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Abstract

The persistence exponent &

), for the simple diffusion equation

¢ (x,t) = Ag(x,t), with random Gaussian initial condition, has been calcu-
lated exactly using a method known as selective averaging. The probability

that the value of the field ¢ at a specified spatial coordinate remains positive

throughout for a certain time #behaves as t* for asymptotically large time

d
t The value of 6, calculated here for any integer dimension d, is 6, =2
for d <4 and 1 otherwise. This exact theoretical result is being reported
possibly for the first time and is not in agreement with the accepted values
6,=0.12,0.18,0.23 for d =1,2,3 respectively.

Keywords

Non-Equilibrium Statistical Mechanics, Diffusion Equation, Persistence
Exponent, Probability Theory

1. Introduction

The problem in the present paper is to find the persistence exponent for the
simple diffusion equation ¢, (x,t) =Ag(x,t). The diffusion equation is an equ-
ation that has no stochasticity. In the present problem, the stochasticity is in-
troduced through the random initial conditions. The problem is about evaluat-
ing the probability of a certain event. The event is that ¢ at a specified location
remains positive throughout the time evolution till a certain time ¢ Z.e. the ¢ at
the location does not change sign even once. This probability for asymptotically

large time is characterised by an exponent 6, called the persistence exponent.
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Persistence exponent for the diffusion equation has been a subject of interest to
physicists [1]-[7] etc., researchers in mathematics and statistics [8] [9] etc. as
well as experimentalists [10]. The interest in the persistence exponent is just not
confined to the diffusion equation but to other areas of non-equilibrium physics.
Among them random walk [11], walk in a random environment with or without
bias [12], surface growth [13], diffusing particle in a random potential with a
small concentration of absorbers [14], behaviour of financial markets [15] etc.
are worth mentioning. There are few exact calculations for the persistence ex-

ponent in the literature. The case of a simple random walk in one dimension
1
gives the exponent 6, =3 Even the calculation of persistence exponents for

Gaussian processes may not be straight forward.

We revisit the problem of simple diffusion. It is strongly non-Markovian in
nature. The problem involves the partial differential equation ¢ =A¢ with
random Gaussian initial conditions. It appears to remain an unsolved problem
even though results [1] [2] and several others have been reported. The problem
of diffusion may require a better understanding in the context of persistence.

The article tries to find an exact solution to the problem.

2. Simple Diffusion Equation, Random Initial Conditions and
Persistence Exponent

The diffusion equation ¢ =A¢ is a coarse grained differential equation whose
solution is uniquely determined by the initial condition. In the present problem,
the initial condition is not fixed but is chosen from a distribution. The initial
value of ¢ at every coordinate is chosen from a Gaussian distribution with
mean 0, variance k and the initial values of ¢ at any two coordinates are statis-
tically independent.

In order to calculate persistence exponent 6, we have to calculate the proba-
bility that the field ¢ at a specified coordinate does not flip sign even once
throughout a time # This probability P*(t) of ¢ always remaining +ve be-
haves in the limit of asymptotically large time as P (t) ~t™% . This is true for a
non-stationary process like in the present case. In this article any position x
coordinate is a vector quantity in a d dimensional space. The moments of the in-

itial condition distribution described above are given by
(#(x,0))=0 (1-a)
($(x.0)9(%,0)) =ks'") (x, = x,) (1-b)
where 4 is the variance of the distribution. The solution for the diffusion equa-
tion may be written in terms of the initial condition as
#(x,t)=[d'XG(x-x,t)g(x,0) )

where G (X,t) = (4nt)_d/2

ponent is as follows. First, we have to calculate the probability of ¢ attaining a

exp(—x2 / 4t). The plan for the evaluation of the ex-
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specific final value /£ at a certain X =X, starting from a definite initial value
a of ¢ at Xx=X,.In order to evaluate it we use the method of selective aver-
aging. The paths that take the initial « to the final value S also comprise
those where ¢(x,) flips sign at least once during time evolution. The probabil-
ity of such paths is to be subtracted out. Finally, there has to be an integration
over the final g from 0 to oo, followed by an integration over « from 0 to
.

Selective averaging means averaging over the initial field ¢(x,0), except
when X =x,. In other words, the averaging is done over all the initial configu-
rations such that ¢ at x=Xx, is kept fixed at « (say) ie. ¢(x,,0)=«
while for x#X, ¢ varies according to Gaussian distribution. In this paper the

selective distribution, denoted by subscript s, is characterized by the moments,
<¢(x,0)>s =" (x=x,) (3-a)
(#(4.0)8(%,,0)), = {k+[a* K]6 (x=x)}8" (4 -x,) ()

It may be verified from (3-a), (3-b) that if X=X, X #X,, X, #X,, we get
(1-a), (1-b) and for X=X =X, =X,, (3-a), (3-b) give «, a’ as expected. Us-

ing (3-a), (3-b), we can calculate the moments of the random variable ¢(x0 ,t) ,

(p(%,.1)), = (4nt) " & ()
4t

<¢2 (Xo,t)>s = Idd x/d* X} (4nt)_d exp[_M]

4t

xexp[—M}W(X{,OM(X&,O))g )

=kIddX{(4nt)_deXp[_(Xo_X{)zi_( k N a’

2t 47tt)d (4nt )d

While evaluating the second order moment, we have used the relation in (3-b).
Hence the mean and the variance of the distribution for ¢(x,,t), represented

by x# and o’ respectively, are

U= <¢(X0 ,t)>S = (4Ttt)7d/2 a (6-a)
o = {#" (), (0 (x1),

= k(4n) 29K, (d/2)t % —k (4nt) "

(6-b)

In the above equation k; denotes the angular integration in ¢ dimensional
space while I' represents the usual Gamma function. It may be mentioned that
#(x,t) in (2) is Gaussian irrespective of whether ¢(x’,0), the initial Gaussian
field, is correlated or not. In the present case, though, the initial field is uncorre-
lated and ¢(x,t) can be proved to be Gaussian using characteristic functions in
probability theory [16]. It may be noted that the § function distribution is the

limiting case of a Gaussian distribution. The expression for the conditional
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probability for starting at « and being between S and fF+df at time t

is

2
P(ma)dﬂ:J%Gexp[ ([2302”) }dﬂ )
where 4 =pu(a,t;) and o=o(t)). This probability considers all the paths
that start from « to be between S and S+df at time t, including ones
that flip en route S as depicted in Figure 1. Figure 1 is the projection of the
trajectory of the system in the infinite dimensional ®—t space on to the
#(x,)—t plane.

A(0,c) represents the starting point and B(t, /), the destination. AB
represents a path along which ¢(x,) does not flip and ADB (blue curve) is a
typical path along which ¢(x,) flips. Such paths have to be excluded. The
probability of reaching from A to the neighborhood B at asymptotically large
time t without flipping is given by,

P (Bla)dp=P(pla)dp-P(p]-a)(1+0(t"))dp ®

The second term represents the probability of paths such as ADB originat-
ing from A(0,—a) and terminating in the neighborhood of Bat t,. (8) is not
be confused with the method of images in [17]. (8) follows a very different logic
in the present case and holds good asymptotically. To prove (8) we will show
that there is a one to one mapping from a path A— B to a path A— B and
that the probability of two such paths converges asymptotically. This part is ex-
plained in 1) in what follows. Further, to justify (8) we have to show that the
“number” of paths A— B that flip and the “number” of paths A — B con-
verge asymptomatically. This is done in 2). In the subsequent analysis we will
consider a d dimensional lattice—lattice spacing being infinitesimally small—
instead of continuum for the sake of notational convenience only. The reason for
(8) follows.

Figure 1. Projection of @ —t trajectory onto
the ¢(x,)—t plane.
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1) An initial configuration at A of Figure 1 givenby X, ={---,a, &, a,,"-},
is considered, where o;,a,,-:- are the initial values of ¢ at coordinates
X # X, . The corresponding path takes initial ¢(x,)=c to B, then it may be

B+(4nt) " o
B (4nt )7d/2 a

configuration at A which takes initial ¢(x,)=-a to B. Hence there is a one

concluded from (2) that X, ={---, foy,—a, fa,,---} (f = )isa

to one mapping of paths from A— B to those from A — B. It may be under-
lined here that f —1 as t—oco. This implies that the probability of the two
paths approach each other asymptotically.

2) In this part we will address the fact that in the asymptotically large time limit
it is a very good approximation to say that there is a one to one correspondence
between the paths from A that flip to those from A — B . This may be used as it
is a controlled approximation for it improves with increasing £ In order to see
this point let us consider a point C(t,,#) (not shown in the Figure 1) where
t,>t,.Let Y, ={,7,a 7, be the initial configuration corresponding to
path ADB ( the path in blue in Figure 1) where y,,7,,--- are the initial values
of ¢ at coordinates X # X, . This path crosses zero while reaching B. It can be

d/2 -d/2
t B—(4nt,) "«

shown that Y, . ={--, fy,a -} (f :(_Zj £ 7] =
e =1 fa et () 4 ﬂ—(4nt1)d/2a

corresponding initial configuration for a path A — C . The exact expression for

) is the

f, contains a coordinate dependent term whose leading order behavior for
large tis 1. Since t, >t , we have f >1 for sufficiently large t,. Let the time
coordinate at Dbe t, then ¢(x,,t,)=0 for the path ADB. Then one may ar-
rive from (2) that ¢(x,,t,)<0 for the initial configuration Y,.. Hence, one
can conclude that the path corresponding to Y,. must have flipped at an earli-
er time than ty. Therefore, if a path from A — B flips, the corresponding
path from A — C flips at an earlier time. Since t, >t , the “number” of paths
flipping while going from A — C is more than those from A — B. Thus the
“number” of paths from A— B that flip is a fraction f, of those from
A—B where f,= 1—O(t1’a) for large t , a being some positive number.

On account of 1), 2) we say that the probability of the paths (like ADB in Fig-
ure 1) that flip while reaching B in the large time limit is given by
P(B1—a)Ngnestion » Where h

in t™'. In principle, the coefficient of t™ may be a function of 4. When in-

orrection =1+ O (t'b ) , b=1, being Taylor expansion
tegrating over /3 —as will be done later—the contribution to the integral comes
from the vicinity of g =—u ~t %% which is vanishingly small in the asymptot-
ic limit. Also, df ~ o ~t™%*. The coefficient is Taylor expanded about £ =0
and only the zeroth order term or the term independent of S is retained. So
the probability of #(x,) not changing sign when reaching the neighborhood
(dg ) of Bis, for asymtotically large time,

!Ln;[P(ﬂ | a)dﬂ— P(ﬂ | _a)hcorrectiondﬁ}

=P(Bla)dB-P(Bl-a)(1+O(t*))ds ®
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This leads us to (8). The final B may have any value as long as it remains
positive. The probability of ¢(x,) starting from « and reaching a final posi-
tive value without ever changing sign is

P'(a)=[ dBP" (Bla) (10)

We would now calculate (10) for asymptotically large value of # Under the
circumstances the second term on the R.H.S of (6-b) can be neglected. Further
B o
c
using the identity [18]

j:dxeXp(;—);—;/XJ:\/@exp(ﬁ;ﬂ)[l—erf (y\/ﬁ)] (11)

. Hence for a <t?, 1?/o? «<1. The expression (10) is evaluated

Evaluation leads to a sum of two terms—one is proportional to t ** and the

other is proportional to t™'. Hence we obtain

Pt (a)wo:t’d/4 (12)

for d <4. In arriving at the above result the asymptotic expansion of “error
function” erf has been used for small argument. Finally, the expression for

P (t) is obtained by integrating « over a Gaussian distribution.
P (t)= [ daP* ()Q() (13)

where Q(e«) is the Gaussian distribution for initial ¢(x,,0)=a with va-
riance k as mentioned at the beginning. If k < t%2, it may be concluded from
(12) and (13) that P* (t) ~tY* or t depending on whether d <4 or not.
This gives 6, =d/4 or 1.

3. Result and Conclusion

In the previous section, exact calculation has been carried out to determine the
probability P*(t) of the sign of the field ¢ remaining positive throughout an
asymtotically large time ¢ The probability is P* (t) ~ 1t Hence, the persis-
tence exponent is ¢, =d/4 valid for any arbitrary integer dimension d <4.
The exponents for d =1,2,3 are 0.25, 0.50, 0.75 respectively.

The result may be experimentally verified for a system initially at thermal
equilibrium defined by a temperature T. The equilibrium is then disturbed in a
suitable manner. The time evolution of the coarse grained temperature at any
point satisfies the simple diffusion equation; hence, this time evolution can be
studied to find the persistence exponent.

The answer for the exponent 6, obtained in this paper is in disagreement
with all the papers cited in the beginning. The first results for the persistence
exponent in the case of the diffusion problem were published in [1] [2] back to
back. The papers used a two time correlation function and explicitly applied the
approximation (ITA), Independent Interval Approximation, to get to the answer.

Application of the two time correlation function is not suitable here and so is
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ITA which is a Markovian approximation. Further, the papers use Monte Carlo
simulation to confirm the result. Monte Carlo method appears to be unsuitable
for this problem. Hence all the papers that reproduce the results of [1] [2] are
not expected to give the correct answer. In [3], the authors have defined a corre-
lation function C (T) , just like [1] [2], to carry the calculation forward. Let us
also consider [6] where the authors have used Kac Polynomials [19] to obtain
the “exact exponent” in 2d. The answer obtained agrees perfectly with [1] [2]. In
the course of the calculation, they have used that the zero crossing property is
governed by the covariance c(T)=sech [%) [6] of the stationary Gaussian
process Le. the diffusion equation with time redefined. Similarly in [4], correla-
tor in time F,(r—z') has been used in the calculation. The point is that the
covariance/correlator/correlation function is a misleading quantity for the prob-
lem for reasons mentioned below. The model presented in the paper has ran-
domness only in the initial condition. Once the system starts evolving, there is
no further randomness. It evolves in accordance with the kernel in (2). It is en-
coded in the initial condition when and where the ¢ will flip. The probability
of each path is uniquely determined by the probability of initial condition, hence
the problem with covariance/correlator. The covariance function imposes sto-
chasticity on the present problem throughout the entire time evolution. We now
have a different model with the same correlation function but no unique depen-
dence of the probability of the path on initial condition. It also makes the prob-
lem Markovian. Hence, all the previous results are in perfect agreement though
the calculated exponent will be different from the actual value. The value of the
exponent does not depend on only correlation function, but it depends on other
details of the model too. Further, there even appears to be experimental proof
[10] for the results of [1] [2]. The experimental setup of [10] does not represent
the diffusion model described in this paper. The setup satisfies the approxima-

tions of the previous papers and hence the agreement with their result.
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Abstract

We investigated the electronic heat capacity, thermal conductivity, and resis-
tivity of UN using Quantum Espresso and EPW code. GGA, PBEsol func-
tional was used. The calculated electronic heat coefficient was found to be
significantly reduced (0.0176 J-mol™'-K versus 0.0006 J-mol™"-K2) when the
non-local hybrid functional (B3LYP) was used. Furthermore, we calculated
electrical resistivity using a very transparent Ziman’s formula for metals with
the Eliashberg transport coupling function as implemented in EPW code for
non-spin-polarized calculations. The number of mobile electrons in UN, as a
function of temperature, was derived from the ratio of the calculated resistiv-
ity and available experimental data. The electronic thermal conductivity was
evaluated from the calculated electronic resistivity via Wiedemann-Franz law
with the number of mobility electrons (12.,) incorporated (averaged over the
temperature range 300 K - 1000 K). Both the electronic thermal conductivity
and resistivity, as calculated using newly evaluated n,,, compare well with ex-
perimental data at ~700 K, but to reproduce the observed trend as a function
of temperature, the number of mobile electrons must decrease with the tem-
perature as evaluated.

Keywords

UN, Electronic Thermal Conductivity, Electronic Structure, Number of
Mobility Electrons, Quantum ESPRESSO, EPW Codes

1. Introduction

Urania fuel, which is used in conventional nuclear reactors, is not suitable for
some designs of new generation reactors (e.g., SuperCritical Water Reactor) due
to its low thermal conductivity [1]. In the context of finding a sustainable devel-
opment solution to the use of non-renewable energy sources, innovative re-

search towards enhanced accident-tolerant nuclear fuel (EATF) that can with-
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stand the loss of coolant for a long time is gaining momentum. EATF materials
must have higher thermal conductivities to prevent meltdown [2]. High-density
metallic compounds, uranium silicide (U;Si,) and uranium and thorium nitrides
(UN, ThN) [3], have been proposed as alternative EATFs [2] for implementation
as lower enrichment fuel.

In our previous papers [4] [5], we have investigated UN, which has the same
cubic structure (FM3m symmetry) as ThN, and may be used in combination to
enhance thermal conductivity as both are metals. In these metallic fuels, thermal
conductivity does not deteriorate with increasing temperature like the lat-
tice-governed thermal conductivity in insulators (e.g. urania [6]). This is due to
the increasing presence of electronic carriers with mobility as temperature rises.
Since both electronic conductivity and electronic contribution to thermal con-
ductivity are related to electron mobility, they can be derived from each other via
the Wiedemann-Franz proportionality law (WFL), which is very useful in de-
termining the contribution from electrons to the measured total thermal con-
ductivity.

Enhanced computational capabilities have led to significant developments in
extending the potentialities of based on density functional theory (DFT) codes.
Ab initio calculations based on DFT have become an essential theoretical tool in
investigating novel nuclear materials. In this study, we used first-principles, pre-
dictive calculations based on DFT, where ground state energy is calculated using
functionals dependent on the electronic density only. Unlike urania, fewer such
studies have been done on these alternative fuels. In particular number of mobil-
ity, electrons need to be investigated, since they are crucial in enhancing the
thermal conductivity of metals at high temperatures. High thermal conductivity
in metallic fuels allows for fast heat dissipation and makes reactors safer and
more economical.

In an evaluation of the electronic heat capacity, very accurate calculations of
electrondensities of states are required. In our previous work on thoria [7], we
found that the non-local hybrid functional (B3LYP) [8] modified the electronic
structure significantly and led to a larger bandgap. It was therefore of interest to
examine the electronic structure of UN using B3LYP to find how it might affect

the value of the electronic heat capacity coefficient of UN, as evaluated here.

2. Calculation Methodology

To evaluate the geometrical and electronic structures of UN we used Quantum
ESPRESSO (QE) code [9], since there is already an interface provided between
QE and EPW (Electron-Phonon coupling using Wannier functions) code [10],
which we used to evaluate electronic transport.

We calculated the electronic heat capacity coefficient (y), which is propor-
tional to the electron density of states at Fermi energy at the equilibrium lattice
constants using the density of states of electrons per eV at the Fermi energy
(p(ep) for UN from:
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C, (T)=n/3x6.242x10" p( & )N k2T = 5T 1)

The respective electronic heat capacity is proportional to y and increases line-
arly with temperature and can be evaluated using Equation (1). A very accurate
evaluation of the electronic structure was required; therefore, in addition to
generalized gradient approximation (GGA) of the Perdew, Burke, and Ernzerhof
functional developed for solids (PBEsol) [11] DFT, we used non-local Becke
three-parameter hybrid exchange (B3)+LYP functional (B3LYP) [8] to modify
the electronic structure around Fermi energy, and the respective electronic heat
coefficients were compared. We used the same norm-conserved pseudopoten-
tials and setup for the electronic structure calculations as detailed in our previ-
ous work on UN [5].

Using the density functional perturbation theory (DFPT) method as imple-
mented in QE code [12], we evaluated previously [5] the phonons’ dispersion
relation and the densities of states of UN.

We computed the electrical resistivity calculation (p..{ 7)) using a very trans-
parent Ziman’s formula for metals (Equation 54 in Ref. [10]) with the Eliashberg
transport coupling function: atsz (a)) (Equation 55 in Ref. [10]) and a hard-
coded number of mobility electrons (nc) per cell equal to 8 (assumed for lead as

an example) as implemented in EPW code [10]:

_ Amm,
ne’k,T

Peatc (T) dewhath(a))n(a),T)[l+ n(a),T)] (2)

where 1 = nc/omega and omega is the calculated in the code volume of the pri-
mitive cell in a.u.. Note that in the new version (QE 6.7) nc is a parameter with
the default value equal to (4).

We also calculated integrated electron-phonon strength (1) as a function of
frequency (w) [10]:

o 2
gzjmdw (3)
0 @

The cumulative electron-phonon strength and Eliashberg transport coupling
function could be used in future comparisons with other metallic fuels. Addi-
tionally, since the experimental resistivity is known for UN, we evaluated the ef-

fective number of electron carriers in electronic transport (2.4 7)):

e (T)= 80(T )i

(4)
P (T )exp

When replacing n, the number of mobility electrons in Equation (2) with
n.AT), the calculated resistivity would become equal to the experimental. We
also calculated averages of an effective number of electron carriers in the 300 K -
1000 K temperature range (11,,) and calculated resistivity by replacing n with 72,,.

The electronic contribution to the thermal conductivity (x.) can be calculated

via Wiedemann-Franz law [13] from the electrical conductivity (o) or resistivity

(D) = o(D™):
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where &z is the Boltzmann constant, e is the electron charge, and T'is the tem-
perature in K. We calculated electronic thermal conductivity using the n,, num-

ber of mobility electrons of Un and compared results with the experiment.

3. Results and Discussion

Here we adopted for UN the same parameters and norm-conserving pseudopo-
tentials: U.pbesol-n-nc.UPF and N.pbesol-nc.UPF from QE code as in our pre-
vious studies [5]. We assumed 5f, 6d', 7s* for U and 2s% 2p’ for N as the elec-
tronic configurations. The evaluated lattice constants for non-magnetic UN
(0.489 nm) and using this setup [5] agreed very well with the experimental value
of 0.489 [14].

3.1. Electrons’ Density of States and Electronic Heat Capacity

Using QE code, we previously performed [5] non-spin-polarized calculations to
evaluate the electronic structure of UN at the equilibrium lattice constants. In
addition, we used here the non-local hybrid exchange functional (B3LYP) [8] to
try to modify its electronic structure around Fermi energy as demonstrated be-
fore during an evaluation of the bandgap of ThO, [7]. However, there are no
pseudopotentials developed for B3LYP either for N or U atoms and the calcula-
tions are very computationally demanding. Therefore, we reduced the kinetic
energy cutoff for wave functions to 200 Ry (2721 eV) and used existing pseudo-
potentials for other functionals: N.blyp-hgh.UPF and the used above U.pbesol-
n-nc.UPF. Otherwise, we used a similar setup and the same lattice constants as
previously determined for PBEsol calculations [5].

In Figure 1(a) and Figure 1(b), we compare the electronic structure of UN
evaluated using a) PBEsol and b) B3LYP functionals. We present the evaluated
per formula unit (f.u.,: UN) total electronic density of states of UN (solid black
line) together with the projected partial electron densities of states (plotted with
0.1 eV energy step) of nitrogen: 2p (dashed-dot-dot blue line), and 2s (dashed-
long pink line) and for uranium: 6d (dark red dotted line) and 5f (dashed me-
dium green line) electron densities of states. The Fermi energy is indicated by
the grey dashed line. The integrated (with 0.01 eV energy step) total number of
electrons as a function of energy is indicated as dashed-dot red lines, with the
total number of electrons at Fermi energy: 11e. In both calculations (Figure 1(a)
and Figure 1(b)) 2p electrons of the N atom are located below 10 eV while 2s
electrons are located below 0 eV energy.

Similar to our previous results for thoria [7], we found that the non-local hy-
brid functional B3LYP pushed 5f electrons of U up and away from Fermi energy
(Figure 1(b)) when compared with our calculations using PBEsol in Figure 1(a).
This resulted in a lower density of states at Fermi energy (p(&r)) as the hybrid-

ized states of 6d and 5f U electrons also moved up just above it, as shown in Ta-
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ble 1, second row.

Our calculations predict a significant reduction of the electronic heat coeffi-
cient () for UN (B3LYP result), as shown in Table 1. It would be interesting to
examine an experimental evaluation although recently Parker ef al, using the

experimental fit [15] for ThN, also found y to be very small (0.001 J-mol-K™2).

Figure 1. The calculated total (black solid line) electron densities of states of UN us-
ing (a) PBEsol functional and (b) non-local hybrid functional (B3LYP) are presented.
The projected partial electron densities of states of nitrogen 2p (dashed-dot-dot blue
line), and 2s (dashed-long, pink line) and for uranium: 6d (dark red dotted line) and
5f (dashed medium green line) electron densities of states are shown as indicated.
The dashed grey lines indicate the Fermi energy. The integrated total number of
electrons (left y axis) as a function of energy is indicated as dashed-dot red lines.

Table 1. The comparison of the calculated electron density of states at Fermi energy, the

electronic heat capacity coefficient, and Fermi Energy of UN using PBEsol and B3LYP
functionals.

Calc. QE UN UN
This work (PBEsol) (B3LYP)
pler) [electr./eV/FU] 7.472 0.253
y [J-mol -K?] 0.0176 0.0006
Er[eV] 12.31 13.72
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3.2. Electronic Resistivity

We calculated phonons’ dispersion and the density of states as before [5] but
used a finer grid: 6 x 6 x 6. Next, using EPW code, we calculated the Eliashberg
transport coupling function: o F (®) (Equation 55 in Ref. [10]) together with
the integrated electron-phonon strength (A1) as a function of frequency (w) using
Equation (3). In Figure 2, we present the results by a dashed red line and
dashed-dot blue line, respectively. The integration was done on a 48 x 48 x 48
homogeneous k-point mesh and a 48 x 48 x 48 homogeneous q-point mesh with
Gaussian smearing of 100 meV for the electrons, and 0.1 meV for the phonons.
The total integrated electron-phonon strength of 0.2472 only slightly increases
(0.2516) when 36 x 36 x 36 grids are used while the Eliashberg transport coupl-
ing function (indicated by a solid black line), which is presented here using 0.5
meV smearing, shows a more visible effect of grid change (Figure 2).

Next, we calculated the electrical resistivity of UN and the number of mobility
electrons using Equations (2) and (4), and the results are presented in Figure 3
and Figure 4. We used porosity-free experimental resistivity for UN by Hayes et
al [16]. We note that both the resistivity and the evaluated number of mobility
electrons are not much affected by a change in the grid. The averages over a
number of mobility electrons in the temperature range 300 K - 1000 K are
slightly higher for the finer grid (2. 0.343 e versus 0.337 e). We found that Zi-
man’s formula (Equation (2)) predicts a stronger decrease of resistivity for de-
creasing temperatures than experiment when assuming that the number of mo-
bility electrons is constant and equal to 1., as indicated in Figure 3. To repro-
duce the experimentally observed temperature dependence of the resistivity of
UN as presented in Figure 3 (black solid line), a variable with a tempera-

ture-dependent number of electrons was needed, as evaluated in Figure 4.

Figure 2. The calculated Eliashberg transport coupling function for UN: o2F ()

together with the integrated electron-phonon strength (1) as a function of fre-
quency () using the same homogeneous grid for k-point and q-point meshes: 48
x 48 x 48 is shown by dashed red line while for the 36 x 36 x 36 grid a solid black
line is used. The respective integrated electron-phonon strengths (right y axis) are
indicated by the dashed-dot blue line and dashed long black line, respectively.
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Figure 3. The calculated electrical resistivity of UN using Equation (2) for two gr-
ids as indicated and a constant number of mobility electrons (72.,): 0.343 e and
0.337, respectively, versus experimental correlations [16] are shown, as indicated.

Figure 4. The evaluated temperature dependence of the number of mobility elec-
trons of UN as a function of temperature, which reproduces the experimental re-
sistivity [16] for Ziman’s formula (Equation (2)).

3.3. Thermal Conductivity

In Figure 5, the electronic thermal conductivity of UN, as calculated from the
experimental resistivity of UN [16], via Wiedemann-Franz law [13] Equation
(5), is shown by a solid black line.

We also calculated the electronic thermal conductivity of UN, using Equation
(5) and the calculated resistivity shown in Figure 3 for the constant number of
mobility electrons (11,,): 0.343 e and 0.337 e, respectively. They are indicated by
the dashed red line and vertical, black marks, respectively.

It can be noted that the derived thermal conductivity for the assumed constant
number of mobility electrons is almost independent of temperature and behaves
similarly to that studied by us for Al [6]. Therefore, to reproduce the experimen-

tally observed strong temperature dependence (indicated by black, solid line) of

DOI: 10.4236/jmp.2021.1210084

1415 Journal of Modern Physics


https://doi.org/10.4236/jmp.2021.1210084

B. Szpunar et al.

Figure 5. The calculated electronic thermal conductivities of UN, using Equation (5) and
the calculated (presented above in Figure 3) resistivity for the constant number of mobil-
ity electrons (12.,): 0.343 e and 0.337 e are indicated by dashed red line and vertical, black
marks, respectively. The black solid line represents the electronic thermal conductivity
calculated from the experimental resistivity [16] and Equation (5) or alternatively using
Equation (2) with the derived number of mobility electrons shown in Figure 4.

the electronic thermal conductivity of UN it is necessary to use the number of
mobility electrons that increase with the increasing temperature, as presented in
Figure 4. Further experimental investigation of the number of mobility electrons

in UN as a function of temperature is of interest.

4. Summary

We have investigated the electronic heat capacity, thermal conductivity, and re-
sistivity of UN using Quantum Espresso and EPW code. GGA, PBEsol function-
al, and non-local hybrid functional (B3LYP) were implemented. The calculated
electronic heat coefficient was found to be significantly reduced (0.0176 J-mol™*-K2
versus 0.0006 J-mol™-K?) when the non-local hybrid functional (B3LYP) was
used.

Furthermore, we found that the calculated electrical resistivity using Ziman’s
formula for metals with the Eliashberg transport coupling function as imple-
mented in EPW code for non-spin-polarized calculations, would only reproduce
the experimental results for UN when the derived number of mobility electrons,
which increases with increasing temperature, was used. This also applies to the
evaluated electronic thermal conductivity, which for any assumed constant
number of carriers in UN would be not increasing with the increasing tempera-

ture but would remain almost independent of temperature, like Al for example.
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Abstract

The basic equations of the non-relativistic quantum mechanics with trajecto-
ries and quantum hydrodynamics are extended to the relativistic domain.
This is achieved by using a Schrdodinger-like equation, which describes a par-
ticle with mass and spin-0 and with the correct relativistic relation between its
linear momentum and kinetic energy. Some simple but instructive free par-
ticle examples are discussed.
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http://creativecommons.org/licenses/by/4.0/ 1. Introduction

In 1927, shortly after E. Schrédinger published a seminal paper containing his
celebrated equation [1], E. Madelung dared an interpretation showing that the
Schrodinger equation can be transformed into two equations that mimic the
continuity and the Euler equations of hydrodynamics [2]. The Euler equation is
a particular case of the Navier-Stokes equation [3]. Such hydrodynamic inter-
pretation is now considered a forebear of the de Broglie-Bohm Pilot Wave
Theory [4] [5] [6] [7], although germs of this theory were ventured in 1924 by L.
de Broglie [8]. The process followed by Madelung consisted in expressing the

Schrédinger solution in an exponential form which led to the two abovemen-
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tioned equations, one for the amplitude and another for the phase. Those ideas
were later retaken by D. Bohm [4] [5]. Consequently, most of the work related to
the Madelung-de-Broglie-Bohm reformulation of quantum mechanics and
quantum hydrodynamics applies to particles moving slowly respect to the speed
of light. A fully relativistic quantum mechanics with trajectories was recently
formulated [9]; however, it lacks the relative simplicity of the non-relativistic
formulation. Other general approaches have been reported [10] [11], but we ex-
plore in this work an alternative methodology for extending, to the relativistic
domain, the known non-relativistic quantum hydrodynamics and quantum theo-
ries with trajectories. Our approach, while having some points of contacts with
previous reported approach [11], is based in a surprising wave equation which
resembles the Schrodinger equation, but describes a particle with mass and
spin-0 which moves through a potential V; and has the correct relativistic rela-

tion between the linear momentum p and the kinetic energy K [12]-[21]:
0 &
ih—y(Xt)=——————w (X)) +V (X)y(X1). 1
S = o (Y (v (0 0
In Equation (1), what we call the (one-dimensional) Grave de Peralta (GP)
equation for a quantum particle with mass m, % is the Plank constant (A) di-
vided by 2m, and p, is a factor commonly found in special theory of relativity
formulas (the Lorentz factor), which depends on the ratio between the squares of
the particle’s speed (¥*) and the speed of the light in the vacuum (&) [22]:

1

V= (2)

The basic properties of Equation (1) and its solutions, and detailed discussions
of how to solve Equation (1) for some interesting potentials V; can be found in
recently published works [12]-[21]. In a nutshell, solving Equation (1) requires
simultaneously finding the wavefunction y and the square of the particle %,
which determines the value of y, in Equation (2). This may look at first as an
unmanageable problem; however, this is not the case in at least several interest-
ing cases [12]-[17]. In general, Equation (1) is nonlinear; this has been discussed
before [12] [16]. Nevertheless, due the formal similitude with the Schrodinger
equation, Equation (1) is a useful and tractable equation. It is worth noting that

Equation (1) can be rewritten in the following way [12] [14] [16]:

in Ly = Ay (xt), A=K+V R-—P _ p—_inl (3)
a” ~ VR ' (7, +1)m’ x

The operator K corresponds to the (approximated) relativistic kinetic energy
of the particle, thus [12] [14] [16] [19] [20]:

— ~p*c? +m’c* —mc. (4)

This means that Equation (1) is well-defined, but it is advantageous to write
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the operator K as in Equation (1), because this results in an equation formally
like the Schrodinger equation, which can then be exactly solved following similar
procedures than the ones required for solving the Schrodinger equation [12]-[17]
[19] [20]. It is also the striking similarity between Equation (1) and the Schrédin-
ger equation what allowed us to extend, to the relativistic domain, the basic equ-
ations of the Madelung-de-Broglie-Bohm reformulation of quantum mechanics
and quantum hydrodynamics [18]. It is worth noting that previous reports dis-
cussed the existing relationship between Equation (1) and the Klein-Gordon and
Dirac equations for a free particle [12] [16] [19] [20]. From a pragmatic point of
view, a Schrodinger-like equation appears to be very useful since Schrédin-
ger-like solutions may apply. Investigating exact solutions using such an analogy
might make more tractable some relativistic problems. In this work, we applied a
methodology that extends already studied applications of the Schrodinger equa-
tion to the relativistic domain. This approach might become beneficial. From an
epistemological point of view, the Schrédinger-like approach explored here
should be considered as a “mathematical hypothesis” and the practical results
must be examined as to its final test. We will assume in this work this procedural
interpretation of Equation (1). Nevertheless, for self-reliance purpose, a sum-
mary of the fundamentals of the GP equation is presented in the Appendix. We
hope that the scientific community, which is currently working on non-relativistic
quantum mechanics theories with trajectories and quantum hydrodynamics, will
recognize the simplicity of the theory presented in this work, and its potential
for practical applications in relativistic quantum simulations. The rest of this
work is organized in the following way. In the next Section, for the first time, a
relativistic extension of the de Broglie-Bohm quantum mechanics is obtained
from the relativistic but Schrodinger-like GP equation. Then, a relativistic exten-
sion of the Madelung quantum electrodynamics is presented. This is followed by
five free particle examples in increasing order of complexity. Finally, the conclu-

sions of this work are given in the Conclusions.

2. Madelung-Bohm-Like Reformulation of the GP Equation
The three-dimensional (3D) GP equation for a particle moving at relativistic
speeds in a potential V'is given by the following expression [14] [15] [16]:

2
ihﬁl/l— L

= Viy+Vy. 5
a¥ = Goenm YTV ®

In general, the wavefunction (y), the potential, and y, all depend on the three
spatial coordinates and the time. Due to the formal similarity between Equation
(5) and the Schrodinger equation, a Madelung-Bohm-like extension of Equation
(5) can be done following the same procedure commonly used for reformulating
the Schrédinger equation [2] [4] [5] [6] [7]. First, we look for a solution of Equ-
ation (5) of the following form:

w(r,t)=R(r,t)e""V", (6)
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In Equation (6), R and S are the amplitude and phase fields, respectively [2] [4]
[7]. Inserting Equation (6) in Equation (5) and following step by step Ref. [6], we
can obtain the following equations, which extend to the relativistic domain the

basic equations of the Madelung-de Broglie-Bohm quantum mechanics [6]:

0 VS’® n’  V°R
5S+m+[v +Q]—0, Q——m R . (7)
S 2 ol wf¥)
ER +(7/V+1)V {)/VR [7vmj:|—0. (8)

In Equation (7), Q is the quantum potential [6]. Clearly, 7, =1 when
v? < ¢?; therefore, as it should be expected when the particle moves at low
speeds, Equations (7) and (8) coincide to the well-known equations of the Ma-
delung-de Broglie-Bohm quantum mechanics [6]. At relativistic velocities, the
velocity field should now be defined such that the relation between the velocity
and the linear momentum (VS ) is the correct relativistic relationship [22]:
_Vs =>vV= iV_S

7\/\/ - (9)
m 7, m

Thus, the expression between parentheses in Equation (8) is the velocity field
given by Equation (9). Again, when v < c?, Equation (9) coincides with the
non-relativistic equation [6]. However, in general [11]:

2 2
I mc) +VS

(10)
(mc)2 +VS2 mc

Therefore, when y is known, Equation (10) determines the velocity field and
¥ The direction of the velocity is then perpendicular to the surfaces of constant
phase (S = constant). Bohm introduced a particle’s trajectory as the solution of
the following differential equation and initial conditions [4] [5] [6] [7]:

0
arp(t)zv(r:rp(t),t), r,(t=0)=r,. (11)

Therefore, different trajectories correspond to different initial positions of the
particle. The direction of the particle’s velocity is always tangent to the particle’s
trajectory. The particle’s velocity is given by the following equation:

v, (1) :%rp (®). (12)

Equations (11) and (12) related the velocity of the Bohmian particle with the
velocity of the Madelung’s fluid.

3. Relativistic Qquantum Hydrodynamics

Madelung did not introduce particle trajectories in his reformulation of the
Schrédinger equation [2]. This was done later by Bohm [4] [5]. Madelung inter-
preted Equations (7) and (8) as describing a fluid with density p'= mp such that:
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p(r.t)=R%(r,t). (13)

Then using Equation (9) with y, = 1 allowed him to directly rewrite Equation
(8) with y, =1 as a continuity equation [2] [6] [7]. Proceeding in a similar way,
we obtained the following extension of the Madelung’s continuity equation to

the relativistic domain:

0
pt—

As it should be expected, at non-relativistic speeds, when y, =1 because
v <c?, Equation (14) coincides with the Madelung’s continuity equation [2] [6]
[7]. Equation (14) was obtained from Equation (8) by identifying mp with the
density of a fluid extending through space. Likewise, as it was done by Madelung
[2] [6] [7], by identifying the velocity field of this fluid with the velocity field

given by Equation (9), we can obtain from Equation (7) the following equation:

O (yv)+ % Vv +V(V+Q): o v /p
al v{(Vv”) } TR P T

If vand thus y, only depend on time but not on position, Equation (15) can be

simplified in the following Euler-like equation:

V(V +Q).

m

0 2
—nVv)+ v -V nv)|=- (16)
L R IR ()

As it should be expected, at non-relativistic speeds, when y, =1, Equation
(16) coincides with the Euler-like equation obtained by Madelung [2] [6] [7].

4. Plane Waves

The fluid dynamic of a classical ideal fluid flow supposes the fluid is non-viscous;
the flow is steady, ie., the velocity is time independent; the fluid is incompressi-
ble, ie., the liquid density is constant; and assumes that the flow is irrotational
[23]. The dynamic of an ideal fluid with density p; which is flowing close to the
Earth’s surface under the influence of the Earth gravitational potential, U/m =
gH, where g is the gravitational acceleration and A is the high respect to the
ocean’s surface, it is given by the Bernoulli equation [23]:

1 U
E'OV +p'— +P—con5tant (17)

In Equation (17), Pis the pressure inside of the liquid. While Equation (17) is
purely classical and has no connection with Madelung fluids, it is instructive to
compare the Madelung liquid, associate to a free particle “guided” by a plane
wave, to a classical ideal liquid under non-gravity conditions, which dynamics is
described by the Bernoulli equation with U, = 0. A simple solution of the GP
equation for a free particle (V' = 0) is the plane wave, normalized in a large cube

of side Z, given by the following equation [12] [14]:
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1 %[ pzr—( l:-Z:L)mt]
W . (18)

In Equation (18), pis the magnitude of the particle’s linear momentum, which
can take any positive real value. Evaluating Equation (18) for y, = 1 gives the
correct normalized plane wave when the free particle is traveling at
non-relativistic speeds [6]. The surfaces of constant phase corresponding to Eq-
uation (18) are planes perpendicular to the particle’s linear momentum. Note
that for a given value of p, the value of y, get univocally determined by the
equality of the following formulas for the relativistic kinetic energy [12] [14]

[16]:
2 ’ 2 2.2
K =(y,-1)mc® = P yp+me (19)

_mjnz mc

Using Equations (6), (13) and (18), we can obtain:

3 B p?
R:\/;:LZ:Q:O,S(r,t)z(p-r—mt). (20)
From Equation (20) follows that the Madelung fluid associated to a free par-
ticle guided by a plane wave has constant density p'= mp; therefore, it is incom-
pressible. It is also no viscous because the total force acting on it is
F =-V(V +Q)/m=0. The velocity of this fluid and the corresponding value of
y»can be obtained using Equations (10) and (20):

y(me) +p* (1)

c
V=—=———cP ) =
mc

(mc)” + p?

The value of y, given by Equations (19) and (21) are identical in this case, but
as it will be shown in the next Section, this is not a general feature of the theory.
The maximum possible value of the fluid speed, V~cC, occurs when
VS = p>> mc. This corresponds to y, > 1. The fluid velocity is constant; thus,

this Madelung fluid is irrotational. Equation (16) reduces now to:

2

p

2 V{}

VLW v‘i)l)} - (r vr:l)m = 0= K = constant. (22)
Yy

Evidently, Equations (21) and (22) also gives the correct results at the

non-relativistic limit. A comparison between Equation (22), evaluated for y, =1,
and the Bernoulli equation (Equation (17) with U, = 0) shows that there is not
pressure in the Madelung fluid associated to a free quantum particle guided by a
plane wave. From Equations (11), (12), and (21) follow that the Bohmian paths
of a free quantum particle associated to a plane wave are given by the following

equation [6] [11]:

6 (t) =1, +————— pt. (23)
(mc)2 +p?
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Evidently, Equation (23) also gives the correct result for a particle moving at
non-relativistic speeds. In Equation (23), the initial position of the particle lies
everywhere in space. Like for free classical particles moving at non-relativistic
speeds, these Bohmian paths are therefore uniform, rectilinear, and perpendicu-
lar to the planes of constant phase of the wave. This is because in this case the
quantum potential is null, thus VQ =0 [6]. Also note that Equations (14) to
(16) are fulfilled because both p and vare constant.

5. Standing Waves

A simple but interesting case, where Q is not null, occurs when a free quantum
particle is in the superposition state formed by two plane waves, which are both
solutions of Equation (5) with ¥'= 0 but are traveling in opposite directions along

the x-axis with the same value of p:

1 ifoewt) | ai(-keewt) 2 —iwgt
v(xt)= e “te = cos(kx)e ™,
(xt) %[ ] E (kx)
k=2 w="

(yv+1)mh

) (24)

ka_

The speeds of the Madelung fluids associated to either one of these two plane
waves are the same and given by Equation (23), but the corresponding velocities
point to opposite directions; therefore, y; is also the same for each wave when in-
dividually considered. Consequently, the standing wave given by Equation (24) is
also a solution of Equation (5) with V' = 0, and with the same value of y, than for

each of the plane waves components. For the standing wave:

R(x) = /P (x) = ——cos (k)

Vi

dZ
- Q _ hz ER(X) _ hzkz _ p2 (25)
(7, +1)m  R(X) (7, +)m  (y, +L)m’
P
S(t)= (yv+1)mt'

From Equations (24) and (25) follows that the period of the cos® (kx) density
distribution is inverse proportional to p. The Madelung fluid associated to a free
particle guided by a standing wave does not have a constant density; therefore, it
is compressible, thus, it does not behave like a classical ideal fluid flow. The wa-
velength of the standing wave, 4, is inverse proportional to p. From Equation (25)
also follows that VS =0; therefore, from Equation (10) follows that the velocity
of this fluid is zero and y, = 1, which is different than the p, value corresponding
to each superposing plane wave. Consequently, the Bohmian particle associated
to a standing wave is at rest. In Equation (25), Q1is equal to the relativistic kinetic
energy of the free particle, which is constant; therefore, VS =0, thus this Made-
lung fluid is no viscous. Equations (14) to (16) are now fulfilled because p does

not depend on time and v= 0. A comparison of the results obtained in this exam-
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ple for a standing wave, to the results obtained in the previous Section for a plane
wave, illustrates the well-known nonlocality properties of the theories resulting
from the Madelung-de-Broglie-Bohm reformulation of the Schrodinger equation.
The superposition of plane waves, which are solutions of the same GP equation
for a free particle, modifies the properties of the corresponding Madelung fluid,

and then the Bohmian trajectories of the guided particle.

6. Quasi-Standing Waves

In this Section we will consider a wavefunction of Equation (5) with V= 0, which
is a slightly variation of Equation (24):

l//(X,t)z 1 |:ei(kX—Wkt)+ei(—k’x—wk,t)j|,

Nrik

A 2
woProp _(praR)
h (7, +1)mn

(26)

< p.

In Equation (26), kand wy are given by Equation (24). Consequently, the first
term of the wavefunction in Equation (26) is a solution of Equation (5) with V=
0. However, the second term is not because there is, in the denominator of w,,,
the same value of y, than for w;. Nevertheless, from Equation (19) follows that the
value of y, corresponding to (p + Ap) is approximately equal to the value corres-
ponding to p in two situations. First, y, =1 at the non-relativistic limit when

p<mc. Second, 7, ~ p/mc at the ultra-relativistic limit p>>mc ; therefore,
(p+Ap)/mc~ p/mc when Ap < mc. Consequently, at these two limits y giv-
en by Equation (26) is approximately a solution of Equation (5) with V'=0. We
will call here, a quasi-standing wave, to the wavefunction given by Equation (26)
at these two limits. After some straightforward algebraic steps for transforming

Equation (26) in a form like Equation (6), we obtained the following results:

VS:_—AijZ;Ap:yv: = ' (27)
2 Am?c? +(Ap)2 1_&
4m%c? +(Ap)’°
And:
=2 cos? [k 0], k =2P 22[p-(p+Ap)]
X.t) = -5 cos X=Vpt) |, Ky =——, V|, =25———
p( ) I_3CO [b( b)J b op b (}/v+1)m (28)
2
g ()
4(;/v+l)m

In Equation (27), AS points to the negative direction of the axis x. As it should
be expected, Equations (27) and (28) reduces to Equations (25) when Ap = 0. The
density of the Madelung fluid associated to a free particle guided by a qua-
si-standing wave resembles a “standing wave” that is drifting without dispersion,
in the direction of the plane wave associated with the linear momentum p + Ap,

with speed Vv, *V~—Ap/2m when Ap < mc. It can be easily checked out that
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the quasi-standing wave given by Equation (26) satisfies Equation (5) with V=0,
and with y, given by Equation (27). From Equations (27) and (28) also follows
that Equations (7), (8), and (14) to (16) are satisfied. Note that y, =1 for every p
when Ap < mc; consequently, the Bohmian particle associated to a qua-

si-standing wave moves like a classical particle even at the ultra-relativistic limit.

7. Beats

In this Section we will consider another wavefunction of Equation (5) with V=0,
which can be obtained from Equation (26) after substituting -4 'by +4' Equation
(26) corresponds to the superposition of two plane waves with slightly different
values of p traveling in opposite directions. Here we will consider what happens
when the two waves travel in the same direction. In this case, we obtained the

following results:

VsopilyoCE) : )
Jam?e? +(2p+ ap)? 2 |-—_m¢
4m?c® +(2p + Ap)’
And:
2 o e
2
p(X,t)ZFCOS I:kb(x_vbt):l’ kb :Z_h, %= W (30)
2
o ()
A(y, +1)m

In Equation (29), AS points to the positive direction of the axis x. Note that &
does not depend on p but is proportional to Ap. Therefore, as it should be ex-
pected, Equations (29) and (30) reduce when Ap = 0 to Equations (20) and (21),
which correspond to the first example of a single plane wave discussed in Section
4. The Madelung fluid now flows without dispersion in the same direction than
the plane waves, and at the average speed of both waves. The factor of 2 at the
front of Equation (30) for v, is because a cos? (ax—bt) shaped wave travels at
twice the speed than a cos(ax—bt) shaped one. The corresponding Bohmian
paths are uniform and rectilinear at both non-relativistic and relativistic values of
v This result suggests the following very interesting possibility: a free ul-
tra-relativistic quantum particle could be associated to a Gaussian pulse, which is
formed by a superposition of plane waves traveling in the same direction with
similar values of p, and thus could be a solution of Equation (5) with V= 0. Such
a Gaussian pulse would travel with no dispersion at the average relativistic speed

of all the plane waves forming the Gaussian pulse.

8. Ultra-Relativistic Gaussian Wave-Packets

Gaussian wave-packets are often considered the quantum entity that closest re-
semble a classical particle [24] [25]. A Gaussian pulse describes a quantum par-

ticle for which the uncertainty relation between its position (Ax) and linear mo-
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mentum (Ap) has its minimum value AxAp = 1/2 k. Non-relativistic Gaussian
wave-packets are formed by a superposition of plane waves which are solutions of
the Schrodinger equation for a free particle [24]. There is a non-linear relation-
ship between the angular frequency (w) and the wavenumber (%) of the plane
waves which are solution of the Schrodinger equation [24] [26]:

2

P
_Ezz_m:ikzl (31)
h o 2m

The non-lineal dispersion of the Schrodinger equation determines that the
phase velocities v,, = w/k of different plane waves are different. Consequently,
Gaussian wave-packets which are solution of the Schrodinger equation deform
when propagate [24]. This differentiates a Gaussian pulse associated to a quan-
tum particle from a free classical particle that travels without deforming. Relati-
vistic Gaussian pulses corresponding to a free particle with mass and spin-0 can
be formed by superposing plane waves, which are solutions of the Klein-Gordon
equation [25] [27] [28]. The dispersion of the Klein-Gordon equation also is
non-lineal [27] [28]:

woE_ +p?c? +mict £k + mc’

h h h (32

The non-linearity of Equation (32) determines that Gaussian pulses which are
solutions of the Klein-Gordon equation also deforms when propagate. Moreo-
ver, Equation (32) admits solutions with negative kinetic energy values, which
results in additional difficulties when describing the propagation of these Gaus-
sian wave-packets [25] [27] [28]. These difficulties disappear when using Equa-
tion (5) with V' = 0 for describing a free particle. This is because Equation (4)
implies the following dispersion relation:

o| (kY
mc — | +1-1
/ 262 4 m2c* —mc? mc
:%; : +h - n ' (33)

As it should be expected, in the non-relativistic limit p =7k <« mc, Equation
(31) can be obtained from Equation (33) by approximating the square root in
Equation (33) by the first two terms of the corresponding series in powers of
k/mc . Moreover, in the ultra-relativistic limit k > mc, Equation (33) be-

comes:
K
W:%zckivph:%:& (34)

Therefore, one should expect that all the ultra-relativistic plane waves which are
solutions of Equation (5) with V'= 0 propagates with the same phase velocity and
thus, the ultra-relativistic Gaussian pulses formed by a superposition of these plane
waves should propagate without deformation. This means that ultra-relativistic
Gaussian wave-packets which are solutions of Equation (5) with V' = 0 behave

more like free classical particles than the non-relativistic ones. In the ul-
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tra-relativistic limit, Equation (4) can be approximate by:
K ~ pc =—iicV. (35)

Consequently, the ultra-relativistic limit of Equation (5) with V=0 is:
.. 0 .
ih—y =—ihcVy. 36
pad % (36)

A plane wave solution of Equation (36), which is a kind of Weyl equation for
spin-0 particles, normalized in a large region of length Z and traveling along the

x-axis, is given by the following expression:

1 w1 i;(PX—Kf)_ieik(x—ct)_

y/(x,t):fe —fe i

The phase velocity of this plane wave is for any value of ; v;» = ¢. Equation (36)

(37)

is lineal, thus any wave-packet formed by a superposition of plane waves given by
Equation (37) is a solution of Equation (36) and propagates without dispersion

(deformation). Specifically, this occurs for the ultra-relativistic Gaussian pulse:
w(xt)= ij”’gp(k)eik(*'“)dk, o(k)~0 when |rk| <mc. (38)
Jor

In Equation (38):

l +00 i ’Oi ~(k))?
o)== [ Ty (xt=0)e - (e = (39)

For obtaining Equation (39), we assumed y/(x,t=0) isa Gaussian wave-packet
that at ¢ = 0 is peaked at x = 0, and it is moving along the x-axis with average
momentum (p) = h(k) :

i (40)

Using Equations (39) and (40), we found the expression corresponding to an
ultra-relativistic Gaussian wave-packet that propagates along the x-axis at speed ¢

without deformation:

L xat)?
w(xt)= 1 e 2,20 gi(k)(xct). (41)
o
Therefore, for ultra-relativistic Gaussian pulses:
1 —%(x—ct)z
R(xt)=——F—=e 2 . S(xt)=nk)(x—ct). (42)

ONT

From Equation (42), we can obtain the density of the Madelung’s quantum

fluid associated to an ultra-relativistic Gaussian pulse:

1 —%(x—ct)z

p(xt)=R*(xt)= g : (43)

e
OoNT

This means ultra-relativistic Gaussian wave-packets are density pulses in the
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Madelung’s quantum hydrodynamic description. Equation (43) describes a Gaus-
sian density pulse propagating along the x-axis at speed ¢ and which peak is at
any given time at x = ct. There is a characteristics quantum potential (Q) in the
Madelung-de Broglie-Bohm reinterpretation of the Schrodinger equation and its

relativistic extension, which can be evaluated using Equations (42) and (43):

Q(xt)=- "o VR nt Vp
T (n+Ym R (n+)m p ()
LA me gy A me
o'm(p) o’m(p)

The corresponding quantum force (Fy) acting over the ultra-relativistic Gaus-

sian wave-packet is:
Q(xY) _ 8 me
OX o’ ( p)

The quantum force is always null at the pulse’s pick. The Gaussian density

Fo (x,t)=— (x—ct). (45)

pulse is produced by the action of pairs of compressing quantum forces, which
are equidistance from the peak and have the same magnitude but opposite direc-
tions. Note that the net quantum force over the Gaussian pulse is null, which
corresponds with the propagation of the pulse with constant velocity. Particles
have trajectories in the de Broglie-Bohm reinterpretation of the Schrédinger equ-
ation. The velocity of a particle associated to an ultra-relativistic Gaussian pulse
can be computed from the phase field S(x, # using the following equation:
c 0S

~C.
20X
(mc)2 +(Zsj

X

V= (46)

Le, a particle associated to an ultra-relativistic Gaussian pulse describes the

same trajectory than the peak of the pulse.

9, Conclusion

Madelung, de Broglie, and Bohm reformulated the Schrédinger equation. In this
way, they founded the non-relativistic quantum hydrodynamics and quantum
mechanics with trajectories. Following a similar procedure, we reformulated the
GP equation. In this way, we extended quantum hydrodynamics and quantum
mechanics with trajectories to the relativistic domain. As it should be expected,
we showed that at non-relativistic energies, the resulting equations coincide with
the well-known non-relativistic equations. As a proof-of-concept demonstration
of the potential practical value of the formulated theory, we discussed some sim-

ple but instructive free particle problems.
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Appendix

In Special Theory of Relativity, the relevant Lorentz invariant magnitude is the

four-component momentum given by the following equation [22] [27] [28]:
E
P#:(F'px,py,pzj_ (A1)

The magnitude of the four-component vector is the relativistic invariant mc
Therefore, a relativistic quantum theory for a free spin-0 particle of mass m can
be formally obtained from first quantization of the Lorentz-invariant relation

between the particle’s energy and the three-component momentum:

E2
,/ + py + pZ (A2)

Equation (A.2) can be rewritten the following way:

2 1 p2 _ 2 _ 1 p2 A
c +m2C2 =y,mc°, y, = +m202' (A3)

Combining Equation (4) and (A.3), we obtain the Lorentz-covariant equation:

_ P
SR AR A (A9

Making the following formal first-quantization substitutions in Equation (A.4):

E>H= ih%, p— p=—inv. (A5)

We can obtain the following Lorentz-covariant wave equation:
2 a2
inla-— " _vioimea, 7= 1+
ot (7, +1)m m

Now, it is well known in quantum mechanics that applying a constant energy

(A6)

shift to the Hamiltonian gives rise to an immaterial time-evolving phase factor in
the solution wavefunction. Therefore, in order to obtain a more Schrédinger-like
result, we can remove the rest-energy contribution from Equation (10) above, by
replacing Q as follows:

2

.mc

Q=ye " . (A7)

Thus, obtaining the Poirier-Grave de Peralta (PGP) equation for a free spin-0
particle of mass m [19]:

2

o

. n? s oA
|h— :—A—V y v = 1+ .
a” (7, +1)m Ve 7 m*c?

(A8)

The Poveda’s formalism consists in parametrizing Equation (A.8) by making
[19] [21]:

(w|P*lv)

Wwo>W= 1+ mzcz

(A9)
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This formalizes the approach initially followed by Grave de Peralta for avoiding
the use of the square root operator y, [12] [13] [14] [15] [16]. Equation (A.9) de-
fines the parameter y, in terms of the average value, on the state y; of the square
of the well-defined linear momentum operator. This allows for rewritten Equa-
tion (A.8) as the GP equation for a free spin-0 particle of mass:

A | p*|y)

ihgl//=— Vo, y, =41+ o) (A10)
m-c

ot (;/v +1)m

In a similar way, we can obtain Equation (5). Therefore, when y, does not ex-
plicitly depend on the time, we can look for a solution of Equation (5) of the

form:

_E’
w(rt)=z(r)e », E'=E+V-me® =K +V. (A11)

Then obtaining the time-independent GP equation for a spin-0 particle of mass

m which is moving through a time-independent potential V:

P’ : ([P x)
——F—+V |y =Ey, =, |1+ =—=—"= Al2
{(% +1)m ’ }( o e (A412)
Equation (A.12) can be rewritten in the following way:
< ntlo, < p? <l|ﬁ2|l>
Ksn =T(E V)2, Key = om’ V= 1+w- (A13)
Clearly, when:
(2]p*] 7) < m’c”. (A14)

The time-independent Schrodinger equation is obtained as a limit case of Equ-
ation (A.13):
Ken Zsen :(E'_V)Zsm- (A15)
For several important problems, solving Equation (A.13) reduces to solving
an effective time-independent Schrédinger equation. For instance, this occurs
for problems with stepwise constant potentials [12] [14] [16]. In each spatial
region where V' is constant (V' = V), x= s, . Consequently, solving the
time-independent GP equation reduces to solving the following effective

time-independent Schrodinger equation:

KSchZSch = g/YSch . (A16)

Equation (A.16) can be solved with no knowledge of the value of y,; therefore,
after Equation (A.16) is solved, y, can then be calculated as:

2 ~ 2
e =\/1+W<Z5ch|KSch|ZSch> =\/1+Wg' (A17)

Finally, the sum of the kinetic and potential energies of the particle is:
2
E'=(y, -1)mc* +V, :[ /1+—25 —1]mc2 +V,. (A18)
mc

DOI: 10.4236/jmp.2021.1210085 1433 Journal of Modern Physics



https://doi.org/10.4236/jmp.2021.1210085

A. Ruiz-Columbié et al.

Alternatively, £'can be calculated as:

2
E=— 25 v, (A19)

1+ l+izg
\" mc

It is worth noting the energy values calculated using Equations (A.18) and
(A.19) are in excellent correspondence with the energies obtained using the
Klein-Gordon and Dirac equations [20] [27] [28]. For instance, Figure 1 shows a
comparison of the energies calculated using the Grave de Peralta approach (con-
tinuous lines), the Schrédinger equation (dashed lines), and the Dirac equation
(solid dots) [29], for a particle in a one-dimensional infinite well of width Z [12]
[14] [17] [21]. Even for relativistic energy values larger than 2 mc, there is an ex-
cellent correspondence between the energies calculated using the GP and the Di-
rac equations. More importantly, there is a large class of problems where
X # Xsen » Dut the formal similitude between Equation (A.13) and Equation (A.15)
facilitates solving Equation (A.13) using similar procedures than the ones used
for solving Equation (A.15). For instance, the energies of Hydrogen atom were
calculated using the Grave de Peralta approach [13] [15] [20]. A good correspon-
dence was obtained with the positive energies calculated using the Klein-Gordon
and Dirac equations [13] [15] [20].

Figure 1. Comparison of the dependence on n (energy level) of
the energies calculated using the GP approach (continuous line)
[17] [21], the Schrodinger equation (dashed lines), and the Di-

rac equation [29] (solid dots) for three different widths (Z) of a

one-dimensional infinite well. 4. is the (reduced) Compton

wavelength associated to a particle of mass m. The tenues ho-

rizontal dotted line corresponds to £'= 2 mc.
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Abstract

We report in this paper energy positions of the 2P°_2s2p(*D)nd P,
2P 2R2p('D)nd %S, 2P _282p(*D)ns *D, 2P _2s2p('S)nd *D, and
2P _282p°(CP)np 2D Rydberg series in the photoionization spectra originat-
ing from 2P° metastable state of O+ ions. Calculations are performed up to n
= 30 using the Modified Orbital Atomic Theory (MAOT). The present results
are compared to the experimental data of Aguilar which are the only available
values. The accurate data presented in this work may be a useful guideline for
future experimental and other theoretical studies.

Keywords

Semiempirical Calculations, Modified Orbital Atomic Theory, Electron
Correlation Calculations, Atoms and Ions, Rydberg Series, Quantum Defect

1. Introduction

The important role of studying Photoionization is a fundamental processes
playing in laboratory and astrophysical systems such as nebulae plasmas [1], in
inertial-confinement fusion experiments [2] and contributing to plasma opacity
and radiation transfer inside plasmas. Thus, quantitative measurements of pho-
toionization of ions provide precision data on ionic structure, and guidance to

the development of theoretical approaches of multielectron interactions. Great-
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est attention has been concentrated on studying Rydberg series of O+ ions for
which photoabsorption from low-lying metastable states of open-shell ions has
been shown to be important in the earth’s upper atmosphere as well as in astro-
physical plasmas. Formerly, studies on the O+ ion have been focused on ioniza-
tion using the merged-beam technique. Thus, Aguilar et al [3] performed the
first experiment on the Absolute photoionization of O+ from 29.7 to 46.2 eV
above the first ionization threshold, using a merged-beam line at the Advanced
Light Source (ALS).

Therefore, it is an imperative task for physicists to provide accurate photoio-
nization data for the modeling of astrophysical and laboratory plasmas.

The Opacity Project atomic database (at the Astronomic DataCenter of Stras-
bourg, France) was formed to re-estimate stellar envelope opacities in terms of
atomic data computed by ab initio methods [4]. All these efforts led to the crea-
tion of several atomic databases widely used for astrophysical calculations [3].

In the present paper, we intend to provide accurate data on the photoioniza-
tion of O+ ions that may be useful guideline for the physical atomic community.
In addition, we aim to demonstrate the possibilities to use the Modified Atomic
Orbital Theory of SOW et al [5] [6] [7] [8] to reproduce excellently experimen-
tal data from merged beam facilities. For this purpose, we report calculations
of energy resonances for the 2P _282p('D)nd 2P, 2P _2s2p(*D)nd 2,
2P 282p("D)ns*D 2P _252p/('S)nd * D, and 2P _282p* (P P)np 2D Rydberg se-
ries of O+ ions up to n = 30, via the MAOT procedure along with the quantum
defect theory.

Energy resonances and quantum-defect are compared to the only available
experimental data of ALS [3].

Section 2 gives MAOT theory with a brief description of the formalism and
the analytical expressions used in the calculations. In Section 3, we present and
discuss the results obtained, compared to available experimental. In Section 4,

we summarize our study and draw conclusions.

2. Theory
2.1. Brief Description of the MAOT Formalism

In the framework of Modified Atomic Orbital Theory (MAOT), total energy of
(1£)-given orbital is expressed in the form [8] [9].
[z-o()]

E(uf) == (1)

For an atomic system of several electrons A, the total energy is given by (in
Rydbergs):

£ :_i [Z _Uiz(f)}z

Ui

With respect to the usual spectroscopic notation (Nf N\ ') 2417 | this equa-
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tion becomes

E=—§iz_amfﬂuﬂ @

i=1 L,

In this formula (2), L characterizes the considered quantum state (S, P, D ...)
and the symbol 7is the parity of the system.

In the photoionisation study, energy resonances are generally measured rela-
tively to the Eeo converging limit of a given (***'L;) n-Rydberg series. For these
states, the general expression of the energy resonances is given by the formula of

Sakho presented previously [10] (in Rydberg units):

E, =E, —niz{z—al(zs*lLJ)—az(zs*lLJ)x%

2 3)
o (B el D |
k fk(n,m,q,s)

In this equation m and g (m < g) denote the principal quantum numbers of
the (**' L) nl-Rydberg series of the considered atomic system used in the empiri-
cal determination of the ¢g(**'L))-screening constants, s represents the spin of
the n/-electron (s = 1/2), E. is the energy value of the series limit generally de-
termined from the NIST atomic database, E, denotes the corresponding energy
resonance, and Z represents the nuclear charge of the considered element. The

only problem that one may face by using the MAOT formalism is linked to the

1
determination of the -
; f, (n,m,q,s)

term. The correct expression of this term

is determined iteratively by imposing general Equation (3) to give accurate data

with a constant quantum defect values along all the considered series. The value

of u is fixed to 1 and 2 during the iteration. The quantum defect is calculated
from the standard formula below

RZZ R
En:Eoo_% :5:n_zcore = =\ (4)
(n-5) (E.-E)
In this equation, R is the Rydberg constant, E.. denotes the converging limit,
Z.ore represents the electric charge of the core ion, and J means the quantum

defect.

2.2. Energy Resonances of the 2P°_2s22p2(1D)nd(2P); 2P°_2s22p?
(1D)nd(2S); 2P°_2s22p? (1D) ns (2D); 2P°_2s22p? (1S)nd(2D) and
2P°_2s22p3(3P)np(2D) Rydberg Series from 2P° Metastable
State of O+

In the framework of the MAOT formalism, the energy positions of the
2P 282p('D)nd(*P); 2P _252p* (‘D)nd(*S); 2P_282p* (*D) ns (*D);
2P 282p (18)nd(2D) and 2P _282p°(CP)np(*D) prominent Rydberg series
from 2P° metastable state of O+ are given by (in Rydberg units)

e For 2P°_2s2p*('D)nd(*P) levels
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1 o. 1
E =E ——{Z-0,——2% - - S
. - o, . +O'2><(n m)x(n q)xl(n+q—s)3

(6)

2
1 1 1 1
+ s+ s+ T+ :
(n+m-s) (n+m+s)" (n+m-s) (n+gq-m+s)

Using the experimental data of ALS [3], we obtain (in eV) £ = 30.393 + 0.15
(m = 5) and £ = 31.081 + 0.15 (g = 6) respectively for the 27 _282p*(* D)5d *P
and 2P _282p*(*D)6d *Plevels. From NIST [11], we find £., = 32.617 eV. Using
these data, Equation (6) gives 01 = 6.012 + 0.251 and 0; = —0.166 + 0.009
e For 2P°_2s%2p? (*D)nd(S) levels:

2
En:Ew_iz{z_01_%+0'2X(n_m)x(n_q)x[ : * . )4]} )

n (n+m-s)* (n-s

For the 2P°_2s22p*('D)5d *S and 2P°_2s22p*('D)6d S levels, we find using the
experimental data of ALS et al [3], s = 30.213 + 0.150 (m = 5) and E = 30. 905
+ 0.150 (g = 6). From NIST [11], we find E. = 32.617 eV Equation (7) provides
then 01 = 6.061 £ 0.185 and o, = —0.367 £ 0.092
e For 2P°_2s22p? (D) ns (°D) levels

1

En=Em——z{z—al—%wzx(n—m)x(n—q){ :

n (n+q-s)’

(8)

2
+ ! + 1 + ! + !
(n+q+s—mf (n+q—sf (n+m—sf (n+q—m+35)5

For the 2P7°_2s2p* (*D) 65 (*D) and 2P°_252p* (*D) 7s (*D) levels the experi-
mental energy positions ALS et al [3] are, Fs = 30.578 + 0.15 (m = 6) and &, = 31.
188 + 0.15 (¢ = 7). From NIST [11], we find E. = 32.617 eV. In that case, we find
using Equation (8) o1 = 6.056 + 0.322 and o = -2.274 + 0.413
e For 2P°_2s22p? (1S)nd(*D) levels

=E, —niz{z —0'1—%+0'2 x(n—m)x(n—q)x{

1

E 2
(n+gq-m+s)(n-s)

)

2
1 1
+ 5+ Z
(n+2m-q)° (n+qg+s—m)

From ALS of Aguilar et al [3], we obtain for the 2P°_252p* (15)4d(2D) and
2P _252p* (18)5d(D) Ey=31.924 £ 0.15 (m = 4) and £ = 33.217 £ 0.15 (¢ =5).
From NIST [11], we find E. = 35.458 eV. We find then using Equation (9) oi =
6.008 + 0.167 and o = —0.187 + 0.05.

o For 2s22p*(*P)np(*D) levels

En:Eoo_iz 2_0'1_2+62x(n_m)x(n_q)x : 2
n n (n-s)
) (10)
1 1 1
+ 2 3t 4
(n+s—m)" (n+s-m)" (n+s-m)
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From ALS et al [3], we obtain for the 2P°_282p(CP)3p(*D) and
2P 282 CP)Ap(D) E; = 39.478 + 0.15 (m = 3) and E, = 43.115 % 0.15 (g = 4).
From NIST [11], we find E.. = 47.527eV. We find then using Equation (10) o; =
5.411 + 0.411 and o5 = —0.844 + 0.022

3. Results and Discussions

The results obtained in the present paper are listed in Tables 1-5 and compared
with the Advanced Light Source experimental data of Aguilar et al [3].

In Table 1, we quote the present MAOT results for energy resonances (£) and
quantum defect (J) of the 27 _252p*(* D)nd(*P) Rydberg series relatively to the
2P°_metastable state of O+ ion. The current energy positions are calculated from
equations (6) along with Z=8, m= 5, and ¢=6, 0; = 6.012 £ 0.251 and o; =
—0.166 = 0.009. All these screening constant are evaluated using the Advanced
Light Source (ALS) experimental results of Aguilar ef al [3], and take from NIST
[11] the E. energy limits which is 32.617 eV. Then our results are converted into
eV for direct comparison by using the infinite Rydberg (1 Ry = 0.5 a.u =
13.605698 eV). It is seen that the data obtained compared very well to the expe-
rimental data of Aguilar ef al [3].

Up to n = 11, the maximum energy differences relative to the experimental
data is less than 0.006 eV. In addition, the present quantum defect is almost con-
stant up to 1= 30. This may expect our results for n> 11 to be accurate.

In Table 2, we compare the present MAOT energy resonances (E) and quan-
tum defect (&) of the 27 _282p*(* D)nd(*S) Rydberg series relatively to the
2P°_metastable state of O+ ion to experimental data [3]. All our energy values
are obtained empirically using Equation (7) and converted into (eV) for direct
comparison. Here again, the agreements are seen to be very good. Along the se-
ries, the present quantum defect is almost constant.

In Table 3, we show a comparison of the energy resonances (£) and quantum
defect (8) of the 2P°_2s82p(*D)ns (*D) Rydberg states relatively to the
2P°_metastable state of O+ ion. The current energy positions are calculated from
equations (8) along with Z=8, m=6,and ¢=7, 01 = 6.056 £ 0.322 and o, =
—2.274 *+ 0.413. The agreements between the studies are seen to be very good
and the quantum defect is almost constant along the series. The agreements be-
tween the MOAT results and experimental data are seen to be very good. Along
all the series investigated, the quantum defect is practically constant. This may
expect our results up to 2= 30 to be accurate.

In Table 4, we list the present energy resonances (£) and quantum defect ()
for the 2P°_2s2p7(*S)nd (*D) Rydberg states relatively to the 2P°_metastable
state of O+ ion compared to the experimental data [3]. The current energy posi-
tions are calculated from equations (9) along with Z=8, m=4, and ¢=5, E. =
35.458 eV; 01 = 6.008 £ 0.167 and 05 = —0.187 * 0.05. Comparison shows that the
maximum energy deviation is at 0.006 up to n = 14. This indicates the very good
accuracy between the results. For n > 15 it should be underlined that, since the

MAOT formalism reproduces excellently the experimental measurements [3],
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the present results quoted in Table 4 for the 27°_2s2p*(*S) nd (*D) levels may be
a very good representative of the nonexistent experimental data.

Table 1. Energy resonances (E) and quantum defect () of the 27°_2s82p* (*D)nd (*P)
Rydberg series observed in the photoionization spectra originating from the 27° metasta-
ble states of O*. The present results (MAOT) are compared to the Advanced Light Source
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in

the present calculations and in the experimental data are indicated into parenthesis.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

o0?

E(eV)
MAOT
30.393 (150)
31.081 (150)
31.496 (148)
31.763 (138)
31.955 (122)
32.074 (106)
32.170 (92)
32.241 (81)
32.297 (71)
32.341 (63)
32.377 (56)

32.406 (50)

32.431 (45)
32.451 (41)
32.468 (37)
32.483 (34)
32.495 (31)
32.506 (28)
32.515 (26)
32.524 (24)
32.531 (22)
32.538 (21)
32.543 (19)
32.549 (18)
32.553 (17)

32.557 (16)

32,617

ALS
30.393 (150)
31.081 (150)
31.496 (150)
31.762 (150)
31.948 (150)

32.169 (150)

|ag
0.000
0.000
0.000
0.001

0.005

)

MAOT ALS

0.054 0.054

0.048 0.048

0.032 0.033

0.018 0.023

0.004 -0.015

-0.008 - 0.092

-0.020 -0.018

-0.031

-0.032

-0.033

-0.034

-0.035

-0.036
-0.036
-0.037
-0.037
-0.037
-0.038
-0.038
-0.038
-0.039
-0.039
-0.039
-0039
-0.038

-0.039

*NIST atomic database [11]. |4E|: energy differences relative to the experimental data.
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Table 2. Energy resonances (£) and quantum defect (J) of the 27°_2s82p* (*D)nd (25)
Rydberg series observed in the photoionization spectra originating from the 27° metasta-
ble states of O*. The present results (MAOT) are compared to the Advanced Light Source
(ALS) of Aguilar ef al. [2]. The results are expressed in eV. The energy uncertainties in
the present calculations and in the experimental data are indicated into parenthesis.

E(eV)
n
MAOT ALS |4H MAOT ALS
5 30.413 (200) 30.413 (150) 0.000 0.031 0.031
6 31.105 (200) 31.105 (150) 0.000 0.001 0.001
7 31.517 (182)  ----e-e- 0.034 0.033
8 31.781(161) ------e- 0.020 0.023
9 31.961 (140)  -------- -0.016 -0.017
10 32.088 (122) —------- -0.103 -0.092
11 32.182 (106)  ------e- -0.018 -0.018
12 32.252 (93) -0.026
13 32.307 (82) -0.023
14 32.350 (73) -0.029
15 32.385 (65) -0.022
16 32.414 (58) -0.022
17 32.437 (52) -0.027
18 32.457 (47) -0.023
19 32.473 (43) -0.028
20 32.488 (39) -0.024
21 32.500 (36) -0.029
22 32.510 (33) -0.024
23 32.519 (30) -0.028
24 32.527 (28) -0.023
25 32/534 (26) -0.027
26 32.541 (24) -0.021
27 32.546 (23) -0.025
28 32.551 (21) -0.029
29 32.556 (20) -0.023
30 32.560 (19) -0.027
oo 32,617

“NIST atomic database [11]. |4E|: energy differences relative to the experimental data.
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Table 3. Energy resonances (E) and quantum defect (J) of the 27 _252p* (*D)ns (*D)
Rydberg series observed in the photoionization spectra originating from the 27" metasta-
ble states of O*. The present results (MAOT) are compared to the Advanced Light Source
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in
the present calculations and in the experimental data are indicated into parenthesis.

E(eV)
n

MAOT ALS |4 MAOT ALS
6 30.578 (150) 30.578 (150) 0.000 0.834 0.834
7 31.188 (150) 31.188 (150) 0.000 0.829 0.829
8 31.562 (135) 31.561 (150) 0.002 0.826 0.822
9 31.803 (119) 0.824
10 31.971 (104) 0.822
11 32.092 (93) 0.820
12 32.182 (79) 0.818
13 32.250 (70) 0.817
14 32.304 (62) 0.815
15 32.347 (55) 0.814
16 32.381 (49) 0.813
17 32.409 (44) 0.811
18 32.433 (40) 0.810
19 32.453 (36) 0.809
20 32.469 (33) 0.808
21 32.484 (30) 0.807
22 32.496 (29) 0.805
23 32.507 (26) 0.804
24 32.516 (24) 0.803
25 32.524 (22) 0.802
26 32.531 (20) 0.801
27 32.538 (19) 0.800
28 32.543 (18) 0.799
29 32.549 (17) 0.799
30 32.553 (16) 0.800
oo* 32,617

*NIST atomic database [11]. |4E|: energy differences relative to the experimental data.
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Table 4. Energy resonances () and quantum defect (J) of the 27°_252p (*S)nd (*D)
Rydberg series observed in the photoionization spectra originating from the 27° metasta-
ble states of O*. The present results (MAOT) are compared to the Advanced Light Source
(ALS) of Aguilar ef al. [2]. The results are expressed in eV. The energy uncertainties in
the present calculations and in the experimental data are indicated into parenthesis.

E(eV)
n

MAOT ALS |AE MAOT ALS
4 31.924 (150) 31.924 (150) 0.000 0.076 0.076
5 33.217 (150) 33.217 (150) 0.000 0.072 0.072
6 33.911 (125) 33.910 (150) 0.001 0.072 0.071
7 34.332 (103) 34.328 (150) 0.004 0.071 0.061
8 34.599 (85) 34.597 (150) 0,002 0.071 0.050
9 34.785 (70) 34.782 (150) 0.003 0.071 0.028
10 34.912 (59) 34.909 (150) 0.003 0.070 0.044
11 35.012 (51) 35.008 (150) 0.004 0.070 0.004
12 35.088 (44) 35.082 (150) 0.006 0.069 —-0.030
13 35.147 (38) 35.145 (150) 0.002 0.069 -0.185
14 35.185 (33) 35.183 (150) 0.002 0.068 —-0.066
15 35.222 (29) 35.219 (150) 0.003 0.068 —-0.088
16 35.244 (26) 0.067
17 35.268 (23) 0.067
18 35.289 (21) 0.066
19 35.306 (19) 0.066
20 35.321 (17) 0.066
21 35.334 (16) 0.067
22 35.345 (14) 0.067
23 35.355 (13) 0.067
24 35.363 (12) 0.067
25 35.370 (11) 0.067
26 35.377 (11) 0.067
27 35.383 (10) 0.067
28 35.388 (09) 0.067
29 35.393 (09) 0.067
30 35.397 (08) 0.067
oo 35,458

*NIST atomic database [11]. |AE]: energy differences relative to the experimental data.

DOI: 10.4236/jmp.2021.1210086 1443 Journal of Modern Physics


https://doi.org/10.4236/jmp.2021.1210086

M. Sow et al.

Table 5. Energy resonances (£) and quantum defect (J) of the 27 _2s2p* (3P )nd (*D)
Rydberg series observed in the photoionization spectra originating from the 27" metasta-
ble states of O*. The present results (MAOT) are compared to the Advanced Light Source
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in
the present calculations and in the experimental data are indicated into parenthesis.

E(eV)
n

MAOT ALS |AH MAOT ALS
3 39.478 (150) 39.478 (150) 0.000 0.436 0.436
4 43.115 (150) 43.115 (150) 0.000 0.576 0.576
5 45.092 (150) 45.093 (150) 0.001 0.485 0.480
6 46.009 (145) 0.483
7 46.499 (138) 0.483
8 46.788 (135) 0.483
9 46.971 (133) 0.483
10 47.095 (132) 0.482
11 47.181 (131) 0.479
12 47.244 (124) 0.479
13 47.292 (116) 0.479
14 47.328 (110) 0.480
15 47.357 (106) 0.480
16 47.380 (94) 0.480
17 47.398 (84) 0.480
18 47.412 (75) 0.480
19 47.425 (68) 0.481
20 47.436 (62) 0.481
21 47.445 (56) 0.481
22 47.453 (52) 0.481
23 47.460 (47) 0.481
24 47.466 (44) 0.481
25 47.471 (40) 0.481
26 47.475 (37) 0.481
27 47.479 (35) 0.480
28 47.483 (32) 0.480
29 47.486 (30) 0.480
30 47.489 (28) 0.480
ot 47,527

“NIST atomic database [11]. |AZ]: energy differences relative to the experimental data.
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In Table 5, we compare the present MAOT energy resonances (E) and quan-
tum defect (6) of the 27 _282p*(*D)nd(*S) Rydberg series relatively to the
2P°_metastable state of O+ ion to experimental data [3]. Our current energy po-
sitions are calculated from Equations (10) with Z= 8 along with m = 3, and ¢=4,
E, = 47527 eV, 0y = 5411 + 0411 and o, = —0.844 + 0.022. Here again, the
agreements are seen to be very good. Along the series, the present quantum de-
fect is almost constant. In a few series where discrepancies are observed, the
maximum energy difference relative to the experimental data is at 0.001 eV. This
indicates the excellent agreements between the present calculations and the ex-
perimental measurements for energy positions.

For all the Rydberg series investigated, the slight discrepancies between the
present calculations and experiment may be explain by the simplicity of the

MAOT formalism which does not include explicitly any relativistic corrections.

4. Summary and Conclusion

In this paper, energy resonances of the 2s82p('D)ns(*D), 282p*(*D)nd(*P),
2822 (" D)nd(S), 282pX(*S)nd (*D), and 252p°(CP)np (D) Rydberg series in the
photoionization spectra originating from 2P metastable state of O+ ions are re-
ported in this paper using the Modified Orbital Atomic Theory (MAOT). Over
the entire Rydberg series investigated, it is shown that the present MOAT results
agree very well with the only available experimental data of ALS [3]. A host of
accurate data up to n = 30 are quoted in the recent work. The very good result
obtained is this work points out the possibilities to use the MAOT formalism in
the investigation of high lying Rydberg series of ions containing several electrons
in the framework of a soft procedure. This work may be of interest for future

experimental and theoretical studies in the photoabsorption spectrum of O*.
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Abstract

Quantum gravitational theory, based on the hypothesis of the absolute refer-
ence system, reveals the function of the effects of the gravitational field at the
microscopic and macroscopic scale. The quantum nature of gravitational po-
tential, and the dynamics and kinetic energy of photons and elementary par-
ticles under the influence of the gravitational field are studied, and a quantum
interpretation of gravitational redshift is given. There is also a complete
agreement of this quantum gravitational theory with the existing experimen-
tal data.

Keywords

Quantum Gravity, Gravitational Time Dilation, Gravitational Redshift,
Perihelion of Mercury, Gravitational Deflection of Light, Time Delay of Light

1. Introduction

Quantum gravitational theory based on hypothesis of the absolute reference sys-
tem is fully compatible with quantum mechanics and quantum field theory, for
the following reasons:

1) Quantum gravity based on the hypothesis of the absolute reference system
does not need the possibility of renormalization, since there are no infinities
arising in calculated quantities. There is also no point-particle, since the ele-
mentary particles of matter have a specific structure, consisting of bound pho-
tons.

2) Changes in the operating rate of clocks under the influence of a gravita-
tional field or due to motion at high speeds comparable to the speed of light in
vacuum, based on the hypothesis of an absolute reference system, are not related
to the concept of spacetime, but are related to the influences exerted on the
structural elements of the particles, such as the effect of a gravitational field on

bound photons, as well as Lorentz contraction.
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3) Spacetime is not dynamic as in the general theory of relativity. The space of
the hypothesis of the absolute reference system is a Euclidean space, and there is
the possibility of an unambiguous description of all the cosmic events observed
in the absolute reference system.

The study of inertial systems based on the hypothesis of the absolute reference
system is stated in [1] [2] [3]. In the present work, the quantum nature of the
gravitational field is studied and in addition the effects of the gravitational field
on physical phenomena are studied by supplementing what is already stated in
[4].

Some references related to the general theory of relativity, in which are pre-
sented the principles of this gravitational theory by its author himself, are in
[5]-[10].

2. Quantum Description of the Gravitational Field

Based on the hypothesis of the absolute reference system, the elementary pho-
tonic wave is considered to be an oscillator whose mean value of kinetic energy
is equal to (1/2)hv, where 4 is Plank’s constant and v is the frequency, and
mean value of dynamic energy is also equal to (1/2) hv ([2], subsection 3.3.
Harmonic Oscillator). The total energy of a photon is equal to hv. Also ac-
cording to the section “Introduction to Particle Mechanics” in [1], we have the
relation hv =m c?, where m, is the photonic mass and cis the speed of light
in vacuum. We must then consider the effect of the gravitational field on a pho-
ton coming from a space in which there is no gravitational field, and then prop-
agates in a gravitational field, that is, on the already disturbed ether.

We consider that outside the gravitational field is a body or a measuring in-
strument, when it is included in the natural reference frame of the celestial body
to which the gravitational field is due, but it is very far from this celestial body,
so that the effect of the gravitational field is considered practically zero. Also, we
denote by m,, , C, and v, the mass, velocity and frequency of a photon,
when it is outside the gravitational field, while these physical quantities will be
denoted by M, cand v respectively, when the same photon is inside the gra-
vitational field.

The momentum of the photon, without the presence of a gravitational field,
making use of the clock which is outside the gravitational field, is given by the
relation Pon, = Mph, Co ([1] section 4. Introduction to Particle Mechanics).
The corresponding relation for a photon propagating in a gravitational field and

resulting from the use of the aforementioned clock, in vector form, is:
pph = mphC (1)

where m,, c are functions dependent on the radius r ([4] section 2. Mass
and velocity of a photon in the gravitational field). We consider that the
photon propagates in space with the simultaneous presence of a gravitational
field derived from the spherical body of mass M.

Therefore, the momentum - energy relation of a photon that is a force carrier
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of the gravitational field is:

m

—¢, (2)

ph
Suppose that in a small volume 6V, at a radial distance r, a set of N force
carriers of the gravitational field is an elementary part of the whole spherical
wave of all force carriers of the gravitational field of a celestial spherical body of
mass M. The wavefunction W of this system of N photons of different fre-
quencies will obey the classical differential equation of a spherical electromag-
netic wave. Specifically, the action of the kinetic energy operator!' on the wave-
function W is given by the equation:
in 0¥

gph,kin =E at (3)

and gives us the equation of action of the total energy operator on the wavefunc-
tion ¥ of the photon:

5 5 . oY
En¥ =28 i ¥ =ih—— (4)
ot
The momentum operator is P, =~i%V . From Equations (1) and (2) we get
the equation:
1
pih = C_Zggh (5)

from which we get the classical electromagnetic wave equation:
1
Vi-=— |¥(rt)=0 6

where the wavefunction W depends on the radial distance r and not on the
vector position I, since this wave is spherical. Under these conditions the ac-
tion of the operator V? on the wavefunction W is expressed by the equation:
10 oY
VY = —2—[r2 —j
reor or
so, Equation (6) can take the form:
2(rv) 10°(ry)
o’ ¢ ot

=0 (7)

The solution of this differential equation, for NV photons, which are force car-
riers in the elementary volume oV , is given by the relation:

\{l(r,t)zlzN: Aei(kif*wﬁ) (8)

riz

where A, for i=1,2,---,N, is constant. The gravitational potential, U (r) , is
proportional to the time-averaged absolute value of ¥(r,t), so it is in a form

given by the relation:

'The momentum and kinetic energy operators are described in the literature reference [2], subsec-
tion 2.2, Wave Function of a Free Particle, Equations (2.9) and (2.10).
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u(r)~|¥|= \P\P*:é ©)

where AdeiN: l|A|2 . If we denote by E the intensity of the gravitational
field (something analogous to the intensity of the electric field in electromagnet-

ism), then this is given by the relation:

E(r)=-vU(r) (10)

On a photon located in the above elementary volume ¢V and having mass
m,, a gravitational force is exerted, determined by the equation:

GMm
G, (11)

F=m,E=-m,VU=- :

where U, is the unit radial vector. Therefore, the expression for gravitational
potential, U (r), is:

U (r):—% (12)

r

We must also summarize the findings of the study regarding the dependence
of the mass and velocity of a photon under the influence of a gravitational field,
as stated in [4] (section 3, Mass and Velocity of a Photon in the Gravitational
Field). This dependence of the velocity and mass of a photon on the radial dis-
tance r, which is the distance of the photon from the center of the spherical ce-

lestial body of mass A4 is determined by the relations:

acMm
c=co[l— > J (13)
rc?
acm
My =My, (1— 2 j (14)

Since the elementary particles have as structural elements the bound photons,
the function of the photonic mass, which is due to the dependency on the radial
distance, will be analogous to the corresponding function of the mass of a body
located inside the gravitational field. If m and m, are the masses of a spherical
body inside and outside the gravitational field respectively, and r is the radial

distance, the mass function m is given by the relation:

acm Y
m:mo(l— ZJ (15)
Ic

0

The dynamic energy of a photon, due to the effect of the gravitational field
when moving from a position outside the gravitational field (ie. theoretically

from infinite distance) to a radial distance R, is calculated by the integral:
R o
Vo (R)= [ F -dr ==["(-m,,VU (r))-dr (16)

With the help of the relation (11) and the relation (12) for the gravitational

potential, we get:
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R p? rc?

-3/4
~GM 4GM
Vo (R) = | My, (1— J dr
14
4GM
— 17
= J (17)

0

_ 2 2

=-My, Co+My C (1—
2 2

=—My, Cy +MyC

The first-order approximation of this photon gravitational dynamic energy is

calculated according to relation:
V,, (R)= _%

R
and respectively for a particle, which had mass m; when it was outside the gra-
vitational field, and now it is inside the gravitational field at a radial distance R,
the gravitational dynamic energy is calculated approximately according to rela-
tion:

GMm,

R

V(R)=

The nature of this dynamic energy is studied in [4], section 2, The Origin of
Attractive Force in a Gravitational Field, and we observe that the energy E,
which is also stated in [4] (section 2), at a radial distance ris equal to Vi (I’) .
Indeed, by putting F = f (r)d, , as stated in [4] (section 2, Equation (2)), we get
the relation:

. dE,
F = 1(1)d, =2, =V, (1) as)

which is easily confirmed according to relation (17).
The total energy of a photon propagating inside a gravitational field at a radial
distance R, using the measuring instruments of a laboratory located outside the

gravitational field, according to relation (17) is:
mg,c? =m,, c2 +V,, (R) (19)

where m,c? =hv, mphocf =hv,, and the frequencies v and v, are the fre-
quencies of the same photon when it is inside the gravitational field or outside it
respectively, measured by a clock located outside the gravitational field. As al-

ready mentioned at the beginning of this section, there is a term for the kinetic
1 1
energy of this photon, which is Ehvo :Emphocg, and two terms of dynamic
energy, one of which is that of the elementary photonic harmonic oscillator
equal to the kinetic energy term, and the other term of dynamic energy, Vph (R) R
is due to the effect of the gravitational field on the photon. Due to this effect of
the gravitational field, a physical system located within a gravitational field be-
comes non-inertial. Therefore, in order to estimate the kinetic energy of the
photon using the above-mentioned clock, one must calculate the quantity —hv,,
which is equal to the kinetic energy of the same photon, when this photon is

outside the gravitational field.
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The spherical electromagnetic wave, which consists of free photons of gravita-
tional field force carriers, comes from the continuous conversion of bound pho-
tons into free photons (and vice versa), and their frequency spectrum is the
spectrum of the “mass frequency” of bound photons? from which they originate.
The density of these force carriers at a radial distance of ris proportional to the
time-averaged value of the quantity W¥~ (as mentioned in [2], subsection 2.2,
Wave Function of a Free Particle), and is also proportional to the mass of the
spherical homogeneous body from which the gravitational field originates. But
the mass of the spherical homogeneous celestial body is affected by the gravita-
tional field created by the body itself. Suppose that the whole mass of the spheri-
cal body is converted to free photons in a space in which there is no gravitational
field and that this measured mass of free photons is equal to M, . This mass,
M, , is called non-gravitational mass. Therefore the mass of the spherical body
before this conversion, that is, when it was in a solid state, must have been
slightly greater than the measured mass of free photons, due to the existence of
the gravitational field created by the body itself. This mass, which we consider
equal to MM, is called gravitational mass.

If we want to calculate the gravitational mass, A4, of this body we can do it
with a good approximation ignoring terms of very small order of magnitude.
Suppose first that a concentric spherical part of this body of radius rand gravita-
tional mass M(r) is surrounded by a spherical shell of differential thickness
dr and differential gravitational mass dA1(r), as shown in Figure 1, and that
the density p of the non-gravitational mass is constant throughout the body.
The differential gravitational mass of the spherical shell is given by the rela-
tion:

%)/

M=o ()12

rc,

where dAM, (r) is the non-gravitational differential mass of the spherical shell.
By setting M(r)— /\/lO (r)=AM we get the approximate relation:

M(r) _GM,(r) GaM _GM,(r)

rc rc rc?

0

IC

since the quantity GM, (r) / ( rc§) is quite small (of the order of 10~ for the
solar system). If we denote by R the radius of the spherical body, the approx-

imate calculation of the gravitational mass of the body gives us:
3G
m = [am(n)= ({122 o 1) 20)

Since the above density, p, is constant, it follows that thz non-gravitational
mass in the spherical part of radius r is M, (r)= gfcpl’3 , and also
dM, (r) = 4mpr?dr, so, it follows that using the previous integration, the gravi-

tational mass of the body is determined by the following relation:

*The concept of mass frequency is described in [1], subsection 4.1, The Structure of the Smallest
Elementary Particle.
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Figure 1. A concentric spherical part of the body of
radius rand gravitational mass M(r) is surrounded
by a spherical shell of differential thickness dr and
differential gravitational mass dAM(r).

9 GMOJ 1)

M=M, |1+
( 5 Rc?

0

4
where M, = EnpR3.

3. Additional Effects of the Influence Exerted by the
Gravitational Field on Matter

As mentioned in the previous section, the kinetic energy of a photon propagat-
ing inside a gravitational field is equal to the kinetic energy of the same photon
when it is outside the gravitational field. Also, the physical reference system of a
massive celestial body M is not an inertial reference system, since it dynamically
affects all the structural elements of all the elementary particles of matter. Ac-
cording to the hypothesis of the absolute reference system, these structural ele-
ments are the bound photons.

Although all the internal dynamic energies of an elementary particle have a
sum equal to zero in order for the particle to be in a stable state, the state of the
particle due to the gravitational field remains as an exogenous non-inertial state
of the particle. For example the effect on the velocity and mass of a captive pho-
ton, according to relations (13) and (14), gives us the total energy of the bound
photon, but its kinetic energy is maintained equal to the kinetic energy estimated
when this captive photon is outside the gravitational field. Therefore the kinetic
energy of a particle is that which the particle had when it was outside the gravi-
tational field, moving in an inertial system at a speed measured by the measuring
instruments of the same inertial system equal to the velocity of the particle inside
the gravitational field that measured by same measuring instruments. The kinet-
ic energy of a particle which is at a radial distance r and moves with speed u
measured by the measuring instruments of a laboratory located outside the gra-

vitational field, according to the hypothesis of the absolute reference system, is
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given by the equation:
Evin :%moyzcg —%mocf :%moyzu2
where y = (1—u2/c§ )_1/2 .

A notable change, due to the effect of the gravitational field, is the change in
the quantitative estimation of the electric charge of an elementary charged par-
ticle. As has already been proved by the principles of the hypothesis of the abso-
lute reference system (in [1], subsection 2.4.2, The Charge and the Force Car-
rier of Electromagnetic Interactions, Equation (2.60)), a charged particle in-
itially accelerated by electromagnetic interactions in the inertial reference system
of the laboratory, then moving at a constant velocity v with respect to it
measured by the instruments of the laboratory, has an electric charge equal to
q, > while before acceleration, practically stationary in the laboratory, it had an

electric charge equal to g. The corresponding relation is:

4, = 4 (22)
M

A charged particle under the influence of a gravitational field, considered as
stationary at a radial distance 7, undergoes a change in the quantitative estima-
tion of its charge due to the expression of the estimated time’, obtained by using
a clock that is at the same radial distance, 7, as that of the electric charge, ac-

cording to relation:

rc?

ya
t =t[1— 4GM J (23)
0
because this estimated time causes a change in the estimation of the emission
rate of the force carriers in relation to the estimation of the emission rate of the
force carriers resulting from a clock outside the gravitational field, as in the case
of the aforementioned moving charged particle.

We denote by g the electric charge of a particle located at a radial distance R
within the gravitational field, which is measured by the measuring instruments
of a laboratory located outside the gravitational field. Also, we denote by g, the
electric charge of the same particle when this particle is outside the gravitational
field, measured by the aforementioned laboratory. The functional relation be-

tween the quantities gand g, is:

4
q=q, {1— 4GMJ (24)

Rc?

0

If the measuring instruments and the aforementioned charged particle are lo-
cated inside the gravitational field, at a radial distance R, then the electric charge

is evaluated as equal to g..

*The relation between the estimated time inside the gravitational field and the measured time with a
clock outside the gravitational field, and the discussion regarding this relationship is in [4], section 4,
Gravitational time dilation and redshift, Equation (21).
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4. The Quantum Interpretation of Gravitational Redshift

In order to study the phenomenon of gravitational redshift, we will study the
energy emission spectrum derived from a hydrogen atom under the influence of
a gravitational field, using the principles of quantum mechanics based on the
absolute reference system hypothesis.

We consider a hydrogen atom affected by the gravitational field of a spherical
and homogeneous celestial body of mass A4, and located at a constant radial dis-
tance R from the center of this spherical body. In order to study this phenome-
non according to the principles of hypothesis of the absolute reference system,
the energy of this atomic electron should be estimated using the clock of the par-
ticle under study, Ze. the clock of the electron of the hydrogen atom.

According to the relevant example in [2] (subsection 3.4, Hydrogen Atom,
Equation (3.29)), if we use the subscript o for frequencies, measured with the in-
struments of a laboratory which is outside the gravitational field, where the
phenomenon we are considering takes place, the average value of kinetic energy
at the energy level of quantum number n, is given by the equation:

S

1
=—hn 25
5 v (25)

No

In the same example (in [2], subsection 3.4, Hydrogen Atom, Equations
(3.31), (3.33)), if we use the subscript o for mass and electric charge measured

with the instruments of the above laboratory, it appears that:

4
me, 1
o= 26
kin,n th nz ( )
Therefore:

1 me? 1
—hny, =22 27
2 " 2n* n? 0

But we need to understand the origin of the first member of the Equation (27).
The definition of particle frequency is given in [2] (subsection 2.1, Par-
ticle-Frequency and Wavelength, Equation (2.3)) by the relation v, = ZIN:l Vi, »
where Vi, 18 the frequency that comes from the kinetic energy of the 7 bound

photon. The kinetic energy of the particle is:
N
En = lmoyzu2 = lhz v, (28)
2 2 30"

Therefore the kinetic energy in relation to the particle frequency is:

1 1
Ekin :Emoyzuz :Etho (29)
Therefore the average value of kinetic energy, when y =1, is given by the re-
lation:
1 = 1 —
Ekin :Emou2 :Etho (30)

where E:nvnO , as formulated in [2] (subsection 2.4, Particle Motion in
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Closed Orbits, Equation (2.23)), and finally a general equation is:

B =5 mou” =20, (31)

N

Suppose that the hydrogen atom moves slowly from a region outside the gra-
vitational field to the celestial spherical body, that is, it gradually enters the gra-
vitational field, and finally immobilizes at a radial distance R within the gravita-
tional field. Then according to the measurements of the laboratory instruments
located outside the gravitational field, the Equation (27) is modified according to
relation:

_me* 1
"2n? n?

1
—hn 32
5 v (32)

According to the clock of the above laboratory, following the relevant wording
in [4] (section 4, Gravitational Time Dilation and Redshift, Equation (18)),

the frequency v, is given by the equation:

acm V!
Vo = Vo (1— J (33)

Rc?

0

It is obvious that the first member of the Equation (32), is not equal to the av-
erage kinetic energy, according to the definition of kinetic energy given in the
previous section, hence the Equation (32) no longer gives us the average kinetic
energy. However, since the hydrogen atom is at a radial distance R inside the
gravitational field, using a clock located at the same radial distance, according to
the estimated time given by the relation (23), the estimated frequency, Vy, o 18

calculated according to the equation:
_1/4
4GM
v, = n(l— G j (34)

This estimated frequency is equal to the frequency v, , measured when the

effect occurs outside the gravitational field*. Therefore the mean value of kinetic

energy is given by the equation:

~14
— 1 me* 1 4GM
=g, =G )
From the relations (15) and (24) the following equality results:
acm Y
4 4
me* = m_e; (1_R_C§J (36)

therefore the average kinetic energy of the electron of the hydrogen atom at the

energy level nis:

mees 1
kin,n — th n_z

(37)

*A similar description of this estimated frequency can be found in [4], section 4, Gravitational Time
Dilation and Redshift, Equation (23).
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The total energy of the electron is the sum of the time average value of kinetic
energy, time average value of Coulomb energy, and gravitational potential ener-
gy. The time average of Coulomb energy is denoted by ?Yn Since the gravita-
tional dynamic energy is constant, given that the radial distance R is constant,
does not contribute to the energy difference of an energy transition of the elec-
tron, and, based on the virial theorem, 2ﬁ+§yn =0 ([11], paragraph 3-4,
THE VIRIAL THEOREM), it follows that the energy of the electron, which ac-
tually contributes to the energy of an emitted or absorbed photon, is given by the

relation:

4
m.e, 1
E,=—722= (38)
2n° n
that is, it is equal to the energy of the electron when the phenomenon takes place
outside the gravitational field.

We now assume an energy transition of the electron of the hydrogen atom,
from the initial energy level, E, , with quantum number n, to the final energy
level, E, , with quantum number n,, so, for the emission of a photon the in-
equality n, >n, mustapply.

The energy difference is calculated according to the known relation:

me‘(1 1
AE=E, —E, =——oo| = 2 39
oo 2n* (n2 n? (39)

The estimated, by the clock of the electron, energy of the emitted photon, as
stated in [4] (section 4, Gravitational Time Dilation and Redshift, Equation
(25)), is given by the relation:

~1/4
4GM ] (40)

SPhg = hvo (1_ ch
where hy, = mphocg ,and v, is the frequency of the emitted photon within the
gravitational field, estimated by the clock of the electron. This frequency is equal
to the frequency which is measured by a clock outside the gravitational field,

when the emitted photon has come out of the gravitational field. Given that

Ephg = —AE , the relations (39) and (40) give us:
4 Y4
me (1 1 4GM
o | — | =y, | 1-—2 (41)
27 \n; N Rc;

If this phenomenon had taken place outside the gravitational field, then the
energy of the emitted photon, estimated by a clock outside the gravitational field,

would had been equal to:

mes (1 1
—-=|=hvy, ,n (42)
2n° [nzz n o
where v, is the frequency of the emitted photon, estimated by a clock out-

0,m—>n,

side the gravitational field. From the relations (41) and (42) it appears that the

photon whose emission takes place inside the gravitational field, when it has
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come out of the gravitational field, it has shifted toward the red in relation to the

photon emitted outside the gravitational field, according to the following rela-

ya
4GM GM
Vo = Vo,ni»nz [l_WJ = Vo,ni»nz {1_WJ (43)

0 0

tion:

5. Experimental Confirmation of the Hypothesis of the
Absolute Reference System

In this section we examine the known experimental tests of the general theory of
relativity, in order to determine whether the experimental results confirm the
hypothesis of the absolute reference system.

Everything in this section is a brief description of what is stated in [4], section

4, and section 5.

5.1. Gravitational Time Dilation

According to the hypothesis of the absolute reference system, the bound photons,
which are the building elements of the elementary particles of matter, will un-
dergo these changes in frequency and wavelength. If the closed orbit of a bound
photon has a length equal to nA, where n=1,2,---, then the time of a period is
T= nxl/ ¢, while, outside the gravitational field, the corresponding time is
T, =n4,/c, . Therefore:

°c4, rc;

0

~1/4
T-1,%% 7, [1— 4GM ] (44)

According to the hypothesis of the absolute reference system, the estimated
time is inversely proportional to the time of the aforementioned period ([1],
2.4.1. Contraction of Length and Time, p. 440-441). Assuming that t; is the
estimated time recorded between two events occurring inside the gravitational
field using a clock at a fixed position I also inside the gravitational field, and ¢
is the corresponding estimated time using a clock outside the gravitational field,

then the correlation of these times is given by the equation:

Y4
t, T
=2 ot =t 1—462/' =t 1—G'\f (45)
t T . .
The corresponding result of the general theory of relativity is:
26Mm V* GM
t, :t(l— - J :t[l— . J (46)
rce rc;

Therefore the estimated time, based on the hypothesis of the absolute refer-
ence system, with a very good approximation is the same as that of the general
theory of relativity. This estimated time value has been experimentally con-
firmed ([12] [13]).
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5.2. The Advance of the Perihelion of Mercury

Denoting the mass of the Sun by M and the mass of Mercury by m, according to
the Equation (15) and the relevant study in [4] (section 3, Mass and Velocity of
a Photon in the Gravitational Field, Equation (15)), we get the equation:

(47)

rc?

cu oMm?(. aeMm )"
—+u= -
de? L2 2

32
Given that u=1/r, and (1—4GM/(rC§)) / =1+ 6GM/(rC§), the first order
approach is given by the differential equation:

2 GGZMZ 2 GM 2
—ggli +( ——ar Mo |u= L2m° (48)
(0]

We define the constants:

p_p 8G"Mm]
c2L?
0
M 2
B - G I_Zmo

The solution of the differential Equation (48) has the form:

u Z%Z%-i- Kcos(\/ﬂﬁ) (49)

where K'is constant.

Two consecutive minimizations of the distance rare performed for JAG=0
and for /AG=2n. For YAO=0 the angle 6 is zero, while for JAG =2
the angle & is given by the relation:

2n 6nG°M °*m}
St
JA (&

This result is the same as that of the general theory of relativity ([14], §101.

0 (50)

Motion in a centrally symmetric gravitational field) and is confirmed by ob-
servations already announced in the 19th century.
More details on this topic are given in [4], subsection 5.1, The Advance of the

Perihelion of Mercury.

5.3. The Deflection of Light in the Gravitational Field of the Sun

When a photon enters the gravitational field of the sun, its energy changes from
the value mphocg to the value m, c?, when it leaves the gravitational field, it
takes again the value mphocj . Also the motion of said photon at a great distance
from the sun, where it can be considered to be outside the gravitational field,
tends to be asymptotically a straight line, while inside the gravitational field it is
curvilinear, due to the effect of the gravitational force of the Sun. Since the force
is central, the trajectory equation has the geometric shape of the hyperbola, so,

in polar coordinates r, @ , obeys the equation:
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1 L ¢ cosd (51)

ra(er-1) a(el-1)

where ¢ is the eccentricity, which is greater than unit, and a is the distance
from the center Cto the vertex V called the semi-major axis (Figure 2).
Holding only the first order terms, the approximate solution of the following

differential equation:

+U=
do? L2 rc?

0

2 GMm? 32
du  GMmg, [1_ 4GM] (52)

as stated in [4] (subsection 5.2, The Deflection of Light in the Gravitational
Field of the Sun, Equation (43)), is given by the equation:

u:1=5’+K’cos(\/W6) (53)
r A
where A’,B’ are the constants given by the equations:
6G*M *m?,
A=1— o
el
o
2
B/ GMmy,
==

The deflection angle is given by the equation:
0=— (54)

We get the result:

Figure 2. The continuous curved line is the elliptical
orbit of the photon within a gravitational field. The
hyperbolic orbit asymptotically approaches the dashed
lines which are the directions of motion of the photon at
a great distance from the spherical body of mass A The
angle Jis the angle of deflection of the photon.
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The corresponding value derived from the general theory of relativity is:

A4GM
R c2

&0

=1".75

Ocr =

The result of calculating the deviation angle based on the hypothesis of the
absolute reference system, which is 2 "13, is closer to the experimental value than
the result of the general theory of relativity. This experimental value was ob-
tained from measurements at the Sobral in 1919 ([15], V. General Conclusions.
p- 330), which were:

From declinations 194

From right ascensions 2 06

More details on this topic can be found in [4], subsection 5.2, The Deflection
of Light in the Gravitational Field of the Sun.

5.4. The Time Delay of Light

We will now study the test proposed by Irwin I. Shapiro in order to measure a
time delay (Shapiro delay) in the round-trip travel time for radar signals reflect-
ing off other planets ([16]), sometimes called the fourth “classical test” of general
relativity.

We consider that an electromagnetic signal is emitted from Earth, reflected on
a planet (or spacecraft) and returned to Earth, but under the influence of the
Sun’s gravitational field during its motion towards the planet and during its re-
turn to the Earth. We will calculate the time delay due to the effect of the solar
gravitational field on an elementary photonic signal, 7e. a photon. The path of
the examined photon is the path CBABC, of the axis x shown in Figure 3. Of
course the deflection angle, which was calculated in the previous section, is very
small, so the above-mentioned orbit is considered straight. Here we have ig-
nored the motion of the Earth and planets during the round trip of the signal,
because the corresponding velocities, estimated in the reference frame of the so-
lar system, are much slower than the speed of light in vacuum.

The total time of the round trip path is calculated according to relation:

2(xe +xp) , 4GM In{(re +xe)(rp +xp)J

At =

55

C, c d? %)

This result agrees with the corresponding result of the general theory of rela-
tivity ([17], 7.2 The Time Delay of Light, Equation (7.31)).

More details on this topic can be found in [4], subsection 5.3, The Time De-

lay of Light.

Figure 3. Geometry of light deflection measurements.
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5.5. The Gravitational Redshift

We will first study the redshift due to the Earth’s gravitational field for example,
which is observed if two measurements of the estimated energy of a photon are
taken at two different radial distances I, and r, that differ only slightly, and
I, <r,. Also we consider that r, is equal to the distance of the earth ground of
the experiment from the center of the Earth. The ratio of the two estimated

energies is calculated as follows:

acm )™
My Co|1-——
° r,C, _GM -,

)
gphg (rl) 2 [1_ 4GM J v C; hh

C
pho -0 2
° r1(:0

If h=r,—r, is the height, R is the radius of the Earth, g=GM/R?, and
,r, = R?, then the previous relation becomes:

Sng (), gh 57

Eon, (r) c
This result agrees with the corresponding prediction of the general theory of
relativity and has been experimentally confirmed ([18]).

More details on this topic can be found in [4], subsection 5.4, The Gravita-
tional Redshift.

6. Conclusion

The physics of an absolute reference system is a comprehensive and self-contained
view of physical reality, extending to all areas of the physical sciences, and con-
firmed by a wide range of scientific observations and experiments, including
all experiments performed from time to time in order to confirm the special
and general theory of relativity. In this article, the quantum gravitational phe-
nomena are studied, and it is proved that the gravitational redshift is fully in-
terpreted based on the principles of the absolute reference system hypothesis.
Also, the calculations are confirmed by the experimental results, and it is also
found that the prediction for the experiment on the deflection of light in the
gravitational field of the Sun on the basis of the hypothesis of the absolute ref-
erence system, is in better agreement with the experimental data compared to
the corresponding prediction of the general theory of relativity. It is therefore
necessary to carry out an experiment in order to take high-precision measure-
ments of light deflection, in the special case of the effect of the gravitational field
of the Sun.
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Abstract

We summarize our results about the quantization of a charged particle mo-
tion without spin inside a flat box under a static electromagnetic field with
Landau’s gauge for the magnetic field, where Fourier’s transformation was
used to analyze the problem, to point out that there exists a wave function
which is different to that one given by Landau with the same Landau’s levels.
The quantization of the magnetic flux is deduced differently to previous one,
and a new solution is presented for the case of symmetric gauge of the mag-
netic field, and having the same Landau’s levels.

Keywords

Landau’s Gauge, Symmetric Gauge, Quantum Hall Effect, Flat Box

1. Introduction

The work of Klitzing, Dora and Pepper [1] presented a breakthrough in expe-
rimental physics due to its success in measuring the Hall voltage of a two-
dimensional electron gas realized in a MOSFET. The important fact discovered
in this experiment was that the Hall resistance is quantized, and Landau’s eigen-
values solution [2] (Landau’s levels) of a charged particle in a flat surface with
magnetic field has become of great importance in trying to understand integer
Hall effect [1] [3] [4] [5] [6], fractional Hall effect [6] [7] [8] [9], and topological
insulators [10]-[14]. This last elements promise to become essential for future
nanotechnology devices [15] [16] [17]. Therefore, it is worth to re-take this
problem and to consider in detail the characteristics that it presents. In our pre-

vious paper [18], we considered the static magnetic field given through the Lan-
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dau’s gauge and obtained, by using the Fourier transformation, a different solu-
tion for the eigenfunction to those given by Landau. We summarize those results
here and make a different approach to obtain the quantization of the magnetic
flux or the density of states between two Landau’s levels. We continue consider-
ing that this result could be relevant, because Landau’s solution is kept using in
different works like Prange’s [19], Laughling’s [20], solid state and quantum
transport books as well [3] [7] [21] [22]. In addition, for the especial case where
the charged particle is moving on the plane x-y under the same static transversal
magnetic field but defined by the symmetric gauge, we present a new solution,
which matches the characteristics mentioned in [18] and on this paper, we have

the same Landau’s Levels as solution of the eigenvalue problem.

2. Analytical Approach with Landau’s Gauge

« »

Let us consider a charged particle “¢” with mass “m” in the box with a constant
magnetic field orthogonal to the flat surface x-y, B = (0,0, B), where the mag-
netic field is given in terms of the vector potential A, B=VxA, and let us

choose the Landau’s gauge A= (—By, 0, 0) to represents this magnetic field.

2.1. Analytical Approach for the Case B=(0,0,B)

For a nonrelativistic charged particle, the Hamiltonian of the system (units CGS)
is
2
(P-9A/c)

M= @

where p is the generalized linear momentum, A is the magnetic potential,
and “c” is the speed of light. Therefore, the Hamiltonian has the following form

2 2 2
(pc+aBy/c) by pf
2m 2m

H= , which does not depend explicitly on time and

the eigenvalue problem, H® = E, for the Schroédinger’s equation [23] is

2 B2 a2
{1 (f’f Ziypx a8 y2J+&+&}®:E®. )
c? 2m  2m

The variable “Z” is separable through the proposition
D(x)=¢(xy)e™ k, eR, resulting in the following equation

{21(65 2By, a8 j }¢ £, 3)
C

h2k?
2m

where E' is

E'=E- (4)

«_»

Solving this equation through Fourier transformation [24] on the variable “x”,

¢( y)=F[¢]= \/7_[ e'kx¢ X, y)dx, it is known [18] (Equation (18)) that one

DOI: 10.4236/jmp.2021.1210088

1465 Journal of Modern Physics


https://doi.org/10.4236/jmp.2021.1210088

G. V. Lépezetal.

gets the solution

ya —i nM)C)<+Zz
ch’kZ(X): 1 [ma)cj e (h y+k Jy/n[ %X] (5)

and
h2k?
2m

E,\, =ho, (n+%)+ (6)

where y, represents the solution of the quantum harmonic oscillator, and @,
is the so called cyclotron frequency

B

0, =1 7)
mc

These eigenvalues represent just the Landau’s levels, but its solution (5) is dif-

ferent to that given by Landau on the variables “xX” and “y”. Note that there is

not displacement at all in the harmonic oscillation solution. Now, assuming a

periodicity in the z-direction, @, (X,t) =0, (X, y,z+L, ,t) , the usual condi-

tion k,L, =27n’,n"e Z makes the eigenvalues to be written as and the general

solution of Schrédinger’s equation can be written as’

/4 —i Mx +27m’z
o, (x)= 1 (mch e [h v ]l//n( %XJ (8)

JuL\ 7 n
and
2 2
Ep =ha)c(n+]/2)+h 2L7; n’, )
: mL2

On the other hand, we could have used the boundary conditions
@, (%Y,0)=®,, (XY,L,)=0 to obtain the same expression (9) but with the

following eigenfunction

Y4 mag
1 Ma, -'[TXVJ. 2nn’ [ma,
q)"'”'(x)_—\/ﬁ(_h j e sm[—LZ z]y/n[ . x]. (10)

It is necessary to point out that the solution (10) is not separable solution type

on the variables x and y; contrary to Landau’s solution. In addition, harmonic
oscillator is on the variable x without displacement, contrary to Landau’s solu-
tion which the harmonic oscillator is on the variable y with a displacement. Now,
the area of the surface of a circular ring of radius r, and r, is given classically
by AA= T[(rzz - rlz) ,where r’=x"+y® and r, >r,. For the quantum case and

using (8), one has

'In fact, our Hamiltonian is invariant under translation in the x-direction, and this fact is represented

by |: P, H :| =0, where p, is the infinitesimal generator of the element of the group of symmetry,

it is not difficult to see that p,®,, =ma, (ix-y)®, —2nia /m;%(b",“l is another eigenfunction

of our Hamiltonian, H (f)xcl)n_kl ) =E,, ( P, ) . In this way, one has that the energy being double

degenerated by this symmetry. The same will happen with the next cases.
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1[0y )= (@ P[0 )] = 22, -m), D)

(4

A= (@

ny,ny

where the integration has been carried out on the region ze[0,L,],
y e[—Ly, LyJ and X & (—o0,+x). Now, since @, =0B/mc, the above expres-
sion brings about the relation
qB(AA)
2nhc

=n,-n =jezZ, (12)

which represents the quatization of the magnetic flux [18] (expression (20)), and
it is related with the density of states between two Landau’s levels [2]. If
® =B(AA) is the magnetic flux, and @, =2nhc/2q is the so called guantum

magnetic flux [25] [26], this expression can be written as

—=2j, jez. (13)

Thus, the general solution (absorbing the sign in the constants) is

R e R e N I [T
‘I’(x,t):\/ﬁ . e d>Cue e Vol X | (14)
y =z n,n’

2
where the constants C_, must satisfy that zn n,|Cnn,| =1. The Landau’s levels

E,, aregiven by expression (9).

n,n

2.2. The Analytical Approach for Case B L E

The magnetic is given as before and electric constant fields is given by
E= (0,5,0) ,and ¢ =-E&y. Then, our Hamiltonian is [20] [21] [22]

- (-34]
H= ¢ +0¢(x), (15)

2m

and using again the Fourier transformation on the Schrddinger’s equation,

ihaa—‘f =HV¥Y , it is known [18] (Equation (39)) that a solution is given by

ya
1 (ma, Y ige (xt) Ma, ( CEtj

¥ (x,t)= L x—<2 |, 16

e (X1 ,/LyLZ( hj N B (e

where the phase ¢, (X,t) has been defined as

hzkz2 mc2&? |t
¢“(*”=P@“”V”+3a“7ﬁf}

qB ( cgt) mc’E
| X—— || y—— |
he B gB
asking for the periodicity with respect the variable “z”,

Yok, (X,t)=‘1’n'kZ (Z,y,Z+LZ,t), it follows that k,L, =2nn" where n’ is an

integer number, and the above phase is now written as

(17)
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R22m*n? mc?E? |t 2mn’
A(X1)=|ho, (N+1/2)+ - —— z
¢nn ( ) |: C( 1/ ) mLZZ 282 h L

qB( cstj[ mczgj
x| y—— |
hc B gB

p(x.t)

(18)

-qB
- I—X
Note from this expression that the term e™ contains the element e "¢
which characterizes the non separability of the solution with respect these coor-
dinates. Using the same arguments as before (11) to calculate the magnetic flux

crossing an area  AA, one gets
qB(AA)
hic

=2mnj, jeZ, (19)

obtaining the same expression as (12). In this way, from these relations and the
expression (16) we have a family of solutions {‘Pnn, (X,t)}n . Of the Schrodin-
ger equation,

¥ (xt):L(m%jﬂe'%”’(x’t)w M X_anhcz & (20)
SN W U e )

Now, by the same arguments we did in the previous case, the general solution

would be written of the form

\P(X‘t)zzénn"{}nn’(x’t)’ (21)

where one must have Y. |C..| =1.

n,n’

2.3. The Analytical Approach for Case B| E

The fields are of form B =(0, B,O) and E =(0,€,0). The scalar and vector
potentials are chosen as A=(Bz,0,0) and ¢=-Ey. The Shrddinger equation
is for this case as

a B 2 A2 A2
e Lk o AN i ) (22)
ot 2m 2m 2m

the eigenvalue problem is now defined by the equation
W 0°®d .qBhz o® q°B® , h? 0°D K 0D
— +i —+ z

- - L2 T 9T g5y (23
2m ox? mc ox 2mc’ 2m oy?  2m 22 a4y (23)

Using again the Fourier transform on the x-variable, it is known [18] (Equa-

tion (55)) that one gets the following solution

Y4 mo,
_ 1 Ma, i Ima, A1 (v —
(I)n,n’(x) an' M( h ) € l//n[ h X] I( (y yn’))' (24)

where ¢, is the solution of the quantum harmonic oscillator, Ai is the Airy

function [27], and a, is its normalization constant a, =]/ ‘Ai'(—l’lyn,)

Now, using the same arguments as before (11), but with n/ =n; (due to Airy

functions) to calculate the magnetic flux crossing an area AA, one gets
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qB(AA)
hic

=2mnj, je2Z, (25)

obtaining the same expression as (12). Then, we have obtained a family of solu-
tion of the Schrédinger Equation (22),

¥, (xt)=e" o (x), (26)

.n are given by E . =heo (n+12)-qéy, with
y, =1, and Ai (=¢,) =0. The general solution of (22) can be written as

where the energies E

-May

w(xt)=e » C e a0 (%), 27)
n,n’

.
with the condition Zn +|Can| =1, and where it has been defined the functions

a . as

n,n

3 a, (ma, ' Mo, ../
u"’"'(x'y)_ﬁ(Tj y/n[ . xjAl(I (y—yn,)). (28)

3. Analytical Approach with Symmetric Gauge

It is known that the selection of the gauge is not unique, there is always a trans-
form of the form A = A +Vy,where A =(BY,0) isthe Landau’s gauge and

A = %( y,—X) is the symmetric gauge, and the eigenvalue equation limited on

the plane x-yis written as follows
1o o QB ~ 9°B* 2 2
EY =— + Y+—LY+ X"+ ¥, 29
Zm(pX py) 2me 8mcz( d ) 29)

where I:Z is the z-component of the angular momentum operator,

L= Xﬁy —YP, . This equation cannot be separated in cartesians or polar coordi-
nates. Let us now define a complex variables z=xX+iy and z =Xx-iy, and

the constants

_9B

=1 and g=-=, (30)
2n 4nc
Equation (29) now takes the form of
2
f}}’:—aqj +a 1 2 _ 70 Y +alz'Y. (31)
0,0 . 0, »
Proposing a solution of the form
‘P(z,z*)ze’““*d)(z,z*) (32)
in the Equation (31), the resulting equation for the function @ is
2
a—q)*—ZaZaE:(a—g)d). (33)
0201 oz

this last expression can be separated. So, let us chose (D(Z, Z*) =f (Z)g (Z*) s
and by substituting, dividing by f'(z)g (Z*), and making some arrangements,
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it follows that
9'(2) f(2)

m:2a2+(a—5) f’(z)'

since the expression on the left hand side of the above equality has a different

(34)

mapping in the complex plane than the one on the right hand side, the latter ex-
pression will be generally satisfied if both of them are equal to a complex con-

stant A e C, and we obtain the next couple of equation
(2az+2) 1'(2)+(a—¢) f (2)=0. (35)
g'(2)=-29(2), (36)
The solution of Equation (36) is straight forward and is given by
g(z')=Be™, (37)

where B is an arbitrary complex constant. Now, we search for integer complex
solution of the expression Equation (35), writing the function as a power series
of the variable z

—_
—
N
SN—
Il
s
jo}]
=
N
=

(38)

k=0

substituting in Equation (35) and making some rearrangements, it follows that
Y [a (2ak+a—e)+a,, (k+1)21]z =0, (39)
k=0

which brings about the following recurrent relation

20k +a—¢

a,=——AQ,. 40
k+1 A ( Kk + l) k ( )
Let us notice that we have the following asymptotic behavior
a,
k+1 2a (41)

ak k>1 7
This means that there exist a natural number N such that for K> N we have
k
that a,, =a, (270!} . Therefore, one would have the series
N ‘ = (2az7\"
daz+ay D | — |, (42)
k=0 k=N+1 A

which diverges for any value such that |2aZ| / |/1| >1. In this way, one must cut

the series and obtain a polynomial. To obtain a polynomial solution, we must

demand that at some integer number k =n, one must have that a,,, =0, and
this implies that 2an+a—-£=0, or
& —a
L =neZ. (43)
200

Thus, one can obtain that the energies of the system as
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E, =ha, (n +1j, (44)
2
Note that the direct integration of Equation (35) gives us the solution
f(2)=A(2az+1)" ", (45)

where A and 1 are in general complex constants. Using the expression (43),

this function is written as
f(z)=A(az+4)" = Ai(:jﬂ”k (2a)" ¥, (46)
k=0

n !
where =™ s the binomial number. Therefore, using the expres-
k) Kkli(n—k)!

sions (46), (37), and (32), the solution of Equation (31) is
¥, (2.2)= A (2az+2)", (47)

where A, isthe normalized constant given by

A =e—w2/4a/(2a)”7’1 \/i(:jr(n—k+%jr(k %j (48)

k=0
In terms of the variables (x; y), the solution looks as
—-a X2+ 2 i . n
Yo (xy)=Ae D) st (2a(x+iy)+4) . (49)

One must note that [I:Z, H ] =0, where I:Z is the infinitesimal generator of
the element of the group of rotations around z-axis, which is the group of sym-
metries of our Hamiltonian. Therefore, L,'¥, must be other eigenfunction of

the Hamiltonian for the same eigenvalue E, . It is not difficult to see that

I:Z‘Pn:h(/lz*Jr 2anz j‘Pn, (50)
201+ 4
and that
H(LY, )= (L¥,). (51)

Note that one gets the following expectetion value
b 0, (n 1 1) A
n|r?|n)=2A%% (2a)"" Cin—k+1+=|T[k+= [+ 2L (52
(nfr?|n) =2ATe2 (2a) "3 : St 6

which can be used to calculate the area of the surface of a ring of inner radius 1,
and external radius r, on the plane x-y, given by AA= Tc(l’z2 - I’lz) classically,

but in our quantum case, one has
A= (0] )~ {0l ] = 2 x{B(n,)-B (1), )

where B(n) has been defined as
an (N 1 1
i zko[kjl“(n—k+l+2)l“(k+2j
< (N 1 1
Zk_o[kjr(n—k+2jr(k+2j

(54)

B(n)
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Numerically, one finds that B(2n) = (2n +1)/2 and B(Zn +1) =n+1 for
n e Z . Therefore, one gets that
n,—n even —even
2(n,—n)  odd-odd
n,-n -1/2 eve—odd
n,—n, +1/2 odd-even

B(n,)-B(n)= (55)

Thus, this means that 2c(AA) / 7 is an integer number independently on the
integers n, and n,, thatis (see 12)

B(AA
2mhc
or
o .
2. jez 57
o, ) Je (57)

where @ is the magnetic flux, ® =B(AA),and @, is the quantum magnetic
flux, @, =2nAc/q.

One needs to mention that Laughlin [28] gave a solution to this problem
which is equivalent Landau’ solution, and this equivalence was demonstrated by
Orion [29]. Their solutions are of separable variable type in the polar coordi-
nates ¢ and p in the space x-y(Xx=pcos¢, Y= psink ). However, as one
can see from (47) or (49), this solution is not of separable variable type in these
coordinates, and this is consistent with the fact that the eigenvalue problem (29)
written in polar coordinates

2 2 2?2
_h_ li pa_‘}’ +i26 ¥ +q Bz pz\P_ih_qB a_qj: EVY, (58)
2m | pdp\" Op ) p° Op 8mc 2mc op

is not of separable variable type in these coordinates. Therefore, the solution (47)

cannot be equivalent to Landau-Laughlin solutions.

4. Conclusions and Comments

We have summarized our previous results about the quantization of a charged
particle in a flat box and under constants magnetic and electric fields for several
electromagnetic static cases using Landau’s gauge for the static magnetic field,
and using Fourier transformation to solve the linear differential equations re-
sulting from the Shrodinger’s equation. We have pointed out again that the full
solution obtained is different from Landau’s solution for the wave function, but
as expected, Landau’s levels appear as the solution of the eigenvalues. In all cas-
es, a characteristic phase appears which indicates the non separability on the re-
lated variables, which is consistent with the non separability of these variables on
the eigenvalue differential equation defined by the Hamiltonian. The quantiza-
tion of the magnetic flux now appears by considering the number of states be-
tween two Landau’s levels, and this result is related with the density of states

between these levels. Finally, we considered the case for symmetric gauge for the
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static magnetic field on the two dimensional plane, and we have shown that a

non separable solution exists which is different to Landau-Laughin solution, and

the same Landau’s levels are obtained. We keep on considering that the ap-

proach given here could be very useful to understand quantum Hall effect and

related phenomena mainly, because with our solutions a Hall’s voltage appears.
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