π π + +  
 

= = =

=
 
 
 

=
 
 
 

∑

∑ ∑ ∑



 

for 0 1
2

tN
Y ≤ − , 1 2, 1

2
xN

Y Y ≤ − . We first use the fast Fourier transformation 

to calculate ( ) 02
exp

t

Y
a Y i

Nµ
 π
− 
 

  and thus ( )a Yµ  for 00 1
2

tN
Y≤ ≤ − , 

1 20 , 1
2

xN
Y Y≤ ≤ − . Then ( )a Yµ  for 0 1

2
tN

Y ≤ − , 1 2, 1
2

xN
Y Y ≤ −  can be 

obtained since it is anti-periodic in 0Y  direction and periodic in 1Y  and 2Y  
direction. 

Each term in 1
;Y YD−
′  has a tensor product A B⊗  between 4 4×  matrix 

( ) , 1,2ij i j
A A

=
=  with 2 2×  matrix ijA  and 2 2×  matrix B. The indices of 

( )
1

;Y a i Ya jD α α
−
′ ′ ′  of the inverse matrix 1

;Y YD−
′  in (46) is related to ( )ij a aA B

α α ′′
. The 

analytic formula for the inverse matrix of the staggered fermion is the main con-

tribution of this paper. Compared to the computational complexity ( )( )32
t xO N N  
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of the usual inverse matrix, the computational cost is ( )( )2216 t xO N N  since 

each element of the inverse matrix needs the summation over , , , 1, 2a aα α′ ′ = . 
Moreover a parallel implementation can be realized easily for the formula (46). 

The trace of the inverse matrix in (43) can be derived from (46) 

( ) ( ) ( )
1 1 1
, 1; 1 2; 2

,

8
x x Ya Ya Ya Ya

x a k

mD D D
N kα α α α

α

− − − = + = ∑ ∑ ∑
 

5. The 1 + 1d and 3 + 1d Staggered Fermion  

The staggered fermion matrix in (20) can be generalized to the 1 + 1d and 3 + 1d 
case, where α  is 1 for the 1 + 1d case and α  run from 1 to 3 for the 3 + 1d 
case. 

For the 1 + 1d case, the 2 2×  matrices µγ  are defined to be 

5 1 2 2, 1, 2, , 2 , , 1, 2,5iµ µ µ ν ν µ µνγ σ µ γ γ γ γ γ γ γ δ µ ν= = = + = =  
The unitary transformation in (25) and (26) are modified to be 

( ) ( ) ( ) ( )1 1, , ,
2 2

a a a a
A A

A A
Y A Y Y A Yα α α αψ χ ψ χ ∗= Γ = Γ∑ ∑

 
The kinetic part ( ) ( ),, x yx y x D yχ χ∑  can be written as 

( ) ( ) ( ) ( ) ( ),
,

x y
x y k

x D y k D k kχ χ ψ ψ=∑ ∑              (47) 

where the summation is taken over all modes 

0
1

0 1

1
22 , , 0 2, 0 2t x

t x

m mk m N m N
N N

 + 
= π ≤ < ≤ < 

  
 

        (48) 

The fermion matrix in momentum space is diagonal 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ){
( ) ( ) ( )( )}

( ) ( )

* *
1 4 5 1 5

1

1 4 0 0

* *
5 1 5 0 0

* *
1 4 5 1 5

0,1 0,1

2 sin 2 cos 2 1

cosh sin 2 sinh cos 2 1

cosh cos 2 1 sinh sin 2

2

D k m i k k

i k k

k i k

m a b

µ µ µ µ
µ

µ µ µ µ
µ µ

γ γ γ γ

γ µ µ

γ γ γ µ µ

γ γ γ γ

+ +
=

+ +
= =

 = + ⊗ + ⊗ − 

 + ⊗ + + 

 + ⊗ − + 

≡ + ⊗ + ⊗

∑

∑ ∑







  (49) 

with its inverse 

( ) ( ) ( ) ( )1 * *
1 4 5 1 5

0,1 0,1

1 2D k m a b
N k µ µ µ µ

µ µ
γ γ γ γ−

+ +
= =

 
= − ⊗ − ⊗ 

 
∑ ∑     (50) 

where 

( ) ( ) ( )( )

( ) ( )( )

2 22
0 0

1

2 2
0 0

1

4 sin 2 cosh sin 2 sinh cos 2 1

1 cos 2 cosh cos 2 1 sinh sin 2

N k m k i k k

k k i k

µ
µ

µ
µ

µ µ

µ µ

=

=

= + − + +

+ − + − +

∑

∑
  (51) 
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The trace of the inverse matrix is 

( )
1
,

16
x x

x k

mD
N k

− =∑ ∑                       (52) 

The inverse matrix of D can be calculated 

( )
1 1
, ;

, , ,

a a
x x A A Y a Ya

a a
D Dα α

α α
α α

′ ′− ∗ −
′ ′ ′ ′ ′

′ ′
= Γ Γ∑                  (53) 

where 

( )
( ) ( )21 1

;
1 e

2 2
ik Y Y

Y Y
kt x

D D k
N N

′⋅ −− −
′ = ∑               (54) 

For the 3 + 1d case, the 4 4×  matrices µγ  are defined to be 
0 31 2

1 2 3 4 5 1 2 3 4, 1, 2,3, 4,A AA A
A γ γ γ γ µ γ γ γ γ γΓ = = =  

22 , , 1, 2,3, 4,5µ ν ν µ µνγ γ γ γ δ µ ν+ = =  
The unitary transformation in (25) and (26) are modified to be 

( ) ( ) ( ) ( )1 1, , ,
2 2 2 2

a a a a
A A

A A
Y A Y Y A Yα α α αψ χ ψ χ ∗= Γ = Γ∑ ∑

 
The kinetic part can also be written as (47) where the summation is taken for all 
modes 

0
31 2

0 1 2 3

1
22 , , , , 0 2, 0 , , 2t x

t x x x

m mm mk m N m m m N
N N N N

 + 
= π ≤ < ≤ < 

  
   

Equations (49) - (51) are still valid except that µ  runs from 1 to 3. Equations 
(52) - (54) are modified to be 

( )
1
,

64
x x

x k

mD
N k

− =∑ ∑                       (55) 

( )
1 1
, ;

, , ,

1
2

a a
x x A A Y a Ya

a a
D Dα α

α α
α α

′ ′− ∗ −
′ ′ ′ ′ ′

′ ′
= Γ Γ∑                 (56) 

( )
( ) ( )21 1

; 3

1 e
2 2

ik Y Y
Y Y

kt x

D D k
N N

′⋅ −− −
′ = ∑              (57) 

respectively. We have checked the formula (46), (53), (56) for the inverse ma-
trices by Matlab. 

6. The Gap Equation 

The main contribution of the effective action (18) to the partition function can 
be obtained by the gap equation if fN →∞ , 

1
,2 2

1
x x

xt x

D
g N N

−Σ
= ∑                       (58) 

Here D is defined in (20) where m  is replaced by m + Σ . The right hand side of 
(58) can be calculated from (42), (43) where m  is replaced by m + Σ . The first 
derivative of 2Σ  with respect to µ  can be computed from the gap equation 
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(For simplicity, we assume that 0m = ) 

( ) ( )
( )

22
0 0

2

sinh 2 cos 2 cosh 2 sin 2k

k

k i k N k

N k

µ µ
µ

−

−

+∂Σ
=

∂
∑

∑
        (59) 

If the average Σ  of σ  has been calculated from the gap equation, the free 
energy density in the large fN  limit is 

2
2

2ln ln det
2t xZ N N D

g
Σ

= − +
 

where ( )ln det detkD D k=∏  up to a constant. The other thermodynamic 
quantities can be calculated. For example, the fermion density can be analytically 
calculated 

( )

( )

2
1 1 1 2

ˆ ˆ2 2 2 0, 0,

2
1 1 1 2

ˆ ˆ2 2 0, 0,

1 1 1 2
ˆ ˆ0, 0,

1 ln 1 1 e e
2

1 1 cosh
2

sinh

x xx x x x
x xt x t x

x xx x x x
xt x

x xx x x x
x

Z D s D s
N N g N N

D s D s
g N N

D s D s

µ µ

µ µ

µ
µ

µ

− − −
+ −

− −
+ −

− −
+ −

∂ ∂Σ  = − + + ∂ ∂  

∂Σ = − + +∂ 

+ − 


∑ ∑

∑

∑

   (60) 

where 
2

µ
∂Σ
∂

, and two sums over x  in (60) are given in (59), (44) and (45), re-

spectively. The ( )N k  for each mode k  in (44), (45), (59) is given by (42) with 
the replacement of m  by m + Σ  (Here for simplicity we assume that 0m = ) 
and Σ  is solved from the gap equation (58). 

7. Simulation Results 
7.1. Large Volume Limit 

Let us consider the large volume limit for the non-interacting 2 + 1d Gross-Neveu 
model. The partition function d d e detDZ Dχ χχ χ −= =∫ , where the stagger fer-
mion matrix D is given by (20). The ratio of the non-dimensional chiral con-
densate 2a ψψ  and non-dimensional mass m am=   is 

( ) ( )
( ) ( ) ( )

12
,

22 2

8 1x xx x

kt xt x t x

x x Da
am am N kN Nam N N am N N

χ χψψ χχ −

= = = =
∑ ∑ ∑

 

 

  (61) 

where in the last equality we used Equation (43) where ( )N k , depending on m  
and µ , is given by (61). Note that there are 2 8t xN N  modes k  in (61). The 
ratio of the non-dimensional fermion density 3a ρ  and ( )3aµ  

( )
( )
( )

( ) ( )
( )

3

3 3 2 2 3

1 0 0 0
2 3

0 0 1 0

1 1 ln 1 ln

sin 2 cos 2 11 cosh 8
2

sin 2 cos 2 1sinh 8
2

t

kt

k

a Z Z
L N La

b k a k
N kN L

a k b k
i

N k

ρ β
µ µµ β β µµ

µ
β µ

µ

  ∂ ∂
= =  ∂ ∂ 

 − +
= 


+ −

+ − 


∑

∑

 





       (62) 
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where in the last equality we used (44) and (45). 
We consider the case L β= , ta a=  and thus x tN N N= ≡ . We fix Lµ  and 

mL  and then calculate 
2a
am
ψψ


 and 
( )

3

3

a
a
ρ
µ

 in the large N  limit for fixed 

lattice size a . In fact 
2a
am
ψψ


 and 
( )

3

3

a
a
ρ
µ

 does not depend on the lattice size 

a  since the non-dimensional mass 
mLm am
N

= =


  and non-dimensional chem-

ical potential 
La

N
µµ µ= =


  does not depends on lattice size a . Figure 1 

shows the dependence of 
2a
am
ψψ


 on N  with fixed , 0,1L mLµ =  . The linear 

fitting with respect to 1/N shows that the large N  limit of 
2a
am
ψψ


 is close to 

1.008 for all four cases, this is because 1m N=  and 1 Nµ =  both vanish for 

large N  limit. Figure 2 shows the dependence of 
( )

3

3

a
a
ρ
µ

 on N , where 

1Lµ =  and 0,1mL = . The large N  limit is close to 1.9271 for 0m =  and 
1.9234 for 0.1m N= , respectively. 

7.2. Phase Diagram 

The phase diagram of the 2 + 1d Gross-Neveu model in the large fN  limit is 
well known [16] [17] [18]. In this limit the phase diagram of ( )2 , ,g Tµ−  is 
based on the calculation of Σ . Basically for 0T =  and 0µ = , there is a critical 
coupling 2

cg −  such that the chiral symmetry is broken 0Σ >  if the coupling is  
 

 

Figure 1. The dependence of 
2a
am
ψψ


 on N , 4,8,16,32,64,128,256,512N = . (1) 

1 , 1m N Nµ= =  with fitting 0.9563 1.009N− + , (2) 1 , 0m N µ= =  with fitting 

0.6051 1.008N− + , (3) 0, 1m Nµ= =  with fitting 0.7904 1.008N− + , (4) 

0, 0m µ= =  with fitting 0.3224 1.007N− + . 
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Figure 2. The dependence of 
( )

3

4

a
a
ρ
µ

 on N , 8,16,32,64,128,256N = . (1) 

0, 1m Nµ= =  with fitting 214.4370 0.4345 1.9271N N− + , (2) 0.1 , 0m N µ= =  

with fitting 214.4288 0.4343 1.9234N N− + . 
 

strong enough 2 2
cg g− −< . This critical coupling depends on the regularization 

of the continuum model. For the lattice regularization in this paper, 2 1
cg a− −
  

where a  is the lattice size. For fixed coupling 2 2
cg g− −<  which is not far away 

from the critical coupling (Otherwise, the continuum limit 0a →  cannot be 
taken), denote 0Σ  be the value of Σ  at this coupling 2g −  with vanishing 
temperature T and chemical potential µ . The gap Equation (8), which is solved 
exactly in the chiral limit in Ref. [18], shows that there exists a critical temperature  

0

2 ln 2cT
Σ

=  such that the chiral symmetry is broken if cT T<  at this coupling  

2g −  and 0µ = . Moreover, there is another critical chemical potential 0cµ = Σ  
such that this symmetry is broken only if cµ µ<  at this coupling 2g −  and 

0T = . The mean field results predict that the first order transition only exists at 
0T =  and cµ µ=  for this coupling 2g − . 

For the 2 + 1d Gross-Neveu model, we first study the dependence of Σ  on 
the coupling g and temperature 1 tT N=  with vanishing chemical potential 

0µ = . Figure 3 is the phase diagram of ( )2,1tN g  for 0m =  and 36xN = . 
We always choose 36xN =  to ensure the thermodynamic limit is achieved: the 
simulation results change very small for larger xN . The marks + separate the 
symmetry phase 0Σ =  (above marks) and the chiral symmetry broken phase 

0Σ >  (below marks). For fixed temperature T there is a critical coupling 2
cg −  

such that Σ  decreases to zero if 21 g  is increasing to 21 cg . Figure 3 shows 
that 21 cg  is a increasing function of 1tN T=  and it will close to 1 at very low 
temperature. On the other hand, if 2g −  is fixed, there is a critical temperature 

( )c cT T g=  such that Σ  is increasing from zero if T is decreasing from cT . 
Figure 4 shows the dependence of Σ  on tN  for the different coupling 

21 g . For small 21 g , e.g., 21 0.65g = , Σ  changes small with the temperature.  
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Figure 3. Phase diagram of ( )2,1tN g  for 0µ = , 0m = , 36xN = . Below the marks + 

is the broken phase 0Σ > . 
 

 

Figure 4. Σ  versus tN , 0µ = , 0m = , 36xN = .  
21 0.65,0.70,0.75,0.80,0.83,0.85,0.90,0.95,1.00g =  from top to bottom. 

 
For these range of parameters, it is in the deep chiral symmetry broken phase 
and we cannot obtain the chiral symmetry phase 0Σ =  even at very high tem-
perature. For a slightly larger 21 g , for example, 21 0.90g =  (black dots in  

Figure 4), we can find a transition point cT , which is between 
1
8

 and 
1

10
 in 

lattice unit. The symmetry phase and broken phase are realized for ( )cT T g>  

and ( )cT T g< , respectively. 

Figure 5 shows the dependence of Σ  on 21 g  at different temperature. Σ  
drops continuously to 0 if 21 g  is increasing to ( )21 cg T  from below, which 
show that the transition at the critical coupling constant ( )cg T  is second or-
der. At very low temperature 1 1 36tT N= = , ( )cg T  is close to 1, which is 
consistent with those obtained in [19]. This is because in the limit of 

,t xN N →∞ , the gap equation at 0Σ =  is reduced to 
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( ) ( )
2

2 2 3 20

0,1,2

1 1 8 8 1d 1
coskt x

k
N kg N N kµ

µ=

π
= ≈ =

π∑ ∫
∑

 

The critical temperature 0

2 ln 2cT
Σ

=  at the coupling 2g −  and 0µ =  can be  

verified numerically. Here we choose 36xN =  and 2 0.95g − =  which is not 
too far away from the critical coupling 2 1cg − ≈ . We also choose 36tN =  such 
that it is very close to zero temperature, the value of Σ  at the zero temperature and 
vanishing chemical potential is 0 0.0944Σ = . To calculate the critical temperature at 
this coupling, we calculate Σ  at 8, ,36tN =   and found that Σ  is zero if tN  
is between 14 and 16. Thus the critial temperature is between 1 16 0.0625=  and  

1 14 0.0667=  which is very close to 0 0.0944 0.0680
2ln 2 2ln 2cT
Σ

= = = . 

Now let us study the effect of chemical potential on the chiral condensate Σ . 
Figure 6 shows the dependence of Σ  on the chemical potential at the different  

 

 

Figure 5. Σ  versus 21 g  for different tN . 0µ = , 0m = , 36xN = . 
 

 

Figure 6. Σ  versus µ , 0m = , 1.19525g =  ( 21 0.70g = ), 36xN = . 
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temperature 1 tT N= . Σ  drops sharply near 0.45cµ ≈  in the limit of zero 
temperature 16tN = , i.e., 1 16T = , which suggest a first order transition at 
the zero temperature. This first order transition at the zero temperature is veri-
fied by the analytical calculation, 0cµ = Σ  where 0Σ  is the Σ  with 0µ =  
[18]. For the temperature 1 16T = , 0 0.47Σ ≈  is slightly larger than 

0.45cµ ≈ . If the temperature is raised, e.g., 6tN = , it is more difficult to find a 
critical chemical potential such that the chiral symmetry is restored. This is not 
caused by the smallness of 36xN = , since the our results is always obtained for 

36xN = , which is very close to the thermodynamics limit, i.e., the result 
changes very small if xN  is larger than 36. We also note that the transition at 
finite temperature is the second order, as explained in [18]. Figure 7 shows the 
dependence of Σ  on µ  for a larger 21 0.80g = . Compared with Figure 6, 
Σ  at 0µ =  and the critical chemical potential in Figure 7 become smaller, and 
thus the figures in Figure 7 is obtained by moving those figures of Figure 6 in 
the left-down direction. For the same temperature, for example, 16tN = , it is 
more difficult to find the critical chemical potential in Figure 7 than those in 
Figure 6. Both Figure 6 and Figure 7 show that the critical chemical potential 

cµ  is decreased if the temperature is increased. At zero temperature, the mean 
field exact result show the critical chemical potential cµ  is just the value of 0Σ  
at the vanishing chemical potential. This is exactly recovered in Figure 7 where 

0.32cµ =  for 2 0.80g − =  with 16tN = . 
Figure 8 shows the dependence of Σ  and fermion density on the chemical 

potential at 21 0.7g = . At low temperature 16tN = , Σ  drops rapidly near 
the critical chemical potential 0.45cµ ≈ , and the fermion density increase very 
fast, which suggest Σ  and fermion density are not continuous at cµ  at zero 
temperature and thus they can be regarded as the order parameters. 

For the 3 + 1d Gross-Neveu model, we also calculate the dependence of Σ  
on the coupling and chemical potential at different temperature. Figure 9 shows 
the value of Σ  depending on the coupling for the vanishing chemical potential.  

 

 

Figure 7. Σ  versus µ , 0m = , 1.1180g =  ( 21 0.80g = ), 36xN = . 
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Figure 8. Σ  and fermion density vs µ , 0m = , 1.19525g =  ( 21 0.70g = ), 36xN = . 
 

 

Figure 9. Σ  versus 21 g  for different tN . 0µ = , 0m = , 36xN = . 
 

Compared to Figure 5 for the 2 + 1d model, the critical coupling becomes 
smaller. Moreover, the dependence of Σ  on the temperature is less sensitive. 
Figure 10 shows the dependence of Σ  on the chemical potential at the coupl-
ing 21 0.58g =  for the 2 + 1d and 3 + 1d Gross-Neveu model, the critical 
chemical potential is larger for the 2 + 1d model than those for the 3 + 1d 
model. 

8. Conclusions 

The staggered fermion for the Gross-Neveu model at finite density and temper-
ature is revisited. In the large fN  limit, this model in 1 + 1d, 2 + 1d and 3 + 1d 
dimension can be easily solved in momentum space. Moreover, an explicit for-
mula for the inverse matrix for the 1 + 1d, 2 + 1d and 3 + 1d staggered fermion 
matrix is found, which can be implemented by parallelization. This formula can 
also be generalized to the other space dimensions. For the odd space dimension,  
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Figure 10. Σ  versus µ , 0m = , ( 21 0.58g = ), 36xN = . Left (3 + 1d), Right (2 + 1d). 
 

the orthogonal transformation was found [33]. The key point to find the explicit 
formula for the inverse matrix is to use the properties of AΓ  and AB  as 
shown in Section 4. These properties for the even number of space dimension 
are simpler, as shown in the supplement material. 

The dependence of chiral condensate and fermion density on the coupling, 
temperature and chemical potential are obtained by solving the gap equation. 
Our results for the 2 + 1d case reproduce the analytical results. We also compare 
the chiral condensate for the 2 + 1d and 3 + 1d case in the same range of para-
meters, showing that the reason for symmetry breaking and restoration can be 
explained by the suitable choice of the coupling, temperature and chemical po-
tential. 
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Appendix A. Proof of Properties of AΓ  and AB  

The notations for { }2

0i i
A

=  in (27) is a little awkward. I replace 0A , 1A  and 2A  
in (27) by 1A , 2A  and 3A , respectively. Thus 

( ) ( ) ( ) ( )31 2 1 2 331 2
1 2 3 1 2 3, 1AA A A A AAA A

A A ABσ σ σ σ σ σ + +Γ = = − − − = − Γ    (A1) 

The three Pauli matrices 

( ) ( )
( ) ( )
( ) ( )

1

2

1
3

1 ,

,

1 , , 1, 2

i

αβ β
αβ

αβ
αβ

αβ β
αβ

σ ε

σ ε

σ δ α β−

= −

= −

= − =

 

satisfies the completeness relation 
*

1,2,3
2a b

a b ab
α β

α β µ µ αβ
µ

δ δ σ σ δ δ
=

+ =∑                 (A2) 

We first have 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )
( ) ( )

1 2 1 2

3 1 2

1 2 1 2

1 2

1 1 2 2

1 2

*
1 2 1 2

, 0 ,

1 2 1 2
,

1 1 2 2

1 1 2 2

2 2 1 1 1 2 1 2

( )

a bA A A Aa b
A A

A A A A

a bA A A A

A A

aA A A A b

A A

a b
a b

baa b a b
a b

a

α βα β

αγ γ βγ γ

αγ βγ γ γ

αγ βγ γ γ
αγ βγ γ γ

βαα β α β
α β

α

σ σ σ σ

σ σ σ σ

σ σ σ σ

δ δ σ σ δ δ σ σ

δ δ σ σ σ σ σ σ σ σ

δ

∗ ∗

=

′ ′∗ ∗

′ ′∗ ∗
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Γ Γ =

=

=

= + +
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=

∑ ∑

∑

∑ ∑

2 2 1 1 3 3
a b a b a b

b
α β α β α β

βδ σ σ σ σ σ σ∗ ∗ ∗+ + +
 

2 abαβδ δ=  by (A2)                             (A3) 

which is also valid if ( )1,2  is replaced by ( )1,3  or ( )2,3 . Secondly, 

( ) ( )

( ) ( ) ( ) ( )

( )( )

3 31 2 1 2

1 2 3

3 31 2 1 2

1 2 3

1 2 3 1 2 3
, ,

1 2 3 1 2 3
, ,

2 1

4

a bA AA A A Aa b
A A

A A A A

ta t bt tA AA A A A

A A A

a b
tt ta t b ta t b
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α β
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αβ

σ σ σ σ σ σ

σ σ σ σ σ σ

δ δ δ δ δ δ

δ δ

∗∗ ∗∗

′′ ∗∗ ∗

+
′ ′ ′

Γ Γ =

=

= + −

=

∑ ∑

∑

 
Inserting ( ) 1 2 31 A A A

A AB + += − Γ  in the above equality, we have  
4a b

A A abA B Bα β
αβδ δ∗ =∑ . 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 2 3 3 31 2 1 2
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where in the last equality we used 

( ) ( )

( )( )( )

2 2 1 1 3 3

1 1

1 1 0, if

a b a b a b
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a b a b
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To prove that 
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, 1
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a aaa
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B
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we want to prove that 
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This is obvious since the left hand side is 
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2 ba ααδ δ′ ′= − , by (A3) if 3µ =                                   (A5) 

Similarly, (A4) is also valid if 1Aµ =  and -2 are replaced by 0Aµ =  and +2, 
respectively. This is because the sign ( )1 1Aµ− = −  in (A5) is replaced by 
( )1 1Aµ− = + . Obviously, 

( )ˆ , 1, 2,3A AAµ µ µη σ µ±Γ = Γ =  
For example, 2µ = , 

( ) ( ) ( ) 13 31 2 1 21 1
ˆ 1 2 3 1 2 3 2 2 22 , 1 AA AA A A A

AA A Aσ σ σ σ σ σ η σ η± +
±

Γ = = = Γ = −  
Finally, we have 

( )† †1 Tr
4 A A A A AAB B δ′ ′ ′Γ Γ + =

 
since the left hand side is 
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where we used 
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( )1 , , , 0,1, 2iji j j i i jµ ν ν µγ γ γ γ µ ν= − ≠ =  

( ) ( ) ( )1 2 3Tr 0, Tr 0, , Tr 0µ µ νγ γ γ µ ν γ γ γ= = ≠ =
 

Here the we define ( )
0

1, 2,3
0
µ

µ
µ

σ
γ µ

σ
 

= = − 
. 

Appendix B: The Derivation of (38) 

The derivation of (38) is similar to the calculation of  
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0 2 0

2

8
4 4

8 2 sin 2

2 cos 2 1

aa aaa a a a

Y
a a a a

Y

k

u Y d Y d Y u Y

u Y u Y d Y d Y

q Y q Y
q Y i q Y

q k i i k q k

q k k q k

α α α α

αα ααα α α α

σ σ

σ δ σ δ

δ
γ σ γ

γ σ

γ

′ ′′ ′

′ ′′ ′

−

−

= ∂ + − ∂

+ + −

∂ 
= ⊗ + ⊗ 

 
= ⊗

 + ⊗ +  

∑

∑

∑





 

where 

( ) ( ) ( ) ( )ˆ ˆ0 2 0q Y q Y q Y q Yδ = + + + −
 

In the fourth equality, we used the formula like 

( )

( ) ( )
0 0

0 0

ˆ ˆ0, 0,
,

ˆ ˆ0 0
, 1 , 0

1 1
, 1 , 0

14

a a
A A A A A A

A A

a a a a
A AA A

A A A A

a aa a
A A A A

A A A A

aa

B

B B

B B

α α

α α α α

α αα α

αα

δ δ

σ σ

σ δ

′ ′∗
′ ′ ′− +

′

′ ′ ′ ′∗ ∗
− +

= =

′ ′ ′ ′∗ ∗

= =

′∗
′

Γ −

= Γ − Γ

= Γ − − Γ −

=

∑

∑ ∑

∑ ∑
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Appendix C. The Derivation of (44)-(46) 

First, 

( )
( ) ( ) ( )

1 1 1 2
ˆ ˆ0, 0,

ˆ ˆe 0 0

e

x xx x x x
x

D
x

D

D s D s

x x xχ χ

χ χ

χ χ χ

− −
+ −

−

−

+

 + + − = −

∑

∑∫
∫  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

8

8

e 16

e

k

k

q k D k q k
k

q k D k q k

q k A k q k−
+

−

∑

∑
= −

∑∫
∫

 by (38) (39) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )

( ) ( )

8

8

1

1

e
16

e

16 tr 8

2 tr

q k D k q k

q k D k q k
k

k

k

q k A k q k

D k A k

D k A k

−
+

−

−

+

−
+

= −

 =   

 =  

∫∑
∫

∑

∑
 

( ) ( ) ( )

( ) ( ) ( ) ( ) }

*
2 3

0,1,2 1,2,3

* 1 1
3 1 0 0 2 0

2 tr

2 sin 2 2 cos 2 1

c c
k c

m a b
N k

i i k k

µ µ
µ

γ γ σ

γ σ γ

= =

− −

 = − ⊗ − ⊗ 
 

  × ⊗ + ⊗ +  

∑ ∑ ∑


 by (41) 

( ) ( ) ( )( ){ }
( )
( )

1 1
4 2 1 0 0 0

1 0 0 0

2 tr 2 sin 2 2 cos 2 1

sin 2 cos 2 1
8

k

k

b k a k
N k

b k a k
N k

− −= ⊗ − +

− +
=

∑

∑

 
 

Similarly, 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ){ }

( ) ( )
( )

1 1 1 2
ˆ ˆ0, 0,

*
2 3

0,1,2 1,2,3

1 * 1
0 2 0 3 1 0

1 1
4 2 0 0 1 0

0 0 1 0

2 tr

2 sin 2 2 cos 2 1

2 tr 2 sin 2 2 cos 2 1

sin 2 cos 2 1
8

x xx x x x
x

c c
k c

k

k

D s D s

m a b
N k

i k i k

a i k b i k
N k

a k b k
i

N k

µ µ
µ

γ γ σ

γ γ σ

− −
+ −

= =

− −

− −

−

 = − ⊗ − ⊗ 
 

  × ⊗ + ⊗ −   

= ⊗ − − −

+ −
= −

∑

∑ ∑ ∑

∑

∑





 

 

The inverse matrix of D in (20) can be calculated as follows 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
,

8

8
, , ,

8 8
1 1 1 2

8
, , ,

e

e

e
2

e

e e
2

e e

D

x x D

q Dq a a a a a a a a
A A A A

q Dq
a a

q Dq a a q Dq a a
a a a a

A A A Aq Dq
a a

x x
D

u Y d Y B u Y B d Y

q Y q Y q Y q Y
B

χ χ

χ χ

α α α α α α α α

α α

α α α α
α α α α

α α

χ χ−
−
′ −

′ ′ ′ ′ ′ ′ ′ ′− ∗ ∗
′ ′

−
′ ′

′ ′ ′ ′− −
′ ′ ′ ′∗ ∗
′ ′− −

′ ′

′
= −

   ′ ′Γ + Γ +   = −

 ′ ′
= − Γ Γ + Γ


∫
∫

∫∑
∫

∫ ∫∑
∫ 8q Dq∫
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( ) ( ) ( ) ( )

( ) ( )

( )

8 8
2 1 2 2

8 8

1 1
1; 1 2; 1

, , ,

1
1; 2

e e

e e

1
4

q Dq a a q Dq a a
a a a a

A A A Aq Dq q Dq

a a a a
A A A AY a Ya Y a Ya

a a

a a a a
A A A AY a Ya Y a

q Y q Y q Y q Y
B B B

D B D

B D B B D

α α α α
α α α α

α α α α
α α α α

α α

α α α α
α α

′ ′ ′ ′− −
′ ′ ′ ′∗ ∗
′ ′− −

′ ′ ′ ′∗ − ∗ −
′ ′′ ′ ′ ′ ′ ′

′ ′

′ ′ ′ ′∗ − ∗
′ ′′ ′ ′ ′ ′

′ ′
+ Γ +


= Γ Γ + Γ

+ Γ +

∫ ∫
∫ ∫

∑

( )
1

2; 2Yaα α
−

′
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Abstract 
Since 100 years or so, it has been usually accepted that the conformal group 
could be defined in an arbitrary dimension n as the group of transformations 
preserving a non-degenerate flat metric up to a nonzero invertible point de-
pending factor called “conformal factor”. However, when 3n ≥ , it is a finite 
dimensional Lie group of transformations with n translations, ( )1 2n n −  
rotations, 1 dilatation and n nonlinear transformations called elations by E. 
Cartan in 1922, that is a total of ( )( )1 2 2n n+ +  transformations. Because 
of the Michelson-Morley experiment, the conformal group of space-time with 
15 parameters is well known for the Minkowski metric and is the biggest 
group of invariance of the Minkowski constitutive law of electromagnetism 
(EM) in vacuum, even though the two sets of field and induction Maxwell 
equations are respectively invariant by any local diffeomorphism. As this last 
generic number is also well defined and becomes equal to 3 for 1n =  or 6 
for 2n = , the purpose of this paper is to use modern mathematical tools 
such as the Spencer operator on systems of OD or PD equations, both with its 
restriction to their symbols leading to the Spencer δ -cohomology, in order 
to provide a unique definition that could be valid for any 1n ≥ . The concept 
of an “involutive system” is crucial for such a new definition. 
 

Keywords 
Conformal Group, Lie Group, Lie Pseudogroup, Spencer Operator, Spencer 
Cohomology, Acyclicity, Involutive System, Maxwell Equations 

 

1. Introduction 

Using local notations, this paper is mainly concerned with the following two  

connected problems: Given a differential operator ξ η→


, how can we find  
compatibility conditions (CC), that is how can we construct a sequence 

1

ξ η ζ→ →


 such that 1 0=   and, among all such possible sequences, what  
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are the “best” ones, at least among the generating ones and when could we say 
that the sequence obtained is “exact” in a purely formal way, that is using only 
computer algebra for testing such a property? The order of an operator will be 
indicated under its arrow. 

The difficulty is that, physicists being more familiar with analysis, will say that 
a sequence is “locally exact” if one can find locally ξ  such that ξ η=  
whenever 1 0η = . However, they have in mind the property of the exterior de-
rivative d and Maxwell equations in electromagnetism (EM), that is to say, using 
standard notations, the (local) possibility to introduce the EM potential A such 
that dA F=  whenever the EM field F is a closed 2-form with 0dF = . 

The main purpose of this paper is to prove that the “things” may be much 
more delicate and that these problems are only rarely associated with exterior 
calculus. We use the notations that can be found at length in our many books 
([1]-[6]) or papers ([7] [8] [9] [10] [11]). 

Let ( )1, , nµ µ µ= 
 be a multi-index with length 1 nµ µ µ= + +

, class i if 

1 1 0, 0i iµ µ µ−= = = ≠  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = + 
. We set 

{ }|1 ,0k
qy y k m qµ µ= ≤ ≤ ≤ ≤  with k ky yµ =  when 0µ = . If E is a vector 

bundle over X with local coordinates ( ),i kx y  for 1, ,i n= 
 and 1, ,k m=  , 

we denote by ( )qJ E  the q-jet bundle of E with local coordinates simply de-
noted by ( ), qx y  and sections ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijx x x x xξ ξ ξ ξ→   trans-
forming like the section ( ) ( ) ( ) ( ) ( )( ): , , , ,k k k

q i ijj x x x x xξ ξ ξ ξ→ ∂ ∂   when 
ξ  is an arbitrary section of E. Then both ( )q qJ Eξ ∈  and ( ) ( )q qj J Eξ ∈  are 
over Eξ ∈  and the Spencer operator, which is defined on sections, just allows 
to distinguish them by introducing a kind of “difference” through the operator 

( ) ( ) ( )*
1 1 1 1: :q q q q qd J E T J E jξ ξ ξ+ + +→ ⊗ → −  with local components  
( ) ( ) ( ) ( )( ), ,k k k k

i i i j ijx x x xξ ξ ξ ξ∂ − ∂ −   and more generally  

( ) ( ) ( ) ( )1 1, i

k k k
q ii

d x x xµ µµ
ξ ξ ξ+ += ∂ − . In a symbolic way, when changes of coordi-

nates are not involved, it is sometimes useful to write down the components of d 
in the form i i id δ= ∂ − . The restriction of d to the kernel *

1qS T E+ ⊗  of the 
canonical projection ( ) ( )1

1:q
q q qJ E J Eπ +

+ →  is minus the Spencer map 
* * *

1:i
i q qdx S T E T S T Eδ δ += ∧ ⊗ → ⊗ ⊗  and 0δ δ = . The kernel of d is 

made by sections such that ( ) ( ) ( )1 1 2 1 1q q q qj j jξ ξ ξ ξ+ − += = = = . Finally, if 

( )q qR J E⊂  is a system of order q on E locally defined by linear equations 
( ) ( ), 0k

q kx y a x yτ τµ
µΦ ≡ = , the r-prolongation ( ) ( )q r r q r qR R J Rρ+ = =  

( ) ( )( )q r r qJ E J J E+ ⊂  is locally defined when 1r =  by the set of linear equ-
ations ( ), 0qx yτΦ = , ( ) ( ) ( )1 1, 0k k

i q k i ki
d x y a x y a x yτ τµ τµ

µ µ+ +Φ ≡ + ∂ =  and has 
symbol ( )*

q r q r q r q rg R S T E J E+ + + += ⊗ ⊂
 if one looks at the top order terms. 

If 1 1q qRξ + +∈  is over q qRξ ∈ , differentiating the identity ( ) ( ) 0k
ka x xτµ

µξ ≡  with 
respect to ix  and substracting the identity ( ) ( ) ( ) ( )1 0

i

k k
k i ka x x a x xτµ τµ

µ µξ ξ+ + ∂ ≡ , 
we obtain the identity ( ) ( ) ( )( )1 0

i

k k
k ia x x xτµ

µ µξ ξ +∂ − ≡  and thus the restriction 
*

1: q qd R T R+ → ⊗  ([1] [3] [4] [12]). 
DEFINITION 1.1: qg  is said to be s-acyclic if the purely algebraic δ

-cohomology ( )s
q r qH g+  of *s

q rT g
δ δ

+→∧ ⊗ →   are such that  
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( ) ( )1 0, 0s
q r q q r qH g H g r+ += = = ∀ ≥  and involutive if it is n-acyclic. Also qR  

is said to be involutive if it is formally integrable (FI), that is when the restriction 
1

1:q r
q r q r q rR Rπ + +
+ + + +→  is an epimorphism 0r∀ ≥  or, equivalently, when all the 

equations of order q r+  are obtained by r prolongations only, 0r∀ ≥  and 

qg  is involutive. In that case, ( )1 1q qR J R+ ⊂  is a canonical equivalent formally 
integrable first order involutive system on qR  with no zero order equations, 
called the Spencer form. 

EXAMPLE 1.2: (Classical Killing operator) 
Considering the classical Killing operator ( ) *

2 0: S T Fξ ξ ω→ = Ω∈ =   

where ( )ξ  is the Lie derivative with respect to ξ  and *
2S Tω∈  is a non-

degenerate metric with ( ) 0det ω ≠ . Accordingly, it is a lie operator with 

[ ]0, 0 , 0ξ η ξ η= = ⇒ =    and we denote simply by TΘ ⊂  the set of so-
lutions with [ ],Θ Θ ⊂ Θ . Now, as we have explained many times, the main 
problem is to describe the CC of 0Fξ = Ω∈  in the form 1 0Ω =  by intro-
ducing the so-called Riemann operator 1 0 1: F F→ . We advise the reader to 
follow closely the next lines and to imagine why it will not be possible to repeat 
them for studying the conformal Killing operator. Introducing the well known 
Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj ω ω ω ω γ= ∂ 

 by defining the Christoffel  

symbols ( )1
2

k kr
ij i rj j ir r ijγ ω ω ω ω= ∂ + ∂ − ∂  where ( )rsω  is the inverse matrix of 

( )ijω  and the formal Lie derivative of gometric objects, we get the second order 
system ( )2 2R J T⊂ : 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

1

2

0

0

r r r
ij rj i ir j r ijij

kk k k r k r r k r k
ij ij rj i ir j ij r r ijij

L x x x

L x x x x

ξ ω ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ = + + ∂ =


Γ ≡ = + + − + ∂ =

 

with sections ( ) ( ) ( )( )2 : , ,k k k
i ijx x x xξ ξ ξ ξ→  transforming like  

( ) ( ) ( ) ( )( )2 : , ,k k k
i ijj x x x xξ ξ ξ ξ→ ∂ ∂ . The system ( )1 1R J T⊂  has a symbol 

2 * *
1g T T T∧ ⊂ ⊗

 depending only on ω  with ( ) ( )1 1 2dim g n n= −  and is 
finite type because its first prolongation is 2 0g = . It cannot be thus involutive 
and we need to use one additional prolongation. Indeed, using one of the main 
results to be found in ([4] [5]), we know that, when 1R  is FI, then the CC of 
  are of order 1s +  where s is the number of prolongations needed in order 
to get a 2-acyclic symbol, that is 1s =  in the present situation, a result that 
should lead to CC of order 2 if 1R  were FI. However, it is known that 2R  is FI, 
thus involutive, if and only if ω  has constant Riemannian curvature, a result 
first found by L.P. Eisenhart in 1926 ([13]) which is only a particular example of 
the Vessiot structure equations discovered by E. Vessiot in 1904 ([14]), though 
in a quite different setting (See [4] and [15] for an explicit modern proof). Such a 
necessary condition for constructing an exact differential sequence could not 
have been used by any follower because the “Spencer machinery” has only been 
known after 1970 ([12]). Otherwise, if the metric does not satisfy this condition, 
CC may exist but have no link with the Riemann tensor ([10]). We may define 
the vector bundle 1F  in the short exact sequence made by the top row of the 
following commutative diagram: 
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* *
3 2 0 1

* * * *
2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F F

T S T T T T F

T g T T T T F

T T T T

↓ ↓

→ ⊗ → ⊗ → →

↓ ↓

→ ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

where the vertical δ -sequences are exact but the first, or, using a snake type di-
agonal chase, from the short exact sequence of vector bundles: 

2 * 3 *
1 10 0F T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

This result is first leading to the long exact sequence of vector bundles: 

( ) ( )3 3 2 0 10 0R J T J F F→ → → → →  

and to the Riemann operator ( )
2

1 0 2 0 1:
j

F J F F→ → . As 2 0g = , we also dis-

cover that 1F  is just the Spencer δ -cohomology ( )2
1H g  at 2 *

1T g∧ ⊗  
along the previous short exact sequence. 

We get the striking formulas where the + signs are replaced by − signs: 

( ) ( ) ( )( )
( ) ( )( )
( )

22 2
1

22 2

2 2

1 4 1 2 6

1 4 1 2 6

1 12

dim F n n n n n

n n n n n

n n

= + − + +

= − − − −

= −
 

This result, first found as early as in 1978 ([9]), clearly exhibit without indices 
the two well known algebraic properties of the Riemann tensor as a section of 
the tensor bundle 2 * *T T T∧ ⊗ ⊗ . 

It thus remains to exhibit the Bianchi operator exactly as we did for the Rie-
mann operator, with the same historical comments already provided. However, 
now we know that 1R  is formally integrable (otherwise nothing could be 
achieved and we should start with a smaller system [1] [4] [6]), the construction 
of the linearized Janet-type differential sequence as a strictly exact differential 
sequence but not an involutive differential sequence because the system 1R  and 
thus the first order operator   are formally integrable though not involutive as 

1g  is finite type with 2 0g =  but not involutive. Doing one more prolongation  

only, we obtain the first order Bianchi operator ( )
1

2 1 2 1 2:
j

F J F F→ →  as  

before, defining the vector bundle 2F  in the long exact sequence made by the 
top row of the following commutative diagram: 
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* * *
4 3 0 1 2

* * * * *
3 2 0 1

2 * * 2 * *
2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F T F F

T S T T T S T F T F

T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ → →

↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓



 
where the vertical δ -sequences are exact but the first, or, using a snake type di-
agonal chase, from the short exact sequence: 

3 * 4 *
2 10 0F T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

showing that ( )3
2 1F H g=  ([8] [9]). We have in particular for 4n ≥ : 

( ) ( ) ( ) ( )( )( )
( )( )( ) ( )
( )( )( )

( )( )

22 2
2

2 3 2
1

2

2 2

1 2 12 1 2 3 24

1 2 3 24 12

1 2 3 24

1 2 24

dim F n n n n n n n

n n n n n n

n n n n

n n n

= − − − − − −

= + + + +

− + + +

= − −

 

and thus ( ) ( ) ( ) ( )2 4 6 1 4 16 15 2 24 20dim F = × − × = × × =  when 4n = . This 
result also exhibits all the properties of the Bianchi identities as a section of the 
tensor bundle 3 * *T T T∧ ⊗ ⊗ . In arbitrary dimension, we finally obtain the dif-
ferential sequence, which is not a Janet sequence: 

0 1 21 2 1
0

Killing Riemann Bianchi
T F F F→Θ→ → → →

 
EXAMPLE 1.3: (Conformal Killing operator) 
At first sight, it seems that similar methods could work in order to study the 

conformal Killing operator and, more generally, all conformal concepts will be de-
scribed with a “hat”, in order to provide the strictly exact differential sequence: 

1 2ˆ ˆˆ

0 1 2
ˆ ˆ ˆ ˆ0 T F F F→Θ→ → → →

 

 
where 1̂  is the Weyl operator with generating CC 2̂ . It is only in 2016 (see 
[9] and [15] for more details) that we have been able to recover all these opera-
tors and confirm with computer algebra that the orders of the operators involved 
highly depend on the dimension as follows: 
• 3n = : 

1 3 1
3 5 5 3 0→ → → →  

• 4n = : 
1 2 2 1

4 9 10 9 4 0→ → → → →  

• 5n ≥ : 
1 2 1 2 1

5 14 35 35 14 5 0→ → → → → →  
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These results are bringing the need to revisit entirely the mathematical foun-
dations of conformal geometry, in particular when 3n =  because the Weyl 
type operator is of third order and when 4n =  because the Bianchi type operator 
is second order in this case contrary to the situation met when 5n = . However, 
surprisingly, these results have never been acknowledged and the reader will not 
discover a single reference on such questions in the mathematical literature. 

The reason is probably because these results are based on the following tech-
nical lemma that could not be even imagined without a deep knowledge and 
practice of the Spencer δ -cohomology (see [16] for details): 

LEMMA 1.4: The symbol 1ĝ  defined by the linear equations: 

( ) ( ) ( )1ˆ 0
2

r r r
ij rj i ir j ij rx x xω ξ ω ξ ω ξΩ ≡ + − =

 
does not depend on any conformal factor, is finite type with 3ˆ 0, 3g n= ∀ ≥  and 
is surprisingly such that 2ĝ  is 2-acyclic for 4n ≥  or even 3-acyclic when 

5n ≥ . 
REMARK 1.5: In order to emphasize the reason for using Lie equations, we 

now provide the explicit form of the n infinitesimal relations with 1 , ,r s t n≤ ≤ , 
whenever 3n ≥ : 

[ ]21 , , 0
2

r t r r t
s s r st r r s st s tx x x n xθ δ ω θ ω θ θ= − ∂ + ∂ ⇒ ∂ = =

 
where the underlying metric is used for the scalar product 2x  involved. It is 
easy to check that *

2 2S T Tξ ∈ ⊗  defined by ( ) ( ) ( )k s k
ij ij sx x xξ λ θ= ∂  belongs 

to 2ĝ  with s
i siA ω λ=  in the following formula where δ  is the standard 

Kronecker symbol and 2 2R̂ξ ∈ : 

( )( )2
kk k k r k r r k r k

ij ij rj i ir j ij r r ijij

k k kr
i j j i ij r

L

A A A

ξ γ ξ γ ξ γ ξ γ ξ ξ γ

δ δ ω ω

Γ ≡ = + + − + ∂

= + −
 

We thus understand how important it is to use “sections” rather than “solutions”. 
Accordingly, a possible unification can be achieved through the “fundamental 

diagram I” relating together the Spencer sequence and the Janet sequence as fol-
lows in arbitrary dimension n for any involutive system ( )q qR J E⊆  because 
these are the only existing canonical sequences ([1]): 

( ) ( ) ( ) ( )

11 2

11 2

11 2

0 1 1

0 1 1

0 1 1

0 1 1

0 0 0 0

0 0

0 0

0 0

0 0 0 0

q n n

q n n

n n

j D DD D

n n

j D DD D

n n

n n

n n

C C C C

E C E C E C E C E

E F F F F

−

−

−

−

−

−

−

↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓

→ → → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → → →
↓ ↓ ↓ ↓
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where ( ) ( )0 0q qC R J E C E= ⊂ =  and ( ) ( )( ) ( )r r rdim F dim C E dim C= − . In-
deed, we have ( ) ( ) ( )*r

r qdim C dim T dim R= ∧ ×  for finite type involutive sys-
tems and we therefore notice that the crucial point is to deal with involutive sys-
tems. In the group framework, we have E T=  and, as we are dealing with finite 
type systems, it is thus sufficient to replace qj  and ( )q qR J E⊂  by 2j  and 

( )2 2R J T⊂  with 2 0g =  in the classical situation or by 3j  and ( )3 3R̂ J T⊂  
with 3ˆ 0g =  in the conformal situation, on the condition to be able to treat the 
specific cases 1n =  and 2n = . 

Finally, as a different way to look at these questions, if K be a differential field 
containing  , we may introduce the ring [ ] [ ]1, , nD K d K d d= = 

 of diffe-
rential operators with coefficients in K and consider a linear differential operator 
  with coefficients in K. If 1  generates the CC of  , we have of course 

1 0=  . Taking the respective (formal) adjoint operators, we obtain therefore 

( ) ( )1 0ad ad =   but ( )ad   may not generate the CC of ( )1ad   and so 
on in any differential sequence where each operator generates the CC of the 
preceding one. 

DEFINITION 1.6: If M is the differential module over D or simply D-module 
defined by  , we set ( ) ( )0 ,D Dext M hom M D= . As for the other extension 
modules, they have been created in order to “measure” the previous gaps ([5]). 
In particular, we say that ( )1 0Dext M =  if ( )ad   generates the CC of 

( )1ad  , that ( )2 0Dext M =  if ( )1ad   generates the CC of ( )2ad   and so 
on. Moreover, if   is of finite type, then ( )ad   is surjective with 

( )0 0Dext M = . The simplest example is that of classical space geometry with 
3n =  and ( )ad grad div= − . Similar definitions are also valid for the Janet and 

Spencer sequences. Also, vanishing of the first extension module amounts to the 
existence of a local parametrization by potential-like functions ([7]). 

According to a (difficult) theorem of (differential) homological algebra, the 
extension modules only depend on M and not on the previous differential se-
quences used ([17] [18]. They are used in agebraic geometry and have even been 
introduced in engineering sciences after 1990 (control theory) ([5] [6]). Howev-
er, though the extension modules are the only intrinsic objects that can be asso-
ciated with a differential module, they have surprisingly never been introduced 
in mathematical physics. The main problem is that a control system is controlla-
ble if and only if it is parametrizable by potentials while the systems involved can 
be parametrized in all classical physics (Cauchy or Maxwell equations are well 
known examples in [7]) apart from... Einstein equations ([8]). As for the tools 
involved, we let the reader compare ([2] [3]) to ([19] [20]). 

After presenting two motivating examples in Section 2, such a procedure will 
be achieved in Section 3 in such a way that the Spencer sequences involved, be-
ing isomorphic to tensor products of the Poincaré sequence for the exterior de-
rivative by finite dimensional Lie algebras, will have therefore vanishing zero, 
first and second extension modules when 3n ≥  ([4] [11]). For all results con-
cerning differential modules, we refer the reader to the (difficult) references ([5] 
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[21] [22] [23]). 

2. Two Motivating Examples 

EXAMPLE 2.1 
With 1, 2, 2,m n q K= = = =  , let us consider the inhomogeneous second 

order operator: 

22 12,Py d y u Qy d y y v≡ = ≡ − =  
We obtain at once through crossed derivatives: 

11 12 0y d u d v v= − − ⇒ Θ =  
and, by substituting, two fourth order CC for ( ),u v , namely: 

1122 1222 22
12 11

1112 11 1122

0
0

0
U d u d v d v u

W d V V d U
V d u d u d v
≡ − − − = 

⇒ ≡ + − = ≡ − − =   
However, the commutation relation P Q Q P≡   provides a single CC for 

( ),u v , namely: 

12 22 0C d u u d v≡ − − =  

and we check at once 12 11,U d C C V d C= + =  while 22 12C d V d U U= − + , hat is: 

( ) ( )0, 0 0 .U V C= = ⇔ =  
Using corresponding notations, let us compare the two following differential 

sequences: 

( ) ( )

( )

1 2

1

2 4 2

2 2

0 , , 0 (1)

0 , 0 (2)

y u v U V W

y u v C
′

→ Θ→ → → → →

→Θ→ → → →

 



 

Though the second order system considered is surely not FI because the 4 pa-
rametric jets of 2R  are ( )1 2 11, , ,y y y y  and the 4 (again !) parametric jets of 3R  
are ( )1 11 111, , ,y y y y  but the 4 (again !) parametric jets of 4R  are  
( )1 11 111 1111, , ,y y y y . More generally, we let the reader prove by induction that 

( )2 4, 0rdim R r+ = ∀ ≥ . The formal r-prolongation of (2), namely: 

( ) ( ) ( )4 4 20 , 0r r r rR J y J u v J C+ + +→ → → → →  

is exact because ( )( ) ( )( ) ( )( )4 5 6 2 3 4 1 2 2 0r r r r r r− + + + + + − + + = , even 
though the corresponding symbol sequence: 

( ) ( ) ( )* * *
4 4 20 , 0r r r rg S T y S T u v S T C+ + +→ → → → →  

is not exact because ( ) ( )( ) ( )( ) ( ) ( )2 3 1 5 1 5 4 1 0r r r r r+ − + − + − = + − + = ≠  
because the system considered is not formally integrable. 

On the contrary, the prolongations of (1) are not exact on the jet level. Indeed, 
the long sequence: 

( ) ( ) ( )8 8 6 20 , , 0R J y J u v J U V W→ → → → → →  
is not exact because we have 4 45 56 12 1 4 0− + − + = ≠ . 
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Now, considering the ring [ ]1 2,D d d=   of differential operators with coef-
ficients in the trivial differential field  , we have the “exact” sequences of dif-
ferential modules where 0M = : 

2 2 *

2 *

0 0 (1 )

0 0 (2 )

p

p

D D D D M

D D D M

→ → → → → →

→ → → → →  

where p is the canonical residual projection. However, and this is a quite delicate 
point rarely known even by mathematicians, a fortiori by physicists, they are not 
“strictly” exact even if the Euler-Poincaré characteristics both vanish because 
1 2 2 1 0− + − =  and 12 1 0+ =  (see [15] for definitions and more details). 
Roughly speaking, it follows that the “best” differential sequences are obtained 
by using only formally integrable operators/systems in such a way that sequences 
on the jet level can be studied through their symbol sequences, the “canonical” 
ones by using exclusively involutive operators/systems in such a way that what 
happens with   also happens with 1  and so on. It follows that the se-
quences (2) or (2*) are “better” than (1) or (1*) because they provide more in-
formation on the generating CC. 

However, the given system is not FI and it should be “better” to use another 
system providing more information. In particular, if we start wth a system 

( )q qR J E⊂  and set ( ) ( ) ( )q r r q r q q rR R J R J Eρ+ += =  , it is known that (in 
general) one can find two integers , 0r s ≥  such that the system  

( ) ( )s q r s
q r q r q rR Rπ + +
+ + +=  is formally integrable and even involutive with the same 

solutions ([1] [5] [6]). When all the operators are FI, the sequence is said to be 
strictly exact ([24]). 

In the present situation, it should be “better” to replace 2R  by ( )4
2 0R =  be-

cause ( )2
2R  is adding 0y =  while ( )3

2R  is adding 1 20, 0y y= =  and ( )4
2R  is 

adding 11 0y = . It follows that the Janet sequence for the injective trivially in-
volutive operator 2j  is providing even more information, along with the fact 
that the Spencer bundles vanish in the “fundamental diagram I” ([1] [4] [5]). 

We let the reader check that all the extension modules vanish because 0M =  
and to compare with the totally different involutive system defined by  

22 120, 0y y= =  with ( )00 0M ext M≠ ⇒ = , ( )1 0ext M ≠ , ( )2 0ext M ≠ . 
EXAMPLE 2.2 

• FIRST STEP With 3, 1, 2n m q= = = , let us consider the second order linear 
system ( )2 2R J E⊂  introduced by F.S. Macaulay in his 1916 book ([25]) 
(See also [6] for more details): 

3 2 1
33 23 11 220, 0, 0y y y yΦ ≡ = Φ ≡ − = Φ ≡ =  

Using muli-indices, we may introduce the operators 33 23 11 22, ,R d Q d d P d= = − = . 
Taking into account the 3 commutation relations [ ] [ ] [ ], 0, , 0, , 0Q R R P P Q= = =  
and the single Jacobi identity 

[ ] [ ] [ ] ( ), , , , , , 0, , ,P Q R Q R P R P Q P Q R     + + = ∀      , we obtain at once the fol-

lowing locally and strictly exact sequence where the order of each operator is 
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under its own arrow: 
1 2

2 2 2
0 1 3 3 1 0→Θ→ → → → →

 

 
However, the first operator   involved cannot be involutive because it is fi-

nite type, that is 0q rg + =  for a certain integer 0r ≥  as we must have an exact 
sequence ( )1 *

10 0n
q rT g−
+ −→ ∧ ⊗ →  and so on. The first prolongation is ob-

tained by adding the 9 PD equations: 

333 233 223 222 133

123 111 122 113 112

0, 0, 0, 0, 0,
0, 0, 0, 0

y y y y y
y y y y y

= = = = =

− = = = =  
and the second prolongation is obtained by adding the 15 PD equations 0ijkly = . 
We obtain therefore ( )2 6 3 3dim g = − = , ( )3 1dim g = , 4 = 0g . Nevertheless, 
the interesting fact is that 3g  is 2-acyclic without being 3-acycic and thus invo-
lutive. Indeed, we have the δ -sequences: 

2 * 3 * 3 *
3 2 30 0, 0 0T g T g T g

δ
→ ∧ ⊗ →∧ ⊗ → → ∧ ⊗ →  

Using the letter v for the symbol coordinates, the mapping δ  on the left is 
defined by: 

111,23 112,31 113,12 11,123

121,23 122,31 123,12 12,123

131,23 132,31 133,12 13,123

,
,

v v v v
v v v v
v v v v

+ + =

+ + =

+ + =  
that is to say 111,23 11,23v v= , 111,12 12,123v v= , 111,31 13,123v v= . The corresponding 
δ -map is thus injective and surjective, that is 3g  is 2-acyclic but cannot be also 
3-acyclic because of the inequality, ( ) ( )3 *

3 3 1 0dim T g dim g∧ ⊗ = = ≠ . The 
above sequence is thus very far from being a Janet sequence and we cannot 
compare it with the Spencer sequence. 
• SECOND STEP In the example of Macaulay, we have at once ( )2 7dim R =  

with the 7 parametric jets ( )1 2 3 11 12 13, , , , , ,y y y y y y y  and thus  
( ) ( ) 3

4 3 7 1 8 2dim R dim R= = + = =  with the only additional third order pa-
rametric jet ( 111y ). We notice that, when 2n = , the new system 2R  defined 
by 22 0y = , 12 11 0y y− =  is also finite type with 0ijry =  and thus 

( ) ( ) 2
3 2 4 2dim R dim R= = =  and we invite the reader to treat directly such 

an elementary example as an exercise and to compare (see [25] for this strik-
ing result on the powers of 2). Therefore, instead of starting with the previous 
second order operator 1  defined by 2R , we may now start afresh with the 
new third order operator 1  defined by 3R  which is not involutive again. 
We let the reader check as a tricky exercise or using computer algebra that 
one may obtain “necessarily” the following finite length differential sequence 
which is far from being a Janet sequence but for other reasons. 

3 51 2 4

0 1 2 3 4 53 1 2 1 1 1
0 0E F F F F F F→Θ→ → → → → → → →

   

 
3 51 2 4

3 1 2 1 1 1
0 1 12 21 46 72 48 12 0→Θ→ → → → → → → →
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and we check that 1 12 21 46 72 48 12 0− + − + − + = . As 3g  is 2-acyclic, the 
third order operator   has a CC operator 1  of order 1 having a CC opera-
tor 2  of order 2 which is involutive, totally by chance, and we end with the 
Janet sequence for 2 . Such a situation is the only one we have met during the 
last... 40 years !. (see [15], p 119-126 for more details). 
• THIRD STEP We may finally start with the new operator   defined by the 

involutive system 4R  with symbol 4 0g = . The following “fundamental di-
agram I” only depends on its left commutative square and 0 4C R= . Each 
horizontal sequence is formally exact and can be constructed step by step. 
The interest is that we have *

0
r

rC T C= ∧ ⊗  because 4 0g = . It is neverthe-
less, even today, not so well known that the three differential sequences ap-
pearing in this diagram can be constructed “step by step” or “as a whole” ([1] 
[4] [5] [6]). Accordingly, the reader not familiar with the formal theory of 
systems of PD equations may find difficult to deal with the following defini-
tions of the Spencer bundles ( )r rC C E⊂  and Janet bundles rF  for an in-
volutive system ( )q qR J E⊂  of order q over E: 

( )
( ) ( ) ( )

( ) ( )( )

* 1 *
1

* 1 * *
1

* * 1 * *
1

r r
r q q

r r
r q q

r r r
r q q q

C T R T g

C E T J E T S T E

F T J E T R T S T E

δ

δ

δ

−
+

−
+

−
+

= ∧ ⊗ ∧ ⊗

= ∧ ⊗ ∧ ⊗ ⊗

= ∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗
 

For this reason, we prefer to use successive compatibility conditions, starting 
from the commutative square 4D j= Φ   on the left of the next diagram. The 
Janet tabular of the Macaulay system and its prolongations up to order 4 can be 
decomposed as follows ([26]): 

1 PDE order 4 class3 1 2 3
4 PDE order 4 class 2 1 2
10 PDE order 4 class1 1
9 PDE order 3
3 PDE order 2


 • • •
 • • •

• • •  

The total number of different single “dots” provides the 4 20 27 9 60+ + + =  
CC 1 . 

The total number of different couples of “dots” provides the 10 27 9 46+ + =  
CC 2 . 

The total number of different triples of “dots” provides the 9 3 12+ =  CC 

3 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the Spencer bundles in the Spencer se-

quence by introducing the new 8 parametric jet indeterminates: 
1 2 3 4 5 6 7 8

1 2 3 11 12 13 111, , , , , , ,z y z y z y z y z y z y z y z y= = = = = = = =  

in the first order system defined by 24 PD equations (8 of class 3 + 8 of class 2 + 
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8 of class 1): 
1 2 1 3 1 4 5 8
1 2 3 1
6 8 7 8
3 3 3

0, 0, 0, , 0, ,

0, , 0, , 0

z z z z z z z z

z z z z

− = − = − = − =

− = = =

 

   

( ) ( ) ( ) ( )

34 1 2

34 1 2

31 2

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 0 0 0

0 0

0 0

0 0

0 0 0 0

Dj D D

Dj D D

D

C C C C

E C E C E C E C E

E F F F F

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓



 

 

34 1 2

34 1 2

31 2

0 1 2 3

0 0 0 0

0 8 24 24 8 0

0 1 35 84 70 20 0

0 1 27 60 46 12 0

0 0 0 0

Dj D D

Dj D D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓



 

 
The morphisms 1 2 3, ,Φ Φ Φ  in the vertical short exact sequences are induc-

tively induced from the morphism 0Φ = Φ  in the first short exact vertical se-
quence on the left. The central horizontal sequence can be called “hybrid se-
quence” because it is at the same time a Spencer sequence for the first order sys-
tem ( ) ( )( )5 1 4J E J J E⊂  over ( )4J E  and a Janet sequence for the involutive 
injective operator ( )4 4:j E J E→ . It can be constructed step by step, starting 
with the short exact sequence: 

( ) ( )( ) ( )5 1 4 10 0J E J J E C E→ → → →
 

0 56 140 84 0→ → → →  
In actual practice, as the system ( )2 2R J E⊂  is homogeneous, it is thus formally 

integrable and finite type because the system ( ) ( ) ( )4 2 2 4R R ker J Eρ= = Φ ⊂  is 
trivially involutive with a symbol 4 0g = . Accordingly, 4j= Φ   is an invo-
lutive operator of order 4 and we obtain a finite length Janet sequence which is 
formally exact both on the jet level and on the symbol level, that can only con-
tain the successive first order operators 1 2 3, ,   . For example, one can deter-
mine 2 2 1 1 2:j F F= Ψ →  just by counting the dimensions, either in the long 
exact jet sequence: 
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( ) ( ) ( )
2

6 6 2 0 1 1 20 0R J E J F J F F
Ψ

→ → → → → →  
( )20 8 84 270 240 0dim F→ → → → → →  

and obtain ( )2 8 84 270 240 46dim F = − + − + = . 
However, one can also use the fact that ( ) 1dim E =  and 4 60 0g g= ⇒ =  

while introducing the restriction ( )2σ Ψ  of 2Ψ  to ( )*
1 1 1T F J F⊗ ⊂  in the 

long exact symbol sequence: 
( )2

* * *
6 2 0 1 20 0S T S T F T F F

σ Ψ

→ → ⊗ → ⊗ → →  
( )20 28 162 180 0dim F→ → → → →  

in order to obtain again ( )2 28 162 180 46dim F = − + = . 
We wish good luck to anybody using Computer Algebra because one should 

have to deal with a matrix 540 600×  in order to describe the prolongation 
morphism ( ) ( )3 0 2 1J F J F→ . Nevertheless, in order to give a hint, we recall the 
vanishing of the Euler-Poincaré characteristic as we can check successively: 

8 24 24 8 0, 1 35 84 70 20 0, 1 27 60 46 12 0− + − = − + − + − = − + − + − =  

In the case of finite type systems, the usefulness of the Spencer sequence is so 
evident, like on such an example, that it needs no comment. 

We invite the reader to treat separately but similarly the system: 

33 11 23 22 110, 0, 0y y y y y− = = − =  

and to compare the various extension modules. 

3. Solution 

According to the previous sections, it only remains to consider the two cases 
1n =  and 2n = . For simplicity, we shall only consider the situation of the Euc-

lidean metric and the corresponding linear systems. We let the reader treat by 
himself the nonlinear counterparts. 
• CASE 1n =  

With 0ω ≠ , we may consider a section ( ) ( ) ( )( )3 , , ,x xx xxxx x xξ ξ ξ ξ ξ=  and 
introduce the classical Killing system ( )1 1R J T⊂  by means of the formal Lie 
derivative: 

( )1 2 0x xL ξ ω ωξ ξ ωΩ ≡ ≡ + ∂ =  

Similarly, with the Christoffel symbol 1
2 xγ ω
ω

= ∂ , we may consider: 

( )2 0xx x xL ξ γ ξ γξ ξ γΓ ≡ ≡ + + ∂ =  

The conformal Killing system can be defined with a conformal factor as: 

( ) ( )1 2 2x xL A xξ ω ωξ ξ ω ωΩ ≡ ≡ + ∂ =  
and its first prolongation becomes: 

( ) ( )2 xx x x xL A xξ γ ξ γξ ξ γΓ ≡ ≡ + + ∂ =  
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The elimination of ( )A x  or ( )xA x  does not provide any OD equation of order 
1 or 2. Moreover, we let the reader check that ( ) ( ) ( )2 2 0x xj A x A xξ ξ= ⇒ ∂ − =  
as a way to understand the part plaid by the Spencer operator and the reason for 
introducing ( )2A x . With more details, dividing the Killing system by 2ω , we 
get ( )x A xξ γξ+ = . Differentiating this OD equation, we get: 

( )x x x x x A xξ γ ξ γξ∂ + ∂ + ∂ = ∂  
and we just need to substract the OD equation ( )xA xΓ =  in order to get: 

( ) ( ) ( ) ( )x x xx x x x xA x A xξ ξ γ ξ ξ∂ − + ∂ − = ∂ −  
In order to escape from the previous situation while having a vanishing sym-

bol 3 0g = , we may consider the new unusual prolongation: 

( )2 0xxx xx x x xxξ γξ γ ξ ξ γ+ + ∂ + ∂ =  
and substract the second order OD equation 0Γ =  multiplied by γ  while in-

troducing the new geometric object 21
2xν γ γ= ∂ −  in order to obtain the third 

order infinitesimal Lie equation: 

( )3 2 0xxx x xL ξ ν ξ νξ ξ ν≡ + + ∂ =  
The nonlinear framework, not known today because the work of Vessiot is 

still not acknowledged, explains the successive inclusions ( ) ( )1 1,j jγ ω ν γ∈ ∈ . 
Indeed, if we consider the translation group ( ),y x a a cst= + =  and the bigger 
isometry group ( ), ,y x a y x a a cst= + = − + = , the inclusion of groups of the 
real line: 

translation group isometry group affine group projective group⊂ ⊂ ⊂  

with the respective finite Lie equations in Lie form with the jet coordinates 
( ), , , ,x xx xxxx y y y y : 

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

2

2
2

, , ,

3
2

xx
x x x

x

xxx xx
x

x x

y
y y x y y x y y x

y

y y
y y x

y y

α α ω ω γ γ

ν ν

= = + =

 
− + = 

   

where we recognize the Schwarzian third order differential invariant of the pro-
jective group. 

Of course, we have 1 1 0 0α ω γ ν= ⇒ = ⇒ = ⇒ =  and the respective linea-
rizations: 

2
31 0, 0 0, 0 0
2

xxx xx
x x xx xx xxx

x x

y y
y y

y y
ξ ξ ξ

 
= ⇒ = = ⇒ = − = ⇒ = 

   

The Janet tabular of the conformal system order 3 can be decomposed as fol-
lows: 

{1 PDE order 3 class1 1
 

The total number of different single “dots” provides the 0 CC 1 . 
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We obtain therefore the fiber dimensions of the successive Janet bundles in 
the Janet sequence. 

The same procedure can be applied to the other canonical differential se-
quences. 

When 1n = , one has 3 parameters (1 translation + 1 dilatation + 1 elation) 
and we get the following “fundamental diagram I “ only depending on the left 
commutative square: 

3 1

3 1

0 0

0 3 3 0

0 1 4 3 0

0 1 1 0

0

j D

j D

Spencer

Janet

↓ ↓

→ Θ → → →
↓

→ → → →
↓Φ ↓

→ Θ → → →
↓







 

In this diagram, the operator  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 : , , ,x x xx xx xxx xxxj x x x x x x x x xξ ξ ξ ξ ξ ξ ξ ξ ξ→ = ∂ = ∂ = ∂ =  

has compatibility conditions 1 3 0D ξ =  induced by d and the space of solutions 
Θ  of ( ) ( )3 : xxxD j x xξ ξ= Φ → ∂

 is generated over the constants by the 
three infinitesimal generators: 

1 xθ = ∂  (translation), 2 xxθ = ∂  (dilatation), 2
3

1
2 xxθ = ∂  (elation) 

of the action and coincides with the projective group of the real line. 
• CASE 2n =  

The classical approach is to consider the infinitesimal conformal Killing sys-
tem for 2n =  and eliminate the infinitesimal conformal factor ( )2A x  as fol-
lows by introducing the formal and the effective Lie derivatives such that 

( )( ) ( )1L j ξ ξ=  : 

( ) ( ) ( ) ( )1 1 2 2
1 1 2 1 2

2 1 1 2
2 1 2 1

2 , 0,

0, 0

L A x A x A xξ ω ω ξ ξ ξ ξ

ξ ξ ξ ξ

Ω ≡ = ⇒ = + = =

⇒ − = + =  

that is to say the elimination of A is just producing locally the two well known 
Cauchy-Riemann equations allowing to define infinitesimal complex transforma-
tions of the plane, that is to say an infinite dimensional Lie pseudogroup which is 
by no way providing a finite dimensional Lie group. As such an operator has no 
compatibility condition (CC), we obtain by one prolongation 2 2 4× =  second 
order equations but another prolongation does not provide a zero symbol at or-
der 3 and it is just such a delicate step that we have to overcome by adding 
2 4 8× =  homogeneous third order PD equations. The only possibility is to 
consider the following system and to prove that it is defining a system of infini-
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tesimal Lie equations leading to ( ) ( )2 1 2 3 4 2 4 8 20 14 6× + + + − + + = − =  infi-
nitesimal generators. 

2 1 1 2 2 1 1 2
22 12 22 12 12 11 12 11
2 1 1 2
2 1 2 1

0

0, 0, 0, 0

0, 0

k
ijrξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

 =
 − = + = − = + =
 − = + =  

where the 4 second order PD equations can also be rewritten with 11 22d d∆ = +  
as: 

2 2 2
22 11

1 1 1
22 11

2 1
12 11
1 2
12 11

0,

0,

0,

0

ξ ξ ξ

ξ ξ ξ

ξ ξ

ξ ξ

∆ ≡ + =

∆ ≡ + =

− =

+ =

 

The general solution of the 8 third order PD equations can be written with 12 
arbitrary constant parameters as: 

( ) ( )2 21 1 1 2 2 1 21 1
2 2

a x bx x c x dx ex fξ = + + + + +
 

( ) ( )2 22 1 1 2 2 1 21 1
2 2

a x bx x c x dx ex gξ = + + + + +
 

Taking into account the first and second order PD equations, we must have 
the relations: 

, , 0, 0, , 0b a c b a b b c e d d e= = + = + = = + =  

and the final number of parameters is indeed reduced to 2 1 1 2 6+ + + =  arbi-
trary parameters. Collecting the above results, we obtain the 6 infinitesimal ge-
nerators: 

( ) ( )( )2 21 2 1 2
1 2

1
2

a x x x x→ − ∂ + ∂
 

( ) ( )( )2 21 2 2 1
1 2

1
2

b x x x x→ ∂ + − ∂
 

1 2 1 2
2 1 1 2,e x x d x x− → ∂ − ∂ → ∂ + ∂  

1 2,f g→∂ → ∂  

We find back the two infinitesimal generators of the elations, namely: 

( ) ( )( ) ( )

( ) ( )( )

2 21 2 1 1 2
1 1 1 2

2 21 2 1 2
1 2

1
2

1
2

x x x x x

x x x x

θ = − + ∂ + ∂ + ∂

= − ∂ + ∂
 

and 2θ  obtained by exchanging 1x  with 2x . 
Contrary to the situation met when 3n ≥  where one starts with a groupoid 

of order 1 and obtains groupoids of order 2 or 3 after one or two prolongations, 
in the present situation, we have to check directly the commutation relations for 
the six infinitesimal generators already found, namely: 
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[ ] [ ]1 2
1 1 1 2 2 1

1 2
2 1

, , ,x x

x x

θ θ∂ = ∂ + ∂ ∂

= ∂ − ∂
 

[ ]

1 2 1 2
2 1 1 2 1 2 1

1 1 2

, , ,

, ,
0

x x x xθ θ θ

θ θ θ

   ∂ − ∂ = − ∂ + ∂   
=

=

 

We have thus obtained in an unexpected way the desired 2 translations, 1 ro-
tation, 1 dilatation and 2 elations of the conformal group when 2n = . 

At order one, we may consider the classical Killing system 1R  obtained by 
preserving ω , the Weyl system 1R  and the conformal system 1R̂  with 

( )1 1 1 1
ˆR R R J T⊂ = ⊂  and ( )1 1 1dim R R = . At order two, we have the strict in-

clusions 2 2 2
ˆR R R⊂ ⊂  with ( )2 1 1R Rρ=  preserving ( ) ( )1, jω γ ω

,  
( )2 1 1R Rρ⊂   obtained by preserving ( )ˆ ,ω γ  and ( )2 1 1

ˆ ˆR Rρ=  obtained by 
preserving ( ) ( )1ˆ ˆ ˆ, jω γ ω

. The main difference with the case 3n ≥  is that 
now ( )3 2 1R Rρ=  has a symbol 3 0g = , ( )3 1 2R Rρ=   has also a symbol 

3 0g =  but that ( )3 1 2
ˆ ˆR Rρ⊂  with strict inclusion in order to have now 

3ˆ 0g = , even though ( )1 2ˆ 0gρ ≠ . However, we are now able to deal with three 
trivially involutive systems having zero symbols and we have the strict inclusions 

3 3 3
ˆR R R⊂ ⊂  with respective dimensions 3 4 6< <  according to the basic in-

equalities ( ) ( )( ) ( )( )1 2 1 2 1 1 2 2n n n n n n+ < + + < + +  valid in arbitrary di-
mension 1n ≥ . The interest of this result is that we have for the Spencer bun-
dles the strict inclusions 0 0 0

ˆC C C⊂ ⊂  of the zero Spencer bundles, leading to 
the strict inclusions of the respective linear Spencer sequences because: 

* *
3 3 3 0 0

*
0

ˆ 0 , ,
ˆ ˆ ˆ

r r
r r

r
r r r r

g g g C T C C T C

C T C C C C

= = = ⇒ = ∧ ⊗ = ∧ ⊗

= ∧ ⊗ ⇒ ⊂ ⊂

 





 
in agrement with many recent results ([21] [22] [23] [24]). As in Example 2.2, 
we let the reader introduce the 6 parametric jet indeterminates  

1 1 2 2 3 1 4 2 5 1 6 2
1 1 11 11, , , , ,z y z y z y z y z y z y= = = = = = . 

The Janet tabular of the conformal Killing system and its prolongations up to 
order 3 can be decomposed as follows: 

2 PDE order 3 class 2 1 2
6 PDE order 3 class1 1
4 PDE order 2
2 PDE order1


 •
 • •
 • •  

The total number of different single “dots” provides the 6 8 4 18+ + =  CC 

1 . 
The total number of different couples of “dots” provides the 4 2 6+ =  CC 2 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the other canonical differential se-

quences. 
When 2n = , one has 6 parameters (2 translations + 1 rotation + 1 dilatation 
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+ 2 elations) and we get the following “fundamental diagram I” only depending 
on the left commutative square: 

3 1 2

3 1 2

1 2

0 1 2

0 0 0

0 6 12 6 0

0 2 20 30 12 0

0 2 14 18 6 0

0 0 0

j D D

j D D

Spencer

Janet

↓ ↓ ↓

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓ Φ ↓ Φ

→ Θ → → → → →
↓ ↓ ↓



 

 
• CASE 3n =  

The Janet tabular of the conformal Killing system and its prolongations up to 
order 3 can be decomposed as follows: 

3 PDE order 3 class3 1 2 3
9 PDE order 3 class 2 1 2
18 PDE order 3 class1 1
15 PDE order 2
5 PDE order1


 • • •
 • • •

• • •  

The total number of different single “dots” provides the 9 36 45 15 105+ + + =  
CC 1 . 

The total number of different couples of “dots” provides the 18 45 15 78+ + =  
CC 2 . 

The total number of different triples of “dots” provides the 15 5 20+ =  CC 

3 . 
We obtain therefore the fiber dimensions of the successive Janet bundles in 

the Janet sequence. 
The same procedure can be applied to the other canonical differential se-

quences and we get the desired “fundamental diagram I” below: 

3 31 2

3 31 2

31 2

0 1 2 3

0 0 0 0

0 10 30 30 10 0

0 3 60 135 108 30 0

0 3 50 105 78 20 0

0 0 0 0

j DD D

j DD D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓ ↓
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We have 10 parameters (3 translations, 3 rotations, 1 dilataion, 3 elations). 
The computation of ( )( )3 30dim C E =  needs to determine the rank of a 

1200 1350×  matrix ! 

4. Conclusion 

We have shown that the true important specific property of the conformal 
group, at least for applications to physics, is that, even if it is defined as a specific 
Lie pseudogroup of transformations, it is in fact a Lie group of transformations 
with a finite number ( )( )1 2 2n n+ +  of parameters or infinitesimal generators 
when 1n ≥ . Accordingly, in dimension 1n = , we have no OD equation of or-
der 1 and 2, a result leading therefore to add 1 unexpected OD equation of order 
3. Similarly, when 2n = , we obtain the Cauchy-Riemann PD equations defining 
an infinite dimensional Lie pseudogroup and we have therefore to add, again in 
a totally unexpected way, as many third order PD equations as the number of jet 
coordinates of strict order 3. When 3n = , the fact that the analogue of the Weyl 
operator for describing the CC of the conformal operator is of order 3 is rather 
un-pleasant but this is nothing compared to the fact that, when 4n = , the ana-
logue of the Bianchi operator for describing the CC of the previous second order 
CC playing the part of the Weyl CC is of order 2 again. And we don’t speak 
about the case 5n =  ([9] [15]). Though these results can be checked by means 
of computer algebra and are confirmed by the use of the fundamental diagram I, 
they do not seem to be known today. Accordingly, any physical theory (existence 
of gravitational waves or black holes... ) which is not coherent with differential 
homological algebra (vanishing of the first and second extension modules for the 
Poincaré sequence in the previous examples...) must be revisited in the light of 
these new mathematical tools, even if it seems apparently well established ([8] 
[27] [28] [29] [30]). 
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Abstract 
The dynamics of periodic base pairs opening in a finite stacking enthalpy 
DNA is investigated in this work. This is achieved by using the Joyeux- 
Buyukdagli DNA model, in which the polynomial approximations of the 
stacking interaction and Morse potential are expanded up to the fifth order 
nonlinear terms by using the Taylor series expansion technique. By incorpo-
rating the continuum limit approximation and the extended multiple scale 
asymptotic methods, higher order nonlinear Schrödinger amplitude equa-
tions are derived. In the limit of cubic nonlinearity, the periodic base pair 
configurations clearly depict the open state; with linear stability analysis ex-
posing other periodic background modes that are vital in the DNA transcrip-
tion, replication, and transmission of genetic codes. The higher order modes 
generally display a more robust and structurally stable wave profile, which 
epitomizes the base pair dynamics of the DNA molecule observed from expe-
rimental investigations. Prolonged time evolution of base pairs stretching 
greatly modifies the higher order modes of the DNA molecule, strongly sug-
gesting that such modes may induce abnormalities like gene mutation which 
is responsible for numerous diseases. 
 

Keywords 
Base Pairs, Finite Stacking Enthalpy, Transcription, Genetic Codes 

 

1. Introduction 

The nonlinear dynamics of deoxyribonucleic acid (DNA) remains a very fasci-
nating and active area of research in biophysics. This is because it provides the 
basis for understanding intrinsic processes like transcription, replication, and 
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transmission of genetic codes [1]-[10]. In fact, the DNA is only found in the 
nucleus of living cells, and has the structure of a double-stranded macromole-
cule in the form of a double helix [1] [5]. A mastery of the interaction between 
nucleotides and water molecules is a key factor in understanding the double he-
lix structure. 

Concretely, bases are insoluble in water that is hydrophobic, while sugar and 
phosphate form bonds with water molecules that results to sugar-phosphate 
backbone. This backbone is generally aligned on the surface of a cylinder, while 
the bases are oriented toward its center. This configuration leads to a natural 
protection of the bases which carries most of the genetic codes, by the sug-
ar-phosphate backbone [11]. It is important to note that ribonucleic acid (RNA) 
links the DNA with protein, hence leading to the effective control of the protein 
bio-synthesis by the DNA in the transcription process. Experimental results point 
to the fact that the transcription process is inextricably linked to variation of the 
DNA environmental temperature [12], during the process of denaturation or melt-
ing. The fluid medium that surrounds the DNA equally enhances molecular col-
lisions that may trigger rotational, transverse, and longitudinal oscillations of 
nucleotides [13] [14]. 

Solitons are solutions of a widespread class of weakly disperse partial differen-
tial equations, and it generally originates from the balance between nonlinearity 
and dispersion. The soliton concept which emanates from the Fermi Pasta Ulam 
(FPU) paradox [15] [16], is increasingly being used to explain the complex dy-
namics of neural networks [17] [18] [19] [20] [21], optical fiber systems [22] 
[23] [24], and the local base pairs opening of DNA [25] [26]. Concretely, the lo-
cal base pairs opening of DNA can be analytically captured as breather-like 
modes of small amplitude. These modes have fascinating properties owing to 
their small amplitude, like the induction of energy trapping as the breathers 
move along the DNA strand [27]. Some local dis-homogeneities can equally en-
hance the trapping mechanism [28], which is indicative of the fact that the 
properties of breathers could allow the formation of the transcription bubble af-
ter the interaction with the bound RNA-polymerase. From the seminal work of 
Englander et al., the evolution of solitonic excitations in the DNA double chain 
play crucial roles in the transcription process [29]. Other simplified DNA mod-
els include the Y-model introduced by Yakushevich in 1989 [30], which has been 
improved upon and extensively studied [31] [32] [33]. According to the model, 
the DNA consists of two parallel chains of discs which are connected to each 
other with longitudinal and transverse springs. The rigidity of the longitudinal 
springs is higher than that of the transverse ones as they represent the covalent 
and hydrogen bonds, respectively. Another interesting model is the Plane-Base 
Rotator (PBR) model, initially proposed by Yomosa [34] [35] and improved by 
Homma and Takeno [36]. A degree of freedom characterizing base rotations in 
the plane perpendicular to the helical axis around the backbone structure is as-
sumed in the PBR model, while the introduced Hamiltonian is based on the 
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Heisenberg’s spin model for the ferromagnetic chain. The Peyrard-Bishop-Dauxois 
(PBD) model of DNA remains a very successfully model to analyze experiments 
on short DNA sequences [37], and able to mimic real denaturation curves iden-
tified by Raman spectroscopy [8]. The PBD model incorporates stacking interac-
tions between neighboring base pairs to enhance the rigidity of secondary DNA 
structure. However, it should be noted that this stacking interaction inherent in 
the PBD model does not associate any characteristic energy in the important 
dynamics of the DNA system [8]. 

The quest to incorporate finite characteristic energies with phase transition 
triggered numerous research activities on DNA dynamics; tailored on capturing 
the appropriate phase transition predicted by statistical DNA models. This fi-
nally culminated with the brilliant works of Joyeux and Buyukdagli (BJ) model 
of DNA [2] [3] [4], which is based on site-specific stacking enthalpies. This 
model is very reliable because it reproduced exact experimental curves that en-
sured a sharp melting transition, as a result of the finiteness of the stacking inte-
raction [2] [3] [4]. Carlos et al. exploited the JB model to investigate on the dy-
namics of discrete breathers which is governed by the extended discrete nonli-
near Schrödinger equation [38]. Depending on the finite stacking parameters, 
compact bright solitary waves became more robust or quickly decomposed in 
the JB model of DNA [39]. On the other hand, Ying-Bo Yao et al. demonstrated 
that the JB system is capable of producing high-order envelope solitons; which 
can be viewed as high-order discrete breathers with zero group velocity at the 
center of the Brillouin zone [26]. 

Unlike the aforementioned studies which deal with spatially localized excita-
tions, the present investigation seeks to explore periodic solutions that may cha-
racterize base pairs opening. Periodic wave train solutions gives a better under-
standing of myriad of bio-physical activities hitherto explained only by localized 
solutions. For example, Vargas et al. numerically exploited localized periodic solu-
tions in the nerve model, to rigorously explain hyper-polarization, pulse trains, 
and refractory periods that were experimentally observed in the nerve of locust 
[18] [40]. Also, the energy released during the hydrolysis of adenosine triphos-
phate was shown to be transported via periodic soliton wave train in order to 
sustain important biological processes like enzyme catalysis and muscle contrac-
tions [41]. From a physiological standpoint, gene expression is very important in 
life because genetic codes are regularly transferred during protein synthesis [3] 
[5]. The effective stimulation of all the base pairs is essential for the DNA loop 
formation [38], regulation of gene expressions, and packaging of DNA into nuc-
leosomes [5]. In fact, the RNA which is a key component in the transfer, tran-
scription, and messaging in DNA, operates in few portions of the DNA sequence 
at the same time [5]. Such complex motion strongly suggests that it is more ap-
propriate for the DNA base pairs opening to be considered as a spatial periodic 
activity, in order to holistically comprehend the DNA dynamics. We are there-
fore interested on how changes in the stacking parameters can generate new spa-
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tial periodic base pairs opening profiles, that may be responsible for some physi-
ological abnormalities. Such open states are vulnerable to many external attacks 
that may cause reading or coding errors, which is responsible for numerous 
cancers induced by gene mutations [25] [42]. To the best of my knowledge, this 
is one of the rare studies that seek to model base pairs opening as a spatial peri-
odic phenomenon. 

In the present work, we demonstrate that the BJ model of DNA supports spa-
tial periodic base pairs open configurations. Consequently, the organization of 
the paper is structured as follows. In section 2, we present the Hamiltonian of 
the BJ model which naturally leads us to the discrete equations of motion for the 
in-phase and out-of-phase motions, respectively. We expand terms of the stack-
ing interaction and Morse potential in the out-of-phase equation of motion to 
the fifth order and implore the continuum limit approximation. Higher order 
amplitude equations are derived by using the extended multiple-scales asymp-
totic perturbation method. Analysis in section 3 is limited to terms up to the cu-
bic order, in which periodic base pairs opening are captured to describe the open 
state configurations of the DNA. Stability analysis of these open states further 
reveal other localized background modes that are crucial in the transcription 
process. In section 4, we further explore higher order modes of the DNA open 
states configuration. This gives us a better opportunity to analytically and nu-
merically investigate on the richer dynamics of DNA. Finally in section 5, we 
will summarize the important results obtained and articulate on some brighter 
perspectives. 

2. Model and Equations of Motion 

The dynamical DNA model proposed by Joyeux and Buyukdagli is more realistic 
than the PBD model. This is because the JB model is based on site-specific 
stacking enthalpies, with the finiteness of the stacking interaction sufficiently 
ensuring a sharp melting transition [2] [3] [4]. The DNA molecule in the JB 
model is considered as two elastic chains of nucleotides, that represent the 
double helix strand of the molecule. The nucleotides in the same strand expe-
rience nearest-neighbor interactions along the one dimensional chain configura-
tion. The molecule is assumed homogeneous, with each strand linked to the 
other by hydrogen bonds which are modeled by the Morse potential. The longi-
tudinal, rotational, and torsional motions of the DNA base pairs are all ignored, 
with focus only on the transverse motions. Concretely, this transverse displace-
ments from the equilibrium position of the nucleotide pairs located in opposite 
strands are given by nx  and ny . This naturally leads to the Hamiltonian of the 
BJ model as [2] [3]  

( ) ( ) ( )2 2
1 1

1 , , , , ,
2 n n n n n n n n n n

n
H m x y V x y W x y x y− −

 = + + + 
 

∑          (1) 

where 
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( ) ( ) 2

0, e 1 ,n na x y
n n nV x y D − − = −   

( ) ( ) ( )

( ) ( )

2 2
1

1 1

2 2
1 1

, , , 2 e e

.

n n n nb x x b y yn
n n n n n

b n n n n

H
W x y x y

C

K x x y y

−− − − −
− −

− −

∆  = − −  
 + − + −   

Each base pair position is represented by n with N being the total number of 
the base pairs of the chain, while m is the average mass of the nucleotides. The 
on-site potential ( ),n n nV x y  is due to the presence of hydrogen bonds which is 
described by the Morse potential of depth 0D  and width a. The Morse potential 
opposes the breaking of the hydrogen bonds because it is an increasing function 
of the distance between the two bases of a pair n. The first term in the potential 

( )1 1, , ,n n n n nW x y x y− −  describes the finite stacking interaction, while the second 
one models the stiffness of the sugar-phosphate backbone. Both terms are in-
creasing functions of 1n nx x −−  (as well as 1n ny y −− ), which implies that they 
oppose the de-stacking of the bases. The stacking potential which is approximated  

by a Gaussian hole of depth nH
C
∆ , emanates from hydrophobic interactions  

with the solvent and electronic interactions between successive base pairs on the 
same strand. The backbone stiffness is taken as a harmonic potential of constant 

bK , ensures that base pairs belonging to the same strand do not separate infi-
nitely when approaching the melting temperature. 

It is more convenient to introduce the coordinates nu  describing the move-
ment of a center of mass of the nucleotide pair, and nv , a stretching of the nuc-
leotides belonging to the same pair defined as 

, and .
2 2

n n n n
n n

x y x y
u v

+ −
= =                  (2) 

The in-phase motion is actually governed by nu , while nv  represent the 
out-of-phase motion. From the Hamiltonian (1), it is possible to obtain two 
nonlinear discrete differential equations describing the transverse in-phase and 
out-of-phase dynamics of the DNA molecular chain respectively given as [25] 

( ) ( )

( ) ( ) ( ) ( )2 2
1 1

1 1

1 1

2

2
e e ,n n n n

b
n n n n n

b u u b u un
n n n n

K
u u u u u

m
b H

u u u u
mC

+ −

+ −

− − − −
+ −

 = − + − 

∆  + − + −  



     (3a) 

( ) ( ) ( ) ( )

( ) ( )

2
1

2
1

1 1 1

2 20
1

2 2
e

2 2
e e e 1 .

n n

n n n n

b v vb n
n n n n n n n

b v v a v a v
n n

K b H
v v v v v v v

m mC
aD

v v
m

+

−

− −
+ − +

− − − −
−

∆  = − + − + −  

  − − + −  



   (3b) 

From a comparative analysis between Eqns (3a) and (3b), it is clear that the 
effects of nonlinearity are more pronounced in the out-of-phase motion Equa-
tion (3b). This is because Equation (3b) which mimics base pair stretching, in-
corporates hydrogen bonds interactions which is a vital component in the DNA 
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dynamics. On the other hand the in-phase equation of motion (3a), is more as-
sociated with strong covalent bonds with little or no effects on the holistic DNA 
dynamics [25]. Hence forth, we will neglect Equation (3a) and deal only with the 
out-of-phase motion Equation (3b), and adopt the following experimental pa-
rameters [2] [4]: 300m =  amu, 0 0.04 eVD = , 14.45a −= Å , 0.44 eVnH∆ = , 

20.10b −= Å , 5 210 eVbK − −= ⋅Å , and 2.00C = . It is further assumed that the 
base pair oscillations are quite large enough to induce inharmonicity, but still 
inadequate to destroy the hydrogen bonds because the plateau of the Morse po-
tential is not attained. Based on this assumption, the base nucleotides should os-
cillate around the bottom of the Morse potential. Consequently one can expand 
the exponential functions up to the fifth order in the Taylor series approxima-
tion, and rewrite Equation (3b) as 

( )

( ) ( )

( ) ( )

1 1

2
3 3

1 1

3
5 5

1 1

2 2 3 4
2 3 4 50

2 2

2

2 3 7 15 31 .
2 6 24 120

n
n b n n n

n
n n n n

n
n n n n

n n n n n

b H
v K v v v

m C
b H

v v v v
mC

b H
v v v v

mC
a D a a a av v v v v
m

+ −

+ −

+ −

∆ = + − + 
 
∆  − − − − 

∆  + − − − 

 
− − + − + 

 



         (4) 

The discrete coupled nonlinear Equation (4) is non integrable, but an approxi-
mation can be implored which preserves the nonlinearity of the system and reduce 
Equation (4) to an integrable form of a partial differential equation in order to ob-
tain analytic solutions. Let us assume that the base pairs stretching ( )nv t  changes 
only slightly from one site to the next such that ( ) ( ),nv t v z nr t= = , where z is a 
dimensionless variable that measures the position along the DNA strand. r is a 
measure of the equilibrium distance between two successive neighboring nuc-
leotides in the same strand, with numerical value of 3.4Å in a real DNA molecule 
[43]. Hence by considering a slow spatial variation of ( ),v z t , and exploiting a 
Taylor expansion around z nr= , leads to 

( )
2 2

1 2 .
2n

v r vv t v r
z z±
∂ ∂

≈ ± + +
∂ ∂

                   (5) 

The continuum limit approximation (5), transforms Equation (4) to 
24 22 2 2

2 2

2 2 3 4
2 3 4 50

62

2 3 7 5 31 ,
2 6 8 120

n n
b

b H r b Hv r v vK
m C mC zt z

a D a a a av v v v v
m

 ∆ ∆∂ ∂ ∂   = + + +    ∂∂ ∂    
 

− − + − + 
 



        (6) 

with all the key features involved in the DNA dynamics maintained, and terms 
of order ( )5r  or higher are neglected. It is more convenient to transform Equa-
tion (6) into a an appealing form by considering the dimensionless variables [38] 
[39] 
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4 22

0 12 2 4
0 0 0

2

62, , , ,

2, 3 2, 7 6, 5 8, 31 120.

n n
b

b H r b Hm rV av t K K K
Ca D a D a CD

τ

ω α β γ σ

  ∆ ∆ = = = + =  
  

= = = − = = −

    (7) 

Equation (6) is now written in the dimensionless form 
22 2

2 2 3 4 5
0 12 2 ,V V VK K V V V V V

z z
ω α β γ σ

τ

 ∂ ∂ ∂   = + + − − − − −    ∂∂ ∂   
    (8) 

in which in the new dimensionless time unit, we have that 1.00τ = , corres-
ponds to 0.198 pst = . 

To find the solution of Equation (8), we must first obtain a useful and mana-
geable equation by assuming a more appropriate ansatz; which we postulate that 
the asymptotic series is more generalized while preserving the essential features 
of the DNA system. This can be done using reductive perturbative analysis, which 
is more robust in that it can work for a wide range of problems. In fact, we ex-
plore the extended multiple-scales asymptotic approach to reduce Equation (8) 
to higher order nonlinear Schrödinger amplitude equations. The main idea be-
hind the asymptotic approach is to introduce fast and slow time and spatial va-
riables into Equation (8), by exploiting the perturbation parameter 1ε  . The 
hierarchies of new independent variables replacing z and τ  are 

2 4
0 2 4

3
1 3

, , ,

, ,

t t t

z z z z

τ ε τ ε τ

ε ε

 = = =


= =



  
so that the τ - and z-derivatives are replaced by 

2 4

0 2 4

,
t t t

ε ε
τ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂



 
3

1 3

.
z z z

ε ε∂ ∂ ∂
= + +

∂ ∂ ∂
                      (9) 

According to the extended reductive perturbation method, we consider the 
following ansatz for the solution of ( ),V z τ  as [44] 

( ) ( ) ( )
( )
( )

0 0 0 0

0 0 0 0

0 0 0 0

2 2* 2 *
2 2 2

3 33 * *
3 3 3 3

2 2 4 44 * *
4 4 4 4 4

, e e e e

e e e e

e e e e ,

i t i t i t i t

i t i t i t i t

i t i t i t i t

V z G H H

F F J J

G H H K K

ω ω ω ω

ω ω ω ω

ω ω ω ω

τ ε ψ ψ ε

ε

ε

− −

− −

− −

= + + + +

+ + + +

+ + + + +

     (10) 

where the amplitudes 2 2 3 3 4 4 4, , , , , , ,G H F J G H Kψ  and their complex conjugates 
* * * * * *

2 3 3 4 4, , , , ,H F J H Kψ  are functions of ( )1 2 3 4, , ,z t z t , while ω  stands for the 
angular frequency. Upon substitution of the ansatz (10) into the DNA Equation 
(8) yields a series of inhomogeneous equations at different orders of 0, ei tωε   . 

Grouping terms to orders 002 , e i tωε   , 022 , e i tωε   , and 03 , ei tωε   , respec-
tively yields the equations 

22 2
20 ,Gω ω α ψ= − +                     (11a) 

2 2 2 2
2 24 ,H Hω ω ω αψ− = − +                  (11b) 
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2
2

22 * * 2
0 2 2 22

1

2

2 3 .

i
t

K G H G
z

ψω

ψ αω ψ ψ ψ βω ψ ψ

∂
∂

∂  = + + + + ∂

       (11c) 

Simplification of Equation (11a) gives 2
2G α ψ= , while that of Equation 

(11b) result in 2
2 3H αψ= − , and Equation (11c) is eventually reduced to 

2
2

2
2 1

0,i P Q
t z
ψ ψ ψ ψ∂ ∂

− + =
∂ ∂

                  (12) 

where 
2

2
0

2

,

10 9 .
6

n
b

b HrP K
Ca D

Q

ω
ω α β

 ∆ = +    
  = − +   

The dispersion coefficient P, and nonlinear coefficient Q, are inextricably 
linked to the intrinsic constants 0, , , , , , , , ,b nr a D K b H Cω α β∆ , which are vital in 
the DNA dynamics; because it determines the type of wave profile in the system. 
The NLS Equation (12) is a prominent equation used to model a plethora of 
weakly nonlinear quasi-harmonic wave packets, like the propagation of electro-
magnetic waves in optical fibers [22] [23] [24], and DNA base pairs opening [25] 
[26]. 

This work is quite unique because it considers higher order modes of the 
DNA dynamics by incorporating the terms 3 3 4 4 4, , , ,F J G H K , which highly de-
pend on the type of solution emanating from Equation (12). Consequently, 
terms to orders 033 , e i tωε   , 004 , e i tωε   , and 024 , e i tωε   , respectively gives 

2 2 2 2 3
3 3 29 2 ,J J Hω ω αω ψ βω ψ− = − + +               (13) 

( )

( )
( )

2 2 *
42 * 22 2

0 4 42 2
1 1

2 22 * * *
3 3 2 2 2

22 2 * *2 *
2 2 2 2

0 6

2 2 2

3 2 ,

G GK G G
z z

F F G G H

H H G G

ω γω ψ

αω ψ ψ

βω ψ ψ ψ

 ∂ ∂
= + − + + 

∂ ∂ 
 + + + + +  
 + + + + 

          (14) 

( )

2
22 2 2 22 2

4 0 42
2 1

22 2 *
2 2 2

2 * *
3 3 2 2 2 2

4 4 4

3 2

2 2 2 2 .

H HH i K H
t z

G G H

F J G H G H

ω ω ω γω ψ ψ

βω ψ ψ

αω ψ ψ

∂ ∂
− + = − +

∂ ∂

 + + + 
 + + + + 

    (15) 

Finally, grouping terms to orders 044 , e i tωε    and 05 , ei tωε   , respectively 
generates the equations 

2 2 2 2 2 2 4 2 2
4 4 2 3 216 2 3 ,K K H J Hω ω αω αω ψ γω ψ βω ψ− = − + + + +     (16) 

and 
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( ) ( )
( )
( ) ( )

2
3

2
4 22

2 2
423

0 02
1 31

22 22 3 * * * 2 *
2 2 2 2 2 2

2 2* * 2* 2 *
2 2 2 2 3 3 3

2 * * * * *
4 4 4 3 2 3 2 2 2 3

2 2

2 10

4 3 3 3

2 2 2

2 .

F
i i

t tt

F
K K

z zz

H G G H G G

H G G H J F F

G G H F H F G G H J

ψ ψω ω

ψ σω ψ ψ

γω ψ ψ ψ ψ ψ βω ψ

ψ ψ ψ ψ ψ

αω ψ ψ

∂∂ ∂
+ +

∂ ∂∂

∂ ∂
= + +

∂ ∂∂

 + + + + + +  
+ + + + + + 

 + + + + + + + 

 (17) 

Equations (12) to (17) will be used to comprehensively study periodic base 
pair opening in a DNA double strand, in order to give satisfactory explanations 
to the transcription and replication processes from a biophysical perspective. 
However the analysis in section III will be limited just to Equation (12), in which 
we focus only on the periodic DNA dynamics in the cubic limit [2]-[8] [14]. The 
higher order modes that deals with Equations (13) to (17), is quite innovative 
and will be considered separately in section 4. 

3. Dynamics of Base Pairs Opening in the Cubic Limit 
3.1. Periodic Solution of the Nonlinear Schrödinger Amplitude 

Equation 

We now consider the profile of the solution dictated by the derived amplitude 
Equation (12). Based on experimental parameters [2] [4], it is very clear that the 
dispersion coefficient 0P > , and nonlinear coefficient 0Q < . Consequently 
the system of Equation (13) can only support bright solitons as a result of the 
process of modulational instability [14] [15] [17] [19] [20] [21], because 

0PQ < . Plane waves gradually evolve into nonlinear periodic modes, that leads 
to energy activation in a DNA double strand chain by the process of modula-
tional instability (MI). The MI process equally leads to the spontaneous emission 
of breather-like modes, and generally thrives in a DNA chain as a result of the 
dynamic interplay between nonlinearity (emanating from the hydrogen bonds) 
and dispersion (induced by stacking interaction and sugar-phosphate backbone 
stiffness). 

In order to look for stationary solutions to Equation (12), we assume an ansatz 
of the form 

( ) ( ) 2
1 2 1, e ,ibtz t a zψ =                      (18) 

where b is the modulation frequency of the envelope and ( )1a z  is a real con-
stant that represent the amplitude of the field envelope. Upon substituting Equa-
tion (18) into Equation (12) gives 

2
3

2
1

0,aba P Qa
z
∂

− − + =
∂

                    (19) 

which can be conveniently transformed to a first-order integral equation 
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2
2 4

1

d .
d 2

a b Qa a C
z P P

 
= − + + 

 
                  (20) 

It is important to note that the integration constant C is a key parameter that 
determines the nature of solution of the amplitude ( )1a z . For a localized profile 
solution in which ( )1a z  vanishes as 1z → ±∞ , C naturally turns to zero. Con-
sequently the solution to Equation (20) is given by 

( )1 1
2 sech .b ba z z
Q P

 −
=  

 
                   (21) 

It is more appropriate to set ( )22 4e c eb u u u P= − , where eu  and cu  are 
real numbers which respectively represent envelope and carrier wave velocities 
measured in units of Å per dimensionless time τ  [25]. Hence, solution (18) 
can now be re-written in the form [25] 

( )
2

2
22 2

4
1 2 12

2 2
, sech e .

2 4

e e cu u u
i t

Pe c e e e cu u u u u u
z t z

PQ P
ψ

 −
 
  

 − −
 =
  

       (22) 

When the integration constant C is nonzero, the single pulse solution (22) 
becomes very unstable and difficult to be sustained in the system. Consequently, 
Equation (12) now admits periodic solution of the form [18] [24] 

( ) [ ] 2
1 2 0 1, , e ,i tz t a dn Lz k ζψ =                   (23) 

where dn is a Jacobi elliptic function of modulus ( )0 1k k≤ ≤ , 

( )
2

0 02

1 2 , , ,
22 2e
Qa u L a PL
Pk PQ

η ζ− −
= = = −

− −
          (24) 

and c eu uη = , with 0 0.5η≤ < . The solution of Equation (8) in the cubic lim-
it (i.e. 3 3 4 4 4 0F J G H Kγ σ= = = = = = = ), now gives 

( ) [ ] ( ) [ ] ( ) ( )2 2 3
0 0, 2 , cos 2 , cos 2 ,

2 3
V z a dn L z k a dn L z kε ε ε ε

α ατ τ τ ε = Ω + − Ω + 
 



(25) 

where 

( )
2 2

0 0 02

1 2 , , , , .
22 2e e
Qa u L a PL t
Pk PQε ε ε ε ε

ηε ε ζ ω ε ζ τ− −
= = = − Ω = + =

− −
 (26) 

The constants 0 ,1 ea Lε , and Ω , are respectively the amplitude, width, and 
angular frequency of the soliton solution that mimics the DNA open state con-
figuration in the cubic limit. They are all dependent on the perturbation para-
meter ε , elliptic modulus k, and the experimental parameters of the DNA sys-
tem as depicted in the contour plot in Figure 1. The amplitude 0a ε  increases 
with increase in ε , and more appreciable for 0.7ε >  and 0.8k > . The width 
of the soliton 1 eL , is measured in Å and more feasible for 0.7ε > , irrespective 
of the values of k. Lastly, an increase in ε  generally diminishes the angular 
frequency Ω , of the soliton. Based on the contour plot in Figure 1, we will  
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Figure 1. (color online) Variations of 0 ,1 ea Lε , and Ω , with elliptic modulus modulus k 
and perturbation parameter ε . The experimental values of the constants are 300 amum = , 

0 0.04 eVD = , 14.45a −= Å , 0.44 eVnH∆ = , 20.10b −= Å , 5 210 eVbK − −= ⋅Å , 

3.4r = Å , 2ω = , 2.00C = , 1.00eu = Å , 0.00cu = Å , 3 2α = , and 7 6β = − . 
 

henceforth adopt 1.00ε = , 0.8k > , without loss of generality. The choice of 
the values of ε  and k, coupled with the experimental parameters given in Fig-
ure 1, is best suited for us to analytically describe the base pair stretching that 
characterize the open state. 

Figure 2 depicts the initial stages of the base pairs stretching in the cubic lim-
it, which represent the breathing modes in the DNA molecular chain. We ob-
serve spatial periodic modes of the DNA base pairs stretching in Figure 2(a), for 

0.88k = , and Figure 2(b), for 0.98k = . However for 1.00k = , a more loca-
lized open state mode is observed in Figure 2(c); similar to the higher order dis-
crete breather mode [26], and spatial compaction profile [39]. The spatiotemporal 
profile in Figure 2 generally portrays a very stable structural wave features, 
probably because it is still evolving at the early stages (i.e. τ  varies from 0.00 to 
60.0). 

Concretely at the initial stage for 0.88k = , and 0.98k = , as in Figure 3(a) 
and Figure 3(b) respectively, the breathing modes of the DNA is purely period-
ic. These modes degenerate to a strong secant hyperbolic excitation in Figure 
3(c) for 1.00k = . These excitations mainly mimics the open state configuration, 
and a precursor for the transcription, replication, and transmission of genetic codes  
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Figure 2. (color online) Three dimensional plot at the initial stages of base pairs stretching, according to solution (25). Parameters 
are: 300 amum = , 0 0.04 eVD = , 14.45a −= Å , 0.44 eVnH∆ = , 20.10b −= Å , 5 210 eVbK − −= ⋅Å , 3.4r = Å , 2ω = , 

2.00C = , 1.00eu = Å , 0.40cu = Å , 3 2α = , 7 6β = − , and 1.00ε = . This is for elliptic modulus: (a) 0.88k = , (b) 
0.98k = , (d) 1.00k = . 

 
in the DNA double strand chain [1]-[8]. After a period of time 100 pst =  
( 505.05τ = ), the modes in Figures 3(a)-(c) gradually changes to give the pro-
file shown in Figures 3(d)-(f); where the nucleotide stretching becomes more 
pronounced especially as in Figure 3(f) for 1.00k = . The base pairs stretching 
which is governed by the analytical solution (25), equally evolve to give a structu-
rally robust breather modes in Figures 3(g)-(i) after 200 pst =  ( 1010.10τ = ). 

We further plot the long-time evolution of base pair stretching, at different 
times as shown in Figure 4. The periodic and localized modes in Figure 4, are 
also known as the DNA fluctuational opening; best described as precursor states 
for the local denaturation observed during DNA transcription. It equally cap-
tures the thermal denaturation process, based on the finite stacking enthalpy 
DNA model. The structural variations of the nucleotide base pairs stretching in 
Figure 3 and Figure 4, simply points to the instability of the DNA open states. 
Consequently, we will carry out a linear stability analysis in the proceeding sub-
section in order to test the robustness of these spatial periodic DNA modes. 

3.2. Stability Analysis 

In the preceding subsection, we obtained localized periodic wave trains that 
mimic base pairs stretching in the finite stacking enthalpy DNA molecular 
chain. To discuss the stability of these periodic breathing modes, one must supe-
rimpose a small perturbation on this solution and analyze the evolution of the  
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Figure 3. Base pairs stretching according to solution (25), for experimental values: 

300 amum = , 0 0.04 eVD = , 14.45a −= Å , 0.44 eVnH∆ = , 20.10b −= Å ,  
5 210 eVbK − −= ⋅Å , 3.4r = Å , 2ω = , 2.00C = , 1.00eu = Å , 0.40cu = Å , 3 2α = , 

7 6β = − , and 1.00ε = . This is for dimensionless time (τ ) and elliptic modulus (k), as 
follows: (a) 0.00τ = , 0.88k = , (b) 0.00τ = , 0.98k = , (c) 0.00τ = , 1.00k = , (d) 

505.05τ = , 0.88k = , (e) 505.05τ = , 0.98k = , (f) 505.05τ = , 1.00k = , (g) 
1010.10τ = , 0.88k = , (h) 1010.10τ = , 0.98k = , (i) 1010.10τ = , 1.00k = . 

 

perturbation. Note that stability analysis is an important issue related to the 
study of nonlinear dynamical systems because it provides an effective way of 
testing the robustness of the soliton trains against small perturbation in the am-
plitude. Stability analysis is applied in a diverse manner, based on the complexity 
of the physical system under review and the type of solution involved. 

In order to investigate the linear stability of the spatial periodic soliton mode, 
we consider small perturbations ( )1pa z  to the amplitude of the DNA excita-
tion mode denoted by ( )0 1a z , so that 

( ) ( ) ( ) 2
1 2 0 1 1, e ,ibt

pz t a z a zψ ε = +                 (27) 

where 1ε  . After the nonlinear interactions, the resultant internal modes of 
vibration carrying the genetic codes is obtained by substituting Equation (27) 
into Equation (12) and considering terms to the various orders of ε : 
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Figure 4. Parameters are the same as in Figure 3, but for: (a) 2525.25τ = , 0.88k = , (b) 

2525.25τ = , 0.98k = , (c) 2525.25τ = , 1.00k = , (d) 2700.00τ = , 0.88k = , (e) 
2700.00τ = , 0.98k = , (f) 2700.00τ = , 1.00k = , (g) 3030.30τ = , 0.88k = , (h) 
3030.30τ = , 0.98k = , (i) 3030.30τ = , 1.00k = . 

 
Order 0ε , 

2
30
0 02

1

d
0.

d
a

P Qa ba
z

− + =                     (28) 

Order 1ε , 
2

2
02

1

d
3 0.

d
p

p p

a
P Qa a ba

z
− + =                   (29) 

We have already obtained periodic solution of Equation (28) as 

( ) ( ) ( )0 1 12 2

2 , ,
2 2

b ba z dn z k
Q k P k

 − =
 − − 

            (30) 

which can be substituted into Equation (29) and simplified to obtain [18] [24] 

( ) ( )
2

2 2
2

d
6 , 0,

d
p

p

a
E k k sn k aξ

ξ
 + − =                (31) 
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where ( )22
b

P k
λ −
=

−
, 1zξ λ= , and ( )

2

2

6P bE k
P
λ
λ
+

= . Equation (31) is 

known as the Lamé equation of the second order with five distinct localized so-
lutions [18] [24] 

( ) ( ) ( ) ( ) ( )2 2
1 1 1, , , 5 ,pa A k cn k dn k b k Pξ ξ ξ λ= = −        (32a) 

( ) ( ) ( ) ( ) ( )2 2
2 2 2, , , 2 ,pa A k cn k sn k b k Pξ ξ ξ λ= = −        (32b) 

( ) ( ) ( ) ( ) ( )2 2
3 3 3, , , 5 4 ,pa A k sn k dn k b k Pξ ξ ξ λ= = −        (32c) 

( ) ( ) ( )
( )

( )

2 22
2

4, 5 4,5 2 2

2 2
2 2

4,5

1 11, ,
3 3

1 1
2 .

2

p p

k kka A k sn k
k k

k k
b k P

ξ ξ

λ

 − −+ = − 
  

 − − = − ± 
  



     (32d) 

The amplitudes ( )iA k  for 1,2,3,4,5i =  can be obtained by using appropri-
ate orthogonality and normalization relations [45], and the profile of these per-
turbations are given in Figure 5. The spatial period and length of the perturbed 
solitons ( )pia ξ , is controlled by the elliptic modulus k. In fact for 1.00k = , the 
separation between solitons become infinite and periodic train degenerates to a 
localized mode. From the profiles of these single solitons on the right column in 
Figure 5, it is clear that the distinct localized soliton modes are both symmetric 
and asymmetric with respect to the origin. 

The five bound states given in Figure 5 shows the various genetic code struc-
tures, that clearly signifies the complex nature of the transcription and replica-
tion processes. Gene transfer under appropriate physiological conditions is in-
deed possible only in one of these modes. Concretely from the standpoint of bi-
ophysics, these localized modes describe internal oscillations in the DNA struc-
ture which is capable of exposing all hidden modes that may be responsible for 
gene mutations or other physiological disorders [25] [42]. These bound states 
can also be associated with radiation-carrying excitations in the background of 
the DNA open state, by virtue of their nonzero energies [18]. 

4. Higher Order Stretching of Nucleotide Base Pairs 

In order to give a comprehensive account of the base pairs stretching that mim-
ics the DNA open state, we now incorporate all the terms in the ansatz (10). 
However we set 3 0F = , without of loss of generality, since we are dealing with 
periodic modes. The term 3F  generally introduces secularity which makes the 
solution cumbersome, and blurs the basic physics that characterize periodic 
open state dynamics of finite stacking enthalpy DNA. It is important to note that 
in the investigation of stationary breather modes of generalized nonlinear 
Klein-Gordon lattices, 3 0F ≠  [44]. 

Simplification of Equations (13) to (19), naturally lead us to the following  
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Figure 5. Profiles of bound state solutions (32), of the second order Lamé Equation (31) 
with ( ) 1.0iA k = , for 1,2,3,4,5i = . The left column is for 0.98k = , while the right is 

for 1.00k = . 
 

important quantities: 

2 3
3

1 2 3 ,
24

J α β ψ = −                     (33a) 

22
430

4 2 2
1

193 5 ,
9

K
G

z
ψα

γ αβ α ψ
ω

 ∂   = + + + ∂    
          (33b) 

2 2
23 20

4 2 2
1 1

2 4 31 59 ,
3 12 549

K
H

z z
α ψ ψψ γ αβ α ψ ψ

ω
 ∂ ∂  = − − + +   ∂ ∂   

    (33c) 

3 4
4

1 1 1 .
12 15 54

K αβ γ α ψ = − −  
               (33d) 

Consequently, Equation (17) can now be re-written as 
222 2 2 2

22 *0
0 02 2 2 2

4 1 3 12 1 1

42 2 4 2

2
2 2 4

84 635 1005 3 10 .
3 36 162 8

K
i K K

t z z zt z z
ψ αψ ψ ψ ψ ψω α ψ ψ ψ

ω

ω αγ α β α β σ ψ ψ

∂  ∂ ∂ ∂ ∂ ∂
+ = + + − ∂ ∂ ∂ ∂∂ ∂ ∂ 

 + + − − +  

(34) 
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Based on the values obtained for 3 4 4 4, , ,J G H K , we can conveniently modify 
solution (23) to now read [44] 

( ) [ ] ( )2 4 4
1 2 3 4 0 1 3 3, , , , e ,i t tz t z t a dn Lz L z k ζ ζψ += +            (35) 

where 3L  and 4ζ  are real constants. To determine the values of 3L  and 4ζ , 
we substitute the modified solution (35) into Equation (34) and group coeffi-
cients of terms of the orders [ ] [ ]0 2,dn dn  and so on. After some rigorous cal-
culations and simplifications, this leads us to 

( ) ( )2 2 2
3 0

14 3 2 1 ,L La k kα α
ω

 = − + −  
             (36a) 

( ) ( )22 2 2 2 2
0 0

4 3

1 1 4 4
.

2

K L a k kα αω ζζ
ωω

 − − − = −          (36b) 

The most appropriate form of the analytic solution of the higher order stret-
ching of nucleotide base pairs is now obtained by substituting the solution (35), 
into the ansatz (10) to have 

( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )

[ ] ( ) [ ] [ ]{

( ) ( )

2 2
0 0

3 3 4 4
0 0

3 3 2 2 2 3
0 0 0

2 2

3, 2 , cos , cos 2
2

2 1 23, cos 3 , cos 4
3 2 50
33 , cos 3 2 3 , ,
50

21 ,

V z a dn L z k a dn L z k

a dn L z k a dn L z k

a dn L z k K L a dn L z k dn L z k

k dn L z k k sn L
L

ε ε ε ε

ε ε ε ε

ε ε ε ε ε

ε ε

τ τ τ

τ τ

ε τ ε

 ′ ′ ′ ′ ′ ′= Ω + − Ω 
 

 ′ ′ ′ ′ ′ ′+ Ω − + Ω 
 

 ′ ′ ′ ′ ′ ′+ Ω − + 

′ ′+ − − [ ] [ ]} ( )

[ ] ( ) [ ] [ ]{ }2 2 2 2 2 2 4
0 0

, , cos 2

3 , 1 2 1 , 2 , .
2

z k cn L z k

K L a dn L z k k k dn L z k dn L z k

ε

ε ε ε ε

τ

ε

′ ′Ω

′ ′ ′ ′+ − + − −

(37) 

The constants in solution (37) are 

( ) ( ){ }2 2 2
0 0 02

1 2 , 1 25.9 16.9 ,
22 2e
Qa u L a a k
Pk PQε ε ε ε

ηε ε ε− −′ ′ ′ ′= = + −
− −

 

( ) ( )24 2 4 2 2 2 2
0 0 02 0.325 0.53 1 12 47 ,Qa K L a k kεε ε′ ′Ω = + + − −      (38) 

and the values of L and 0a  are given in Equation (24). 
The profiles of the higher order modes are given in Figure 6. It clearly depicts 

the stretching of DNA double strand. Such open states lead to a better represen-
tation of the base pairs stretching that generally precedes the transcription and 
replication processes. Furthermore, it equally depicts a more accurate energy ac-
tivator for RNA-polymerase transport during the periodic opening of DNA 
double strand chain, thereby exposing more bases out of the stack. As shown in 
(Figure 6(a), Figure 6(d), Figure 6(g)) for 0.88k = , and (Figure 6(b), Figure 
6(e), Figure 6(h)) for 0.98k = , we observe that more base pairs are experienc-
ing a very structurally stable open state configurations. However for 1.00k =  
as in (Figure 6(c), Figure 6(f), Figure 6(i)), only few base pairs open up during 
the transcription process as experimentally confirmed with DNA double helix  
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Figure 6. Higher order base pairs stretching according to solution (37), for experimental 
values: 300 amum = , 0 0.04 eVD = , 14.45a −= Å , 0.44 eVnH∆ = , 20.10b −= Å , 

5 210 eVbK − −= ⋅Å , 3.4r = Å , 2ω = , 2.00C = , 1.00eu = Å , 0.40cu = Å , 3 2α = , 
7 6β = − , 5 8γ = , 31 120σ = − , and 1.00ε = . This is for: (a) 0.00τ = , 0.88k = , 

(b) 0.00τ = , 0.98k = , (c) 0.00τ = , 1.00k = , (d) 505.05τ = , 0.88k = , (e) 
505.05τ = , 0.98k = , (f) 505.05τ = , 1.00k = , (g) 1010.10τ = , 0.88k = , (h) 
1010.10τ = , 0.98k = , (i) 1010.10τ = , 1.00k = . 

 
[46] [47]. This mainly confirms that the soliton solution (37), gives a more ac-
curate analytic representation within theoretical limits [48]; of stable periodic 
open states under appropriate physiological conditions. 

The long time evolution of the gradual unzipping of the DNA molecule is 
captured in Figure 7, which is characterized by minimal distortion of the peri-
odic modes. It is important to note that the stretching of the base pairs in Figure 
6(i) and Figure 7(c), Figure 7(f) for 1.00k = , induces minor distortions in the 
open state by the slight splitting of a single pulse. This may have long term ef-
fects during the transcription and replication processes, as the open state be-
comes more susceptible to external attack. Such attacks may alter some parame-
ters of the DNA system, hence distorting the reading of genetic codes and in-
duces gene mutations which is responsible for numerous diseases [25] [42] [46]  
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Figure 7. Parameters are the same as in Figure 6, but for: (a) 2525.25τ = , 0.88k = , (b) 2525.25τ = , 0.98k = , 
(c) 2525.25τ = , 1.00k = , (d) 2700.00τ = , 0.88k = , (e) 2700.00τ = , 0.98k = , (f) 2700.00τ = , 1.00k = , 
(g) 3030.30τ = , 0.88k = , (h) 3030.30τ = , 0.98k = , (i) 3030.30τ = , 1.00k = . 

 
[47]. A careful observation shows that the structural stability and number of so-
litons in the base pairs stretching of Figure 6 and Figure 7, supersedes that of 
their cubic limit counterparts in Figure 3 and Figure 4 respectively. Since all the 
experimental values used are the same, the comparison strongly suggest that the 
higher order modes solution (37), reflects a more realistic open state configura-
tion during the transcription and replication processes. 

5. Discussion and Conclusion 

The nucleotide is an elementary unit which consists of sugar, phosphate, and 
base. The segment of a DNA which is responsible for biosynthesis of a single 
polypeptide chain is called a gene, which averagely contains about 900 to 1500 
nucleotide base pairs. During the transcription and replication processes, these 
genes are effectively transferred to single stranded shorter RNA. In fact, bases 
freely interact with enzymes during the local opening of DNA chain and there-
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fore play a key regulatory role in the transcription process. This study seeks to 
expose the various forms of periodic base pairs stretching of DNA, in order to 
elucidate on intrinsic processes like transmission, transcription, and replication 
of genetic codes. Concretely, the DNA remains the basic organ of a cell which 
stores all vital information that ensures the effective growth and reproduction of 
all living organisms. Some distorted profile of base pairs stretching identified in 
this study may make the system so vulnerable to external attack, and hinders the 
smooth flow of genetic codes. 

We effectively derived higher order nonlinear Schrödinger amplitude equa-
tions from the BJ model of DNA, by using the extended multiple scale asymp-
totic methods. Periodic solutions of these amplitude equations were used to 
mimic the open state configurations of a DNA strand under appropriate physio-
logical conditions. The BJ model can also provide valuable information relating 
to the thermodynamic properties of DNA, by showing that the finite enthalpy 
may be responsible for the DNA denaturation. The stability analysis shows the 
existence of other background modes that may provide a possible physical me-
chanism for the effect of finite enthalpy stacking on DNA dynamics to be inves-
tigated. The stacking interaction of the BJ model equally provides both linear 
and nonlinear coupling parameters in the system which can independently con-
trol the dynamics and stability of the periodic solutions. We believe that this 
work opens up new vision on the concept of nonlinear periodic waves in DNA, 
and can also be exported in the study of many other physical systems. 

In perspective, it will be very interesting to investigate on the impact of the 
helicoidal interactions on the periodic stretching of base pairs. The helicoidal 
term can best be appreciated because of the twisted nature of a real DNA mole-
cule. Secondly, the interactions between the oscillating nucleotides and the aqueous 
environment naturally induce frictional forces, that must not be neglected in 
order to holistically describe the DNA dynamics. Lastly, quantum theory needs 
to be fully incorporated in order to comprehensively describe the DNA dynam-
ics at the level much smaller than the nucleotides [49]. 
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Abstract 
A new relativistically covariant approach is discussed for the derivation of lo-
cal conservation theorems for homogeneous anisotropic and, in particular, 
dispersive media. We start from a three-dimensional operator equation for 
the electric field and obtain mainly by coordinate-invariant methods the re-
sults basically expressed by the slowly varying amplitudes of the electric field. 
Apart from local energy and momentum conservation formulated by the 
energy-momentum conservation, we find a local conservation theorem for 
the action which is more general and which is the only one which remains 
also true for inhomogeneous media. 
 

Keywords 
Spatial and Frequency Dispersion, Permittivity Tensor, Group Velocity, Cold 
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Some Notations 

Three-dimensional vectors: bold letters, e.g., , , ,a b c  ; 
ab  scalar products, [ ],a b  vector products, ⋅a b  dyadic products; 
Latin letters as indices, three-dimensional, e.g., 1,2,3i = , ijkε  is Levi-Civita 

pseudo-tensor;  
Greek letters as indices, four-dimensional, e.g., 1,2,3,4µ = ; 

4α ≡ π  (for CGS or Gauss system of units, α  is often in the denominator of 
formulae). 

1. Introduction 

The four-dimensional energy-momentum tensor was introduced 1913 by Eins-

How to cite this paper: Wünsche, A. (2021) 
Relativistic-Covariant Energy-Momentum 
Tensor for Homogeneous Anisotropic Dis-
persive Media. Journal of Modern Physics, 
12, 1866-1921. 
https://doi.org/10.4236/jmp.2021.1213108 
 
Received: October 7, 2021 
Accepted: November 27, 2021 
Published: November 30, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2021.1213108
https://www.scirp.org/
https://doi.org/10.4236/jmp.2021.1213108
http://creativecommons.org/licenses/by/4.0/


A. Wünsche 
 

 

DOI: 10.4236/jmp.2021.1213108 1867 Journal of Modern Physics 
 

tein with notation µνΘ  in [1] (republished in [2]) for the relativistically cova-
riant generalization of the local conservation theorems of energy and momen-
tum in differential form1. Three-dimensional parts of this tensor (Maxwell stress 
tensor) were already known before and used earlier. These local conservation 
theorems of energy and momentum are as it is well known a consequence of the 
homogeneity or translation invariance of (three-dimensional Euclidean) space 
and of time. 

Beginning from 1915 Einstein published his General relativity theory (see, e.g., 
[2]) in which the symmetric energy-momentum tensor Tµν  is a kind of source 
term for curvature of space-time expressed by the symmetric Ricci tensor Rµν  
which results from Riemann curvature tensor which is a four-valent tensor by 
contraction over two of its four indices [3] [4]. Due, in particular, to Pauli [5] [6] 
who wrote in his very young year of 21 an encyclopedic article about the new 
General relativity theory which requires a symmetric energy-momentum tensor 
a long discussion of the right energy-momentum tensor, the symmetric Abra-
ham tensor or the non-symmetric Minkowski tensor, began where Pauli brought 
arguments in favor of the Abraham tensor. However, the Abraham tensor was 
only derived for isotropic media without taking into account dispersion and a 
more general symmetric tensor for all subgroups of the three-dimensional or-
thogonal group cannot exist. Pauli obviously recognized his incorrectness and in 
a later republication of his article shortly before his death he corrected it in the 
remark (see Section 13 here). Now the problem of the right energy-momentum 
tensor for media seems to be decided in favor of the Minkowski tensor. 

Our main older sources for considerations to the energy-momentum tensor 
and its parts were, in particular, Landau and Lifshits [3] [7], Agranovich and 
Ginzburg [8] [9] [10] and Silin and Rukhadze [11] where, in particular, the dis-
persion was taken into account and apart from already cited encyclopedic article 
of Pauli, the work of Tolman [12], Sommerfeld [13], von Laue [14], Fock [15], 
Skobeltsyn [16] and Ugarov [17] [18], the (astonishingly modern) work of 
Tamm [19] (1st Ed. 1929) and the monographs of Møller [20] and of Jackson 
[21] for the older development of electrodynamics and Relativity theory. The 
number of interesting text-books with treatment of these topics grew rapidly in 
the following time among them, e.g., [22] [23] [24] [25] [26] which organically 
take into account dispersion. Long before but less known is the coordinate- 
invariant approach which was developed, first, mainly in the work of F.I. Fyo-
dorov [27] [28] [29] (see also [30] [31]). Many articles of later time did not use 
these methods for reflection and refraction problems where, in particular, they 
are advantageous and derived with other (mostly coordinate) methods new re-

 

 

1Contravariant and covariant components of tensors are not yet distinguished in this article by up-
per and lower indices and µνΘ  is meant as contravariant tensor. The corresponding covariant 

energy-momentum tensor with notation Tµν  is introduced there by the relation T g gµν µα νβ αβ= Θ  

with gµν  the covariant metric tensor ( µνγ  corresponding contravariant tensor). Both these tensors 

are symmetric ones. All this was prepared for the transition to curvilinear coordinates which is dis-
cussed in Mathematical Part II written together with M. Grossmann. 
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sults or rederived older results. In [32] [33] were given new arguments in favor 
of the Abraham tensor. 

Apart from Abraham or Minkowski tensor there exist yet other serious problems 
with the energy-momentum tensor. As it is well known, the energy-momentum 
tensor is not uniquely determined by the requirement to satisfy a differential 
conservation theorem, e.g., [3] [20]. Practically, one has to do in every case of a 
calculated energy-momentum tensor with a whole class of equivalent ener-
gy-momentum tensors. One main use of this non-uniqueness is the possibility to 
remove the highly oscillatory terms in the approximation to waves with slowly va-
rying amplitudes (beams) if we first insert the whole electromagnetic field with a 
positive and corresponding negative peak in the frequency distribution. We dis-
cuss this in Section 14 but mention already here that the energy-momentum ten-
sor for media (only vacuum excluded) is basically non-symmetric and that by us-
ing the non-uniqueness it cannot be reduced to a symmetric one. Another diffi-
culty for dispersive media is that their energy-momentum tensor cannot be de-
rived starting from a Lagrange function as consequence of translation invariance 
of the medium in space and time (Noether theorem) as it is standard for elec-
trodynamics of the vacuum. For inhomogeneous media the energy-momentum 
tensor does not exist at all in a local conservation law. 

In present article we consider first the equations of macroscopic electrody-
namics as averaged from microscopic electrodynamics (Section 2) then the con-
stitutive equations in the concept of media with spatial and frequency dispersion 
and the symmetry of the permittivity tensor for neglect of dissipation (Section 3) 
and its symmetry under presence of discrete symmetries (space inversion, time 
inversion and their product, Section 4). Then we derive a three-dimensional op-
erator equation for the electric field (Section 5) which is relativistically covariant 
but on the first glance it may seem to be paradoxical that this is possible. From 
this operator equation we derive a local conservation theorem for action (Section 
6) and for energy and momentum (Section 7) and discuss the obtained ener-
gy-momentum tensor (Section 8). A peculiarity of our approach is that we ob-
tain basically all results expressed by the electric field alone and after limiting 
transition to plane monochromatic waves we make the transition to more usual 
representation by the electric and magnetic field (Section 9). Then we consider 
the role which the group velocity plays (Section 10). After this we discuss the 
neglect of dispersion and the calculation of the group velocity in this case (Sec-
tion 11). Next, we consider the special case of a cold plasma (Section 12). In the 
discussion of controversial opinions to local conservation of angular momentum 
we show that a complete symmetry of the four-dimensional energy-momentum 
tensor is not necessary but only symmetry of the stress tensor (Section 13). The 
non-uniqueness of the energy-momentum tensor is considered under new as-
pects (Section 14). Connected with the general non-symmetry of the ener-
gy-momentum tensor arise some difficulties for the General relativity theory 
(Section 15) and, finally, we mention some possibilities for generalizations of the 
discussed material (Section 16). In two Appendices we have separated the deri-
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vation of the relativistic covariance of our approach and the transformation of 
the energy-momentum tensor under special Lorentz transformations. A short 
paper to some of these problems can be found in [34] (see “Remark” and “Ac-
knowledgements” at the end of present article). 

2. Maxwell Equations of Macroscopic Electrodynamics in 
Two Concepts 

The basis of our derivations is the following Maxwell equations of macroscopic 
electrodynamics 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1, , , , , 0

1 4, , , , , , 4 , ,

t t t
c t

t t t t t
c t c t

∂
+ = =   ∂

∂ ∂
− = = − 

∂
π

∂
π

 

E r B r B r

B r E r P r E r P r

∇ ∇

∇ ∇ ∇

0
 (2.1) 

where E  and B  are the averaged electric field microE  and magnetic field 
microB  of microscopic electrodynamics in the electron theory of Lorentz [35]2 

(republ. in [36]; see also [37] [38]) in the sense of the transition from micro-
scopic to macroscopic electrodynamics ([7], de Groot and Suttorp [39], (II. sec-
tion 3)) 

( ) ( ) ( ) ( )micro micro, , , , , .t t t t≡ ≡E r E r B r B r            (2.2) 

This transition can include different averaging processes, for example, spatial, 
temporal and statistical ones (denoted by overlining of the corresponding quan-
tity). The averaged microscopic current density microj  and charge density 

microρ  are expressed by only one macroscopic quantity P , called polarization, 
in the rank of following definition 

( ) ( ) ( ) ( )micro micro, , , , , ,t t t t
t

ρ∂
≡ ≡ −
∂

j r P r r P r∇          (2.3) 

where the necessary validity of the continuity equation for microscopic current 
and charge densities 

( ) ( )micro micro, , 0,t t
t
ρ∂

+ =
∂

j r r∇                   (4) 

is taken into account. Such an identification is possible in almost all cases with 
exception of some static cases (e.g., electrostatics, stationary currents, magnetos-
tatics) which have to be considered in this concept as limiting cases. As usual, we 
define the “electric induction”3 ( ), tD r  by 

( ) ( ) ( ), , 4 , .t t tπ≡ +D r E r P r                  (2.5) 

From vectorial equations in (2.1) follows then by forming the divergence 

 

 

2Lorentz denotes microscopic fields with small letters corresponding to the Capital letters commonly 
used in macroscopic electrodynamics (but d  instead of e  for microscopic electric field). Most 
authors use microH  instead of microB  but since there is no difference between them in microscopic 
theory this is only of some didactic importance. 
3We follow here in terminology Landau and Lifshits [7] (Russian editions) to distinguish the “elec-
tric induction” from such notions as, e.g., “dielectric displacement” which are mostly used in a more 
special sense. 
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( ) ( ), , , 0,t t
t t
∂ ∂

= =
∂ ∂

B r D r∇ ∇0                (2.6) 

that are the scalar equations in (2.1) differentiated with respect to the time. 
Therefore with exclusion of the static limiting case, the scalar equations from 
(2.1) in 

( ) ( ) ( )

( ) ( ) ( )

1, , , 0, , 0,

1, , , 0, , 0,

t t t
c t

t t t
c t

∂
+ = =   ∂

∂
− = =   ∂

E r B r B r

B r D r D r

∇ ∇

∇ ∇
           (2.7) 

are redundant and the only field equations to take into account are the vectorial 
equations. 

One can often find in literature forms of the equations of macroscopic elec-
trodynamics where the averaged current and charge density are not fully in-
cluded only into one quantity ( ), tP r  called polarization and defined by (2.3) 
but into some different quantities, for example, electric polarization in a more 
special sense ( ), t′P r  and magnetization ( ), tM r  according to, e.g., de Groot 
and Suttorp [39] and Bloembergen [40] (chap. 3, Eqs. (3.3), (3.5)) (the “Nether-
land school” together with H.A. Lorentz) but also many other authors 

( ) ( ) ( )

( ) ( )

micro

micro

, , , , ,

( , , ,

t t c t
t

t tρ

∂ ′≡ + +  ∂

′≡ − +

j r P r M r

r P r





∇

∇
           (2.8) 

and in nonlinear optics sometimes additionally into electric quadrupole density 
and higher electric and magnetic multipole densities (indicated by additional 
points). They can be joined then in different ways with the electric field ( ), tE r  
and magnetic field ( ), tB r  to new quantities, for example, to a more special di-
electric displacement ( ), t′D r  and to a new field ( ), tH r  as follows 

( ) ( ) ( ) ( ) ( ) ( ), , 4 , , , , 4 , ,t t t t t t′ π+ π′≡ ≡ −D r E r P r H r B r M r     (2.9) 

which obey then the following field equations instead of (2.7) 

( ) ( ) ( )

( ) ( ) ( )

1, , , , , 0,

1, , , , , 0.

t t t
c t

t t t
c t

∂
+ = =   ∂

∂ ′ ′− = =   ∂

E r B r B r

H r D r D r

∇ ∇

∇ ∇

0

0
         (2.10) 

The field ( ), tH r  is mostly called magnetic field but it is not the averaged 
microscopic magnetic field ( )micro , tB r  and therefore not the “genuine” mag-
netic field [7] (chap IV, section 29, after Eq. (29.8)) (in our treatment with equa-
tions (2.7) we have ≡H B  and M  is included into P ). However, the greater 
symmetry of (2.10) in comparison to (2.7) is deceptive and to fix the separation 
(2.8) is then difficult and not fully unique without additional conventions, in 
particular, for high frequencies under presence of dispersion in the constitutive 
equations. To see this we recommend to read also the very instructive section 79 
in Landau and Lifshits [7]. All such more special schemes can be transformed to 
the general scheme which we prefer and which is characterized by Equations 
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(2.3), (2.5) and (2.7) and by constitutive relations considered in next Section and 
only some static cases have to be dealt with then as limiting cases. 

3. Linear Constitutive Equations for Homogeneous  
Anisotropic Dispersive Media 

The Maxwell equations of macroscopic electrodynamics (2.1) or (2.7) form a 
closed system of equations only together with constitutive equations which de-
pend on the kind of the considered medium. We discuss this now. 

The general linear constitutive relation between the electric induction ( ), tD r  
and the electric field ( ), tE r  for spatially and temporally homogeneous media 
is (summation convention over equal indices; ′≡ −r rρ , t tτ ′= − ;  

exp
t

τ ∂ − − ∂ 
ρ∇  is displacement operator of arguments of a function of ( ), tr  

to ( ), t τ− −r ρ ) 

( ) ( ) ( )

( ) ( )

3

3

ˆ, d d , ,

ˆd d , exp , ,

i ij j

ij j

D t E t

E t
t

ρ τ ε τ τ

ρ τ ε τ τ

= ∧ − −

∂ = ∧ − − ∂ 

∫

∫

r r

r

ρ ρ

ρ ρ∇
       (3.1) 

where the real-valued tensor function ( )ˆ ˆ ,ij ijε ε τ= ρ  characterizes the material 
properties and where the integration is written as going over the whole 
space-time and restrictions of this integration (e.g., to prehistory, causality) are 
thought to be included by vanishing of this tensor function in certain regions. 
These restrictions, for example, to the prehistory of the field evolution lead to 
properties of analyticity and thus to relations between real and imaginary part of 
the Fourier transform of ( )ˆ ,ijε τρ  which are called Kramers-Kronig relations 
which we do not discuss here (e.g., [7]). Relation (3.1) means that the most gen-
eral linear constitutive relations are also nonlocal in space that describes the spa-
tial dispersion4. The homogeneity of the medium is expressed by the property 
that ( )ˆ ,ijε τρ  does not explicitly depend on the considered space-time point 
( ), tr  but only on the differences ( ),τρ  to this point. 

Using the Fourier transform ( ),ijε ωk  of ( )ˆ ,ijε τρ  according to [9] [10] 

( ) ( ) ( )

( )
( )

( ) ( )

i3

i3
4

ˆ, d d , e ,

1ˆ , d d , e ,
2

ij ij

ij ijk

ωτ

ωτ

ε ω ρ τ ε τ

ε τ ω ε ω

− −

−

= ∧

= ∧
π

∫

∫

k

k

k

k

ρ

ρ

ρ

ρ
           (3.2) 

the constitutive Equation (3.1) can be represented by 

( ) ( ), i , i , ,i ij jD t E t
t

ε ∂ = − ∂ 
r r∇                 (3.3) 

where ( ),ijε ωk  denotes the complex permittivity tensor. After Fourier trans-
formation of the electric field ( ), tE r  (analogously ( ), tD r  and ( ), tB r ) ac-

 

 

4According to Silin and Rukhadse [11] (p.14) the notion “spatial dispersion” was introduced by 
Gertsenshteyn. Clearly, the name “spatial dispersion” is not analogous to “frequency dispersion” 
which then has to be better named “temporal dispersion” or vice versa the “spatial dispersion” then 
“wave-vector dispersion”. 
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cording to 

( ) ( ) ( )

( )
( )

( ) ( )

i3

i3
4

, d d , e ,

1, d d , e ,
2

t

t

r t t

t k

ω

ω

ω

ω ω

− −

−

=

π

∧

= ∧

∫

∫

kr

kr

E k E r

E r E k
            (3.4) 

the constitutive relation (3.3) takes on the well-known form (e.g., [7] [8] [9] [10] 
[11] and others) 

( ) ( ) ( ), , , .i ij jD Eω ε ω ω=k k k                  (3.5) 

The dispersion of the medium is here expressed by the dependence of the 
permittivity tensor ( ),ijε ωk  on wave vector k  and frequency ω  and the 
anisotropy by its tensor character. 

The electric field ( ), tE r  and the electric induction ( ), tD r  are real quanti-
ties. From this follows for the Fourier transform of the electric field ( ), tE r  
(analogously ( ), tD r  and ( ), tB r ) 

( ) ( )( ) ( ) ( )( )** * *, , , , , .t t ω ω= ⇔ = − −E r E r E k E k        (3.6) 

As a consequence, the permittivity tensor ( ),ijε ωk  possesses the general 
symmetry property 

( ) ( )( )** *, , .ij ijε ω ε ω= − −k k                   (3.7) 

Local or differential conservation laws of energy and momentum can only be 
derived under the condition that the medium is lossless which means that it does 
not have any dissipation or accumulation or transmission of energy and mo-
mentum to other frequencies and wave vectors. As the later derivations show, 
the condition for this is the following symmetry 

( ) ( )ˆ ˆ, , ,ij jiε τ ε τ= − −ρ ρ                     (3.8) 

which after Fourier transformation according to (3.2) and in connection with 
(3.7) takes on the following form 

( ) ( ) ( )( )** *, , , ,ij ji jiε ω ε ω ε ω= − − =k k k              (3.9) 

and which for dispersive media can only be satisfied approximately for certain 
regions of wave vector and frequency. Such kind of conditions are closely related 
to Onsager conditions for quasi-stationary processes [7] (section 21, Ed. 1982) 
but instead of a rigorous derivation from basic principles we prefer again that 
one can conclude this from the necessary conditions for the most general possi-
bility of derivation of differential conservation laws of energy and momentum. 
These conditions should not be confused with the influence of point group 
symmetries on the medium properties which additionally may be present or may 
not. The symmetry conditions which are related to different inversion symme-
tries are discussed in next Section. 

To treat spatial dispersion it is mostly appropriate to make a Taylor-series ex-
pansion of ( ),ijε ωk  in powers of the full wave-vector k  (i.e., at 0 =k 0 ) 
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with notations in [9] (p. 155) and for the inverse tensor ( )1 ,ijε ω− k  in the new 
chapter XII in [7] (Ed. 1982) (Landau and Lifshits prefer there mainly to work 
with this inverse tensor) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1

, i ,

, i ,
ij ij ijk k ijkl k l

ij ij ijk k ijkl k l

k k k

k k k

ε ω ε ω γ ω α ω

ε ω ε ω δ ω β ω− −

= + + +

= + + +

k

k





        (3.10) 

that means for the expansion (3.10) 

( ) ( ) ( ) ( ) ( ) ( ), , , .ij ji ijk jik ijkl jiklε ω ε ω γ ω γ ω α ω α ω= − = − − = − 
 (3.11) 

The approximate transition from one to the inverse tensor in (3.10) is easily to 
make. 

We mention here shortly that in the most common treatment of macroscopic 
electrodynamics with two constitutive equations ( ) ( ) ( ), ,i ij jD Eω ε ω ω=k k  
and ( ) ( ) ( ), ,i ji jB Hω µ ω ω=k k  the more general tensor ( ),ijε ωk  corres-
ponds to the special one ( ijkε  is Levi-Civita pseudo-tensor) 

( ) ( ) ( )( )
2

1
2, .ij ij ikm jln mn mn k l

c k kε ω ε ω ε ε δ µ ω
ω

−= + −k         (3.12) 

This shows that a possible magnetization appears here as effect of spatial dis-
persion of second order in wave-vector k  that is important for the energy- 
momentum tensor and also for the boundary conditions at such medium. Fur-
thermore, we see that the tensor ( )ijklα ω  in (3.10) is more general and usually 
contains more non-vanishing terms than this special tensor proportional to 

k lk k  in (3.12)5. Only for magnetostatics this concept not used in present article 
is less appropriate. 

4. Additional Restrictions of Tensor ( )ij kε ω,  for Discrete 
Symmetries of Spatial and Time Inversion 

We now consider the most simple discrete symmetries of order 2. 
1) Spatial inversion (presence of symmetry center) 
The presence of spatial inversion that means invariance of the medium with 

respect to the transformation → −r r  of the coordinates where due to the ho-
mogeneity the chosen coordinate origin is arbitrary and due to the property of 
E  and D  to be genuine vectors changing their sign under this transformation 
(in contrast, B  is a pseudo-vector) leads to 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − = −k k k              (4.1) 

where in the second step (3.7) was used in addition. The first part of this condi-
tion means that for media with spatial inversion the components of the permit-
tivity tensor ( ),ijε ωk  are mutually independent from each other and are even 
functions of the wave vector k , whereas it does not mean a restriction for its 
dependence on the frequency ω . In composition with the condition (3.9) for 
absence of dissipation we have 

 

 

5For a deeper understanding we recommend here again the very instructive section 79 in [7] (Ed. 
1982). 
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( ) ( ) ( ) ( ), , , , ,ij ij ji jiε ω ε ω ε ω ε ω= − = − = −k k k k           (4.2) 

which relates different components of the permittivity tensor and is not true for 
regions of k  and ω  where dissipation is not negligible. If we deal with spatial 
dispersion by expansion of ( ),ijε ωk  in powers of the wave vector k  then we 
can use mainly the first part ( ) ( ), ,ij ijε ω ε ω= −k k  of these symmetry condi-
tions which are true also in case of dissipation. 

2) Time inversion (nonmagnetic symmetry classes) 
The presence of time inversion that means of invariance of the medium with 

respect to the transformation t t→ −  taking into account that E  and D  do 
not change their sign under this transformation (in contrast, B  changes it) 
leads to 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − = −k k k              (4.3) 

where in addition (3.7) is used in last equality. The first part of this condition 
means that for media with spatial inversion the components of the permittivity 
tensor ( ),ijε ωk  are mutually independent from each other even functions of 
the frequency ω , whereas it does not mean a restriction for its dependence on 
the wave vector k . In composition with the condition (3.9) for absence of dis-
sipation we have here 

( ) ( ) ( ) ( ), , , , .ij ij ji jiε ω ε ω ε ω ε ω= − = − = − −k k k k          (4.4) 

In expansions of the permittivity tensor ( , )ij kε ω  in powers of k  one may 
use here mainly the part ( ) ( ), ,ij jiε ω ε ω= −k k  for simplifications which, how-
ever, are true only under neglect of dissipation. 

3) Product of spatial inversion with time inversion (nongyrotropic media) 
The presence of the product of spatial inversion with time inversion (includ-

ing, evidently, the case of presence of both symmetry elements separately and 
therefore also of their product) leads to the symmetry 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − − =k k k              (4.5) 

where again the condition (3.7) is used in last equality. In composition with the 
condition for absent dissipation (3.9) we find 

( ) ( ) ( ) ( ), , , , .ij ij ji jiε ω ε ω ε ω ε ω= − − = − − =k k k k          (4.6) 

The most interesting part of this relation ( ) ( ), ,ij jiε ω ε ω=k k  describes 
complete symmetry of the permittivity tensor ( ),ijε ωk  and this symmetry, by 
definition, is called non-gyrotropy of a medium and is connected with the sym-
metry element of product of spatial inversion with time inversion of the medium 
but not necessarily with both symmetries separately. Clearly, a non-gyrotropic 
medium possesses this symmetry only in regions of wave vector and frequency 
where dissipation which is not included in the symmetric part can be neglected. 
On the other side, gyrotropic media are such media which do not possess this 
symmetry of the permittivity tensor ( ),ijε ωk . 

Usually, if nothing is said in crystal optics it is meant that the medium pos-
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sesses time inversion as symmetry element in addition to the spatial symmetry 
elements of one of the considered 32 crystal classes which are then called 
non-magnetic crystal classes and for which (4.3) is true. From the 32 crystal 
classes 11 do not possess a symmetry center and 11 possess it and therefore the 
spatial inversion as symmetry element and thus are non-gyrotropic and (4.1) 
and (4.5) are true for them in addition. There are 90 magnetic crystal classes 
from which 32 are trivial ones and correspond to the usual crystal classes but 
without time inversion as symmetry element. 

Furthermore, there exist 58 magnetic crystal classes which contain time inver-
sion not directly as symmetry element but in the form of the product of time in-
version with the elements of a coset to an invariant subgroup of one of the 11 
groups with only rotations [7] [41]. The 90 magnetic classes form the basis for the 
symmetry classification of ferromagnetics and anti-ferromagnetics. This concerns 
natural absence of time inversion as symmetry element but this absence can be 
generated also artificially under the influence of the medium by an external mag-
netic field from a primarily non-magnetic class. In the same way, among the 122 
crystal classes (magnetic and non-magnetic ones) there are 32 classes with symme-
try center for which (4.1) is true and 90 without symmetry center. This is contained 
in a compact form in Figure 1 copied from our paper [41]. 

5. Elimination of Magnetic Field and Three-Dimensional 
Operator Equation with Relativistic Covariance for the 
Electric Field 

By differentiation of the second vectorial equation in (2.7) with respect to time 
and using the first vectorial equation, the magnetic field can be eliminated and 
using the constitutive Equation (3.3) we obtain the following equation for the 
electric field 

( ) ( ) ( )

( )

2
2

2 2

2
2

2 2

10 , ,

1 i , i , .

i j ij j i

i j ij ij j

E t D t
c t

E t
tc t

δ

δ ε

∂
= ∇ ∇ − +

∂
 ∂ ∂ = ∇ ∇ − + −  ∂∂   

r r

r

∇

∇ ∇
         (5.1) 

This equation for the electric field contains the full information about the 
electromagnetic field in the medium with exception of some static cases which 
have to be considered as limiting cases. 

Since Equation (5.1) carries the full information about the electromagnetic 
field the conservation theorems may be derived from it that possesses considera-
ble advantages, in particular, taking into account the dispersion as we will dem-
onstrate this in the following. For such derivations, roughly speaking, we have to 
multiply this equation from the left with other electric fields ( ),iE t′ r . However, 
in this way we do not get expressions which are relativistic-covariant (they mul-
tiply by factors under Lorentz transformations). This shortage can be removed if  

we divide this equation by 
2

2 2

1
c t

∂
∂

 as will be shown in Appendix A that makes  
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Figure 1. The 122 magnetic and non-magnetic crystal classes (from [41]). Hilfsspalte = auxiliary column. 
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difficulties only in the limiting transition to vanishing frequencies. Thus starting 
from Maxwell equations and constitutive equations as intermediate step (5.1) we 
arrive at the following vectorial equation for the electric field 

( )i , i , 0,ij jL E t
t
∂ − = ∂ 

r∇                   (5.2) 

where the tensor operator i , iijL
t
∂ − ∂ 

∇  is defined in the following way 

( )2 2

2

2

i , i i , i .i j ij
ij ij

c
L

t t
t

δ
ε

∇ ∇ −∂ ∂   − ≡ + −   ∂ ∂∂   
∂

∇
∇ ∇          (5.3) 

The vectorial equation for the electric field (5.2) together with definition (5.3) 
forms a closed system of equations of macroscopic electrodynamics of homoge-
neous media and, moreover, is relativistic-covariant (contrary to (5.1)) and are 
appropriate for the derivation of the energy-momentum tensor. After Fourier 
transformation of the electric field according to (3.4) we obtain from (5.2) the 
equation for the Fourier components ( ),ωE k  of the electric field and then the 
magnetic field ( ),ωB k  

( ) ( ) ( ) ( ), , 0, , , ,ij j i ijk j k
cL E B k Eω ω ω ε ω
ω

= =k k k k         (5.4) 

with the tensor operator ( ),ijL ωk  in this equation defined by 

( )
( )

( )

( )

2 2

2

2 2
2

2 2

, ,

4 , ,

i j ij
ij ij

i j ij ij

c k k
L

c k k
c

δ
ω ε ω

ω
ω δ χ ω

ω

−
≡ +

   = − − +  
  

π


k
k k

k k
        (5.5) 

where ( ) ( ),
,

4
ij ij

ij

ε ω δ
χ ω

−
≡

π

k
k  is the general susceptibility tensor. Since the  

tensor ( ),ijχ ωk  may be a complicated function of the wave-vector k  and, in 
particular, of the frequency ω  it is hardly possible to write down a Lagrange 
function for the system and the usual formalism of derivation of the ener-
gy-momentum tensor from such function is almost impossible. 

Equations (5.4) with operator (5.5) as transformed Equation (5.2) possess also 
a relativistically covariant form in three-dimensional orthogonal coordinates for 
arbitrary inertial systems ′  

( ) ( ), , 0,ij jL Eω ω′ ′ ′ ′ ′ ′ =k k                    (5.6) 

with 

( )
( )

( )
2 2

2, , ,i j ij
ij ij

c k k
L

δ
ω ε ω

ω

′ ′ ′−
′ ′ ′ ′ ′ ′≡ +

′

k
k k             (5.7) 

where ( ),ijε ω′ ′ ′k  is related to ( ),ijε ωk  by a transformation which we derive 
in detail in Appendix A. For an inertial system ′  moving with velocity V  in 
the inertial system   according to the special Lorentz transformation (A.14) it 
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possesses the form (A.20) [42] 

( )
( )

( )( )
( )

2 2

4 ,

2 2

4 ,

,

, ,

ij

ij

i k i k ik i k
ij ij ik

j l j l jl j l
jl kl kl

VV VV V k

V V V V V k

χ ω

χ ω

δ
ε ω δ γ δ

ω

δ
γ δ ε ω δ

ω

′ ′ ′=

=

π

π

′ ′ −  ′ ′ ′ − = + − +  ′  

′ ′ −   ⋅ + − + −  ′   

k

k

k V
k

V V

k V
k

V V





 (5.8) 

with the following relations between ( ),ω′ ′k  and ( ),ωk  and their inversion 
by → −V V  (see (A.15) 

( ) ( )

( ) ( )

2 2

2 2

1 , ,

1 , ,

c

c

ωγ γ ω γ ω

ωγ γ ω γ ω

 ′ ′= + − − = − 
 

′ ′ ′ ′ ′= + − + = + 
 

kVk k V kV
V
k Vk k V k V
V

         (5.9) 

and with relativistic invariant 
2 2

2 2
2 2 .

c c
ω ω′

′ − = −k k                     (5.10) 

In ( ),klε ωk  on the right-hand side of (5.8) one has yet to express the argu-
ments ( ),ωk  by the arguments ( ),ω′ ′k  according to the transformation for-
mulae (5.9) to have the same variables on both sides. This means that the trans-
formed permittivity tensor ( ),ijε ω′ ′ ′k  becomes dependent on the wave vector 
′k  even in case that the primary permittivity tensor ( ),ijε ωk  in the resting 

system of the medium does not depend on the wave vector k . However, this 
dependence on the wave vector k  in the system moving with velocity V  
which formally means spatial dispersion of the medium is of some other kind 
than the natural dependence of the permittivity of a medium on wave vector k  
in resting system and it is not reasonable to expand it in a Taylor series in k . 
For the formal derivation of the energy-momentum tensor these differences are 
not of importance. 

The transformation formulae (5.8) for the permittivity tensor from one to 
another inertial system and for (5.9) simplify essentially in non-relativistic  

approximation 1
c
V
  if we neglect quadratic and higher terms in 

c
V  in 

comparison to linear terms in 
c
V  (e.g., 1γ → ) that we do not write down.  

From transformations (5.8) together with (5.9) we see that if we change at the 
same time the signs of k  and ω  this also changes at the same time the signs 
of ′k  and ω′  according to 

( ) ( ) ( ) ( ), , , , , .ω ω ω ω′ ′ ′ ′→ − − ⇔ → − −k k k k          (5.11) 

As expected this means that the condition (3.9) for the dissipation-free case 
transforms into a corresponding condition for the dissipation-free case in an ar-
bitrary inertial system ′  moving with velocity V  in inertial system   

( ) ( ) ( ) ( ), , , , , ,ij ji ij jiε ω ε ω ε ω ε ω′ ′ ′ ′ ′ ′= − − ⇔ = − −k k k k      (5.12) 
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and is therefore invariant with respect to Lorentz transformations as one could 
have to expect for such a physical property. 

It is seen that the condition (3.9) for absent losses can be continued to the fol-
lowing condition for ( ),ijL ωk  

( ) ( ) ( )( )** *, , , .ij ji jiL L Lω ω ω= − − =k k k             (5.13) 

Therefore, if (5.13) is satisfied we can write down in addition to (5.2) the fol-
lowing equation for the electric field 

( )i , i , 0.ij iL E t
t
∂ − = ∂ 

r∇                   (5.14) 

The two Equations (5.2) and (5.14) form the basis of our derivations of local 
conservation laws and it possesses a great advantage that we have only one field 
function for the electric field in these equations in comparison to the electric and 
magnetic field in the common derivations. 

We now consider quasiplane and quasimonochromatic waves in the form 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0i i* * *
0 0 0 0 0 0, , e , e , , ,t tt t tω ω ω ω− − −= + = =k r k rE r E r E r k k   (5.15) 

where ( )0 , tE r  is a slowly varying complex vectorial amplitude and 0k  a 
mean wave vector and 0ω  a mean frequency. We suppose that 0k  and 0ω  are 
real and exclude in such way, but only for simplicity, evanescent waves with 
complex values of these quantities which may exist even in lossless media (for 
example, waves under total reflection in the lossless optically thinner medium or 
surface waves). The inclusion of such waves would complicate the following 
considerations but does not destroy the existence of local conservation theorems. 

The approximations which we make in the following are that due to slowness 
of changing of the amplitudes ( )0 , tE r  in such way that we may take into ac-
count in expansions only a small number of spatial and temporal derivatives of 
these amplitudes. This means that the wave vectors and frequencies in the Fourier 
decomposition of the quasiplane and quasimonochromatic wave are concen-
trated around 0k  and 0ω  (and, clearly, around 0−k  and 0ω− ) and the two 
complex conjugated parts in (5.15) are well separated. The supposition and at 
once approximation in the following is that we can deal with both parts as inde-
pendent solutions of the wave equation for the electric field. This is apparently 
equivalent to some averaging procedure over terms with rapidly varying fre-
quencies and wave vectors which then vanish from the equations such as made 
in [7] and is justified for quasiplane and quasimonochromatic waves. 

If we insert the first part from the right-hand side of (5.15) as independent 
solution into Equation (5.2) we obtain the following equation for the slowly va-
rying complex amplitude ( )0 , tE r  

( )

( )

0 0 0,

0
0 0

0 i , i ,

i i

ij j

ij ij
ij l

l

L E t
t

L L
L

k t

ω

ω

∂ = − + ∂ 
 ∂ ∂    ∂= − ∇ +    ∂ ∂ ∂    

k r∇
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( )
2 2 2 2

0,2 2
0 0 0

1 2 , ,
2

ij ij ij
l m l j

l m l

L L L
E t

k k k t tω ω

      ∂ ∂ ∂∂ ∂  − ∇ ∇ − ∇ + +            ∂ ∂ ∂ ∂ ∂ ∂ ∂        
r

 (16) 

where index “0” means that the corresponding derivatives have to be taken for 

0=k k  and 0ω ω=  (e.g., ( ) ( )0 00
,ij ijL L ω≡ k ). In the following, we take the 

derivatives of the slowly varying amplitudes up to the second order but before 
this we introduce a shorter relativistic-covariant notation of the equations for 

( )0 , tE r  and ( )*
0 , tE r . 

Our derivation of the energy-momentum tensor is similar to the derivation of 
approximate equations for beam solutions with the only difference that in last 
case the determinant of ijL  has to be taken as starting point for the expansion 
to get the equation for the main component of ( )0 , tE r . 

6. Local Action Conservation in Relativistic Covariant Form 

The derivation of local (or differential) laws of action conservation and of other 
local conservation theorems becomes much more concise if we introduce for 
abbreviation the following four-dimensional notations of special theory of rela-
tivity6 

( )

( ) ( )0 0 0 00

2
2 2 2 2 2 2

2

i ii
0 0

i 1, i , , , , , , ,
i

1 ii e i , e e i , i .
i

t tk r

r ct k r c t k
c c tc

c t c t
ω ω

ω ω

ω− −

∂   ≡ ≡ = − = − ∇ ≡   ∂   
∂  ∂    − ∇ = − = − +    ∂ ∂    

k r k r

r k r k

k

∇

∇ ∇
(6.1) 

An advantage of the four-dimensional formalism is that we obtain the results 
in relativistic covariant form. 

We may write the equations for the electric field (5.2) and (5.14) in the con-
cise form7 

( ) ( ) ( ) ( )i 0, i 0.ij j ij iL E r L E r− ∇ = ∇ =              (6.2) 

with ( )ijL k  in relativistic-covariant form (see Appendix A, (25)) 

 

 

6Modern development mainly for preparing the transition to General relativity theory favors to use 
only representations by real components for space-time. This makes it necessary to distinguish be-
tween contravariant and covariant components of vectors and tensors but this becomes very incon-
venient for our purposes. According to Pauli [5] (Part III, p. 71), the historically older notation 

( )4
4 ix x ct= =  was first used by Poincaré in 1906 in Journal “R.C. Circ. mat. Palermo 21, 129” for 

vectors ( )( ), , ,x x y z t= ≡x  of space-time later called Minkowski space (after Minkowski’s Lecture 

“Raum und Zeit” in Köln in 1908, published in 1909 [43] (republ. [44, 36]) in the year of his prema-
ture death). Apart from basic Maxwell equations, Einstein up to 1912 preferred to write down all 
four-dimensional vectorial relations separately in the 4 components and mentions 4 ix ct=  only 

shortly in 1910 with reference to Minkowski [43] that can be traced from the collection of Einstein’s 
scientific papers [1] (p. 138, for corresponding article). Minkowski on his part finds it in [43] to be a 

“very pregnant manner” to cloth 1s ct= −  in the “mystic formula” 53 10 km 1secs× = − . 
7Deviating from (6.1) we now used in the notations of the argument of the electric field jE  and of 

the operator function ijL  the four-dimensional notations in the form ( ),r t= r  and ( ),k ω= k  

which we do not want to change here into that of (6.1). However, by comparison with second line in 
(1) it seems that this does not cause problems. 
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( ) ( ) ( ) ( )
2

2
2, , ,ij ij i j ij ij

cL k L k kω δ ε ω
ω

≡ = − +k k k           (6.3) 

and k substituted by i− ∇ . The quasiplane and quasimonochromatic waves 
(5.15) take on the shorter form 

( ) ( ) ( )0 0i i*
0, 0,e e .k r k r

j j jE r E r E r −= +                (6.4) 

In the same approximation as in (5.16) we obtain from the first of Equation 
(6.2) 

( ) ( )

( ) ( )

0 0,

2

0,0
0 0

0 i

1i ,
2!

ij j

ij ij
ij j

L k E r

L L
L E r

k k kλ λ µ
λ λ µ

= − ∇

  ∂ ∂  = − ∇ − ∇ ∇ +     ∂ ∂ ∂    


     (6.5) 

and from the second equation 

( ) ( )

( ) ( )

*
0 0,

2
*
0,0

0 0

0 i

1i .
2!

ij i

ij ij
ij i

L k E r

L L
L E r

k k kλ λ µ
λ λ µ

= + ∇

  ∂ ∂  = + ∇ − ∇ ∇ +     ∂ ∂ ∂    


     (6.6) 

We first derive a conservation theorem which is even more fundamental than 
the theorem for energy-momentum conservation since it may be extended to 
inhomogeneous media. 

If we multiply (6.5) by ( )*
0,iE r  and (6.6) by ( )0, jE r  and form the difference 

of the obtained equations then it can be written as the 4-divergence of a 4-vector 
function in the following way 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ) ( )( )

* *
0, 0 0, 0, 0 0,

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

0 i i i

i .
2

i ij j j ij i

ij
i j

ij
i j j i

E r L k E r E r L k E r

L
E r E r

k

L
E r E r E r E r

k k

λ
λ

µ µ
λ µ

= − − ∇ − + ∇

 ∂ = ∇ −  ∂  
 ∂ + ∇ − ∇ +   ∂ ∂   



   (6.7) 

The terms are explicitly written down up to first-order derivatives of the 
slowly varying amplitudes but the higher-order terms on the right-hand side can 
also be represented as 4-divergence of a 4-vector ( )T rλ  and (6.7) possess the 
form of a vanishing 4-divergence and can be included in the local conservation 
law 

( ) 0,T rλ λ∇ =                         (6.8) 

with ( )T rλ  defined by (remind: 4α ≡ π  in CGS or Gauss system) 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

i .
2

ij
i j

ij
i j j i

L
T r E r E r

k

L
E r E r E r E r

k k

λ
λ

µ µ
λ µ

α
∂ 

= − ∂ 

 ∂
+ ∇ − ∇ +  ∂ ∂ 



  (6.9) 

In three-dimensional separation according to the definition 
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( ) ( ) ( )( ), , i , ,lT r T t cs tλ = r r                  (6.10) 

the local conservation theorem (6.8) takes on the form 

( ) ( ), , 0.l lT t s t
t
∂

∇ + =
∂

r r                   (6.11) 

From their dimensions, ( ),s tr  can be identified with the action density and 
( ),lT tr  with the vector field of action flow density. 
From (6.10) and (6.9) we find in three-dimensional representation up to ex-

plicitly given first-order derivatives of the slowly varying amplitudes ( )0 , tE r  
of the electric field which last take into account the diffraction of beams 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
* *
0, 0, 0, 0,

0

, , ,

i , , , ,
2

i , , , , ,
2

ij
l i j

l

ij
i m j j m i

l m

ij
i j j i

l

L
T t E t E t

k

L
E t E t E t E t

k k

L
E t E t E t E t

k t t

α

ω

∂ 
= − ∂ 

 ∂
+ ∇ − ∇  ∂ ∂ 

 ∂ ∂ ∂ − − +    ∂ ∂ ∂ ∂  

r r r

r r r r

r r r r 

 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
* *
0, 0, 0, 0,2

0

, , ,

i , , , ,
2

i , , , , .
2

ij
i j

ij
i m j j m i

m

ij
i j j i

L
s t E t E t

L
E t E t E t E t

k

L
E t E t E t E t

t t

α
ω

ω

ω

∂ 
=  ∂ 

 ∂
− ∇ − ∇  ∂ ∂ 

 ∂ ∂ ∂ + − +     ∂ ∂∂   

r r r

r r r r

r r r r 

(6.12) 

Before discussing these expressions we derive the local form of energy- 
momentum conservation. 

7. Local Energy and Momentum Conservation in Relativistic 
Covariant Form 

In analogy to (6.7) we consider the following combination which can be 
represented as the 4-divergence of a second-rank 4-tensor 

( )( ) ( ) ( ){
( )( ) ( ) ( )}

( )
( ) ( )

( )
( ) ( ) ( ) ( )( )

*
0, 0, 0 0,

*
0, 0, 0 0,

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

0 i i i

i i

i .
2

i ij j

j ij i

ij
i j

ij
i j j i

E r k L k E r

E r k L k E r

k L
E r E r

k

k L
E r E r E r E r

k k

κ κ

κ κ

κ
λ

λ

κ
µ µ

λ µ

= − − ∇ − ∇

− + ∇ + ∇

  ∂  = ∇ −  ∂  
 ∂  + ∇ − ∇ +  ∂ ∂   



   (7.1) 

Thus we obtained a local conservation theorem of the form 

( ) 0,T rλ κλ∇ =                         (7.2) 
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with a tensor function ( )T rκλ  which explicitly written down up to terms with 
first-order derivatives of the slowly varying amplitudes is given by 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

i .
2

ij
i j

ij
i j j i

k L
T r E r E r

k

k L
E r E r E r E r

k k

κ
κλ

λ

κ
µ µ

λ µ

α
 ∂
 = −
 ∂ 

 ∂
 + ∇ − ∇ +
 ∂ ∂ 



  (7.3) 

The four-dimensional covariance of ( )T rκλ  with respect to index λ  is the 
same as in the action 4-vector ( )T rλ  and the covariance with respect to index 
κ  is evident from construction (7.1) with 4-wave vector kκ . That this is con-
nected with homogeneity (or translation invariance) in space and time is easily 
seen since in case of absence of this symmetry it is impossible to have globally 
constant wave vectors and frequencies as used in the derivation. Thus we have 
the justification to call ( )T rκλ  the energy-momentum tensor of homogeneous 
anisotropic dispersive media in the approximation of quasiplane and quasimo-
nochromatic waves. In general, the tensor ( )T rκλ  is non-symmetric 

( ) ( ) ,T r T rκλ λκ≠                       (7.4) 

and is, in general, not equivalent to a symmetric one that means it is intrinsically 
non-symmetric. 

We now transform the energy-momentum tensor ( )T rκλ  to another form 
which is interesting for the physical interpretation. For this purpose we use the 
identities 

( ) ( )

( )

0, 0
00

2 2

0,
0 000

,

.

ij ij
ij

ij ij ij ij

k L L
k L

k k

k L L L L
k

k k k k k k

κ
κ κλ

λ λ

κ
κ κµ κλ

λ µ λ µ λ µ

δ

δ δ

 ∂ ∂ 
  = +  ∂ ∂  

 ∂    ∂ ∂ ∂ 
  = + +        ∂ ∂ ∂ ∂ ∂ ∂     

      (7.5) 

Inserting this into (7.3) and using the representation (6.9) of ( )T rλ  and the 
Equations (6.5) and (6.6) for the slowly varying amplitudes we obtain up to 
first-order derivatives of these amplitudes 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

*
0, 0, 0,0

* *
0, 0, 0, 0,

0

i .
2

ij i j

ij
i j j i

T r k T r L E r E r

L
E r E r E r E r

k

κλ κ λ κλ

κ κ
λ

α α δ= −

∂ 
+ ∇ − ∇ + ∂ 



   (7.6) 

In the limiting transition from the slowly varying amplitudes to constant ampli-
tudes the terms with derivatives of these amplitudes vanish and ( ) 0,0

0ij jL E =  
and we obtain the factorization 

( ) ( )0, ,T r k T rκλ κ λ=                      (7.7) 

of the energy-momentum tensor. This is in full analogy to a homogeneous par-
ticle flow as discussed in e.g. [3] [12] (see also [34] and below) where, however, 
macroscopic electrodynamics provides a greater variety of possible dependencies 
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of the momentum of one particle on the group velocity than classical mechanics. 
Taking seriously this analogy to a homogeneous particle flow this leads in a 
natural way to a quantization of the electrodynamic flow and to its interpreta-
tion as a flow of quasiparticles. The energy-momentum tensor ( )T rκλ  in high-
er approximations according to (7.6) does not fully factorize into the product 

( )0,k T rκ λ  and the remaining terms are important at such space-time points 
where the 4-gradient of the slowly varying amplitudes of the electric field com-
ponents is important. This may be interpreted as the tendency that energy and 
momentum flow at these points are forced to choose deviating directions in 
comparison to the homogeneous particle flow and expresses some interaction of 
the particles within the flow or some (direction-dependent) pressure or stress. 
This is in rough agreement with the diffraction of beams, for example, of Gaus-
sian beams which cannot remain to be focused over the whole length of the 
beam. 

8. Three-Dimensional Representation of Energy-Momentum 
Tensor 

We now make the transition to the three-dimensional separation of the terms in 
the local laws of momentum and of energy conservation. The 4-dimensional 
energy-momentum tensor can be separated into three-dimensional parts in the 
following way defining (in common sense) the introduced new quantities on the 
right-hand side 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
4

4 44

, i ,
.i , ,

kl k
kl k

l l

T t cg tT r T r
T r

T r T r S t w t
c

κλ

    = ≡   −    

r r

r r
        (8.1) 

Then from (7.2) we find the following differential law of momentum conser-
vation 

( ) ( ) ( ) ( )4
1, , 0, , , 0,
il kl k l kl kT t T t T t g t
c t t
∂ ∂

∇ + = ⇔ ∇ + =
∂ ∂

r r r r    (8.2) 

where ( ),klT tr  is the (Maxwell) stress tensor and ( ),kg tr  the momentum 
density8. Furthermore, the following differential law of energy conservation 
holds 

( ) ( ) ( ) ( )4 44
1, , 0, , , 0,
il l l lT t T t S t w t
c t t
∂ ∂

∇ + = ⇔ ∇ + =
∂ ∂

r r r r     (8.3) 

where ( ),lS tr  is the energy flow density (Poynting vector) and ( ),w tr  the 
energy density. 

According to (7.3) and (7.6) taking into account (8.1) the stress tensor pos-
sesses the form 

 

 

8The three-dimensional stress tensor klT  is sometimes defined with opposite sign. Our sign of klT  

agrees with that in the same notation kl
klT T=  in Landau and Lifshits [3] (Ed. 1962) and with 

kl klT σ≡ −  in later editions (e.g., [45] from 1988). Apparently, the notation klσ  agrees also with re-
spect to sign to the same notation in [13] and in [10]. 
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( )
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(8.4) 

and the momentum density is 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )
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(8.5) 

For the energy flow density we find from (7.3) and (7.6) taking into account 
(8.1) 

( )
( )

( ) ( )

( )
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(8.6) 

and for the energy density 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )
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 =
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 ∂
 − ∇ − ∇
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 ∂ ∂ ∂  + − +   ∂ ∂∂   

r r r

r r r r

r r r r 

(8.7) 

The terms with spatial and temporal derivatives of the slowly varying ampli-
tudes describe in addition to the stable form of propagation of a wave group its 
diffraction. 

Integral forms of the conservation of momentum and energy in time follow 
from integration of the conservation theorems within a volume V with surface S 
and normal unit-vector N  directed to the inside of the surface S by (Gauss 
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theorem) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d , d , d , ,

d , d , d , ,

k k l kl kl lV V S

l l l lV V S

P t V g t V T t S T t N
t t

E t V w t V S t S S t N
t t

∂ ∂
≡ = − ∇ = +

∂ ∂
∂ ∂

≡ = − ∇ = +
∂ ∂

∫ ∫ ∫

∫ ∫ ∫

r r r r r r r

r r r r r r r





(8.8) 

with 4, ik
EP P P
cκ

 ≡ = 
 

 the four-vector of momentum9. 

9. Limiting Transition to Plane Monochromatic Waves in 
Anisotropic Dispersive Media 

In the limiting transition from quasiplane and quasimonochromatic waves to 
plane monochromatic waves the slowly varying amplitudes become constant 
amplitudes ( )0 0, t →E r E  and the energy-momentum tensor becomes inde-
pendent on the space-time points ( ), tr  that means ( ),T t Tκλ κλ→r . The 
propagation of the wave as a wave packet with the group velocity in this limiting 
transition becomes the more invisible the nearer it comes to a plane monochro-
matic wave. 

From (7.3) together with (7.5) or from (7.6) follows in this limiting transition 
in relativistic covariant form 

( )* *
0, 0, 0, 0, 0, 0,

00

.ij ij
i j i j

k L L
T E E k E E k T

k k
κ

κλ κ κ λ
λ λ

α α
 ∂ ∂ 
 = − = − =  ∂ ∂  

    (9.1) 

In the three-dimensional separation expressed by the formulae (8.4), (8.5), 
(8.6) and (8.7) this limiting transition results in the relations 

( ) ( )

( ) ( )

* *
0, 0, 0, 0,

0, 0,
0 0

0 0
* *
0, 0, 0, 0,

0 0

i i
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ω
α α

ω ωω ω
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    ∂ ∂
    −

      ∂ ∂      = =    −     ∂ ∂      − −
    ∂ ∂    

(9.2) 

where the action flow density lT  and the action density s according to (6.12) 
become 

* *
0, 0, 0, 0,

0 0

, .ij ij
l i j i j

l

L L
T E E s E E

k
α α

ω
∂ ∂   

= − =   ∂ ∂   
          (9.3) 

 

 

9The sign of ( )lN r  at the surface element dS can be verified from the derivative of the characteris-

tic function ( )
1,
0,V

V
V

θ
∈

≡  ∉

r
r

r
 of the volume V which is ( ) ( ) ( )l V l SNθ δ∇ =r r r  with normal unit 

vector ( )lN r  directed to the inside of ( )dS r  as generalization of the step function and of the 

delta function as its derivative according to 
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where integrals without given boundaries go over the whole space. 
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We will show in the following that these expressions are not in contradiction 
to known expressions for the energy-momentum tensor (mostly more special or 
otherwise formulated ones). 

If we use the explicit form of ( ),ijL ωk  given in (5.5) we obtain from (9.2) 

( ) ( ){ }
( )

( )

( )

2
* 2
0, 0 0, 0, 0, 0, 0, 0, 0,2

0
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0, 0,
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E E
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cw E k k E E E

ε
ω

ωε
α δ

ωω

∂ 
−  ∂ 

 ∂
 = − +
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k

  (9.4) 

and from (9.3) for action flow density lT  and action density s 

( )
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2
* *
0, 0, 0, 0, 0, 0, 0,2

0 0

2
* 2 *
0, 0 0, 0, 0, 0, 0,3
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α δ δ δ
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∂ 
= − +  ∂ 

k
     (9.5) 

As already discussed, in the transition to the factorized form in (9.1) and (9.2) 
we used the equations for the slowly varying amplitudes which after transition to 
plane monochromatic waves become the algebraic equations ( ) 0,0

0ij jL E =  and 
( )*

0, 0
0i ijE L = . Instead of these equations we can also directly use the equations 

of macroscopic electrodynamics (2.7) which for plane monochromatic waves 
with real wave vector 0k  and real frequency 0ω  take on the form10 

[ ] [ ]0 0 0 0 0 0 0 0 0 0
0 0

* * * * * *
0 0 0 0 0 0 0 0 0 0

0 0

, , , , 0,

, , , , 0.

c c

c c
ω ω

ω ω

= = − ⇒ = =

   = = − ⇒ = =   

B k E D k B k B k D

B k E D k B k B k D
   (9.6) 

Using these equations, we can transform (9.4) exactly to the following 
“mixed” forms of representation with the amplitudes of the electric and magnet-
ic field 0E  and 0B  and the electric induction 0D  which dominate in their 
kind in literature (compare also [7] [9] [10]). 

( ) ( )* * * * * * *
0 0 0 0 0 0 0, 0, 0, 0, 0, 0, 0, 0,

*
0, 0 0 0,

0

1
2

,

kl kl k l k l k l k l

k k l
l

T B B B B E D E D

k k T
k

α δ

α

 = + + − + + + 
 

 ∂
− = ∂ 

B B E D D E

E Eε
 

 

 

10We emphasize again that this restriction to real wave vectors and frequencies is not a principal re-
striction for lossless media but simplifies our derivations considerably since it does not introduce 
additional difficulties with inhomogeneous (evanescent) waves in lossless media which necessarily 
are to be discussed without this restriction. 
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ε

ε

ε

    (9.7) 

For the action flow density lT  and the action density s, we find 

( )
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0 0
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00

* * *
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E B E B E

B B E D D E E E

k E B E B E E

ε

ε

ε

        (9.8) 

The appearance of 0ω  in the denominators for action flow density lT  and 
action density s shows that they are formed in nonlocal way by the fields that in 
the space-time picture is impossible to express by quadratic local field combina-
tions only and which, perhaps, is a reason that they did not find much attention 
(exception: similar considerations to adiabatic invariance). 

We see that all parts of the energy-momentum tensor in (9.7) contain a part 
with origin from the dispersion of the medium. The momentum density kg  
which possesses the direction of the mean wave vector 0,kk  and the energy density  

w are modified by terms 
0

ijε
ω

∂ 
 ∂ 

 with derivatives of the permittivity tensor  

( ),ijε ωk  with respect to frequency ω  (this goes back to Brillouin in 1921; see 
also [7] [9] but many other, in principle, excellent monographs on electrody-
namics and optics do not take this into account). The stress tensor klT  and the  

energy flow density lS  are modified by terms 
0

ij

lk
ε∂ 

 ∂ 
 with derivatives of the  

permittivity tensor with respect to the wave vector k  which are non-vanishing 
only in case of presence of spatial dispersion (see, e.g., [9] [10] [11]). The terms 
from frequency dispersion may become very important in the neighborhood of 
eigenfrequencies of the medium (e.g., such as used for laser transitions) and do 
not represent in this case only a small correction to the terms without disper-
sion. The terms with spatial dispersion are non-vanishing, for example, for me-
dia with natural optical activity or for hot gases and plasmas. If a medium pos-
sesses only frequency dispersion ( ) ( ),ij ijε ω ε ω≡k  in inertial system   then 
by transition to an inertial system ′  where this medium is moving the new 
permittivity tensor ( ),ijε ω′ ′ ′k  in ′  depends apart from transformed fre-
quency ω′  also on transformed wave vector ′k  and appears there as medium 
with “unnatural” spatial dispersion (see Appendix A). 

The trace of the energy-momentum tensor which is a relativistic invariant is 
non-vanishing taking into account the dispersion. From the limiting case of 
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plane monochromatic waves in (9.7) we find 

( ) * *
0, 0, 0, 0 0, 0,

0 0

T .ij ij
k i j i j

k

w k E E E E
k
ε ε

α ω
ω

∂ ∂   
− = − −   ∂ ∂   

       (9.9) 

If we neglect dispersion the trace of the energy-momentum tensor becomes 
vanishing as it is seen from this expression. Due to factorization of the stress 
tensor 0,kl k lT k T=  and of the whole energy-momentum tensor Tκλ  they possess  

only one non-vanishing eigenvalue and the quantity [ ] ( )2 21 T T
2

T ≡ −   

involved in the second invariant [ ] [ ]T TT w≡ − + Sg  of the four-dimensional 
tensor T (see (B.8) in Appendix B) is vanishing. Therefore, using the form (9.7) 
in considered approximation one can check the vanishing of the second inva-
riant of the energy-momentum tensor 

[ ] [ ]


( )
0

T T 0,T w
=

= − − =Sg                  (9.10) 

which is a Lorentz-invariant and thus this relation is true in arbitrary inertial 
systems. Due to factorization (9.1) of the energy-momentum tensor in consi-
dered approximation we find 

T 0,w− =Sg                       (9.11) 

remaining true after Lorentz transformation. 
The energy-momentum tensor (9.7) is intrinsically non-symmetric expressed 

by relation (7.4) also under neglect of dispersion. In general, for anisotropic me-
dia the momentum density kg  and the energy flow density lS  possess differ-
ent directions and there is no way to remove this but also the stress tensor klT  is 
non-symmetric for anisotropic media. From the two old proposals for this ten-
sor which are the Minkowski tensor and the Abraham tensor (see, e.g., [5] [10]) 
the tensor (9.2) is nearer to the Minkowski tensor and makes the transition to it 
in case of neglected dispersion. However, this problem of the correct tensor did 
not genuinely exist in our derivations since under the condition (3.9) that the 
medium is lossless the local form of the conservation laws could be formulated 
as exact vanishing of a 4-divergence of an energy-momentum tensor. 

We can subdivide the energy-momentum tensor Tκλ  in (9.7) in additive way 
into a pure electromagnetic field tensor ( )FTκλ  which contains only the electric 
field E  and magnetic field B  and a field-matter interaction tensor ( )ITκλ   

which contains in addition the polarization ( )1
4

= −
π

P D E  and derivatives of  

the permittivity tensor ( ),ijε ωk . The field part which is quadratic in the elec-
tromagnetic field is then a symmetric tensor ( ) ( )F FT Tκλ λκ=  and equal in form to 
the tensor for vacuum. The interaction part ( )ITκλ  which is bilinear in field and 
polarization or contains derivatives of the permittivity tensor is non-symmetric. 
Their explicit forms may be taken from (9.7). It should be emphasized that such 
a subdivision remains to be formally since each of the two parts does not sepa-
rately obey a local conservation law. 
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In the transition to vacuum ( ),ij ijε ω δ→k  from (9.7) we obtain a symme-
tric energy-momentum tensor and it possesses at the same time the most simple 
form in comparison to equivalent ones since it does not contain parts with the 
rapidly varying phase factors ( )0 0i2e tω± −k r  and admits a direct physical interpre-
tation by considerations about the group velocity. 

10. Group Velocity in Energy-Momentum Tensor for  
Anisotropic Dispersive Media and Its Calculation 

A wave packet in a homogeneous medium propagates in first approximation 
with shape stability and without diffraction with the group velocity and therefore 
energy and momentum of this wave packet should propagate also with the group 
velocity. The introduction of the group velocity into the energy-momentum 
tensor in the limiting case of plane monochromatic wave reveals a simple basic 
structure of this tensor (see also, [7] [9] [10]). 

Plane monochromatic waves with real wave vector and real frequency satisfy 
Equation (5.4) and together with the condition (5.13) for absent losses this can 
be written in operator form (i.e. without vectorial indices ( ) ( ), L ,ijL ω ω→k k ) 
as the following eigenvalue equations for right-hand and left-hand eigenvectors 
of ( )L ,ωk  to eigenvalue zero 

( ) ( ) ( ) ( )*L , , , , L , ,ω ω ω ω= =k E k E k k0 0           (10.1) 

with the operator ( )L ,ωk  defined by (5.5) ( ⋅a b  is dyadic product of vectors 
a  and b ) 

( ) ( ) ( )
2

2
2L , I , .cω ω

ω
≡ ⋅ − +k k k k kε              (10.2) 

The necessary condition for solutions of the operator Equations (10.1) is the 
vanishing of the determinant ( )L ,ωk  of the operator ( )L ,ωk  

( )L , 0,ω =k                       (10.3) 

which in coordinate-invariant notation is explicitly given by [27] [28] [31]11 

( ) ( ) ( )

( ) ( ) ( )

4 2
2 2

4 2

4 2
2 2

4 2

L ,

, , ,

c c

c c

ω
ω ω

ω
ω ω

= − − +

= − − + ≡

k k k k k k k k

k k k k k k k

ε ε ε ε ε

ε ε ε ε ε ε
   (10.4) 

where ε  denotes the trace and ε  the determinant of the permittivity 
tensor and where i ij jk kε≡k kε  and 2

i ij jk kk kε ε≡k kε  in notation with 
three-dimensional vector indices. The vanishing of the determinant (10.4) de-

 

 

11Fyodorov [27], Eq. (17.21) expresses the second sum term in round brackets by the inverse permit-
tivity tensor 1−ε  or, more precisely, by the related complementary tensor  

[ ]1 2 I−≡ = − +ε ε ε ε ε ε ε  to ε  with the identity [ ] ( )2 21
2

= ≡ −ε ε ε ε  as here addition-

ally given. Other (historically older) formulations of vanishing of this determinant in the form of the 
Fresnel equation in coordinates of the principal axes of the permittivity tensor are known (e.g., Szi-
vessy [46] (Eqs. (47) and (48)) or Born and Wolf [47] (chap. XV.2.2, Eq. (21)) which correspond to 
(3) and (4) in coordinates of the principal axes and the same is true for Eq. (97.10) in [7]). 
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scribes a three-dimensional (hyper-)surface in the four-dimensional space of va-
riables ( ),ωk  which is called dispersion surface. 

The dispersion Equation (10.3) can be resolved with respect to one of the 4 
components of ( ),ωk , for example, in the form of the frequency ω  as func-
tion of the wave vector k  that means 

( ).ω ω= k                         (10.5) 

The group velocity v  is then defined by 

( ) ( ).ω∂
≡ =
∂

v k v k
k

                    (10.6) 

It is a “regular” velocity also in the relativistic theorem of addition of veloci-
ties. Inserting ( )ω ω= k  in the dispersion Equation (10.3) we get a scalar iden-
tity as a function of the wave vector k  from which after differentiation with 
respect to the wave vector follows a vector identity 

( )( )
( )( ) ( )( )

( )
, ,

L L
L , 0, ,

ω ω

ωω
ω

 ∂   ∂  ∂
= ⇒ + =   

∂ ∂ ∂   k k k k

k k k
k k

0    (10.7) 

with arguments of involved functions of ( ),ωk  taken at ( )( ),ωk k  and we 

obtain for the group velocity (vectorial indices of v  and of ∂
∂k

 correspond to 

each other on left- and right-hand sides) 

( ) ( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

*

, , ,

*

, ,,

L L LL

.
L LL L

k ω ω ω

ω ωω
ω ωω

 ∂  ∂ ∂    ∂ ∂ ∂   
= − = − = −

∂ ∂ ∂   
   ∂ ∂ ∂ 

k k k k k k

k k k kk k

E Ek k k
v

E E
  (10.8) 

We applied here the relation 
A AA
λ λ

∂ ∂
=

∂ ∂
 for the differentiation of the 

determinant A  of an arbitrary operator A  with respect to a variable λ  
where A  denotes the complementary operator to the operator A  which satis-
fies the relations AA AA A I= = . The complementary operator A  to A  is 

determined in components by 1
2!li ijk lmn jm knA A Aε ε=  or due to Hamilton-Cayley 

identity [ ]3 2A A A A A A I 0− + − =  in operator form by  

[ ]2A A A A A I≡ − +  where [ ] ( )2 21A A A A
2

≡ − =  denotes the second 

invariant of A  and I  is the identity operator. 
The explicit form of the complementary operator ( )L ,ωk  to ( )L ,ωk  

which by its vanishing determines the optic axes is (with ( ) ik ki kε≡kε  and 
( ) l ljj k ε≡kε  in coordinates) 

( ) ( ) ( )( )
4 2

2
4 2L , I ,c cω

ω ω
= ⋅ − ⋅ − ⋅ − ⋅ + +k k k k k k k k k k k kε ε ε ε ε   (10.9) 

with trace equal to ( [ ]A A=  is a three-dimensional operators identity for ar-
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bitrary A ) 

( ) ( ) ( ) ( ) [ ]
4 222 2
4 2L , L , .c cω ω

ω ω
= = − + +  k k k k k kε ε ε    (10.10) 

From the Hamilton-Cayley identity in the form LL LL L I= =  it becomes 
clear that on the dispersion surface L 0=  each non-vanishing vector L ≠a 0  
with appropriately chosen vector a  is right-hand eigenvector of L  to eigen-
value 0 and thus a solution E  of Equation (10.1) and each non-vanishing vec-
tor L ≠b 0  is left-hand eigenvector of L  to eigenvalue 0 and thus a solution 

*E  of second Equation (10.1). Therefore, the normalized operator L  in case 
of L 0=  as follows by applying the Hamilton-Cayley identity is the norma-
lized dyadic product * *⋅ ∝ ⋅e e E E  and 

( ) [ ]
* 2 *L LL 0 , , , 1,

LL
= Π ≡ = = ⋅ Π = Π Π = =e e e e    (10.11) 

is projection operator for the determination of non-degenerate solutions of Equ-
ations (10.1). This explains the last part of the formulae (10.8) for the group ve-
locity (taking into account the general identity ( )A A⋅ =a b b a ). In case of 
L 0= , ( [ ]L 0⇒ = ), the first and second part of relations (10.8) become inde-
terminate due to vanishing numerator and denominator but the last part with 
representation by the electric field amplitudes remains true. This singular case is 
the case of optic axes or binormals which we do not further discuss here since it 
leads us far from our proper aim. 

With the first or second part of formulae (10.8), one can find explicit formulae 
for the group velocity which express it as a function of wave vector k , fre-
quency ω  and medium properties involved in the permittivity tensor 

( ),ω≡ kε ε . Although not difficult to obtain, however, they are long taking into 
account the dispersion and, therefore, we will not write them down (we give 
them in next Section under neglect of dispersion). Instead of this we will use last 
part of (10.8) which reveals interesting relations to the action 4-vector and to the 
energy-momentum tensor. According to (10.8), the group velocity 0v  at the 
considered point ( )( )0 0 0,ω ω ω= = ≡k k k  of the dispersion surface (10.5) is 
determined by 

*
0 0

0
0,

*
0 0

0

L

,
L

l l
l

k T
v

s
ω

 ∂
 ∂ = − =
∂ 

 ∂ 

E E

E E
                (10.12) 

where we used the representation (6.12) for action flow density T  and action 
density s in the limiting case of plane monochromatic waves. The energy- 
momentum tensor for this limiting case of plane monochromatic waves can now 
be represented in the form (see also next Section) 

0, 0, 0,
0, 0, 0,

0 0, 0 0 0, 0

i, ,
.i, ,

k l k
kl k l k k

l l l

k v ckT sk v g sk
T s

S s v w s v
c

κλω ω ω ω

 = =  ⇔ =  = = − 
 

    (10.13) 
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From this it can be easily seen for this limiting case 

0 0 0,T , , ,kl l
l

k

T S
w v

g w
= ⋅ = ⇒ = =g v S v           (10.14) 

which means that the three-dimensional stress tensor T  which in considered 
case is a dyadic product is proportional to the momentum density g  and the 
energy flow density S  to the energy density w with the group velocity 0v  as 
the proportionality factor in analogy to (10.12). 

As it is well known [3], the velocity 0v  is not spatial part of a relativistic co-
variant 4-vector but with following modification by the factor 

0 2
0
2

1 ,

1
c

γ ≡

−
v

                     (10.15) 

one obtains the relativistic covariant 4-vector of velocity 0,u λ  

( ) ( ) 2 2
0, 0, 0,4 0 0, 0 0, 0,, , i , .l lu u u v c u u u cλ λ λγ≡ = ⇒ ≡ = −      (10.16) 

Using it the energy-momentum tensor (10.13) may be represented in the fol-
lowing relativistic covariant form 

20, 0, 0 0,
0

0 0, 0, 0 0 2
00 0, 0 0

i
, 1 ,i

k l k

l

k u ck
sT s k u s s s

u c
c

κλ κ λ

γ

γω γ ω

 
 = = = − ≡ − 
 

v
  (10.17) 

where 0s  is the action density in the inertial system where the wave packet is 
resting. This is in analogy to a homogeneous particle flow in classical hydrody-
namics without interaction of the particles (or without inner pressure) for which 
the energy-momentum tensor possesses the form 

2
0

0 0, 0, 0, 0 0, 0 2
0

, , 1 ,nT n p u p m u n n
cκλ κ λ κ κ γ

= = = − ≡
v

      (10.18) 

where 0, 0 0,p m uκ κ=  is the momentum of one particle, 0m  its rest mass and 

0n  the particle density in the inertial system where the particles rest (e.g., [12]). 
The analogy of (10.17) to (10.18) for a homogeneous particle flow suggests (with 
knowledge of quantum theory) to interpret the first as homogeneous flow of qu-
asiparticles and to introduce an abbreviation   according to 

0

0

,
s s
n n

≡ =                       (10.19) 

as action of one particle independently of the considered inertial system (i.e., as 
a Lorentz invariant and, moreover, even as adiabatic Lorentz invariant as may be 
shown) and we may write 

0
0, 0, 0,

0

,
s

p k k
nκ κ κ= =                     (10.20) 

as 4-vector of the momentum of quasiparticles in agreement with quantum 
theory. Then we have analogous expressions for the energy-momentum tensors 
of a homogeneous flow without pressure in classical hydrodynamics on one side 
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and in macroscopic electrodynamics on the other side where the last provides a 
richer variety of possible functional dependencies ( )≡v v k  (or ( )≡v v p ) or 
of their inversion ( )≡k k v  (or ( )≡p p v ) than (relativistic) classical me-
chanics which considers only 



0 02 2

2 2
,i

, i , i ,

1 1k

c

E cp m m u
c

c cω
=

 =  
 

 
 

   ≡ = ≡    
 − − 
 k

vp
v v







        (10.21) 

with 0m  the rest mass of one particle. Usually, the relation between 4-vectors p 
and u in macroscopic electrodynamics is a 4-tensorial one with tensor compo-
nents depending on components of v  separately where this cannot be ex-
pressed by only relativistic scalars such as 0m . A certain exception is formed by 
transverse waves in a cold isotropic plasma (Section 12). 

It was mentioned but not explicitly shown that the local action conservation (6.8) 
or (6.11) is a more general conservation law than the local energy-momentum 
conservation (7.2) or (8.2) together with (8.3) and holds also for inhomogeneous 
media (in general, spatially and temporarily inhomogeneous). If we suppose that 
the action conservation is true for an inhomogeneous medium that means 

( ) 0T rλ λ∇ =  it is informative to see how the energy-momentum conservation is 
lost for such a medium in case of propagation of almost plane monochromatic 
waves as here considered. We may assume that in a weakly inhomogeneous me-
dium as main effect the 4-wave vector 0k  becomes dependent on the consi-
dered space-time point ( ),r t≡ r  within the medium that means ( )0 0k k r= . 
Then we find for the 4-divergence of the energy-momentum tensor under the 
supposition that local action conservation ( ) 0T rλ λ∇ =  holds 

( ) ( ) ( )( )

( ) ( )
( ) ( )


( ) ( )

( ) ( )

0 0,

0,

0,
0,

0

0, .

s r u r

T r k r T r

k
r T r k r T r

r

k
r T r

r

λ

λ κλ λ κ λ

κ
λ κ λ λ

λ

κ
λ

λ

= =

∇ = ∇

∂
= + ∇

∂

∂
=

∂



        (10.22) 

The right-hand side is non-vanishing that corresponds to local non-conservation 
of energy-momentum and the 4-divergence of the energy-momentum tensor (if 
we overtake its formula from the homogeneous medium) becomes a linear com-
bination of the components of the action vector ( )T rλ . 

11. Neglect of Spatial and Frequency Dispersion and Group 
Velocity 

In the considerations of Section 10 about the group velocity and the representa-
tion of the energy-momentum tensor in the limiting case of plane monochro-
matic waves in analogy to that for a homogeneous particle flow we did not use 
the explicit form of the determinant ( )L ,ωk  of the wave-equation operator 
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( )L ,ωk . In the following, we will make some explicit calculations of the group 
velocity under neglect of the dispersion (spatial and frequency one). 

Neglecting spatial and temporal dispersion of the medium means that we con-
sider 

( ) 0,ω ≡kε ε                        (11.1) 

as a constant permittivity tensor 0ε  in the inertial system of the resting me-
dium or, at least, as a good approximation for a neighborhood of the considered 
mean wave vector 0k  and mean frequency 0ω . Using the first of the relations 
for the group velocity in (10.8) and a transformation of the denominator by 
means of the dispersion equation ( )L , 0ω =k , we find 

( ) ( ) ( ) ( )( )
( ) ( )

2
2 2 2

0 0 0 0 0 0 0 02

2
2 2

0 0 0 02

2
,

4 2

c

c

ω

ω
ω

+ + − + − +
=

− −

k k k k k k k k k k
v

k k k k k k k

ε ε ε ε ε ε ε ε

ε ε ε ε
 (11.2) 

where we emphasize that the permittivity tensor 0ε  herein is, in general, not a 
symmetric tensor that includes gyrotropy of the medium (see also (4.5)). Fur-
thermore, in general, the directions of k  and v  in anisotropic media are dif-
ferent. From (11.2) follows immediately for the scalar product of wave vector 
with group velocity 

,ω=kv                          (11.3) 

that proves to be equivalent to vanishing of the trace of the energy-momentum 
tensor under neglect of dispersion (see (9.9) in connection with (9.7) and 
(10.12)). According to (15) this also means that the frequency ω′  in the inertial 
system 0′ =   which moves with the group velocity v  in the inertial system 
  of the resting medium (i.e. =V v ) vanishes and due to (A.17) that the wave  

vector is transformed in the following way 
12

2
21

c
γ

−  
 ≡ −    

v  

[ ] [ ]
2 2

0 0 0 2 20, , , , 1 .
c c

ωω γ ω γω
γ

   
′ ′ ′= = = − = − =   

   

v vk v k v k v kv   (11.4) 

However, already the presence of frequency dispersion (and, moreover, of 
spatial dispersion) destroys these relations since we have then additional terms 
in the denominator of the right-hand side in (11.2) which contain the derivatives  

ω
∂
∂
ε  of the permittivity tensor ( )ω≡ε ε . 

In case of neglected dispersion, the operator ( )L ,ωk  becomes a function of 
only a vector n  which is called refraction vector (and, clearly, of medium 
properties contained in 0ε ) according to 

( ) ( ) 2
0L , L I , .cω

ω
→ ≡ ⋅ − + ≡k n n n n n kε           (11.5) 

The dispersion equation ( )L 0=n  leads to the following fourth-order equa-
tion in the components of the refraction vector n  (e.g., [9], Eq. (2.22)) 
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( ) ( )2 2
0 0 0 0L 0.= − + + =n n n n n nε ε ε ε            (11.6) 

The dispersion surface describes now a two-dimensional surface in the 
three-dimensional space of refraction vectors n  which is better accessible for 
visualization than the three-dimensional (hyper-) surface in four-dimensional 
( ),ωk -space described by Equation (10.3). 

Under neglect of the dispersion, the group velocity v  depends only on the 

quotient 
ω
k  as one can explicitly see from (11.2) and, therefore, on the refrac-

tion vector c
ω

≡k n . It is favorable to normalize the group velocity by the light  

velocity c and to introduce together with the refraction vector n  a ray vector s  
by (our notations agree with that of Landau and Lifshits, Vol. VIII [7])12 

, , , ,c c
c c

ω
ω

≡ ≡ ⇔ ≡ ≡
k vn s k n v s            (11.7) 

and from (11.3) follows 

1.=ns                          (11.8) 

If we substitute now the operator ( )L ,ωk  by the operator ( )L n  according 
to ( ) ( )L , Lω →k n , then we have to substitute derivatives of these operators 

and of their functions according to k

l l k l

n c
k k n nω

∂∂ ∂ ∂
→ =

∂ ∂ ∂ ∂
,  

k k

k k

n n
n nω ω ω

∂∂ ∂ ∂
→ = −

∂ ∂ ∂ ∂
. Applied to the ray vector 

c
≡

vs  this means that 

formula (10.8) can now be substituted by 

*
0 0

*
0 0

LL LL
.

LL LL kk k
kk k

nn n nn n

∂∂ ∂
∂∂ ∂= = =

∂∂ ∂
∂∂ ∂

E Enn ns
E E

            (11.9) 

where vectorial indices of s  and of ∂
∂n

 in numerator correspond to each oth-

er (or 

*
0 0

*
0 0

L

L
l

l

k
k

n
s

n
n

∂
∂

=
∂
∂

E E

E E
 and * *

0 0 0, 0,
L ij

i j
l l

L
E E

n n
∂∂

≡
∂ ∂

E E ). The first part of this 

equation shows the well-known property that in case of neglected dispersion the 

ray vector is proportional to the gradient 
L∂
∂n

 of the dispersion surface  

( )L 0=n  at the considered point and the denominator determines its norma-

 

 

12Many authors, however, denote with n  a unit vector in direction of k , for example, Fyodorov 
[37] [38], the initiator of coordinate-invariant methods, who denotes refraction vectors by m  and 
ray vectors by p  and, furthermore, denotes with s  a unit vector in direction of the ray vector. 
Born and Wolf [47] denote with s  a unit vector in direction of the wave vector k  and with t  a 
unit vector in direction of the ray vector. In our notation we have conveniently 2 2n=n  where 
n ≡ n  is the index of refraction of the wave. 
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lization according to 1=ns . With the explicit form of the determinant ( )L n  
given in (11.6) from which we easily calculate its derivatives with respect to the 
refraction vector n  we find for the ray vector 

( ) ( )( )
( )( ) ( )

2 2 2
0 0 0 0 0 0

2 2
0 0 0

2
,

2 2

+ − + + +
= ≡

− +

n n n n n n n n
s s n

n n n n n

ε ε ε ε ε ε

ε ε ε
   (11.10) 

confirmed by the calculation from (11.2) using the definition of the ray vector. 
However, the main purpose of these calculations was to establish the algebraic 
structure of the ray vectors s  that means its connection to the invariants of 

( )L L≡ n  and to its complementary operator L . The inversion of the vectorial 
function ( )=s s n  to a vectorial function ( )=n n s  by means of duality rela-
tions between ray and refraction quantities or otherwise is up to now only solved 
under the restriction T

0 0=ε ε  that means to nongyrotropy of the medium. 
Using the refraction vector n  and the ray vector s , the 4-wave vector k and 

the 4-vector of velocity u (see (10.16)) can be represented as follows 

( ) ( )
2 2

2 2 2
2 2

2 2

2 2 2 2

2 2

, i , i , 1 ,

1, i , i , .
1 11 1

k k
c c c c

cu c u c

c c

ω ω ω ω ≡ = ⇒ = − = − 
 
 
    ≡ = ⇒ = −    − −  − − 
 

k n k n

v s

v v s s

  (11.11) 

The scalar product of 4-wave vector and 4-velocity becomes vanishing in case 
of neglected dispersion 

2 2

2

1 0.
11

ku

c

ω ω− −
= = =

−
−

kv ns

v s
               (11.12) 

The scalar products of 4-vectors 2 2,k u  and ku  are Lorentz invariants and 
values for them which are calculated in one inertial system such as here in the 
inertial system of the resting medium remain the same in arbitrary other inertial 
systems. 

If we apply this to the mean wave vector 0k  and mean frequency 0ω  in the 
expressions for the energy-momentum tensor in first approximation in (9.7), we 
find for neglected dispersion 

0, T ,kk kkT T w T wκκ = − = ⇔ ≡ =             (11.13) 

which means that the trace of the energy-momentum tensor Tκλ  is vanishing in 
such approximation. This is well known for the general energy-momentum ten-
sor in vacuum electrodynamics [3]. Using this together with (9.11) we find for 
neglected dispersion 

2 2T , T T 0.w w w= = ⇒ = = ≥Sg Sg         (11.14) 

This means, in particular, that the scalar product of energy flow density S  
with momentum density g  is equal to the square of the energy density w. 
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Furthermore, under neglect of dispersion and in approximation of plane mo-
nochromatic waves, we find from (9.8) 

0, 0, 0 0, 0 0, 00, , ,l l l kl k l lk T k T s k T g k S wλ λ ω ω ω= − = ⇒ = =    (11.15) 

that, however, is no more true taking into account the dispersion of the medium. 
First relation in (11.15) states that the scalar product 0,k Tλ λ  of mean 4-wave 
vector 0,k λ  with action 4-vector Tλ  vanishes meaning that they are mutually 
orthogonal in Minkowski space. Last relation in (11.14) suggests that the scalar 
product of energy flow density S  with momentum density g  should be  

greater than zero or otherwise these two vectors form an angle greater than 
2
π . 

As a special case we consider now transversal waves in a resting isotropic me-
dium under neglect of dispersion with the constant permittivity tensor 

0, 0ij ijε ε δ=  for which we find the following relations between wave vector k  
and group velocity v  

2 2
2

0 02
0 0

, , , 0,c cI
c
ωε ε ω

ωε ε
= ⇒ = = = − =

kk v k kv
k

ε   (11.16) 

and between ray vector s  and refraction vector n  

0
2

0 0 0

, , , .c ck i i
c c c

ωεω
ωε ε ε

  ≡ = ≡ ⇔ ≡ =   
   

v k ns k v       (11.17) 

For the energy-momentum tensor then follows according to (10.13) 

( ) ( )

( ) ( ) 00 0

00

T i i
i i

i, i
,

ii 1

c c
T r s r

w
c c

s r s r

ω ω

εε ε ωω
εε

⋅   
   ≡ =   − −   
   

⋅⋅   
= =    −−   

g k v k

S v

n n ns s s
ns

      (11.18) 

where ( )s r  is the action density in the system of the resting medium (in con-
trast to ray vector s ). This tensor is non-symmetric but its spatial part 

( )T s r= ⋅k v  is symmetric since the vectors k  and v  possess the same di-
rection (for the necessity of this symmetry for isotropic media see Section 14). 
The trace T  of the four-dimensional tensor T is vanishing 

( ) ( )( ) 0,T r s r ω= − =kv                 (11.19) 

that is only true under neglect of the dispersion. In the next Section we discuss 
the energy-momentum tensor for a special isotropic medium but without neg-
lect of the dispersion. 

12. Energy-Momentum Tensor of a Cold Isotropic Plasma 
and Transverse Photons with Scalar Rest Mass 

As one of the simplest models including frequency dispersion in explicit form 
we now consider a cold isotropic plasma. Its energy-momentum tensor shows 
the peculiarity that it is symmetric. Without an external magnetic field it pos-
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sesses the following permittivity tensor, e.g., [7] [11] 

( ) ( ) ( )
2 2

2

4
, , 1 , ,p e

ij ij p
e

n e
m

ω
ε ω ε ω δ ε ω ω

ω
π

= = − ≡k       (12.1) 

where pω  denotes the plasma frequency which, e.g., for an electron plasma is 
expressed expressed by the plasma parameters , ,e en e m  (electron density, elec-
tron charge and electron mass). 

The dispersion equation ( ) 0ε ω =  for longitudinal waves with its resolution 

pω ω=  does not include the wave vector k  and therefore the group velocity 
v  vanishes. This means that longitudinal localized excitations cannot propagate 
or decay in the approximation of absent spatial dispersion and absent losses. The 
energy-momentum tensor for these excitations can be obtained from (10.13) by 
setting 0 =v 0  for the group velocity and using relation (10.19) between action 
and particle (excitation) density. 

The dispersion equation for transverse waves ( )2 2 2c ω ε ω=k  with real wave 
vector *=k k  is 

2 2 2
2 2 2 2 0, 1.p

p
p p

c
c

ωωω ω
ω ω

+
− + = ⇒ = ≥

k
k          (12.2) 

From (12.2) follows for the group velocity v  of transverse waves or of their 
quasiparticles 

( )
2 2 2 2 2

2 2 2 2 2 2, 1,
p p

c c cc
cc c

ω
ω ω ω

∂
≡ = = ≡ ⇒ = ≤
∂ + +

vk k k kv v k
k kk k

  (12.3) 

with 2≡k k  and 2≡v v . Due to isotropy, the group velocity v  pos-
sesses the direction of the wave vector k  and ( )≡v v k  can be converted to 
the vectorial function ( )≡k k v  according to 

( )

2

2 2 2 2

2 2 2 22

22

, , .
11

p

p

c c
c c

cc

ω
ω

ω
= = ≡ ⇒ = =

−−

v
v v v kk k k v kv
v vv

  (12.4) 

We introduce an abbreviation γ  in analogy to the procedure for special Lo-
rentz transformations by 

2 2 2 2 2

2 22

2

1 11, , .

1

p p

p

c

c
c

ω ωγγ ω
ω γγ

+ −
≡ = ≥ ⇒ = − = −

−

k v kv
v

 (12.5) 

which is equivalent to pω γω=  with pω  the minimal possible frequency for 
velocity =v 0 . 

The second-order derivatives of ( )ω ω≡ k  for transverse waves in a cold 

plasma consist of a transverse part proportional to 
2

k l
kl

k k
δ −

k
 and a longitudin-

al part proportional to 
2

k lk k
k

 given by 
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22 2

2 2 2 .pk l k l
kl

k l

k k k kc
k k

ωω δ
ω ω

 ∂  = − +
 ∂ ∂  k k

              (12.6) 

They are responsible for diffraction perpendicular and parallel to the direction 

of propagation and we call 
2

k lk k
ω∂

∂ ∂
 the diffraction tensor. 

For the 4-wave vector k we find from (12.4) the following proportionality to 
the 4-velocity u 

( ) ( )2 2, i , i , i ,p p pm
k c c u

c c c
ω ωω γ γ ≡ = = ≡ 

 
k v u



         (12.7) 

where we defined a “rest” mass pm  which is independent on the velocity v  of 
the moving particles (plasmons) and depends beside physical constants only on 
the plasma frequency pω  by 

2 .p pm c ω≡                         (12.8) 

From (12.7) follows for the squared modulus 2k  of the 4-wave vector k 
which is a Lorentz-invariant 

2 2 22
2 2

2 2 2 ,p pm c
k

c c
ωω

= − = − = −k


                (12.9) 

independently of the frequency ω  in the resting plasma. Therefore, it can also 
serve as a model for only one kind of transverse photons with the same rest mass 
independently on the frequency and it seems to be clear that it is the only case of 
a medium which provide this. Furthermore, we find 

( )
2

,p
p

m c
ku γ ω ω= − = − = −kv



              (12.10) 

in contrast to its vanishing (11.12) in case of neglected dispersion. 
For the energy-momentum tensor in three-dimensional representation and 

written in coordinate-invariant way, i.e., without indices (see Appendix B) and fur-
thermore if we omit the indices “0” at k  and 0ω  we find from (12.3) the relation  

2 2
p

c c
ωω

= =k v u  and using the definition of pm  by (12.8) 

0 0 2

T i i i
,i i ip

c c c
T s n m

c cw
c c

ω ω

⋅    ⋅    ≡ = =      −− −        

g k v k u u u
uS v

     (12.11) 

where 0 0s n=   is the action density and 0n  the particle density with mass 

pm  defined in (12.8) in the inertial system 0  of the resting plasma. The 
four-dimensional energy-momentum tensor (12.11) is completely symmetric 
and can be represented in the factorized form 

20
0 ,p

p

n
T n m u u k k T

mκλ κ λ κ λ λκ= = =              (12.12) 

Its trace is is represented by (see Appendix B) 

https://doi.org/10.4236/jmp.2021.1213108


A. Wünsche 
 

 

DOI: 10.4236/jmp.2021.1213108 1901 Journal of Modern Physics 
 

( )
2

0 0 0T 0.p pm c
T w s s n

ω
ω

γ γ
= − = − = − = − ≤kv       (12.13) 

with the trace of the three-dimensional part of the stress tensor T  

( )2

0 0 0T 0, 0.ps n m w sγ ω= = ≥ = ≥kv v          (12.14) 

Since the four-dimension tensor (or operator) T as well as its spatial part T  
factorize they possess only one non-vanishing eigenvalue and we have 

[ ] [ ]0, 0, 0, T 0, T 0,T T T= = = = =          (12.15) 

From (B.8) follows then 
2 32T 0, T T 0, T T 0.w w w= ≥ = ≥ = ≥Sg S g S g     (12.16) 

The derivations were made for real wave vector k  and since S  and g  
are proportional to k  in this case the positivity of Sg  is also understandable 
from this side. 

In the inertial system ′  where the excitation rests that means which moves 
with group velocity v  in 0  and thus where ′→ =v v 0  we have the energy 
momentum tensor 

20 0

0 00 0 0 0
,

00 0 p
T s n

m cw ω
    ′ ′ ′= = =      −′ ′− −       

2
0 0 0 0 0, , .p p pw n m c n s n n T wω ω γ′ ′ ′ ′= = = = = −       (12.17) 

In the transition 0′→ =    to this system, we have to transform (see trans-
formation formulae in Appendix A with =V v ): ′→ =k k 0 , pω ω ω′→ = , 

2

0 0 021
c

→ = −
vE E E . Therefore, the phase factor ( ){ }0 0exp i tω−k r  trans-

forms according to 

( ){ } ( ){ } ( )exp i exp i exp i ,pt t tω ω ω′ ′ ′ ′ ′− → − = −kr k r       (12.18) 

and the excitation appears in ′  as a pure oscillation of the electric field in time 
with plasma frequency pω  which due to vanishing wave vector cannot be clas-
sified as transverse or longitudinal one but is its unification. The specialized 
formula (A.20) for the susceptibility in the system 0  which moves with group 
velocity 0v  of a certain excitation in   is relatively complicated. The trans-
formation to this system makes only one considered wave to a resting excitation, 
whereas all other ones are not resting. Therefore, in the system 0′ =   only 
the excitation with 0 00, pk ω ω′ ′= =  is simple, whereas all others remain com-
plicated and propagate with some group velocity. 

The action of a cold plasma onto a flow of light particles propagating in va-
cuum is that it makes them to a flow of transverse quasiparticles and equips the  

last with a rest mass 2
p

pm
c
ω

=


. Therefore, it may serve as a concrete model for  

the transition from massless particles to particles with rest mass. A well-known 
model for equipping massless particles with a rest mass is the Higgs mechanism 
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by symmetry breaking in gauge field theories and this model is similar. The re-
sult for the energy-momentum tensor in the limiting case of plane monochro-
matic waves (12.12) is formulated in Lorentz-covariant form and contains only 
Lorentz invariants ( 0 0,n s  are relativistic scalars and pm  an invariant). It 
agrees with the energy-momentum tensor for a homogeneous flow of relativistic 
point-like particles in classical mechanics (e.g., [3] [5] [12] [15]). In the transi-
tion to vacuum 0 0, 0e p pn mω→ ⇒ → → , the rest mass pm  goes to zero. In 
this case we do not have an inertial system where the excitation is resting and the 
4-velocity 0,u λ  is diverging due to 2 2c→v  and the action density 0s  in the 
transition to a resting system goes to zero, i.e. 0 0 0s Ss′→ =  (see (10.17) and 
(10.18)). Formula (10.17) for the energy-momentum tensor is then no more appli-
cable but it can be substituted by (10.13) together with the relation 2

0 0 0c ω=k v  
from (12.3) that leads to the energy-momentum tensor for quasiplane and qua-
simonochromatic waves in vacuum. The appearance of a rest mass for the ele-
mentary transverse excitations in a plasma is a collective effect of the interaction 
of the charged particles and it vanishes in the transition to vacuum (Lorentz in-
variance). The cold plasma may serve as orientation for a relativistic covariant 
electromagnetic theory which provides transverse photons with a certain rest 

If we combine formula (12.8) for the rest mass of the quasiparticles with the 
expression for the plasma frequency of a cold electron plasma in (12.1) then we 
find 

2 2

2 2 2

4
4 , ,p e

p e e e
e e

n e em n r r
m cc c m c

ω π
π

 
= = = ≡ 

 



 

      (12.19) 

where 132.82 10 cmer
−≈ ×  denotes the classical electron radius. Thus the mass 

pm  is proportional to the square root of the electron density en  but is not in a 
simple relation to the electron mass em  without taking into account the elec-
tron charge e. It is proportional to the reciprocal square root of em  if we fix the 
charge e. For plasma frequencies pω  in the visible region of about  

145 10 Hz
2

p
p

ω
ν ≡ ≈ ×

π
 ( )1sec−


 (for alkali metals they are a little higher and are 

much higher for most other metals) we find according to (12.8) a mass of about 
2

33 33
2

erg sec4 10 4 10 g
cmpm − −⋅

≈ × = ×  that is by a factor ≈ 2 × 105 smaller than the  

rest mass of an electron which is of about 2710 gem −≈  corresponding to a rest 
energy of about ≈ 0.5 MeV. Since the appearance of a rest mass is a collective ef-
fect (quasi-particles), we cannot separate different parts of energy and momen-
tum from the pure field and from the moving particles (electrons) on the back-
ground of the heavier ions considered as resting and making the medium (plas-
ma) macroscopically neutral. 

We mention that an energy momentum tensor of the form (12.17) with only 
one nonvanishing component 44T  in the energy density part for a point-like 
resting particle is the starting point for establishing the direct connection of 
Newton’s gravitation law with Einstein’s equations of general relativity (see, e.g., 
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[3], section 99, Eq. (99.1)). 
A warm plasma with spatial inversion as symmetry element possesses a trans-

versal and a longitudinal part of the permittivity tensor proportional to 

2
i j

ij

k k
δ −

k
 and to 2

i jk k
k

 with parameters ( ),tε ωk  and ( ),lε ωk  and in 

case of gyrotropy a further term. 

13. Angular Momentum Conservation in Resting Isotropic 
Media 

The most prominent supporter of the Abraham tensor in old time was Pauli [5] 
in his younger years. He considers explicitly only isotropic non-dispersive media 
and it is not clear how these results may be generalized to anisotropic media 
since no proposal for this exists. In his encyclopedic article published in the age 
of 21, Pauli [5] sees in electron-theoretical considerations of Abraham a weighty 
argument in favor of the symmetric Abraham tensor but he discusses also ad-
vantages and disadvantages of the Minkowski tensor. Since Pauli’s article is 
about Special and General relativity theory and since the last requires a symme-
tric energy-momentum tensor as source term in Einstein’s equations it is un-
derstandable that Pauli looked mainly for arguments in favor of the symmetric 
Abraham tensor. However, in his late years, apparently, he changed his opinion 
and favored the non-symmetric Minkowski tensor as the correct one. This can 
be seen from the supplementary notes made by Pauli in 1956, two years before 
his death, to the re-edition of his encyclopedic article [5]. In Note 11 with refer-
ence to von Laue [14] Pauli praised emphatically the Minkowski tensor as the 
right one and it seems that he wants to correct his earlier opinion13. For aniso-
tropic media which were never explicitly considered by Pauli in this regard it is 
clear that the energy-momentum tensor cannot be symmetric since the mo-
mentum density is in direction of the mean wave vector and the energy-flow 
density (Poynting vector) in direction of the ray vector which, in general, are not 
parallel to each other as it is well known from experimental and theoretical crys-
tal optics. 

In recent time the Abraham tensor was declared in papers of Leonhardt and 
coworkers [32] [33] as the correct one. It is easily to conjecture that the same as 
the young Pauli they want to have a symmetric energy-momentum tensor be-
cause the General Relativity theory requires such but they should ask themselves 
how it can be generalized as such symmetric tensor to general anisotropic media. 
As mentioned most authors favor the Minkowski tensor as the correct one also 
for its relativistic covariance but many of them do not consider anisotropic me-

 

 

13The full text of Note 11 in [5] is:”M. v. Laue [see his Relativitätstheorie, Vol. 1 (6th edn., 1955) § 
19] has shown that only the unsymmetric energy-momentum tensor of Minkowski is correct for a 
phenomenological description of moving bodies (just as it is in crystals at rest). His argument also 
emphasizes the validity of the addition theorem of velocities for the ray-velocity (see Eq. (312) of the 
text), which is in agreement only with this unsymmetric tensor.”. The Editors of the Russ. Transl. 
V.L. Ginzburg and V.P. Frolov make further remarks to this problem with four additional citations, 
in particular, [16] [17]. 
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dia where the problem becomes more clear though more difficult. The reason for 
different views to this tensor is different separations of ponderomotive forces in 
the conservation theorems which in this case do not possess the exact form of 
local conservation laws. This is discussed in detail by Ginzburg [10]. The discus-
sion of the relations between the Abraham and the Minkowski tensor is usually 
restricted to isotropic media and we do not know an explicit more general form 
of the symmetric Abraham tensor for anisotropic dispersive media. For aniso-
tropic media it is evident that the momentum density should possess the direc-
tion of the mean wave vector and the energy flow density should be in direction 
of the group velocity of quasiplane and quasimonochromatic waves which, in 
general, are different for anisotropic media or, in other case, essential parts of 
crystal optics would be wrong. This is provided if the momentum density is 
proportional to [ ],D B  and the energy flow density proportional to [ ],E B  as 
in the Minkowski tensor. Taking into account the dispersion both expression 
have to be modified as was shown ([9] and Section 9 of present article). In the 
case of taking into account the dispersion the constitutive relations bring into 
play additional derivatives of the electric (and in certain cases of the magnetic) 
field which have to be taken into account in the derivation of conservation laws. 
Our strategy is to formulate the differential conservation laws without taking 
into account absorption (dissipation or absorption or even amplification, open 
system) as exact vanishing of 4-divergences. With dissipation this is impossible. 
The condition for the permittivity tensor to describe a dissipation-less medium 
was discussed in Section 3. 

Even in the special case of an isotropic medium and under neglect of disper-
sion (spatial and temporal ones) that means in case of the constitutive relations 

* *
0 0 0 0 0 0,ε ε= =D E D E  with constant scalar 0ε  the energy-momentum tensor 

Tκλ  remains, in general, non-symmetric, in particular (see next Section) 

4 0 0 4 4i i ,k
k k k k

S
T cg T T

c
ε ε= = = ≠                (13.1) 

that is nonsymmetric for 0 1ε ≠ . However, the stress tensor klT  is symmetric in 
this case in the inertial system where the isotropic medium is resting (in moving 
systems it is no more isotropic) 

.kl lkT T=                          (13.2) 

Moreover, this symmetry remains to be true also in the general case of taking in-
to account the dispersion as can be seen from (10.13) and (10.8) since for isotropic 
media the group velocity v  and the wave vector k  possess in general case the 
same direction (see below). This partial symmetry of the three-dimensional part 

klT  (and only this) of the full four-dimensional energy-momentum tensor Tκλ  
is necessary for the existence of a local law of angular-momentum conservation 
in isotropic media due to invariance with respect to the three-dimensional rota-
tion group in this inertial system where the medium rests. 

Multiplying the differential momentum conservation (8.2) by ijk jrε  ( ijkε  is 
three-dimensional Levi-Civita pseudo-tensor) we may transform this according 
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to 

( ) ( )
0

0

0 ,ijk j l kl k l ijk j kl ijk j k ijk kjr T g r T r g T
t t

ε ε ε ε
=

=

∂ ∂ = ∇ + = ∇ + − ∂ ∂  



    (13.3) 

and obtain 

[ ]0, , , ,l il i il ijk j kl i ijk j k iS m S r T m r g
t

ε ε∂
∇ + = ≡ ≡ =

∂
r g       (13.4) 

where we used the symmetry (13.2) and where this last symmetry is evidently re-
quired for the vanishing of ijk kjTε . Herein, ( ) ( ), , ,i im m t t≡ =   r r g r  means the 
angular momentum density and ( ) ( ), ,il il ijk j kS S t r g tε≡ =r r  a non-symmetric 
tensor which is the analogue to the stress tensor for momentum conservation 
(angular-momentum flow density). Since the momentum density takes into ac-
count the polarization of the electromagnetic field the angular momentum den-
sity comprises both the orbital and the spin angular momentum. 

The vanishing of the right-hand side of (13.4) possesses the form of a diffe-
rential or local conservation theorem. We also see that a pure translation 

′→ = +r r r a  with a constant vector a  (displacement of coordinate origin) 
does not disturb the local conservation theorem (13.4) although this changes im  
and ilS . Despite the symmetry (13.2) the whole tensor Tκλ  is non-symmetric 
(T Tκλ λκ≠ ) due to (13.1) and under Lorentz transformations the spatial part klT  
becomes also nonsymmetric ( kl lkT T′ ′≠ ) as consequence that isotropy of a me-
dium resting in the inertial system   is lost in inertial systems ′  of the 
moving medium (see Appendix B, in particular, (B.3)). Due to 0ijk kjTε ′ ≠  a lo-
cal law of angular-momentum conservation cannot be formulated then in anal-
ogy to (13.4) for such inertial systems. One can convert this conclusion. If the 
four-dimensional energy-momentum tensor Tκλ  would be symmetric in the 
inertial system of the resting isotropic medium then it remains to be symmetric 
also in arbitrary other inertial systems and one would be able to prove a local 
conservation law of angular momentum for an arbitrary inertial system that is 
evidently wrong (with exception of vacuum). This excludes the symmetric Ab-
raham tensor as candidate for the energy-momentum tensor from the beginning 
in contradiction to confusing remarks in [5]. We did not find explicit expres-
sions in literature for a symmetric Abraham tensor in the general anisotropic 
case without or with dispersion where already the same directions of momentum 
density and energy flow density would be in striking contradiction to known 
experimental facts. 

With exception of the vacuum the angular momentum conservation in iso-
tropic media at rest cannot be extended to a more general four-dimensional 
conservation theorem such as it was possible for energy and momentum con-
servation. The reason is that invariance with respect to Lorentz transformations 
requires a permittivity tensor ( ),ij ijε ω δ=k  of the medium which determines 
the electrodynamic vacuum. We mention that our derivation (13.3) of the ne-
cessary symmetry kl lkT T=  for local angular momentum conservation for iso-
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tropic media corresponds to the derivation of the necessary symmetry of the 
four-dimensional tensor T Tκλ λκ=  for the local conversation of the four-angular 
momentum given in [3] (section 32, Eq. 32.10 in Russ. Ed. from 1988). 

14. Non-Uniqueness of the Energy-Momentum Tensor and 
Its Role for Finding the Simplest One 

As is known the energy-momentum tensor in the local conservation law of 
energy and momentum (and, similarly, the action 4-vector in local action con-
servation) is not unique [3]. However, we will suggest that this is not a very 
strong problem, in particular, not in the approximation of quasiplane and qua-
simonochromatic waves. We do not strive in this Section for high generality of 
our considerations and try to illuminate the problems of non-uniqueness only by 
some remarks. 

The general form of non-uniqueness of the energy momentum tensor 
( ) ( )T r T rκλ κλ′

 in the local conservation theorem is described by an arbitrary 
third-rank four-tensor function ( )rκλµψ  which is antisymmetric in the last two 
indices in the following form [3] 

( ) ( ) ( ) ( ) ( ), ,T r T r r r rκλ κλ µ κλµ κλµ κµλψ ψ ψ′ = +∇ = −        (14.1) 

from which immediately follows 

( ) ( ) 0.T r T rλ κλ λ κλ′∇ = ∇ =                   (14.2) 

In three-dimensional separation this means for the stress tensor ( ),klT tr  
and the momentum density ( ),kg tr  and for the energy flow density ( ),lS tr  
and the energy density ( ),w tr  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

, , , , ,

, , , ,

, , , , ,

, , , ,

kl kl lmn m kn kl

k k l kl

l l lmn m n l

l l

T t T t t t
t

g t g t t

S t S t t t
t

w t w t t

ε ψ χ

χ

ε ψ χ

χ

∂′ = + ∇ +
∂

′ = −∇
∂′ = + ∇ +
∂

′ = −∇

r r r r

r r r

r r r r

r r r

        (14.3) 

with the following separation of ( )rκλµψ  into arbitrary three-dimensional ten-
sor or pseudo-tensor functions, respectively 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 4

4 4 4 44

1 i i, , , , , , ,
2

, i , , , , , .
2

kn lmn klm kl kl k l

n lmn lm l l l

t t t t t
c c

ct t t t t

ψ ε ψ χ ψ ψ

ψ ε ψ χ ψ ψ

≡ ≡ − =

≡ − ≡ − =

r r r r r

r r r r r
  (14.4) 

For neglected dispersion ( 0ε  constant permittivity tensor in 0,i ij jD Eε= ) 
and without losses ( *

0, 0,ij jiε ε= ) one can derive the following well-known general 
expressions for the parts of the energy-momentum tensor here denoted by Tκλ′  
in contrast to our Tκλ  ( 4α = π  in Gauss system) 

( ) ( )

[ ]

1 ,
2
1 1 , ,

kl kl k l k l

k kmn m n k

T B B E D

g D B
c c

α δ

α ε

′ = + − +

′ = =

BB DE

D B
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[ ]

( ) ( )2
0

, ,

1 1 ,
2 2

l lmn m n lS c E B c

w

α ε

α

′ = =

′ = + = +

E B

BB DE B E Eε
             (14.5) 

where E  and B  mean here the full electric and magnetic field and D  the 
full electric induction which depend on ( ), tr . If we insert into these expressions 
plane monochromatic waves of the form ( ) ( )0 0 0 0i i*

0 0e et tω ω− − −= +k r k rE E E  with 
real 0k  and 0ω  and constant vector amplitudes 0E  and analogously for B  
and D  we get besides constant terms in the energy-momentum tensor also terms 
with the rapidly varying phase factors ( )0 0i2e tω± −k r . It is not possible to generalize in 
some simple way the form (14.5) of the energy-momentum tensor containing the 
full fields to the case of taking into account the dispersion. In particular, the cor-
responding expressions cannot be local in the fields that means cannot be taken 
only at the same space-time points ( ), tr  (see Section 3). Therefore, we have to re-
strict us in the following discussion of the non-uniqueness concerning the terms 
with rapidly varying phase factors ( )0 0i2e tω± −k r  to the neglect of dispersion. 

The suppression of terms with rapidly varying phase factors was made in [34] 
for local energy conservation (and analogously possible for momentum conser-
vation) in noncovariant form. Here we will show that it can be made also in rela-
tivistic covariant form. Under neglect of dispersion and in the limiting case of 
constant amplitudes 0E  we can add to our Tκλ  terms with rapidly varying 
phase factors possessing the form of a four-divergence of a function ( )rκλµψ  
with antisymmetry in last two indices as shown in (14.1) in the following way 
(recall 2
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(14.6) 

with Tκλ  denoting the energy-momentum tensor in (9.1) without terms with 
rapidly varying phase factors and represented by the slowly varying amplitudes 

*
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0
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                 (14.7) 

and, in addition, neglecting derivatives 
0

ij
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 ∂ 

 in it corresponding to neglect 

of dispersion. We used in (14.6) the vanishing of the following expression 
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which is true for the special form of ijL  given in (5.5) only under neglect of 
dispersion and is related to (11.12) or also to (11.3). Thus we have represented 
terms with rapidly varying phase factors in the energy-momentum tensor (14.6) 
by a four-divergence ( )rµ κλµψ∇  with explicitly given ( ) ( )r rκλµ κµλψ ψ= −  and 
comparison of (14.6) with the noncovariant form in [30] shows that the choice of 

( )rκλµψ  itself for removing one and the same terms is to certain extent also not 
fully unique. Evidently, substitutions ( ) ( ) ( ) ( )r r r rκλµ κλµ κλµ ν κλµνψ ψ ψ ψ′→ = +∇  
in (14.1) with arbitrary ( )rκλµνψ  which is fully antisymmetric in last three in-
dices ( ), ,λ µ ν  provide equivalent possibilities. 

Taking into account the dispersion, the expressions (14.5) for the parts of the 
energy-momentum tensor are no more true. However, one can find from Max-
well equations vanishing quadratic expressions in the field which do not possess 
the form of local conservation of energy and momentum but are related to it and 
by averaging these expressions over space and time, we get local conservation 
laws of energy and momentum which take into account the dispersion in some 
approximation of quasiplane and quasimonochromatic waves that is demon-
strated in [7] for frequency dispersion in the energy density w and energy flow 
density S  where there is obtained the expression for w in (9.7) ( S  is not al-
tered in comparison to the usual one due to neglected spatial dispersion). In the 
derivations of local conservation theorems one cannot work with constant am-
plitudes and the amplitudes 0 0,E B  and 0D  are, at least, slowly varying am-
plitudes. If we take expressions of the kind in (14.6) for removing the terms with 
rapidly varying phase factors proportional to ( )0 0i2e tω± −k r  then one has also to 
differentiate the slowly varying amplitudes and there remain some new terms 
with these phase factors which, however, are small compared with the main 
terms with these phase factors before. In a second step and successively in higher 
steps one can try to remove also these smaller terms. However, there is no possi-
bility to remove any parts in the energy-momentum tensor (9.7) which do not 
contain such rapidly varying phase factors without creating new terms with ra-
pidly varying phase factors or terms which grow in space and time in unreason-
able way (e.g., linearly). Clearly, we can derive higher-order approximations of 
the energy-momentum tensor than in (9.7) (see sections 5-7) and can try to  

express them not only by the group velocity l
l

v
k
ω∂

≡
∂

 as done but also by the 

higher derivatives 
2 3

,
l m l m nk k k k k
ω ω∂ ∂

∂ ∂ ∂ ∂ ∂
 and so on (this is not yet done) but they  

also do not contain such rapidly varying phase factors. Therefore, the non- 
uniqueness cannot be used to make energy-momentum tensors without rapidly 
varying phase factors to symmetric ones and nonsymmetric energy-momentum 
tensors of such kind remain intrinsically nonsymmetric. This suggests also that 
expressions of the kind (9.7) or (9.4) and of their generalization possess some 
distinguished position with the possibility of direct physical interpretation 
among all other equivalent energy-momentum tensors in local conservation 
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theorems. Our derivations provided these expressions directly without the ne-
cessity of suppression of terms by the discussed non-uniqueness. 

There is another case where the non-uniqueness of the energy-momentum 
tensor seems to be of great importance. These are evanescent or inhomogeneous 
waves with complex wave vector 0 0 0ik k′ ′′= +k  and (or) complex frequency 

0 0 0iω ω ω′ ′′= +  leading besides the periodic phase factors ( )i2e tω′ ′± −k r  to expo-
nential factors ( )0 02e tω′′ ′′− −k r  in the energy-momentum tensor. Such waves are 
present, for example, under total reflection in the optically thinner medium and 
in surface waves to both sides of a boundary plane. The exact generalization of the 
local energy-momentum conservation to such cases is possible. Using the addi-
tional factors ( )0 02e tω′′ ′′− −k r  in such waves provides further possibilities to remove 
terms in the energy-momentum tensor which are difficult to interpret and to get 
equivalent tensors but this makes the problems of non-uniqueness more complex. 

Summarizing, it seems to us that the non-uniqueness of the energy-momentum 
tensor can mainly be used to remove or to change terms with periodically or 
exponentially rapidly changing phase factors, whereas the others are hardly to 
touch. This problem of non-uniqueness has little to do with the discussion of the 
correctness of the Minkowski or the Abraham tensor which in absence of dis-
persion was decided in favor of the Minkowski tensor. 

15. Difficulties for General Relativity Theory Connected with 
General Asymmetry of Energy-Momentum Tensor in 
Media 

The energy-momentum tensor Tκλ  forms the source term in Einstein’s gravita-
tion equations which determine the metric tensor gκλ  and thus also the curva-
ture of a Riemannian space-time as a generalization of Minkowski’s space-time. 
Ricci tensor and thus Einstein tensor in these equations are symmetric ones and, 
consequently, the energy-momentum tensor has also to be symmetric. Since 
macroscopic electrodynamics is an averaged microscopic electrodynamics it can 
be assumed that its energy-momentum tensor provides the source term for a 
correspondingly averaged gravitation field in the medium and requires boun-
dary conditions in case of transition to vacuum with a sharp boundary. The 
connection of the classical energy-momentum tensor in Minkowski space as 
source of a curvature in Einstein’s equations is patchwork since it starts from a 
pseudo-Euclidian space but it cannot be fully wrong concerning its symmetry. 
We will shortly discuss some difficulties which result from this for General rela-
tivity theory. 

If it would be possible to extend the Ricci tensor in Einstein’s equations to a 
possible non-symmetric one that up to now did not be achieved then, neverthe-
less, there remain some serious problems. The energy-momentum tensor in the 
local conservation laws is not uniquely defined (see Section 14) and there arises 
the problem which of these tensors provides the right source term in Einstein’s 
equations of General relativity theory. Moreover, in spatially and (or) temporally 
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inhomogeneous media such a tensor in local conservation laws does not exist at 
all. In these cases only the local conservation theorem of action remains with a 
four-dimensional vector of action and action-flow density. One may expect that 
then this four-vector must be involved in some way as source in generalized 
Einstein equation but this to our knowledge was also not found up to now. 

The unification of the basic laws of physics is a steady desire of physicists. Af-
ter Einstein’s General relativity theory in 1916 it was the problem of its unifica-
tion with the experimentally well established Maxwell theory of electromagnet-
ism. First successful trials in this direction with extension of the dimensionality 
of the space-time to 5 dimensions were the Kaluza-Klein theories from about 
1920 on. With the foundation of the rigorous quantum theory in about 1925 it 
became the problem of unification of quantum theory with electromagnetism 
and gravity from which only the first part found a satisfactory solution in quan-
tum electrodynamics and from this more or less only the microscopic quantum 
electrodynamics of charged particles is well elaborated. In the sixties and seven-
ties the standard model of elementary particles and fields was established which 
unified the electromagnetic and the weak with the strong interactions in satis-
factory way but with the new problem of symmetry breaking and of the experi-
mental proof of the theoretical Higgs particles. Thus the problem as it represents 
to us at this time became already the unification of the standard model with a 
quantum theory of gravitation where great but up to now not fulfilled hopes 
were set in the development of string theories. The non-symmetry of the ener-
gy-momentum tensor for electromagnetic excitations in anisotropic dispersive 
and, in general, not even homogeneous media in classical electrodynamics as 
represented here adds a further serious problem because already Einstein’s gra-
vitation theory in existing form is not consistent with the electrodynamics of 
continuous media since first requires a symmetric energy-momentum tensor. 
This non-symmetry of the energy-momentum tensor is intrinsic and cannot be 
removed by considering the current and charge distributions of media on the 
background of the vacuum. Since in the principal correctness of the existing 
classical electrodynamics of continuous media cannot be doubt the least which is 
required is some extension or generalization of the General relativity theory if 
not a more basically new theory. As it seems to us this problem has to be solved 
before a successful unification with the other fundamental forces of nature can 
be accomplished. 

The General relativity theory has great success for explanation of astronomical 
observations and for cosmology. It is a beautiful theory which is considered as ex-
perimentally verified. It must not be incorrect due to some of the shown classical 
difficulties and we hope that they can be overcome in the course of time by gene-
ralization or somehow in other way and that it remains true as an approximation. 

16. Possible Additions and Generalizations 

The preceding theory of the energy-momentum tensor can be extended in dif-
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ferent directions. In particular, the following possibilities seem to be interesting 
(partially already elaborated): 

1) Statistical model for permittivity tensor for gases and (warm) plasmas with 
spatial dispersion. 

2) Non-statistical permittivity tensor for solids with spatial dispersion (but 
averaged over the space). 

3) Inclusion of inhomogeneous (evanescent) waves in lossless media that 
means solutions of the wave equations where both the mean wave vector 0k  
and, possibly, the mean frequency 0ω  are complex quantities (is more a tech-
nical than a principal problem). 

4) For homogeneous media with losses one cannot derive exact differential 
conservation theorems but one can derive (not in fully unique way) equations of 
the kind 

( ) ( ) ,T r f rλ κλ κ∇ =                     (16.1) 

or in three-dimensional separation with ( ) ( ) ( )i, , ,kf r f t q t
cκ

 =  
 

r r  

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,l kl k k l lT t g t f t S t w t q t
t t
∂ ∂

∇ + = ∇ + =
∂ ∂

r r r r r r   (16.2) 

where ( ), tf r  can be interpreted as a force density and ( ),q tr  as a density of 
loss or gain of electromagnetic energy. 

5) Derivation of a local conservation theorem for inhomogeneous media with 
( )ˆ ˆ , , ,ij ij t tε ε ′ ′≡ r r . In this case local conservation of energy and momentum is 

not possible but the action conservation is possible (adiabatic invariants). 
6) Specialization of permittivity tensor, for example, to polaritons with 

( )
2 2

2 2, l
ij ij

t

ω ω
ε ω δ

ω ω
−

=
−

k . 

7) Taking into account higher-order derivatives of the slowly varying electric 
field amplitudes. 

8) Quantum-mechanical generalization. 

17. Conclusion 

In present article, we developed a relativistically covariant approach to the local 
conservation theorems for homogeneous anisotropic media with dispersion of gen-
eral permittivity tensor ( ),ijε ωk  and to the calculation of the four-dimensional 
energy-momentum tensor14. The limiting case to plane monochromatic waves is 
discussed and the results, in particular, are demonstrated for the special case of 
cold plasma. In the usual approach for such problems, the starting point is a La-
grange function, but this approach is hardly applicable with inclusion of the dis-
persion. Our calculations are made in a coordinate-invariant operator approach 

 

 

14I used my unpublished paper in German from about 1979 (see Remark) which I translated in 
preparation to a Conference in 2004 into English (see [34]) and to which I added since this time new 
material not fully included here and I am convinced that the content contains elements worth to be 
published also now. 
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with an operator equation only for the electric field and therefore with results 
which are basically expressed by the electric field. 

Remark 

A shorter paper of this theme (in particular, without any statements to difficul-
ties for General relativity theory due to asymmetry of the energy-momentum 
tensor and to application of a plasma) written in German with nearly all basic 
formulae as now was made in about 1979 but was rejected from Editor of Anna-
len der Physik in GDR Professor Gustav Richter with wrong arguments. His 
main wrong argument was that in my formulae for the limiting case to plane 
monochromatic waves stands the derivative of the permittivity with respect to 
the frequency that he declared as wrong “for physical reason”. However, the 
correctness of these formulae was already known from cited monographs and 
papers, in particular, of Landau and Lifshits and of Agranovich and Ginzburg. 
When I wanted to explain G. Richter who was also Member of our Institute at 
that time (in age of a few years below 65) in personal talk why mentioned for-
mulae are correct for beams in limiting case he became very angry. Similar 
things happened shortly before when I wanted to publish my paper about gene-
ralized boundary conditions which, finally, was published after intervention by a 
prominent physicist of GDR from Editorial Board of “Annalen” and recently I 
published a continuation of this topic. When I tried to send the mentioned paper 
about boundary conditions to a Western journal I never got an answer. One 
could not check whether or not it was really sent since mail to Western countries 
went before this in an open couvert to the Chief and through Security or was a 
response withheld. I found now the hand-written comments of G. Richter and 
will pose them into my Home-page. 
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Appendix A 

Derivations to relativistic-covariant treatment of macroscopic electrody-
namics of anisotropic dispersive media 

Macroscopic electrodynamics is relativistically invariant only for the vacuum 
that means for permittivity tensor ( ) ( ),ij ijε ω ε ω δ=k  with ( ) 1ε ω = . Howev-
er, for general ( ),ijε ωk  it can be formulated in relativistic covariant form ac-
cording to Minkowski (1908) [7] (Eqs. (76.9)-(76.11)) and many others. This 
form was less appropriate for our derivations of the energy-momentum tensor. 
Our derivation rests more on the invariance of 

2 2−B E  after Fourier trans-
formationation from space-time to wavevector-frequency representation, e.g., 
[3] [13] [15]. 

The starting point is Equation (5.4) for the electric field of plane monochro-
matic waves with the definition (5.5) of the wave-equation operator that means 

( ) ( ) ( ) ( ) ( )
2

2
2, , 0, , , .ij j ij i j ij ij

cL E L k kω ω ω δ ε ω
ω

= ≡ − +k k k k k    (A.1) 

As discussed, it contains the full information of the macroscopic electromagnetic 
field together with linear constitutive equations for homogeneous anisotropic dis-
persive media expressed by the permittivity tensor ( ) ( ), 4 ,ij ij ijε ω δ χ ωπ≡ +k k  
with ( ),ijχ ωk  the general susceptibility tensor. 

We consider an arbitrary special Lorentz transformation Λ  which trans-

forms a space-time vector 
4 i

r
r ct
 

=  = 

r
 in inertial system16   into a new 

space-time vector 
4 i

r
r ct

′ ′ =  ′ = 

r
 in inertial system ′  according to 

( )
( ) ( )

1

1

, ,

, , .

r r r r rµ µν ν ν µ µ µννµ

µ µν ν ν µ µ µν µλ νλ µννµ
δ

−

−

′ ′ ′= Λ = Λ = Λ

′ ′∇ = Λ ∇ ∇ = Λ ∇ = ∇ Λ Λ Λ =
    (A.2) 

where ( )µνΛ V  with V  as the relative velocity of ′  in   possesses the 
well-known form 

( )
( ) 2

2

2

1
1, 1,

1

m n m
mn

n

V V V
i

c
V

i
c c

µν

δ γ γ
γ

γ γ

 + − 
 Λ = ≡ ≥
 −  − 

VV
V

     (A.3) 

with ( ) ( )1
µν µν
−Λ = Λ −V V . For the 4-wave vector , ik

c
ω ≡  

 
k  the analogous 

transformation formula 

( )1, ,k k k k kµ µν ν ν µ µ µννµ

−′ ′ ′= Λ = Λ = Λ              (A.4) 

holds. The antisymmetric electromagnetic field tensor ( )F r F Fµν µν νµ≡ = −  in 
space-time representation and separated in three-dimensional form together with 
the transformation relations is ( lmnε  three-dimensional Levi-Civita pseudo-tensor) 

 

 

16Einstein denotes “inertial systems” with letter K, likely, from the German “Koordinatensystem”. 
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i
, ,

i 0
mnl l m

n

B E
F F F

Eµν κλ κµ λν µν

ε − 
′= = Λ Λ 

 
           (A.5) 

and the basic equations of macroscopic electrodynamics in arbitrary inertial sys-
tems can be written ( κλµνε  four-dimensional Levi-Civita pseudo-tensor) 

0, 4 ,F F jκλµν λ µν ν µν µε ∇ = ∇ π=                 (A.6) 

where ( )j j rµ µ=  is the 4-vector of current density in space-time representa-
tion. We now make the transition to the Fourier transforms of the field func-
tions (definitions see (3.4)). 

From the transformation formula for the 4-vector of current density 
( ) ( ) ( )( ), , i ,j k cω ρ ω= j k k  using the definition (2.3) which leads to  
( ) ( ) ( )( )i , , ,j k cω ω ω= − P k kP k , we obtain the following transformation for-

mula for the polarization ( ( ) ( ) ( ) ( ), , ,k k i iP k P P k Pω ω′ ′ ′ ′ ′≡ ≡k k ) 

( ) ( ) ( ) ( )1
4 4 4i i .i ik i k k ik i k k

c cP k k P k k P kµ µ µ
ω
ω ω ω

− ′ ′ ′ ′= Λ + Λ = − Λ Λ −Λ Λ Λ ′ ′ 
(A.7) 

After transformation of the known formula for the tensor of the electromag-
netic field into a corresponding formula for the Fourier components and then 
after the elimination of the magnetic field by means of the first vectorial equation 
in (2.7) we arrive after some intermediate calculations to the following transfor-
mation formula for the electric field ( ( ) ( ) ( ) ( ), , ,l l j ijE k E E k Eω ω′ ′ ′ ′ ′≡ ≡k k ) 

( ) ( ) ( ) ( )1
4 4i .l l jl l j j

cE k E k k E kν ν νω
− ′ ′ ′ ′= Λ = − Λ Λ −Λ Λ

′
      (A.8) 

An analogous formula which connects alone the components of the magnetic 
field before and after the Lorentz transformation does not exist without using the 
permittivity tensor but one may calculate the magnetic field from the electric field in  

each system via the Fourier-transformed Maxwell equation ( ) ( )j jkl k l
cB k k E kε
ω

=  

and one can widely work with the electric field alone. 
From the definition of the susceptibility tensor before and after the Lorentz 

transformation 

( ) ( ) ( ) ( ) ( ) ( ), ,k kl l i ik jP k k E k P k k E kχ χ′ ′ ′ ′ ′ ′= =          (A.9) 

using (A.7) and (A.8) we obtain the following transformation formula 

( ) ( )( ) ( )
2

1
4 4 4 42 .ij ik k i jl l j kl

ck k k kµ ν µ µ ν νχ χ
ω

−′ ′ ′ ′ ′= − Λ Λ −Λ Λ Λ Λ −Λ Λ Λ
′

 (A.10) 

Using the definition of the permittivity tensor before and after the Lorentz 
transformation, we obtain from (A.10) the corresponding transformation for-
mula for the permittivity tensor 

( ) ( ) ( ) ( )4 , 4 .kl kl kl ij ij ijk k k kε δ χ ε δ χ′ ′ π ′ ′≡ + ≡ +π        (A.11) 

Thus in the inertial system ′  the medium appears as a homogeneous ani-
sotropic and dispersive one with the permittivity tensor ( ) ( ),ij ijkε ε ω′ ′ ′ ′ ′≡ k . 

For a three-dimensional orthogonal transformation 
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( )4

4 44

0
, ,

0 1
mn m mn

ml nl mn
n

R
R Rµν δ

Λ Λ   
Λ = = =   Λ Λ   

       (A.12) 

we find the usual transformation formula of a second-rank tensor function 

( ) ( )1, R , ,ij ik jl klR Rχ ω χ ω−′ ′ ′ ′ ′=k k               (A.13) 

where ( ) 1TR R
−

=  denotes the three-dimensional rotation operator. 
The transformation of space-time vectors after separation of a part parallel 

and perpendicular of r  to the velocity V  can be written 

( ) 2 21 , ,V t t t
c

γ γ γ   ′ ′= + − − = −   
   

Vr Vrr r
V

          (A.14) 

and, correspondingly, of wave vector and frequency according to (see (A.4) to-
gether with (A.3)) 

( ) ( )2 21 , ,
c
ωγ γ ω γ ω ′ ′= + − − = − 

 

kVk k V kV
V

        (A.15) 

with relativistic invariants 
2 2

2 2 2 2 2 2 2 2
2 2, , .c t c t t t

c c
ω ω ω ω
′

′ ′ ′ ′ ′ ′ ′− = − − = − − = −r r k k k r kr   (A.16) 

Furthermore from (A.15) follows, in particular 

[ ] [ ] ( )
2

2, , , .
c

ωγ ω γ ω
γ

 
′ ′= = − = − + 

 

Vk V k V k V kV kV     (A.17) 

As expected this shows that the components of the wave vector k  perpen-
dicular to the velocity V  of the inertial system ′  in   is not influenced by 
the transformation that, clearly, is known. The transformation formulae (A.7) 
and (A.8) in three-dimensional separation take on the form 

( ) ( )2 2, , ,i k i k ik i k
i ik k

VV VV V k
P P

δ
ω γ δ ω

ω
′ ′ −  ′ ′ ′ = + − +  ′  

k V
k k

V V
   (A.18) 

and using ( ) ( ), , ,cω ω
ω

′ ′ ′ ′ ′ ′ ′=   ′
B k k E k  (cf. also with formulae (8.2) in [42]) 

( ) ( )2 2, , ,l j l j lj l j
l lj j

VV VV k V
E E

δ
ω γ δ ω

ω

′ ′ −    ′ ′ ′= + − +  ′   

k V
k k

V V
   (A.19) 

where, in addition, the transformations (A.15) for the arguments have to be 
used. For the general susceptibilities defined by (A.9) using (A.18) and A.19) this 
leads finally to the transformation formula to the moving medium 

( )

( ) ( )

2 2

2 2

2 2

,

1 , .

i k i k ik i k
ij ik

j l j l jl j l
jl

kl

VV VV V k

V V V V V k

c
ω

δ
χ ω γ δ

ω

δ
γ δ

ω

ωχ γ γ γ ω
=

=

′ ′ −  ′ ′ ′ = + − +  ′  
′ ′ −   ⋅ + − +  ′   

 
′ ′ ′ ′ ′⋅ + − + + 

 
 k

k V
k

V V

k V
V V

k Vk V V k V
V 



    (A.20) 
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The transformation of the corresponding permittivity tensors follow from 

( ) ( ) ( ) ( ), 4 , , , 4 , .ij ij ij kl kl klε ω δ χ ω ε ω δ χ ω′ ′ ′ ′ ′ ′π≡ + ≡ + πk k k k    (A.21) 

If ( ),ijχ ωk  is a symmetric tensor then ( ),ijχ ω′ ′ ′k  is also a symmetric 
tensor. Furthermore, we see that both indices of these tensors are independently 
transformed by exactly the same tensorial factors in (A.20) written on first and 
second lines. 

From the transformation formulae we find then the formal Lorentz covariance 
of the expression 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 2 ,i i i i i i j ij j
cI E k E k B k B k E k k k E kµ ν µ ν µνδ δ δ δ
ω

≡ ± − ± = ± − (A.22) 

and the formal covariance of 

( ) ( ) ( )2 4 .i ij jI E k k E kχ±π≡                 (A.23) 

The sum of both these covariant expressions can be written by means of the 
operator ( )ijL k  introduced in (2.7) as follows 

( ) ( ) ( )1 2 .i ij jI I I E k L k E k≡ + = ±               (A.24) 

Thus the basis of the presented concept of relativistic-covariant treatment of 
electrodynamics and optics of homogeneous dispersive media is formed by the 
vectorial wave equation for the electric field (5.4) in the form ( ) ( ) 0ij jL k E k =  
together with one of the two equivalent representations 

( ) ( ) ( ) ( ) ( )
2 2

2
2 24 , ,ij i j ij ij i j ij ij

c cL k k k k k kµ ν µ ν µνδ δ δ δ χ δ ε ω
ω ω

π≡ − + = − +k k (A.25) 

in connection with the transformation formulae (A.8) for the electric field and 
for the tensor of susceptibility (A.10) as well as the use of the formal Lorentz in-
variance of the quantities considered in (A.22) and (A.24). The material proper-
ties are described by only one susceptibility tensor which depends on wave vec-
tor k  and frequency ω  before and after transformation from systems   to 
′ . 
One has to pay attention that for reason of consideration of the susceptibility 

tensor the transformation (A.18) is given in direction ′→   and the trans-
formation (A.19) in inverse direction ′ →   and that the transformation op-
erators are almost but not fully equal where both are represented using ′k  and 
ω′  in system ′ . These formulae describe the relativistic Doppler effect. The 
inverse formulae to (A.18), (A.19) and (A.15) and of transformation formulae in 
further text are obtained by substituting → −V V  and by interchanging all 
quantities with and without primes. In contrast to (A.19) and (A.18) the 
well-known transformation formulae of Minkowski (e.g., [7], § 76 or, e.g., [5] 
[18]) are mixed transformations between electric and magnetic field which, fur-
thermore, neglect the dispersion and are not made for the Fourier transforms of 
the fields. 
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Appendix B 

Special Lorentz transformation of the energy-momentum tensor 
In the transition from inertial system   to inertial system ′  moving with 

velocity V  in   the energy-momentum tensor transforms written in tensori-
al and in matrix form and as similarity transformation (upper index T  means 
transposed) 

T 1 , 1,T T T Tκλ κµ λν µν κµ µν νλ κµ µν νλ
−′ = Λ Λ = Λ Λ = Λ Λ Λ =         (B.1) 

that for the special Lorentz transformation (A.3) in space-time separation ac-
cording to (8.1) is 

( ) ( )

( )

( )

( ) ( )

2 2

2 2

2 2 2 2

2

1 1

1 ,

1 ,

1

k m l n
kl km ln mn l m

k l n
ln n l

k m n k n
k km mn m n

l n
l ln m mn n

V V VV
T T V g

V VV
S V w

c

V V V V V
g T g S w

c c c

VV
S V T S

δ γ δ γ γ

γ δ γ γ

γ δ γ γ

γ δ γ γ

    ′ = + − + − −    
    

  − + − −  
  

     ′ = − + − − + −     
     

 ′ = − + − − + 
 

V V

V

V

V
( )

( ) ( )2
2

,

.

l m m

n
m mn n m m

V V g w

V
w V T S V g w

c
γ

 
− 

 
 ′ = − − − 
 

   (B.2) 

From this follows 

( ) ( ) ( )

( )

2 2

2 2

2 2 2 2

1 1

1 1 ,

1 1 ,

k m l n
kl lk km ln mn nm

k l l l k k

m k m
k k mk km km m m

V V VV
T T T T

V g S V g S
c c

V V V
g S T T g S

c c c

δ γ δ γ

γ

γ δ

  ′ ′− = + − + − −  
  

    + − − −    
    

   ′ ′− = − + − −      

V V

V

    (B.3) 

showing that symmetric and anti-symmetric parts of the energy-momentum 
tensor transforms independently on each other. 

If we denote the energy-momentum tensor by a four-dimensional matrix T 
and the Lorentz transformation by a matrix Λ  then the transformation (B.1) 
with T 1−Λ = Λ  (Minkowski metrics gµν µνδ= ) can be written as a similarity 
transformation as follows 

1.T T −′ = Λ Λ                         (B.4) 

This shows that the real-valued independent invariants of the energy-momentum 
tensor with respect to Lorentz transformations are the invariants of the similari-
ty transformations (B.4) which can be chosen as the coefficients in the four- 
dimensional Hamilton-Cayley identity for T 

[ ]4 3 2 0,T T T T T T T T I− + − + =               (B.5) 

where the first three invariants with respect to similarity transformations 
[ ], ,T T T  are formally given by the same formulae as for three-dimensional 
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operators but, e.g., with T  the four-dimensional trace of T and, in addition, 
we have to consider the four-dimensional determinant T  that means 

[ ] ( ) ( )
( )

2 32 2 3

24 2 2 2 3 4

1 1, , 3 2
2 6

1 6 3 8 6 .
24

T T T T T T T T T T

T T T T T T T T

µ
µ≡ = − = − +

= − + + −
 (B.6) 

We now use an index-less representation of the energy-momentum tensor T 
of the form17 

T i
,i

c
T

w
c

 
 ≡  − 
 

g

S
                      (B.7) 

with T  the stress tensor T  (or its matrix) as a three-dimensional operator and 
find for the four-dimensional invariants of T expressed by the three-dimensional 
invariants formed from the three-dimensional operator T , from the vectors g  
and S  and from the scalar w in (B.7) 

[ ] [ ]
[ ]

[ ] 2

T ,

T T ,

T T T T ,

T T T T T ,

T w

T w

T w

T w

= −

= − +

= − + −

= − + − +

Sg

Sg S g

Sg S g S g

             (B.8) 

where A  denotes the trace of an arbitrary three-dimensional operator A , 
[ ]A  its second invariant and A  its determinant according to  

[ ] ( )
( )

2 2

3 2 3

1 1 1A , A A A ,
2 2 2

1 1A A 3 A A 2 A ,
6 6

ijk ljk il kk ijk lmk il jm

ijk lmn il jm kn

A A A A

A A A

ε ε ε ε

ε ε

≡ = ≡ = −

≡ = − +
   (B.9) 

and where n nx y≡xy  is the scalar product of three-dimensional vectors x  
with y  and A m mn nx A y≡x y  a three-dimensional bilinear form. The first in-
variant T  is the already mentioned trace of T and the invariant T  the de-
terminant of the 4-dimensional energy-momentum tensor. All are also relativis-
tic invariants due to (B.4). Among the invariants (B.8) one has only one inva-
riant which is linear in the components of the energy-momentum tensor T, 
namely, the trace TT w= − . 

According to (9.9) the trace T  does not vanish in general but it vanishes in 
case of neglected dispersion. The second invariant [ ]T  and the higher invariants 
vanish for energy-momentum tensors which factorize in the form of dyadic 
products of two vectors. This means that one has only one non-vanishing eigen-
value of this tensor also if one takes into account the dispersion as it is shown for 
the second invariant in (12.15). One has to expect that the second and the higher 
invariants of the energy-momentum tensor do not vanish in higher approximations 
of the slowly varying amplitudes as it is suggested by considerations in Section 9. 

 

 

17We remind that the spatial part T  and T  itself are not uniquely defined in literature with re-
spect to sign and also to their notation. 
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Abstract 
The Standard Model for particle physics is here extended by making a non- 
equilibrium filling of the empty vacuum after the start of Big Bang. The 
process is described as an unstable binding of massless quarks to massless an-
tiquarks. When the filled part of vacuum condenses, the system becomes sta-
bilized, quarks acquire mass and become confined and a quartic potential is 
induced, which hence need not be introduced ad hoc. The coupling and scale 
parameters in this potential have become asymmetric microscopic functions 
of the quark and antiquark densities. The so obtained dynamics can explain 
how the matter-antimatter asymmetry in the Universe and dark matter 
emerged. Quantum corrections are included and the model then gives ordi-
nary matter, dark matter and dark energy contents at correct orders of mag-
nitude. 
 

Keywords 
Dark Matter, Dark Energy, Cosmology, Quartic Potential 

 

1. Introduction 

It has been thought that Electroweak (EW) baryogenesis and QCD confinement 
could help to explain how the Standard Model (SM) emerged [1]-[7]. However, 
many questions have remained open and many new problems have emerged. 
For instance, the lambda cold dark matter (LCDM) model postulates that the 
expansion of the Universe is driven by dark energy (DE) and dark matter (DM), 
and that the galaxy structures we see today are due to density variations in the 
very early Universe. Such variations are expected to produce gravitational waves 
and thus a signal in the cosmic microwave background. However, such a signal 
has not been observed [8]. This is not a problem in the model suggested here, 
because it starts from a completely empty vacuum. 
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The generation of matter and dark matter is in this model induced by a 
non-equilibrium filling of vacuum which is here assumed to have been totally 
empty at the Big Bang. Big Bang is assumed to have started at infinite energy 
conditions from a completely empty vacuum and that the Universe then con-
tained equal and isotropic densities of free massless quarks and antiquarks, lep-
tons and antileptons. At lower energies, the QCD model appears to remain in-
tact with a stable vacuum even if a finite number of quark-antiquark pairs are 
generated. However, above a finite critical energy (temperature) Ec, surplus 
quarks (and surplus leptons) became generated, implying that vacuum could 
then not be expected to have been stable enough for quantum field theories to 
have been valid. The non-equilibrium filling of vacuum has another advantage. 
It generates the quartic (so called Ginsburg Landau or Higgs) potential, which 
thus need not be assumed in an ad hoc manner as in the SM. 

The Dirac equation [9] and QED did not have any vacuum problems, because 
these models were not used at very high energies. As demonstrated before [10], 
surplus quarks were generated by a non-equilibrium filling of the empty QCD va-
cuum, a process which had to be described by classical fields. The non-equilibrium 
filling of vacuum, followed by condensation (assumed to have occurred when 
the energy decreased after Big Bang), generated a quartic potential, in which the 
coupling λ = g2 and the scale a  became asymmetric microscopic functions of 
the quark and antiquark densities. 

The density of surplus quarks in the numerator of the coupling g in this model 
is proportional to the density of nucleons and hence approximately to the density 
of ordinary mass in the Universe. Except for this density of surplus quarks, the 
denominator of g also contains the two equal densities of non-surplus quarks and 
antiquarks, which are here interpreted as building blocks of dark matter (DM). It 
is assumed here that top quarks dominated at higher energies already from the 
start of Big Bang, but all types of quarks should give the same result. It is not 
known how fast the maximal density of surplus quarks, corresponding to the 
actual density of protons in the Universe, is attained. However, the nonquantal 
vacuum filling process should be normalized such that λ = g2 = 0.11 at Ec = 105 
GeV (Figure 1), where vacuum is sufficiently filled for the standard model to 
start working. At energies lower than 105 GeV, the matter-DM ratio then ap-
proaches the value observed. 

Leptons are assumed to contribute similarly, but much less, and are therefore 
neglected here. Under assumption that confinement started as a non-equilibrium 
binding of massless quarks, color by color, the suggested model yields observable 
matter, DM and DE contents at correct orders of magnitude. The results ob-
tained show that the critical energy level Ec is much below 1010 GeV at which 
λquartic in the SM becomes negative [11]. 

2. Unstable Confinement after Big Bang 

After the start of Big Bang, an infinite number of the empty negative energy va-
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cuum states below the critical vacuum level −Ec must have been filled before 
quantum effects could be expected to have had any impact. The non-equilibrium 
filling of this part of the QCD vacuum, which started at infinite energy condi-
tions, could be viewed as a strong but unstable binding of massless quarks to an-
tiquarks 

( ) ( ) ( )d , , ,
d

k x t x t k x t
t α
ψ ρ ρ ψ= ⋅ ⋅ − ′ ,               (1) 

where ρ, ρα and ψ are classical fields (densities) of quarks, antiquarks and quark- 
antiquark pairs, and k and k' are the association and dissociation constants. This 
form of confinement process is here assumed to have been equal for all flavours 
and colours. The filling of the remaining finite number of vacuum states above 
−Ec (energies below Ec), is sufficiently stable to be described as usual in the SM. 

By insertion of the initial constraints, ( ) ( )0, ,t tρ ρ ψ= −x x  and  
( ) ( )0, ,a at tρ ρ ψ= −x x , where ρ0 and ρα0 are the two equal initial densities of 

quarks and antiquarks, here assumed to be equal, Equation (1) becomes 

( )( ) ( )( )2 2 2d ,
d

k a t a b
t
ψ ψ= ⋅ − − −x ,                (2) 

in which ( )0 0 2aa Kρ ρ= + + , 2
0 0ab ρ ρ= , and K k k′= . Integration of Equ-

ation (2) then yields 

( )
( )

( )
( ) ( )

2 2

02 2

1 ,
ln ln 2

1 ,
K K

K K

a g ta a b kag t t
a g ta a b

α

α

ρ ρψ
ρ ρψ

   −+ − −
  = = ⋅ −   +− − −   

x
x

   (3) 

where ( ) ( ), ,K Kt tρ ρ ψ= −x x  and ( ) ( ), ,aK aKt tρ ρ ψ= −x x  are the time de-
pendent quark and antiquark densities. With 2K aK aρ ρ+ =  and  

( ) ( ) ( )2 2 2
 – – 0K aK K aKg a b a ρ ρ ρ ρ= = + >  the corresponding after start 

‘new initial’ densities ρK and ραK can be written as ( ) 01K a gρ ρ= + ≥  and 
( ) 01aK aa gρ ρ= − ≤ . For k' > 0 the coupling g thus becomes an asymmetric mi-

croscopic function of the quark and antiquark densities, which shows that the 
suggested model works like a seesaw. 

At the start of Big Bang, the Universe contained equal densities ρ0 and ρα0 of 
free massless quarks and antiquarks, which might then have condensed pairwise, 
(ρρa)(ρρa)(ρρa)…, without generating any surplus quarks. But as described in 
Equation (3), the quarks confined asymmetrically, without leaving any anti-
quarks behind, into a system, which apart from pairs of non-surplus quarks ρNS 
and antiquarks ρaK, contained surplus quarks ρs, ρs(ρaKρNs)(ρaKρNs)(ρaKρNs)… This 
still implies that the non-surplus quarks were equally many as the antiquarks, 
which they were also before the start of Big Bang. However, it should be ob-
served that at infinite energy (temperature), before the confinement had started, 
all pairs (ρρa) were free and there was no difference between the two systems. 

The numerator of the coupling g equals the density of surplus quarks which 
can also be separated out in the denominator of g. Apart from that the denomi-
nator of ( )s s Ns aKg ρ ρ ρ ρ= + +  also contains the two equal densities of 
non-surplus quarks ρNs and antiquarks ραK, which are here interpreted as building 
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blocks of DM and black holes. When the Universe cooled down to the critical 
energy level Ec, the strong binding between non-surplus quarks and antiquarks 
started to become stable. The coupling g then increased above ( )1 1 1 1 0.33+ + ≈ . 
Surplus leptons are expected to have emerged similarly. 

3. A Microscopic Form of Potential 

After binding into quark-antiquark pairs, this system condensed. This process 
can be described by a change of variable 

( ) ( )
2 2

,
1 ,

a bt
t a

ϕ
ψ

−
=

−
x

x
                     (4) 

which can also be viewed as a partition function where ψ/a plays a role as 
non-equilibrium “fugacity” driven by Equation (2). 

The derivative of Equation (4) combined with Equation (2) gives 

( )2 2d d
d d

g a
k t x
ϕ ϕ ϕ= = − ,                     (5) 

which describes the condensation of the strongly bound ρρa - pairs as a travelling 
wave ( ) ( )tanhx a agxϕ =  that propagates at a velocity k = x/t. 

The square of Equation (5) yields a microscopic form of the quartic potential 
V(φ) 

( ) ( )
2 2 22 21 d

2 d 2
g a V

x
ϕ ϕ ϕ  = − ≡ 

 
,                (6) 

which hence need not be inserted ad hoc like in electroweak theory, and in 
which both the scale a  and the coupling g have become microscopic functions 
of the quark and antiquark densities. As will be shown, after inclusion of quan-
tum corrections below Ec, the microscopic potential V(φ) approaches the quartic 
potential in the EW theory when the energy decreases further. 

By breakdown of symmetry, aϕ ϕ→ − + , Equation (6) then gives the equation 
of motion 

( ) ( )
2 2

2 21 d 1 d 2 6 3
2 d 2 d

ga a
t x
ϕ ϕ ϕ λϕ ϕ   − + = −   

   
           (7) 

where 2 Bga m=  is the mass of a boson, a precursor to the Higgs boson, and λ 
= g2. It is not known exactly when the condensation started and at what rate, i.e. 
if the symmetry breakdown occurred exactly at 105 GeV. 

4. Quantum Corrections 

In the previous “classical” approach [10], 2ga  was identified as the mass of the 
Higgs boson mH ≈ 125 GeV. With a  = ρ0 ≈ 174 GeV and g ≈ mH/348 = 0.36, 
the coupling λ = g2 = 0.13 was then interpreted as the matter to all matter ratio 
(except dark energy), as if quantum effects were already included. However, in 
this work 2 Bga m=  is identified as the mass of the becoming Higgs particle, a 
precursor boson that gets the mass, mH = 125 GeV, at a certain critical energy 
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below Ec at which quantum effects started to contribute. However, before the 
energy has decreased to Ec, the density of surplus quarks must have increased 
from zero to the value at which quantum effects start to contribute. 

The problem is then to combine the result of the nonequilibrium filling of 
vacuum, which had to be described in the terms of classical fields, with the finite 
energy result of QCD quantum field theory [11], and to determine the critical 
energy level Ec at which this happens. But in order to simplify this task, the scale a  
is first modified from 174 GeV to the level of the top quark mass mtop = 173 GeV. 

The mass mH in the RG improved mH/mtop - ratio at different energies in Fig. 2 
in ref. [11] is here interpreted as the mass of the precursor boson mB in Equation 
(7). This mass changes with energy such that the mH/mtop - ratio attains 125/173 
≈ 0.72, and the numerator thus attains the mass of the Higgs boson, at about (or 
somewhat below) 103 GeV in Fig 2 in ref. [11]. By inclusion of quantum effects 
below 105 GeV in the model suggested here the mB/mtop - ratio thus first increases 
from 0 to 0.66, and according to Fig. 2 in ref. [11], it then increases to 0.68, 0.72, 
0.77 when the energy decreases further to 104, 103, 102 GeV. Given these numbers 
of the mB/mtop - ratio and mtop = 173 GeV, the boson mass mB then correspon-
dingly becomes 114.18, 117.64, 124.56, 133.21 GeV at the actual energy levels. 

The coupling constant / 2Bg m a=  thus first increases from 0 to 0.33 = 
114.18/346 and hence λ = g2 = 0.11 at 105 GeV in Figure 1 is thus reached from 
below when the energy decreases from higher energies.  

 

 
Figure 1. The coupling λ = g2 as a function of energy. 

 

The coupling g then increases from 0.330 to 0.340, 0.360, 0.385, and λ = g2 
correspondingly becomes 0.109, 0.116, 0.130, 0.148 (see Figure 1 here) at the 
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actual energy levels. Accordingly, ( )2125 346 2 0.13Hm aλ = = =  at 103 GeV 
and λ = 0.148 ≈ 0.15 at 102 GeV. However, the mH/mW - ratio in Fig 2 in ref. [11] 
shows that mH/mW = 1.55 ≈ 124.56/80.40, hence, mH ≈ 125 GeV is reached al-
ready at 3.46 × 102 GeV. The start of impact of quantum corrections should thus 
be correspondingly delayed from 105 GeV to 3.46⋅104 GeV. 

It seems that the Universe has always remembered its quantum origin [12 - 
14], from the start of Big Bang at infinite energy when vacuum was totally emp-
ty, until it became sufficiently filled for quantum field theories (QFTs) in the SM 
to start working. But as described here, for the density of quarks ρs = (ρK – ραK) 
(and correspondingly for leptons) to increase from zero to a critical level cor-
responding to the amount of observable matter in the Universe, the filling of 
vacuum must have been a non-equilibrium process. This cannot be explained by 
the SM, which only allows the creation or annihilation of a finite number of par-
ticle-antiparticle pairs. 

On the contrary, in the model suggested here the numerator of the coupling g 
describes the gap between the densities of quarks ρs and antiquarks ραK. After 
separation of the density of quarks ρK in the denominator of g into surplus 
quarks ρs and non-surplus quarks ρNs, the density of non-surplus quarks ρNs be-
comes equal to the density of antiquarks ραK 

( ) ( ) ( ) 0K aK K aK s s Ns aKg ρ ρ ρ ρ ρ ρ ρ ρ= − + = + + > .        (8) 

Quantum effects are here assumed to have started to contribute at 105 GeV where 
g was first equal to ( ) ( )1 1 1 1 1 1 2 1 3+ + = + =  and 2 0.11gλ = ≈  (Figure 1). 
The massive non-surplus quarks (ρNs ≈ 1) and antiquarks (ραK ≈ 1) then formed 
more strongly bound states of dark matter, and the denominator of g then de-
creased below 3. As already explained, the coupling λ then increased successively 
from 0.109 ≈ 0.11 to 0.148 ≈ 0.15, see Figure 1. 

As is clear from eq. (8), the coupling g and hence also λ = g2 define the rela-
tionship between matter and DM. Accordingly, 0.148 = 0.049/0.33 corresponds 
to the ratio between matter and the sum of matter and DM. The corresponding 
relative content of DM in the Universe thus becomes 0.33 − 0.049 = 0.28, and the 
remaining 67% corresponds to the density of dark energy, which also corres-
ponds to the value of the cosmological constant. The cosmological constant has 
thus decreased from 1 to 0.67 during the generation of 28% DM. 

5. Summary 

Infrared divergence is but one reason why quark confinement cannot be de-
scribed perturbatively in QCD [15]. However, as demonstrated here, in Equation 
(1), the confinement can be described non-perturbatively, and since the density 
of quarks must increase over that of antiquarks, this vacuum filling must be a 
non-equilibrium process. A second reason is that quantum fields lose their defi-
nition due to vacuum instabilities above the critical energy Ec, after emptying of 
a finite number of vacuum states (creation of a finite number of quark-antiquark 
pairs). The suggested model thus described the non-equilibrium dynamics above 
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Ec that generated surplus quarks, how this is connected with the QCD part of the 
SM, and it also explained the generation of the quartic potential, the separation 
between matter and DM and DE. 

The non-equilibrium dynamics described here emerged by filling of the infi-
nite number vacuum states that became emptied at energies above Ec. When this 
part of the filled vacuum condensed it generated a quartic potential in which the 
coupling g and scale a  became microscopic asymmetric functions of the quark 
and antiquark densities. By inclusion of quantum effects, the coupling g then 
gave a matter to DM ratio and DE density at correct orders of magnitude. The 
model also gave a realistic value of the cosmological “constant”, Λ = 0.67, cor-
responding to the DE density that determines the rate of inflation in the Un-
iverse [16]-[22]. At lower energies, the obtained microscopic quartic potential 
agreed with the quartic potential in EW theory. The model thus provides a form 
of direct link between the Universe immediately after the start of Big Bang at in-
finite high energy and high energy particle physics described by the SM. 

The masses of neutrinos are usually described by a mixing of flavours in dif-
ferent seesaw models [23]-[30]. However, also neutrino quantum fields require a 
sufficiently filled vacuum. It would be interesting to see if the suggested model, 
which should also be able to explain the generation of surplus neutrinos, could 
help to discriminate between the various seesaw models. 
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