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Abstract 
The persistence exponent oθ  for the simple diffusion equation 

( ) ( ), ,t x t x tφ φ= ∆ , with random Gaussian initial condition, has been calcu-

lated exactly using a method known as selective averaging. The probability 
that the value of the field φ  at a specified spatial coordinate remains positive 

throughout for a certain time t behaves as ot θ−  for asymptotically large time 

t. The value of oθ , calculated here for any integer dimension d, is 
4o
dθ =  

for 4d ≤  and 1 otherwise. This exact theoretical result is being reported 
possibly for the first time and is not in agreement with the accepted values 

0.12,0.18,0.23oθ =  for 1,2,3d =  respectively. 
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1. Introduction 

The problem in the present paper is to find the persistence exponent for the 
simple diffusion equation ( ) ( ), ,t x t x tφ φ= ∆ . The diffusion equation is an equ-
ation that has no stochasticity. In the present problem, the stochasticity is in-
troduced through the random initial conditions. The problem is about evaluat-
ing the probability of a certain event. The event is that φ  at a specified location 
remains positive throughout the time evolution till a certain time t i.e. the φ  at 
the location does not change sign even once. This probability for asymptotically 
large time is characterised by an exponent oθ  called the persistence exponent. 
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Persistence exponent for the diffusion equation has been a subject of interest to 
physicists [1]-[7] etc., researchers in mathematics and statistics [8] [9] etc. as 
well as experimentalists [10]. The interest in the persistence exponent is just not 
confined to the diffusion equation but to other areas of non-equilibrium physics. 
Among them random walk [11], walk in a random environment with or without 
bias [12], surface growth [13], diffusing particle in a random potential with a 
small concentration of absorbers [14], behaviour of financial markets [15] etc. 
are worth mentioning. There are few exact calculations for the persistence ex-
ponent in the literature. The case of a simple random walk in one dimension  

gives the exponent 
1
2oθ = . Even the calculation of persistence exponents for 

Gaussian processes may not be straight forward. 
We revisit the problem of simple diffusion. It is strongly non-Markovian in 

nature. The problem involves the partial differential equation tφ φ= ∆  with 
random Gaussian initial conditions. It appears to remain an unsolved problem 
even though results [1] [2] and several others have been reported. The problem 
of diffusion may require a better understanding in the context of persistence. 
The article tries to find an exact solution to the problem. 

2. Simple Diffusion Equation, Random Initial Conditions and  
Persistence Exponent 

The diffusion equation tφ φ= ∆  is a coarse grained differential equation whose 
solution is uniquely determined by the initial condition. In the present problem, 
the initial condition is not fixed but is chosen from a distribution. The initial 
value of φ  at every coordinate is chosen from a Gaussian distribution with 
mean 0, variance k and the initial values of φ  at any two coordinates are statis-
tically independent. 

In order to calculate persistence exponent oθ  we have to calculate the proba-
bility that the field φ  at a specified coordinate does not flip sign even once 
throughout a time t. This probability ( )t+  of φ  always remaining +ve be-
haves in the limit of asymptotically large time as ( ) ot t θ−+ 

. This is true for a 
non-stationary process like in the present case. In this article any position x 
coordinate is a vector quantity in a d dimensional space. The moments of the in-
itial condition distribution described above are given by 

( ),0 0xφ =                          (1-a) 

( ) ( ) ( ) ( )1 2 1 2,0 ,0 dx x k x xφ φ δ= −                 (1-b) 

where k is the variance of the distribution. The solution for the diffusion equa-
tion may be written in terms of the initial condition as  

( ) ( ) ( ), d , ,0dx t x G x x t xφ φ′ ′ ′= −∫                   (2) 

where ( ) ( ) ( )2 2, 4 exp 4dG x t t x t−= −π . The plan for the evaluation of the ex-
ponent is as follows. First, we have to calculate the probability of φ  attaining a 
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specific final value β  at a certain ox x=  starting from a definite initial value 
α  of φ  at ox x= . In order to evaluate it we use the method of selective aver-
aging. The paths that take the initial α  to the final value β  also comprise 
those where ( )oxφ  flips sign at least once during time evolution. The probabil-
ity of such paths is to be subtracted out. Finally, there has to be an integration 
over the final β  from 0 to ∞ , followed by an integration over α  from 0 to 
∞ .  

Selective averaging means averaging over the initial field ( ),0xφ , except 
when ox x= . In other words, the averaging is done over all the initial configu-
rations such that φ  at ox x=  is kept fixed at α  (say) i.e. ( ),0oxφ α=  
while for ox x≠  φ  varies according to Gaussian distribution. In this paper the 
selective distribution, denoted by subscript s, is characterized by the moments,  

( ) ( ) ( ),0 d
os

x x xφ αδ= −                     (3-a) 

( ) ( ) ( ) ( ){ } ( ) ( )2
1 2 1 1 2,0 ,0 d d

os
x x k k x x x xφ φ α δ δ = + − − −       (3-b) 

It may be verified from (3-a), (3-b) that if ox x≠ , 1 ox x≠ , 2 ox x≠ , we get 
(1-a), (1-b) and for 1 2 ox x x x= = = , (3-a), (3-b) give α , 2α  as expected. Us-
ing (3-a), (3-b), we can calculate the moments of the random variable ( ),ox tφ ,  

( ) ( ) 2, 4 d
o s

x t tφ α−π=                       (4) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

2
12

1 2

2
2

1 2

2 2
1

1

, d d 4 exp
4

exp ,0 ,0
4

d 4 exp
2 4 4

d od d
o s

o
s

d od
d d

x x
x t x x t

t

x x
x x

t

x x kk x t
t t t

φ

φ φ

α

−

−

 ′−
′ ′  = −

  
 ′−

′ ′ × −
  

 ′−
′  = − − +

  

π

π
π π

∫

∫

    (5) 

While evaluating the second order moment, we have used the relation in (3-b). 
Hence the mean and the variance of the distribution for ( ),ox tφ , represented 
by µ  and 2σ  respectively, are  

( ) ( ) 2, 4 d
o s

x t tµ φ α−= = π                  (6-a) 

( ) ( )

( ) ( ) ( ) ( )

22 2

2 1 2

, ,

4 2 2 4

o o ss
d dd d

d

x t x t

k k d t k t

σ φ φ
− −− −

= −

= π πΓ −
          (6-b) 

In the above equation dk  denotes the angular integration in d dimensional 
space while Γ  represents the usual Gamma function. It may be mentioned that 
( ),x tφ  in (2) is Gaussian irrespective of whether ( ),0xφ ′ , the initial Gaussian 

field, is correlated or not. In the present case, though, the initial field is uncorre-
lated and ( ),x tφ  can be proved to be Gaussian using characteristic functions in 
probability theory [16]. It may be noted that the δ  function distribution is the 
limiting case of a Gaussian distribution. The expression for the conditional 
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probability for starting at α  and being between β  and dβ β+  at time 1t  
is  

( ) ( )2

2

1| d exp d
22

P
β µ

β α β β
σσ

 − −
 
  π

=               (7) 

where ( )1, tµ µ α=  and ( )1tσ σ= . This probability considers all the paths 
that start from α  to be between β  and dβ β+  at time 1t  including ones 
that flip en route β  as depicted in Figure 1. Figure 1 is the projection of the 
trajectory of the system in the infinite dimensional tΦ−  space on to the 
( )ox tφ −  plane. 

( )0,A α  represents the starting point and ( )1,B t β , the destination. AB 
represents a path along which ( )oxφ  does not flip and ADB (blue curve) is a 
typical path along which ( )oxφ  flips. Such paths have to be excluded. The 
probability of reaching from A to the neighborhood B at asymptotically large 
time 1t  without flipping is given by,  

( ) ( ) ( ) ( )( )1| d | d | 1 dP P P O tβ α β β α β β α β+ −= − − +           (8) 

The second term represents the probability of paths such as ADB  originat-
ing from ( )0,A α−  and terminating in the neighborhood of B at 1t . (8) is not 
be confused with the method of images in [17]. (8) follows a very different logic 
in the present case and holds good asymptotically. To prove (8) we will show 
that there is a one to one mapping from a path A B→  to a path A B→  and 
that the probability of two such paths converges asymptotically. This part is ex-
plained in 1) in what follows. Further, to justify (8) we have to show that the 
“number” of paths A B→  that flip and the “number” of paths A B→  con-
verge asymptomatically. This is done in 2). In the subsequent analysis we will 
consider a d dimensional lattice—lattice spacing being infinitesimally small— 
instead of continuum for the sake of notational convenience only. The reason for 
(8) follows.  

 

 
Figure 1. Projection of tΦ −  trajectory onto 
the ( )ox tφ −  plane. 
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1) An initial configuration at A of Figure 1 given by { }1 2, , , ,ABX α α α=   , 
is considered, where 1 2, ,α α   are the initial values of φ  at coordinates  

ox x≠ . The corresponding path takes initial ( )oxφ α=  to B, then it may be 

concluded from (2) that { }1 2, , , ,ABX f fα α α= −   (
( )
( )

2

2

4

4

d

d

t
f

t

β α

β α

−

−

π

π

+
=

−
) is a  

configuration at A  which takes initial ( )oxφ α= −  to B. Hence there is a one 
to one mapping of paths from A B→  to those from A B→ . It may be under-
lined here that 1f →  as t →∞ . This implies that the probability of the two 
paths approach each other asymptotically. 

2) In this part we will address the fact that in the asymptotically large time limit 
it is a very good approximation to say that there is a one to one correspondence 
between the paths from A that flip to those from A B→ . This may be used as it 
is a controlled approximation for it improves with increasing t. In order to see 
this point let us consider a point ( )2 ,C t β  (not shown in the Figure 1) where 

2 1t t> . Let { }1 2, , , ,ABY γ α γ=    be the initial configuration corresponding to 
path ADB ( the path in blue in Figure 1) where 1 2, ,γ γ   are the initial values 
of φ  at coordinates ox x≠ . This path crosses zero while reaching B. It can be  

shown that { }1 1 1 2, , , ,ACY f fγ α γ=    (
( )
( )

2 2
22

1 2
1 1

4

4

d d

d

ttf
t t

β α

β α

−

−

− 
=  

− 

π

π
) is the  

corresponding initial configuration for a path A C→ . The exact expression for 

1f  contains a coordinate dependent term whose leading order behavior for 
large t is 1. Since 2 1t t> , we have 1 1f >  for sufficiently large 1t . Let the time 
coordinate at D be Dt , then ( ), 0o Dx tφ =  for the path ADB. Then one may ar-
rive from (2) that ( ), 0o Dx tφ <  for the initial configuration ACY . Hence, one 
can conclude that the path corresponding to ACY  must have flipped at an earli-
er time than Dt . Therefore, if a path from A B→  flips, the corresponding 
path from A C→  flips at an earlier time. Since 2 1t t> , the “number” of paths 
flipping while going from A C→  is more than those from A B→ . Thus the 
“number” of paths from A B→  that flip is a fraction 2f  of those from 
A B→  where ( )2 11 af O t−= −  for large 1t , a being some positive number.  

On account of 1), 2) we say that the probability of the paths (like ADB in Fig-
ure 1) that flip while reaching B in the large time limit is given by 
( ) correction|P hβ α− , where ( )correction 1 bh O t−= + , 1b = , being Taylor expansion 

in 1t− . In principle, the coefficient of bt−  may be a function of β . When in-
tegrating over β —as will be done later—the contribution to the integral comes 
from the vicinity of 2dtβ µ −= − 

 which is vanishingly small in the asymptot-
ic limit. Also, 4d dtβ σ −

  . The coefficient is Taylor expanded about 0β =  
and only the zeroth order term or the term independent of β  is retained. So 
the probability of ( )oxφ  not changing sign when reaching the neighborhood 
( dβ ) of B is, for asymtotically large time,  

( ) ( )

( ) ( ) ( )( )
correction

1

lim | d | d

| d | 1 d
t

P P h

P P O t

β α β β α β

β α β β α β
→∞

−

− −  

= − − +
              (9) 
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This leads us to (8). The final β  may have any value as long as it remains 
positive. The probability of ( )oxφ  starting from α  and reaching a final posi-
tive value without ever changing sign is 

( ) ( )
0

d |Pα β β α
∞+ += ∫                     (10) 

We would now calculate (10) for asymptotically large value of t. Under the 
circumstances the second term on the R.H.S of (6-b) can be neglected. Further 

2
2

2
dtµ α

σ
−

 . Hence for 2dtα  , 2 2 1µ σ  . The expression (10) is evaluated 

using the identity [18]  

( ) ( )
2

2
0

d exp exp 1
4
xx x erfγ β βγ γ β
β

∞  −  − = −


π  
∫         (11) 

Evaluation leads to a sum of two terms—one is proportional to 4dt−  and the 
other is proportional to 1t− . Hence we obtain  

( ) 4dtα α+ −                          (12) 

for 4d ≤ . In arriving at the above result the asymptotic expansion of “error 
function” erf has been used for small argument. Finally, the expression for 

( )t+  is obtained by integrating α  over a Gaussian distribution.  

( ) ( ) ( )
0

dt Qα α α
∞+ += ∫                      (13) 

where ( )Q α  is the Gaussian distribution for initial ( ),ox oφ α=  with va-
riance k as mentioned at the beginning. If 2dk t , it may be concluded from 
(12) and (13) that ( ) 4dt t+ −   or 1t−  depending on whether 4d ≤  or not. 
This gives 4o dθ =  or 1. 

3. Result and Conclusion 

In the previous section, exact calculation has been carried out to determine the 
probability ( )t+  of the sign of the field φ  remaining positive throughout an 
asymtotically large time t. The probability is ( ) 4dt t+ −  . Hence, the persis-
tence exponent is 4o dθ =  valid for any arbitrary integer dimension 4d ≤ . 
The exponents for 1,2,3d =  are 0.25, 0.50, 0.75 respectively.  

The result may be experimentally verified for a system initially at thermal 
equilibrium defined by a temperature T. The equilibrium is then disturbed in a 
suitable manner. The time evolution of the coarse grained temperature at any 
point satisfies the simple diffusion equation; hence, this time evolution can be 
studied to find the persistence exponent.  

The answer for the exponent oθ  obtained in this paper is in disagreement 
with all the papers cited in the beginning. The first results for the persistence 
exponent in the case of the diffusion problem were published in [1] [2] back to 
back. The papers used a two time correlation function and explicitly applied the 
approximation (IIA), Independent Interval Approximation, to get to the answer. 
Application of the two time correlation function is not suitable here and so is 
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IIA which is a Markovian approximation. Further, the papers use Monte Carlo 
simulation to confirm the result. Monte Carlo method appears to be unsuitable 
for this problem. Hence all the papers that reproduce the results of [1] [2] are 
not expected to give the correct answer. In [3], the authors have defined a corre-
lation function ( )C T , just like [1] [2], to carry the calculation forward. Let us 
also consider [6] where the authors have used Kac Polynomials [19] to obtain 
the “exact exponent” in 2d. The answer obtained agrees perfectly with [1] [2]. In 
the course of the calculation, they have used that the zero crossing property is  

governed by the covariance ( ) sech
2
Tc T  =  
 

 [6] of the stationary Gaussian  

process i.e. the diffusion equation with time redefined. Similarly in [4], correla-
tor in time ( )Fε τ τ ′−  has been used in the calculation. The point is that the 
covariance/correlator/correlation function is a misleading quantity for the prob-
lem for reasons mentioned below. The model presented in the paper has ran-
domness only in the initial condition. Once the system starts evolving, there is 
no further randomness. It evolves in accordance with the kernel in (2). It is en-
coded in the initial condition when and where the φ  will flip. The probability 
of each path is uniquely determined by the probability of initial condition, hence 
the problem with covariance/correlator. The covariance function imposes sto-
chasticity on the present problem throughout the entire time evolution. We now 
have a different model with the same correlation function but no unique depen-
dence of the probability of the path on initial condition. It also makes the prob-
lem Markovian. Hence, all the previous results are in perfect agreement though 
the calculated exponent will be different from the actual value. The value of the 
exponent does not depend on only correlation function, but it depends on other 
details of the model too. Further, there even appears to be experimental proof 
[10] for the results of [1] [2]. The experimental setup of [10] does not represent 
the diffusion model described in this paper. The setup satisfies the approxima-
tions of the previous papers and hence the agreement with their result.  
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Abstract 
We investigated the electronic heat capacity, thermal conductivity, and resis-
tivity of UN using Quantum Espresso and EPW code. GGA, PBEsol func-
tional was used. The calculated electronic heat coefficient was found to be 
significantly reduced (0.0176 J·mol−1·K−2 versus 0.0006 J·mol−1·K−2) when the 
non-local hybrid functional (B3LYP) was used. Furthermore, we calculated 
electrical resistivity using a very transparent Ziman’s formula for metals with 
the Eliashberg transport coupling function as implemented in EPW code for 
non-spin-polarized calculations. The number of mobile electrons in UN, as a 
function of temperature, was derived from the ratio of the calculated resistiv-
ity and available experimental data. The electronic thermal conductivity was 
evaluated from the calculated electronic resistivity via Wiedemann-Franz law 
with the number of mobility electrons (nav) incorporated (averaged over the 
temperature range 300 K - 1000 K). Both the electronic thermal conductivity 
and resistivity, as calculated using newly evaluated nav, compare well with ex-
perimental data at ~700 K, but to reproduce the observed trend as a function 
of temperature, the number of mobile electrons must decrease with the tem-
perature as evaluated. 
 

Keywords 
UN, Electronic Thermal Conductivity, Electronic Structure, Number of  
Mobility Electrons, Quantum ESPRESSO, EPW Codes 

 

1. Introduction 

Urania fuel, which is used in conventional nuclear reactors, is not suitable for 
some designs of new generation reactors (e.g., SuperCritical Water Reactor) due 
to its low thermal conductivity [1]. In the context of finding a sustainable devel-
opment solution to the use of non-renewable energy sources, innovative re-
search towards enhanced accident-tolerant nuclear fuel (EATF) that can with-
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stand the loss of coolant for a long time is gaining momentum. EATF materials 
must have higher thermal conductivities to prevent meltdown [2]. High-density 
metallic compounds, uranium silicide (U3Si2) and uranium and thorium nitrides 
(UN, ThN) [3], have been proposed as alternative EATFs [2] for implementation 
as lower enrichment fuel. 

In our previous papers [4] [5], we have investigated UN, which has the same 
cubic structure ( 3Fm m  symmetry) as ThN, and may be used in combination to 
enhance thermal conductivity as both are metals. In these metallic fuels, thermal 
conductivity does not deteriorate with increasing temperature like the lat-
tice-governed thermal conductivity in insulators (e.g. urania [6]). This is due to 
the increasing presence of electronic carriers with mobility as temperature rises. 
Since both electronic conductivity and electronic contribution to thermal con-
ductivity are related to electron mobility, they can be derived from each other via 
the Wiedemann-Franz proportionality law (WFL), which is very useful in de-
termining the contribution from electrons to the measured total thermal con-
ductivity.  

Enhanced computational capabilities have led to significant developments in 
extending the potentialities of based on density functional theory (DFT) codes. 
Ab initio calculations based on DFT have become an essential theoretical tool in 
investigating novel nuclear materials. In this study, we used first-principles, pre-
dictive calculations based on DFT, where ground state energy is calculated using 
functionals dependent on the electronic density only. Unlike urania, fewer such 
studies have been done on these alternative fuels. In particular number of mobil-
ity, electrons need to be investigated, since they are crucial in enhancing the 
thermal conductivity of metals at high temperatures. High thermal conductivity 
in metallic fuels allows for fast heat dissipation and makes reactors safer and 
more economical. 

In an evaluation of the electronic heat capacity, very accurate calculations of 
electrondensities of states are required. In our previous work on thoria [7], we 
found that the non-local hybrid functional (B3LYP) [8] modified the electronic 
structure significantly and led to a larger bandgap. It was therefore of interest to 
examine the electronic structure of UN using B3LYP to find how it might affect 
the value of the electronic heat capacity coefficient of UN, as evaluated here. 

2. Calculation Methodology 

To evaluate the geometrical and electronic structures of UN we used Quantum 
ESPRESSO (QE) code [9], since there is already an interface provided between 
QE and EPW (Electron-Phonon coupling using Wannier functions) code [10], 
which we used to evaluate electronic transport.  

We calculated the electronic heat capacity coefficient (γ), which is propor-
tional to the electron density of states at Fermi energy at the equilibrium lattice 
constants using the density of states of electrons per eV at the Fermi energy 
(ρ(εF)) for UN from: 
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( ) ( )18 23 6.242 10e F A BC T N k T Tρ ε γπ= × × ≡              (1) 

The respective electronic heat capacity is proportional to γ and increases line-
arly with temperature and can be evaluated using Equation (1). A very accurate 
evaluation of the electronic structure was required; therefore, in addition to 
generalized gradient approximation (GGA) of the Perdew, Burke, and Ernzerhof 
functional developed for solids (PBEsol) [11] DFT, we used non-local Becke 
three-parameter hybrid exchange (B3)+LYP functional (B3LYP) [8] to modify 
the electronic structure around Fermi energy, and the respective electronic heat 
coefficients were compared. We used the same norm-conserved pseudopoten-
tials and setup for the electronic structure calculations as detailed in our previ-
ous work on UN [5]. 

Using the density functional perturbation theory (DFPT) method as imple-
mented in QE code [12], we evaluated previously [5] the phonons’ dispersion 
relation and the densities of states of UN. 

We computed the electrical resistivity calculation (ρcalc(T)) using a very trans-
parent Ziman’s formula for metals (Equation 54 in Ref. [10]) with the Eliashberg 
transport coupling function: ( )2

tr Fα ω  (Equation 55 in Ref. [10]) and a hard-
coded number of mobility electrons (nc) per cell equal to 8 (assumed for lead as 
an example) as implemented in EPW code [10]: 

( ) ( ) ( ) ( )2
2

0

4
d , 1 ,e

calc tr
B

m
T F n T n T

ne k T
ρ ω α ω ω ω

∞π
= × +  ∫           (2) 

where n = nc/omega and omega is the calculated in the code volume of the pri-
mitive cell in a.u.. Note that in the new version (QE 6.7) nc is a parameter with 
the default value equal to (4). 

We also calculated integrated electron-phonon strength (λ) as a function of 
frequency (ω) [10]: 

( )2

0

dtr Fω α ω
λ ω

ω
= ∫                         (3) 

The cumulative electron-phonon strength and Eliashberg transport coupling 
function could be used in future comparisons with other metallic fuels. Addi-
tionally, since the experimental resistivity is known for UN, we evaluated the ef-
fective number of electron carriers in electronic transport (neff(T)): 

( ) ( )
( )

8 calc
eff

exp

T
n T

T
ρ
ρ

=                        (4) 

When replacing n, the number of mobility electrons in Equation (2) with 
neff(T), the calculated resistivity would become equal to the experimental. We 
also calculated averages of an effective number of electron carriers in the 300 K - 
1000 K temperature range (nav) and calculated resistivity by replacing n with nav. 

The electronic contribution to the thermal conductivity (κe) can be calculated 
via Wiedemann-Franz law [13] from the electrical conductivity (σ) or resistivity 
(ρ(T) = σ(T)−1): 
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2

3
B

e
k T
e

κ σ 
 
 

π
=                         (5) 

where kB is the Boltzmann constant, e is the electron charge, and T is the tem-
perature in K. We calculated electronic thermal conductivity using the nav num-
ber of mobility electrons of Un and compared results with the experiment. 

3. Results and Discussion 

Here we adopted for UN the same parameters and norm-conserving pseudopo-
tentials: U.pbesol-n-nc.UPF and N.pbesol-nc.UPF from QE code as in our pre-
vious studies [5]. We assumed 5f3, 6d1, 7s2 for U and 2s2, 2p3 for N as the elec-
tronic configurations. The evaluated lattice constants for non-magnetic UN 
(0.489 nm) and using this setup [5] agreed very well with the experimental value 
of 0.489 [14]. 

3.1. Electrons’ Density of States and Electronic Heat Capacity 

Using QE code, we previously performed [5] non-spin-polarized calculations to 
evaluate the electronic structure of UN at the equilibrium lattice constants. In 
addition, we used here the non-local hybrid exchange functional (B3LYP) [8] to 
try to modify its electronic structure around Fermi energy as demonstrated be-
fore during an evaluation of the bandgap of ThO2 [7]. However, there are no 
pseudopotentials developed for B3LYP either for N or U atoms and the calcula-
tions are very computationally demanding. Therefore, we reduced the kinetic 
energy cutoff for wave functions to 200 Ry (2721 eV) and used existing pseudo-
potentials for other functionals: N.blyp-hgh.UPF and the used above U.pbesol- 
n-nc.UPF. Otherwise, we used a similar setup and the same lattice constants as 
previously determined for PBEsol calculations [5]. 

In Figure 1(a) and Figure 1(b), we compare the electronic structure of UN 
evaluated using a) PBEsol and b) B3LYP functionals. We present the evaluated 
per formula unit (f.u.,: UN) total electronic density of states of UN (solid black 
line) together with the projected partial electron densities of states (plotted with 
0.1 eV energy step) of nitrogen: 2p (dashed-dot-dot blue line), and 2s (dashed- 
long pink line) and for uranium: 6d (dark red dotted line) and 5f (dashed me-
dium green line) electron densities of states. The Fermi energy is indicated by 
the grey dashed line. The integrated (with 0.01 eV energy step) total number of 
electrons as a function of energy is indicated as dashed-dot red lines, with the 
total number of electrons at Fermi energy: 11e. In both calculations (Figure 1(a) 
and Figure 1(b)) 2p electrons of the N atom are located below 10 eV while 2s 
electrons are located below 0 eV energy.  

Similar to our previous results for thoria [7], we found that the non-local hy-
brid functional B3LYP pushed 5f electrons of U up and away from Fermi energy 
(Figure 1(b)) when compared with our calculations using PBEsol in Figure 1(a). 
This resulted in a lower density of states at Fermi energy (ρ(εF)) as the hybrid-
ized states of 6d and 5f U electrons also moved up just above it, as shown in Ta-
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ble 1, second row.  
Our calculations predict a significant reduction of the electronic heat coeffi-

cient (γ) for UN (B3LYP result), as shown in Table 1. It would be interesting to 
examine an experimental evaluation although recently Parker et al., using the 
experimental fit [15] for ThN, also found γ to be very small (0.001 J·mol−1·K−2). 

 

 
Figure 1. The calculated total (black solid line) electron densities of states of UN us-
ing (a) PBEsol functional and (b) non-local hybrid functional (B3LYP) are presented. 
The projected partial electron densities of states of nitrogen 2p (dashed-dot-dot blue 
line), and 2s (dashed-long, pink line) and for uranium: 6d (dark red dotted line) and 
5f (dashed medium green line) electron densities of states are shown as indicated. 
The dashed grey lines indicate the Fermi energy. The integrated total number of 
electrons (left y axis) as a function of energy is indicated as dashed-dot red lines. 

 
Table 1. The comparison of the calculated electron density of states at Fermi energy, the 
electronic heat capacity coefficient, and Fermi Energy of UN using PBEsol and B3LYP 
functionals. 

Calc. QE 
This work 

UN 
(PBEsol) 

UN 
(B3LYP) 

ρ(εF) [electr./eV/FU] 7.472 0.253 

γ [J·mol−1·K−2] 0.0176 0.0006 

EF [eV] 12.31 13.72 
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3.2. Electronic Resistivity  

We calculated phonons’ dispersion and the density of states as before [5] but 
used a finer grid: 6 × 6 × 6. Next, using EPW code, we calculated the Eliashberg 
transport coupling function: ( )2

tr Fα ω  (Equation 55 in Ref. [10]) together with 
the integrated electron-phonon strength (λ) as a function of frequency (ω) using 
Equation (3). In Figure 2, we present the results by a dashed red line and 
dashed-dot blue line, respectively. The integration was done on a 48 × 48 × 48 
homogeneous k-point mesh and a 48 × 48 × 48 homogeneous q-point mesh with 
Gaussian smearing of 100 meV for the electrons, and 0.1 meV for the phonons. 
The total integrated electron-phonon strength of 0.2472 only slightly increases 
(0.2516) when 36 × 36 × 36 grids are used while the Eliashberg transport coupl-
ing function (indicated by a solid black line), which is presented here using 0.5 
meV smearing, shows a more visible effect of grid change (Figure 2). 

Next, we calculated the electrical resistivity of UN and the number of mobility 
electrons using Equations (2) and (4), and the results are presented in Figure 3 
and Figure 4. We used porosity-free experimental resistivity for UN by Hayes et 
al. [16]. We note that both the resistivity and the evaluated number of mobility 
electrons are not much affected by a change in the grid. The averages over a 
number of mobility electrons in the temperature range 300 K - 1000 K are 
slightly higher for the finer grid (nav: 0.343 e versus 0.337 e). We found that Zi-
man’s formula (Equation (2)) predicts a stronger decrease of resistivity for de-
creasing temperatures than experiment when assuming that the number of mo-
bility electrons is constant and equal to nav, as indicated in Figure 3. To repro-
duce the experimentally observed temperature dependence of the resistivity of 
UN as presented in Figure 3 (black solid line), a variable with a tempera-
ture-dependent number of electrons was needed, as evaluated in Figure 4. 

 

 

Figure 2. The calculated Eliashberg transport coupling function for UN: ( )2
trFα ω  

together with the integrated electron-phonon strength (λ) as a function of fre-
quency (ω) using the same homogeneous grid for k-point and q-point meshes: 48 
× 48 × 48 is shown by dashed red line while for the 36 × 36 × 36 grid a solid black 
line is used. The respective integrated electron-phonon strengths (right y axis) are 
indicated by the dashed-dot blue line and dashed long black line, respectively. 
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Figure 3. The calculated electrical resistivity of UN using Equation (2) for two gr-
ids as indicated and a constant number of mobility electrons (nav): 0.343 e and 
0.337, respectively, versus experimental correlations [16] are shown, as indicated. 

 

 

Figure 4. The evaluated temperature dependence of the number of mobility elec-
trons of UN as a function of temperature, which reproduces the experimental re-
sistivity [16] for Ziman’s formula (Equation (2)).  

3.3. Thermal Conductivity  

In Figure 5, the electronic thermal conductivity of UN, as calculated from the 
experimental resistivity of UN [16], via Wiedemann-Franz law [13] Equation 
(5), is shown by a solid black line. 

We also calculated the electronic thermal conductivity of UN, using Equation 
(5) and the calculated resistivity shown in Figure 3 for the constant number of 
mobility electrons (nav): 0.343 e and 0.337 e, respectively. They are indicated by 
the dashed red line and vertical, black marks, respectively. 

It can be noted that the derived thermal conductivity for the assumed constant 
number of mobility electrons is almost independent of temperature and behaves 
similarly to that studied by us for Al [6]. Therefore, to reproduce the experimen-
tally observed strong temperature dependence (indicated by black, solid line) of  
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Figure 5. The calculated electronic thermal conductivities of UN, using Equation (5) and 
the calculated (presented above in Figure 3) resistivity for the constant number of mobil-
ity electrons (nav): 0.343 e and 0.337 e are indicated by dashed red line and vertical, black 
marks, respectively. The black solid line represents the electronic thermal conductivity 
calculated from the experimental resistivity [16] and Equation (5) or alternatively using 
Equation (2) with the derived number of mobility electrons shown in Figure 4. 

 
the electronic thermal conductivity of UN it is necessary to use the number of 
mobility electrons that increase with the increasing temperature, as presented in 
Figure 4. Further experimental investigation of the number of mobility electrons 
in UN as a function of temperature is of interest. 

4. Summary 

We have investigated the electronic heat capacity, thermal conductivity, and re-
sistivity of UN using Quantum Espresso and EPW code. GGA, PBEsol function-
al, and non-local hybrid functional (B3LYP) were implemented. The calculated 
electronic heat coefficient was found to be significantly reduced (0.0176 J·mol−1·K−2 
versus 0.0006 J·mol−1·K−2) when the non-local hybrid functional (B3LYP) was 
used. 

Furthermore, we found that the calculated electrical resistivity using Ziman’s 
formula for metals with the Eliashberg transport coupling function as imple-
mented in EPW code for non-spin-polarized calculations, would only reproduce 
the experimental results for UN when the derived number of mobility electrons, 
which increases with increasing temperature, was used. This also applies to the 
evaluated electronic thermal conductivity, which for any assumed constant 
number of carriers in UN would be not increasing with the increasing tempera-
ture but would remain almost independent of temperature, like Al for example. 
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Abstract 
The basic equations of the non-relativistic quantum mechanics with trajecto-
ries and quantum hydrodynamics are extended to the relativistic domain. 
This is achieved by using a Schrödinger-like equation, which describes a par-
ticle with mass and spin-0 and with the correct relativistic relation between its 
linear momentum and kinetic energy. Some simple but instructive free par-
ticle examples are discussed. 
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1. Introduction 

In 1927, shortly after E. Schrödinger published a seminal paper containing his 
celebrated equation [1], E. Madelung dared an interpretation showing that the 
Schrödinger equation can be transformed into two equations that mimic the 
continuity and the Euler equations of hydrodynamics [2]. The Euler equation is 
a particular case of the Navier-Stokes equation [3]. Such hydrodynamic inter-
pretation is now considered a forebear of the de Broglie-Bohm Pilot Wave 
Theory [4] [5] [6] [7], although germs of this theory were ventured in 1924 by L. 
de Broglie [8]. The process followed by Madelung consisted in expressing the 
Schrödinger solution in an exponential form which led to the two abovemen-

How to cite this paper: Ruiz-Columbié, 
A., Farooq, H. and de Peralta, L.G. (2021) 
Direct Relativistic Extension of the Made-
lung-de-Broglie-Bohm Reformulations of 
Quantum Mechanics and Quantum Hy-
drodynamics. Journal of Modern Physics, 
12, 1418-1434. 
https://doi.org/10.4236/jmp.2021.1210085 
 
Received: July 18, 2021 
Accepted: August 6, 2021 
Published: August 9, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2021.1210085
https://www.scirp.org/
https://doi.org/10.4236/jmp.2021.1210085
http://creativecommons.org/licenses/by/4.0/


A. Ruiz-Columbié et al. 
 

 

DOI: 10.4236/jmp.2021.1210085 1419 Journal of Modern Physics 
 

tioned equations, one for the amplitude and another for the phase. Those ideas 
were later retaken by D. Bohm [4] [5]. Consequently, most of the work related to 
the Madelung-de-Broglie-Bohm reformulation of quantum mechanics and 
quantum hydrodynamics applies to particles moving slowly respect to the speed 
of light. A fully relativistic quantum mechanics with trajectories was recently 
formulated [9]; however, it lacks the relative simplicity of the non-relativistic 
formulation. Other general approaches have been reported [10] [11], but we ex-
plore in this work an alternative methodology for extending, to the relativistic 
domain, the known non-relativistic quantum hydrodynamics and quantum theo-
ries with trajectories. Our approach, while having some points of contacts with 
previous reported approach [11], is based in a surprising wave equation which 
resembles the Schrödinger equation, but describes a particle with mass and 
spin-0 which moves through a potential V, and has the correct relativistic rela-
tion between the linear momentum p and the kinetic energy K [12]-[21]: 

( ) ( ) ( ) ( ) ( )
2 2

2, , , .
1v

i x t x t V x x t
t m x
ψ ψ ψ

γ
∂ ∂

= − +
∂ + ∂



           (1) 

In Equation (1), what we call the (one-dimensional) Grave de Peralta (GP) 
equation for a quantum particle with mass m,   is the Plank constant (h) di-
vided by 2π, and γv is a factor commonly found in special theory of relativity 
formulas (the Lorentz factor), which depends on the ratio between the squares of 
the particle’s speed (v2) and the speed of the light in the vacuum (c2) [22]: 

2

2

1 .

1
v

v
c

γ =

−

                          (2) 

The basic properties of Equation (1) and its solutions, and detailed discussions 
of how to solve Equation (1) for some interesting potentials V, can be found in 
recently published works [12]-[21]. In a nutshell, solving Equation (1) requires 
simultaneously finding the wavefunction ψ and the square of the particle v2, 
which determines the value of γv in Equation (2). This may look at first as an 
unmanageable problem; however, this is not the case in at least several interest-
ing cases [12]-[17]. In general, Equation (1) is nonlinear; this has been discussed 
before [12] [16]. Nevertheless, due the formal similitude with the Schrödinger 
equation, Equation (1) is a useful and tractable equation. It is worth noting that 
Equation (1) can be rewritten in the following way [12] [14] [16]: 

( ) ( )
2ˆˆ ˆ ˆ ˆ ˆ, , , , .
1v

pi H x t H K V K p i
t m x
ψ ψ

γ
∂ ∂

= = + = = −
∂ + ∂
        (3) 

The operator K corresponds to the (approximated) relativistic kinetic energy 
of the particle, thus [12] [14] [16] [19] [20]: 

( )
2

2 2 2 4 2ˆˆ ˆ .
1v

pK p c m c mc
mγ

= ≈ + −
+

               (4) 

This means that Equation (1) is well-defined, but it is advantageous to write 
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the operator K as in Equation (1), because this results in an equation formally 
like the Schrödinger equation, which can then be exactly solved following similar 
procedures than the ones required for solving the Schrödinger equation [12]-[17] 
[19] [20]. It is also the striking similarity between Equation (1) and the Schrödin-
ger equation what allowed us to extend, to the relativistic domain, the basic equ-
ations of the Madelung-de-Broglie-Bohm reformulation of quantum mechanics 
and quantum hydrodynamics [18]. It is worth noting that previous reports dis-
cussed the existing relationship between Equation (1) and the Klein-Gordon and 
Dirac equations for a free particle [12] [16] [19] [20]. From a pragmatic point of 
view, a Schrödinger-like equation appears to be very useful since Schrödin-
ger-like solutions may apply. Investigating exact solutions using such an analogy 
might make more tractable some relativistic problems. In this work, we applied a 
methodology that extends already studied applications of the Schrödinger equa-
tion to the relativistic domain. This approach might become beneficial. From an 
epistemological point of view, the Schrödinger-like approach explored here 
should be considered as a “mathematical hypothesis” and the practical results 
must be examined as to its final test. We will assume in this work this procedural 
interpretation of Equation (1). Nevertheless, for self-reliance purpose, a sum-
mary of the fundamentals of the GP equation is presented in the Appendix. We 
hope that the scientific community, which is currently working on non-relativistic 
quantum mechanics theories with trajectories and quantum hydrodynamics, will 
recognize the simplicity of the theory presented in this work, and its potential 
for practical applications in relativistic quantum simulations. The rest of this 
work is organized in the following way. In the next Section, for the first time, a 
relativistic extension of the de Broglie-Bohm quantum mechanics is obtained 
from the relativistic but Schrödinger-like GP equation. Then, a relativistic exten-
sion of the Madelung quantum electrodynamics is presented. This is followed by 
five free particle examples in increasing order of complexity. Finally, the conclu-
sions of this work are given in the Conclusions. 

2. Madelung-Bohm-Like Reformulation of the GP Equation  

The three-dimensional (3D) GP equation for a particle moving at relativistic 
speeds in a potential V is given by the following expression [14] [15] [16]: 

( )
2

2 .
1v

i V
t m
ψ ψ ψ

γ
∂

= − ∇ +
∂ +



                    (5) 

In general, the wavefunction (ψ), the potential, and γv all depend on the three 
spatial coordinates and the time. Due to the formal similarity between Equation 
(5) and the Schrödinger equation, a Madelung-Bohm-like extension of Equation 
(5) can be done following the same procedure commonly used for reformulating 
the Schrödinger equation [2] [4] [5] [6] [7]. First, we look for a solution of Equ-
ation (5) of the following form: 

( ) ( ) ( ),, , e .iS tt R tψ = rr r                          (6) 
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In Equation (6), R and S are the amplitude and phase fields, respectively [2] [4] 
[7]. Inserting Equation (6) in Equation (5) and following step by step Ref. [6], we 
can obtain the following equations, which extend to the relativistic domain the 
basic equations of the Madelung-de Broglie-Bohm quantum mechanics [6]:  

( ) [ ] ( )
2 2 2

0, .
1 1v v

S RS V Q Q
t m m Rγ γ
∂ ∇ ∇

+ + + = = −
∂ + +

           (7) 

( )
2 22 0.

1 v
v v

SR R
t m

γ
γ γ

  ∂ ∇
+ ∇ ⋅ =  ∂ +    

                (8) 

In Equation (7), Q is the quantum potential [6]. Clearly, 1vγ ≈  when 
2 2v c ; therefore, as it should be expected when the particle moves at low 

speeds, Equations (7) and (8) coincide to the well-known equations of the Ma-
delung-de Broglie-Bohm quantum mechanics [6]. At relativistic velocities, the 
velocity field should now be defined such that the relation between the velocity 
and the linear momentum ( S∇ ) is the correct relativistic relationship [22]: 

1 .v
v

S S
m m

γ
γ

∇ ∇
= ⇒ =v v                      (9) 

Thus, the expression between parentheses in Equation (8) is the velocity field 
given by Equation (9). Again, when 2 2v c , Equation (9) coincides with the 
non-relativistic equation [6]. However, in general [11]: 

( )
( )2 2

2 2
.v

mc Sc S
mcmc S

γ
+∇

= ∇ ⇒ =
+∇

v           (10) 

Therefore, when ψ is known, Equation (10) determines the velocity field and 
γv. The direction of the velocity is then perpendicular to the surfaces of constant 
phase (S = constant). Bohm introduced a particle’s trajectory as the solution of 
the following differential equation and initial conditions [4] [5] [6] [7]: 

( ) ( )( ) ( ), , 0 .p p p ot t t t
t
∂

= = = =
∂

r v r r r r              (11) 

Therefore, different trajectories correspond to different initial positions of the 
particle. The direction of the particle’s velocity is always tangent to the particle’s 
trajectory. The particle’s velocity is given by the following equation: 

( ) ( ).p pt t
t
∂

=
∂

v r                        (12) 

Equations (11) and (12) related the velocity of the Bohmian particle with the 
velocity of the Madelung’s fluid. 

3. Relativistic Quantum Hydrodynamics 

Madelung did not introduce particle trajectories in his reformulation of the 
Schrödinger equation [2]. This was done later by Bohm [4] [5]. Madelung inter-
preted Equations (7) and (8) as describing a fluid with density ρ' = mρ such that: 
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( ) ( )2, , .t R tρ =r r                         (13) 

Then using Equation (9) with γv = 1 allowed him to directly rewrite Equation 
(8) with γv = 1 as a continuity equation [2] [6] [7]. Proceeding in a similar way, 
we obtained the following extension of the Madelung’s continuity equation to 
the relativistic domain: 

( ) ( )2 0.
1 v

vt
ρ ρ γ

γ
∂

 + ∇ ⋅ = ∂ +
v                  (14) 

As it should be expected, at non-relativistic speeds, when 1vγ ≈  because 
2 2v c , Equation (14) coincides with the Madelung’s continuity equation [2] [6] 

[7]. Equation (14) was obtained from Equation (8) by identifying mρ with the 
density of a fluid extending through space. Likewise, as it was done by Madelung 
[2] [6] [7], by identifying the velocity field of this fluid with the velocity field 
given by Equation (9), we can obtain from Equation (7) the following equation: 

( ) ( )
( )

( )
22 2

0, .
1 1

v
v

v v

V Q
Q

t m m
ργ

γ
γ γ ρ

  ∇ + ∇∂
+∇ ⋅ + = = − 

∂ + +  
v v v      (15) 

If v and thus γv only depend on time but not on position, Equation (15) can be 
simplified in the following Euler-like equation: 

( ) ( ) ( ) ( ) ( )2 .
1v v v

v

V Q
t m
γ γ γ

γ
∇ +∂

 + ⋅∇ = − ∂ +
v v v            (16) 

As it should be expected, at non-relativistic speeds, when 1vγ ≈ , Equation 
(16) coincides with the Euler-like equation obtained by Madelung [2] [6] [7]. 

4. Plane Waves 

The fluid dynamic of a classical ideal fluid flow supposes the fluid is non-viscous; 
the flow is steady, i.e., the velocity is time independent; the fluid is incompressi-
ble, i.e., the liquid density is constant; and assumes that the flow is irrotational 
[23]. The dynamic of an ideal fluid with density ρ', which is flowing close to the 
Earth’s surface under the influence of the Earth gravitational potential, Ug/m = 
gH, where g is the gravitational acceleration and H is the high respect to the 
ocean’s surface, it is given by the Bernoulli equation [23]: 

21 constant.
2

gU
v P

m
ρ ρ′ ′+ + =                  (17) 

In Equation (17), P is the pressure inside of the liquid. While Equation (17) is 
purely classical and has no connection with Madelung fluids, it is instructive to 
compare the Madelung liquid, associate to a free particle “guided” by a plane 
wave, to a classical ideal liquid under non-gravity conditions, which dynamics is 
described by the Bernoulli equation with Ug = 0. A simple solution of the GP 
equation for a free particle (V = 0) is the plane wave, normalized in a large cube 
of side L, given by the following equation [12] [14]:  
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( )
2

1

3

1 e .v

i p t
m

L
γψ

 
 ⋅ − + =

p r
                      (18) 

In Equation (18), p is the magnitude of the particle’s linear momentum, which 
can take any positive real value. Evaluating Equation (18) for γv = 1 gives the 
correct normalized plane wave when the free particle is traveling at 
non-relativistic speeds [6]. The surfaces of constant phase corresponding to Eq-
uation (18) are planes perpendicular to the particle’s linear momentum. Note 
that for a given value of p, the value of γv get univocally determined by the 
equality of the following formulas for the relativistic kinetic energy [12] [14] 
[16]: 

( ) ( )
2 2 22

21 .
1v v

v

p m cpK mc
m mc

γ γ
γ

+
= − = ⇒ =

+
         (19) 

Using Equations (6), (13) and (18), we can obtain: 

( ) ( )
3 2
2 0, , .

1v

pR L Q S t t
m

ρ
γ

−  
= = ⇒ ≡ = ⋅ −  + 

r p r        (20) 

From Equation (20) follows that the Madelung fluid associated to a free par-
ticle guided by a plane wave has constant density ρ' = mρ; therefore, it is incom-
pressible. It is also no viscous because the total force acting on it is 

( ) 0F V Q m= −∇ + = . The velocity of this fluid and the corresponding value of 
γv can be obtained using Equations (10) and (20): 

( )
( )2 2

2 2
, .v

mc pc
mcmc p

γ
+

= =
+

v p               (21) 

The value of γv given by Equations (19) and (21) are identical in this case, but 
as it will be shown in the next Section, this is not a general feature of the theory. 
The maximum possible value of the fluid speed, v c≈ , occurs when 

S p mc∇ =  . This corresponds to 1vγ  . The fluid velocity is constant; thus, 
this Madelung fluid is irrotational. Equation (16) reduces now to: 

( )
( )

( )
2

2 1
0 constant.

1
vv

v

p
mv

K
m

γγ
γ

 
∇    +  ∇ = = ⇒ =

+  
         (22) 

Evidently, Equations (21) and (22) also gives the correct results at the 
non-relativistic limit. A comparison between Equation (22), evaluated for γv = 1, 
and the Bernoulli equation (Equation (17) with Ug = 0) shows that there is not 
pressure in the Madelung fluid associated to a free quantum particle guided by a 
plane wave. From Equations (11), (12), and (21) follow that the Bohmian paths 
of a free quantum particle associated to a plane wave are given by the following 
equation [6] [11]:  

( )
( )2 2

.p o
ct t

mc p
= +

+
r r p                    (23) 
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Evidently, Equation (23) also gives the correct result for a particle moving at 
non-relativistic speeds. In Equation (23), the initial position of the particle lies 
everywhere in space. Like for free classical particles moving at non-relativistic 
speeds, these Bohmian paths are therefore uniform, rectilinear, and perpendicu-
lar to the planes of constant phase of the wave. This is because in this case the 
quantum potential is null, thus 0Q∇ =  [6]. Also note that Equations (14) to 
(16) are fulfilled because both ρ and v are constant. 

5. Standing Waves  

A simple but interesting case, where Q is not null, occurs when a free quantum 
particle is in the superposition state formed by two plane waves, which are both 
solutions of Equation (5) with V = 0 but are traveling in opposite directions along 
the x-axis with the same value of p: 

( ) ( ) ( ) ( )

( )

3 3

2

1 2, e e cos e ,
2 2

, .
1

k k ki kx w t i kx w t iw t

k
v

x t kx
L L

p pk w
m

ψ

γ

− − − − = + = 

= =
+ 

       (24) 

The speeds of the Madelung fluids associated to either one of these two plane 
waves are the same and given by Equation (23), but the corresponding velocities 
point to opposite directions; therefore, γv is also the same for each wave when in-
dividually considered. Consequently, the standing wave given by Equation (24) is 
also a solution of Equation (5) with V = 0, and with the same value of γv than for 
each of the plane waves components. For the standing wave: 

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( ) ( )

3

2

2 2 2 22

2

2 cos
2
d
d ,

1 1 1

.
1

v v v

v

R x x kx
L

R x k pxQ
m R x m m

pS t t
m

ρ

γ γ γ

γ

= =

⇒ = − = =
+ + +

= −
+

          (25) 

From Equations (24) and (25) follows that the period of the cos2 (kx) density 
distribution is inverse proportional to p. The Madelung fluid associated to a free 
particle guided by a standing wave does not have a constant density; therefore, it 
is compressible, thus, it does not behave like a classical ideal fluid flow. The wa-
velength of the standing wave, λ, is inverse proportional to p. From Equation (25) 
also follows that 0S∇ = ; therefore, from Equation (10) follows that the velocity 
of this fluid is zero and γv = 1, which is different than the γv value corresponding 
to each superposing plane wave. Consequently, the Bohmian particle associated 
to a standing wave is at rest. In Equation (25), Q is equal to the relativistic kinetic 
energy of the free particle, which is constant; therefore, 0S∇ = , thus this Made-
lung fluid is no viscous. Equations (14) to (16) are now fulfilled because ρ does 
not depend on time and v = 0. A comparison of the results obtained in this exam-
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ple for a standing wave, to the results obtained in the previous Section for a plane 
wave, illustrates the well-known nonlocality properties of the theories resulting 
from the Madelung-de-Broglie-Bohm reformulation of the Schrödinger equation. 
The superposition of plane waves, which are solutions of the same GP equation 
for a free particle, modifies the properties of the corresponding Madelung fluid, 
and then the Bohmian trajectories of the guided particle.  

6. Quasi-Standing Waves  

In this Section we will consider a wavefunction of Equation (5) with V = 0, which 
is a slightly variation of Equation (24):  

( ) ( ) ( )

( )
( )

3

2

1, e e ,
2

, , .
1

k ki kx w t i k x w t

k
v

x t
L

p pp pk w p p
m

ψ

γ

′′− − −

′

 = + 

+ ∆+ ∆′ = = ∆
+



 

             (26) 

In Equation (26), k and wk are given by Equation (24). Consequently, the first 
term of the wavefunction in Equation (26) is a solution of Equation (5) with V = 
0. However, the second term is not because there is, in the denominator of kw ′ , 
the same value of γv than for wk. Nevertheless, from Equation (19) follows that the 
value of γv corresponding to (p + Δp) is approximately equal to the value corres-
ponding to p in two situations. First, 1vγ ≈  at the non-relativistic limit when 
p mc . Second, v p mcγ ≈  at the ultra-relativistic limit p mc ; therefore, 
( )p p mc p mc+ ∆ ≈  when p mc∆  . Consequently, at these two limits ψ giv-
en by Equation (26) is approximately a solution of Equation (5) with V = 0. We 
will call here, a quasi-standing wave, to the wavefunction given by Equation (26) 
at these two limits. After some straightforward algebraic steps for transforming 
Equation (26) in a form like Equation (6), we obtained the following results: 

( ) ( )
( )

2 22 2

22 2

1 .
2 4

1
4

v
p c pS v

m c p p
m c p

γ−∆ − ∆
∇ = ⇒ = ⇒ =

+ ∆ ∆
−

+ ∆

    (27) 

And: 

( ) ( )
( )

( )
( )
( )

2
3

2

1
2 2, cos , , 2

2 1

.
4 1

b b b b
v

v

p p ppx t k x v t k v
mL

p
Q

m

ρ
γ

γ

− + ∆  ∆
 = − = =  +

∆
⇒ =

+

     (28) 

In Equation (27), ΔS points to the negative direction of the axis x. As it should 
be expected, Equations (27) and (28) reduces to Equations (25) when Δp = 0. The 
density of the Madelung fluid associated to a free particle guided by a qua-
si-standing wave resembles a “standing wave” that is drifting without dispersion, 
in the direction of the plane wave associated with the linear momentum p + Δp, 
with speed 2bv v p m≈ ≈ −∆  when p mc∆  . It can be easily checked out that 
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the quasi-standing wave given by Equation (26) satisfies Equation (5) with V = 0, 
and with γv given by Equation (27). From Equations (27) and (28) also follows 
that Equations (7), (8), and (14) to (16) are satisfied. Note that 1vγ ≈  for every p 
when p mc∆  ; consequently, the Bohmian particle associated to a qua-
si-standing wave moves like a classical particle even at the ultra-relativistic limit. 

7. Beats  

In this Section we will consider another wavefunction of Equation (5) with V = 0, 
which can be obtained from Equation (26) after substituting –k' by +k'. Equation 
(26) corresponds to the superposition of two plane waves with slightly different 
values of p traveling in opposite directions. Here we will consider what happens 
when the two waves travel in the same direction. In this case, we obtained the 
following results: 

( )
( )

( )

2 2 22 2

22 2

2 1 .
2 4 2 2

4 2

v

c p ppS p v
m cm c p p

m c p p

γ
+ ∆∆

∇ = + ⇒ = ⇒ =
+ + ∆ −

+ + ∆

(29) 

And: 

( ) ( )
( )

( )
( )
( )

2
3

2

1
2 2, cos , , 2

2 1

.
4 1

b b b b
v

v

p p ppx t k x v t k v
mL

p
Q

m

ρ
γ

γ

+ + ∆  ∆
 = − = =  +

∆
⇒ =

+

     (30) 

In Equation (29), ΔS points to the positive direction of the axis x. Note that kb 
does not depend on p but is proportional to Δp. Therefore, as it should be ex-
pected, Equations (29) and (30) reduce when Δp = 0 to Equations (20) and (21), 
which correspond to the first example of a single plane wave discussed in Section 
4. The Madelung fluid now flows without dispersion in the same direction than 
the plane waves, and at the average speed of both waves. The factor of 2 at the 
front of Equation (30) for vb is because a ( )2cos ax bt−  shaped wave travels at 
twice the speed than a ( )cos ax bt−  shaped one. The corresponding Bohmian 
paths are uniform and rectilinear at both non-relativistic and relativistic values of 
vb. This result suggests the following very interesting possibility: a free ul-
tra-relativistic quantum particle could be associated to a Gaussian pulse, which is 
formed by a superposition of plane waves traveling in the same direction with 
similar values of p, and thus could be a solution of Equation (5) with V = 0. Such 
a Gaussian pulse would travel with no dispersion at the average relativistic speed 
of all the plane waves forming the Gaussian pulse. 

8. Ultra-Relativistic Gaussian Wave-Packets  

Gaussian wave-packets are often considered the quantum entity that closest re-
semble a classical particle [24] [25]. A Gaussian pulse describes a quantum par-
ticle for which the uncertainty relation between its position (Δx) and linear mo-
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mentum (Δp) has its minimum value ΔxΔp = 1/2 ℏ. Non-relativistic Gaussian 
wave-packets are formed by a superposition of plane waves which are solutions of 
the Schrödinger equation for a free particle [24]. There is a non-linear relation-
ship between the angular frequency (w) and the wavenumber (k) of the plane 
waves which are solution of the Schrödinger equation [24] [26]: 

2

22 .
2

p
K mw k

m
= = =



 

                     (31) 

The non-lineal dispersion of the Schrödinger equation determines that the 
phase velocities vph = w/k of different plane waves are different. Consequently, 
Gaussian wave-packets which are solution of the Schrödinger equation deform 
when propagate [24]. This differentiates a Gaussian pulse associated to a quan-
tum particle from a free classical particle that travels without deforming. Relati-
vistic Gaussian pulses corresponding to a free particle with mass and spin-0 can 
be formed by superposing plane waves, which are solutions of the Klein-Gordon 
equation [25] [27] [28]. The dispersion of the Klein-Gordon equation also is 
non-lineal [27] [28]: 

2 2 2 4 2 2 2 2 4

.
p c m cE k c m cw

± + ± +
= = =



  

            (32) 

The non-linearity of Equation (32) determines that Gaussian pulses which are 
solutions of the Klein-Gordon equation also deforms when propagate. Moreo-
ver, Equation (32) admits solutions with negative kinetic energy values, which 
results in additional difficulties when describing the propagation of these Gaus-
sian wave-packets [25] [27] [28]. These difficulties disappear when using Equa-
tion (5) with V = 0 for describing a free particle. This is because Equation (4) 
implies the following dispersion relation: 

2
2

2 2 2 4 2
1 1

.

kmc
mcp c m c mcKw

   + −   + + −  = = =



  

        (33) 

As it should be expected, in the non-relativistic limit p k mc=   , Equation 
(31) can be obtained from Equation (33) by approximating the square root in 
Equation (33) by the first two terms of the corresponding series in powers of 

/k mc . Moreover, in the ultra-relativistic limit k mc , Equation (33) be-
comes: 

.ph
K ww ck v c

k
= ≈ ⇒ = ≈


                     (34) 

Therefore, one should expect that all the ultra-relativistic plane waves which are 
solutions of Equation (5) with V = 0 propagates with the same phase velocity and 
thus, the ultra-relativistic Gaussian pulses formed by a superposition of these plane 
waves should propagate without deformation. This means that ultra-relativistic 
Gaussian wave-packets which are solutions of Equation (5) with V = 0 behave 
more like free classical particles than the non-relativistic ones. In the ul-
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tra-relativistic limit, Equation (4) can be approximate by: 
ˆ ˆ .K pc i c≈ = − ∇                         (35) 

Consequently, the ultra-relativistic limit of Equation (5) with V = 0 is: 

.i i c
t
ψ ψ∂

= − ∇
∂
                         (36) 

A plane wave solution of Equation (36), which is a kind of Weyl equation for 
spin-0 particles, normalized in a large region of length L and traveling along the 
x-axis, is given by the following expression: 

( ) ( ) ( ) ( )1 1 1, e e e .
i px Kti kx wt ik x ctx t

L L L
ψ

−− −= = =            (37) 

The phase velocity of this plane wave is for any value of k, vph = c. Equation (36) 
is lineal, thus any wave-packet formed by a superposition of plane waves given by 
Equation (37) is a solution of Equation (36) and propagates without dispersion 
(deformation). Specifically, this occurs for the ultra-relativistic Gaussian pulse: 

( ) ( ) ( ) ( )1, e d , 0 when .
2

ik x ctx t k k k k mcψ ϕ ϕ
+∞ −

−∞
= ≈ <

π ∫
       (38) 

In Equation (38): 

( ) ( ) ( )
2 2

21 , 0 e d e .
2

k kikxk x t x
σσϕ ψ

− −+∞ −

−∞
= = =

π π∫          (39) 

For obtaining Equation (39), we assumed ( ), 0x tψ =  is a Gaussian wave-packet 
that at t = 0 is peaked at x = 0, and it is moving along the x-axis with average 
momentum p k=  : 

( )
2

2
1

21, 0 e e .
x i k xx t σψ

σ

− 
= =  

 π 
                 (40) 

Using Equations (39) and (40), we found the expression corresponding to an 
ultra-relativistic Gaussian wave-packet that propagates along the x-axis at speed c 
without deformation: 

( )
( ) ( )

2
2

1
21, e e .

x ct i k x ctx t σψ
σ

− −
−=

π
                (41) 

Therefore, for ultra-relativistic Gaussian pulses: 

( )
( )

( ) ( )
2

2
1

21, e , , .
x ct

R x t S x t k x ctσ

σ

− −
= = −

π
          (42) 

From Equation (42), we can obtain the density of the Madelung’s quantum 
fluid associated to an ultra-relativistic Gaussian pulse: 

( ) ( )
( )22

1
2 1, , e .

x ct
x t R x t σρ

σ

− −
= =

π
                 (43) 

This means ultra-relativistic Gaussian wave-packets are density pulses in the 
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Madelung’s quantum hydrodynamic description. Equation (43) describes a Gaus-
sian density pulse propagating along the x-axis at speed c, and which peak is at 
any given time at x = ct. There is a characteristics quantum potential (Q) in the 
Madelung-de Broglie-Bohm reinterpretation of the Schrödinger equation and its 
relativistic extension, which can be evaluated using Equations (42) and (43): 

( ) ( ) ( )

( )

22 2 2

2 2
2

4 2

,
1 1

4 2 .

v v

RQ x t
m R m

mc mcx ct
p pm m

ρ
γ γ ρ

σ σ

∇∇
= − = −

+ +

≈ − − +

 

 

           (44) 

The corresponding quantum force (FQ) acting over the ultra-relativistic Gaus-
sian wave-packet is: 

( ) ( ) ( )
2

4

, 8, .Q

Q x t mcF x t x ct
x pσ

∂
= − = −

∂
               (45) 

The quantum force is always null at the pulse’s pick. The Gaussian density 
pulse is produced by the action of pairs of compressing quantum forces, which 
are equidistance from the peak and have the same magnitude but opposite direc-
tions. Note that the net quantum force over the Gaussian pulse is null, which 
corresponds with the propagation of the pulse with constant velocity. Particles 
have trajectories in the de Broglie-Bohm reinterpretation of the Schrödinger equ-
ation. The velocity of a particle associated to an ultra-relativistic Gaussian pulse 
can be computed from the phase field S(x, t) using the following equation: 

( )
2

2

.c Sv c
xSmc

x

∂
= ≈

∂∂ +  ∂ 

                     (46) 

I.e., a particle associated to an ultra-relativistic Gaussian pulse describes the 
same trajectory than the peak of the pulse. 

9. Conclusion 

Madelung, de Broglie, and Bohm reformulated the Schrödinger equation. In this 
way, they founded the non-relativistic quantum hydrodynamics and quantum 
mechanics with trajectories. Following a similar procedure, we reformulated the 
GP equation. In this way, we extended quantum hydrodynamics and quantum 
mechanics with trajectories to the relativistic domain. As it should be expected, 
we showed that at non-relativistic energies, the resulting equations coincide with 
the well-known non-relativistic equations. As a proof-of-concept demonstration 
of the potential practical value of the formulated theory, we discussed some sim-
ple but instructive free particle problems.  
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Appendix 

In Special Theory of Relativity, the relevant Lorentz invariant magnitude is the 
four-component momentum given by the following equation [22] [27] [28]: 

, , , .x y z
EP p p p
c

µ  =  
 

                     (A1) 

The magnitude of the four-component vector is the relativistic invariant mc. 
Therefore, a relativistic quantum theory for a free spin-0 particle of mass m can 
be formally obtained from first quantization of the Lorentz-invariant relation 
between the particle’s energy and the three-component momentum: 

2
2 2 2 2 2

2 , .x y z
E mc p p p
c

− = = + +p p                (A2) 

Equation (A.2) can be rewritten the following way: 
2 2

2 2
2 2 2 21 , 1 .v vE mc mc

m c m c
γ γ= + = = +

p p             (A3) 

Combining Equation (4) and (A.3), we obtain the Lorentz-covariant equation: 

( )
2 2

2
2 2, 1 .

1 v
v

E mc
m m c

γ
γ

= + = +
+
p p               (A4) 

Making the following formal first-quantization substitutions in Equation (A.4): 

ˆ ˆ, .E H i p i
t
∂

→ = → = − ∇
∂

p                   (A5) 

We can obtain the following Lorentz-covariant wave equation: 

( )
2 2

2 2
2 2

ˆˆ, 1 .
ˆ 1 v
v

pi mc
t m m c

γ
γ

∂
Ω = − ∇ Ω+ Ω = +

∂ +


           (A6) 

Now, it is well known in quantum mechanics that applying a constant energy 
shift to the Hamiltonian gives rise to an immaterial time-evolving phase factor in 
the solution wavefunction. Therefore, in order to obtain a more Schrödinger-like 
result, we can remove the rest-energy contribution from Equation (10) above, by 
replacing Ω as follows: 

2

e .
mci t

ψ
−

Ω =                           (A7) 

Thus, obtaining the Poirier-Grave de Peralta (PGP) equation for a free spin-0 
particle of mass m [19]: 

( )
2 2

2
2 2

ˆˆ, 1 .
ˆ 1 v
v

pi
t m m c
ψ ψ γ

γ
∂

= − ∇ = +
∂ +



             (A8) 

The Poveda’s formalism consists in parametrizing Equation (A.8) by making 
[19] [21]: 

2

2 2

ˆ
ˆ 1 .v v

p
m c

ψ ψ
γ γ→ = +                      (A9) 
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This formalizes the approach initially followed by Grave de Peralta for avoiding 
the use of the square root operator γv [12] [13] [14] [15] [16]. Equation (A.9) de-
fines the parameter γv in terms of the average value, on the state ψ, of the square 
of the well-defined linear momentum operator. This allows for rewritten Equa-
tion (A.8) as the GP equation for a free spin-0 particle of mass: 

( )

22
2

2 2

ˆ
, 1 .

1 v
v

p
i

t m m c
ψ ψ

ψ ψ γ
γ

∂
= − ∇ = +

∂ +


          (A10) 

In a similar way, we can obtain Equation (5). Therefore, when γv does not ex-
plicitly depend on the time, we can look for a solution of Equation (5) of the 
form: 

( ) ( ) 2, , .
Ei t

t e E E V mc K Vψ χ
′

−
′= = + − = +r r           (A11) 

Then obtaining the time-independent GP equation for a spin-0 particle of mass 
m which is moving through a time-independent potential V: 

( )

22

2 2

ˆˆ
, 1 .

1 v
v

pp V E
m m c

χ χ
χ χ γ

γ
 

′+ = = + 
+  

         (A12) 

Equation (A.12) can be rewritten in the following way: 

( )
22

2 2

ˆˆ1ˆ ˆ, , 1 .
2 2

v
Sch Sch v

ppK E V K
m m c

χ χγ
χ χ γ

+ ′= − = = +      (A13) 

Clearly, when: 
2 2 2ˆ .p m cχ χ                        (A14) 

The time-independent Schrödinger equation is obtained as a limit case of Equ-
ation (A.13): 

( )ˆ .Sch Sch SchK E Vχ χ′= −                     (A15) 

For several important problems, solving Equation (A.13) reduces to solving 
an effective time-independent Schrödinger equation. For instance, this occurs 
for problems with stepwise constant potentials [12] [14] [16]. In each spatial 
region where V is constant (V = Vo), Schχ χ= . Consequently, solving the 
time-independent GP equation reduces to solving the following effective 
time-independent Schrödinger equation: 

ˆ .Sch Sch SchK χ εχ=                        (A16) 

Equation (A.16) can be solved with no knowledge of the value of γv; therefore, 
after Equation (A.16) is solved, γv can then be calculated as: 

2 2

2 2ˆ1 1 .v Sch Sch SchK
mc mc

γ χ χ ε= + = +           (A17) 

Finally, the sum of the kinetic and potential energies of the particle is: 

( ) 2 2
2

21 1 1 .v o oE mc V mc V
mc

γ ε
 

′ = − + = + − +  
 

         (A18) 
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Alternatively, E' can be calculated as: 

2

2 .
21 1

oE V

mc

ε

ε
′ = +

+ +
                    (A19) 

It is worth noting the energy values calculated using Equations (A.18) and 
(A.19) are in excellent correspondence with the energies obtained using the 
Klein-Gordon and Dirac equations [20] [27] [28]. For instance, Figure 1 shows a 
comparison of the energies calculated using the Grave de Peralta approach (con-
tinuous lines), the Schrödinger equation (dashed lines), and the Dirac equation 
(solid dots) [29], for a particle in a one-dimensional infinite well of width L [12] 
[14] [17] [21]. Even for relativistic energy values larger than 2 mc2, there is an ex-
cellent correspondence between the energies calculated using the GP and the Di-
rac equations. More importantly, there is a large class of problems where 

Schχ χ≠ , but the formal similitude between Equation (A.13) and Equation (A.15) 
facilitates solving Equation (A.13) using similar procedures than the ones used 
for solving Equation (A.15). For instance, the energies of Hydrogen atom were 
calculated using the Grave de Peralta approach [13] [15] [20]. A good correspon-
dence was obtained with the positive energies calculated using the Klein-Gordon 
and Dirac equations [13] [15] [20].  

 

 
Figure 1. Comparison of the dependence on n (energy level) of 
the energies calculated using the GP approach (continuous line) 
[17] [21], the Schrödinger equation (dashed lines), and the Di-
rac equation [29] (solid dots) for three different widths (L) of a 
one-dimensional infinite well. C  is the (reduced) Compton 
wavelength associated to a particle of mass m. The tenues ho-
rizontal dotted line corresponds to E' = 2 mc2. 
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Abstract 
We report in this paper energy positions of the 2P˚_2s22p2(1D)nd 2P, 
2P˚_2s22p2(1D)nd 2S, 2P˚_2s22p2(1D)ns 2D, 2P˚_2s22p2(1S)nd 2D, and 
2P˚_2s22p3(3P)np 2D Rydberg series in the photoionization spectra originat-
ing from 2P˚ metastable state of O+ ions. Calculations are performed up to n 
= 30 using the Modified Orbital Atomic Theory (MAOT). The present results 
are compared to the experimental data of Aguilar which are the only available 
values. The accurate data presented in this work may be a useful guideline for 
future experimental and other theoretical studies. 
 

Keywords 
Semiempirical Calculations, Modified Orbital Atomic Theory, Electron  
Correlation Calculations, Atoms and Ions, Rydberg Series, Quantum Defect 

 

1. Introduction 

The important role of studying Photoionization is a fundamental processes 
playing in laboratory and astrophysical systems such as nebulae plasmas [1], in 
inertial-confinement fusion experiments [2] and contributing to plasma opacity 
and radiation transfer inside plasmas. Thus, quantitative measurements of pho-
toionization of ions provide precision data on ionic structure, and guidance to 
the development of theoretical approaches of multielectron interactions. Great-
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est attention has been concentrated on studying Rydberg series of O+ ions for 
which photoabsorption from low-lying metastable states of open-shell ions has 
been shown to be important in the earth’s upper atmosphere as well as in astro-
physical plasmas. Formerly, studies on the O+ ion have been focused on ioniza-
tion using the merged-beam technique. Thus, Aguilar et al. [3] performed the 
first experiment on the Absolute photoionization of O+ from 29.7 to 46.2 eV 
above the first ionization threshold, using a merged-beam line at the Advanced 
Light Source (ALS).  

Therefore, it is an imperative task for physicists to provide accurate photoio-
nization data for the modeling of astrophysical and laboratory plasmas. 

The Opacity Project atomic database (at the Astronomic DataCenter of Stras-
bourg, France) was formed to re-estimate stellar envelope opacities in terms of 
atomic data computed by ab initio methods [4]. All these efforts led to the crea-
tion of several atomic databases widely used for astrophysical calculations [3].  

In the present paper, we intend to provide accurate data on the photoioniza-
tion of O+ ions that may be useful guideline for the physical atomic community. 
In addition, we aim to demonstrate the possibilities to use the Modified Atomic 
Orbital Theory of SOW et al. [5] [6] [7] [8] to reproduce excellently experimen-
tal data from merged beam facilities. For this purpose, we report calculations 
of energy resonances for the 2P˚_2s22p2(1D)nd 2P, 2P˚_2s22p2(1D)nd 2S, 
2P˚_2s22p2(1D)ns 2D 2P˚_2s22p2(1S)nd 2D, and 2P˚_2s22p3(3P)np 2D Rydberg se-
ries of O+ ions up to n = 30, via the MAOT procedure along with the quantum 
defect theory.  

Energy resonances and quantum-defect are compared to the only available 
experimental data of ALS [3].  

Section 2 gives MAOT theory with a brief description of the formalism and 
the analytical expressions used in the calculations. In Section 3, we present and 
discuss the results obtained, compared to available experimental. In Section 4, 
we summarize our study and draw conclusions.  

2. Theory  
2.1. Brief Description of the MAOT Formalism 

In the framework of Modified Atomic Orbital Theory (MAOT), total energy of 
(νℓ)-given orbital is expressed in the form [8] [9]. 

( )
( ) 2

2

Z
E

σ
υ

υ

−  = −


                      (1) 

For an atomic system of several electrons M, the total energy is given by (in 
Rydbergs): 

( ) 2

2
1

M
i

i i

Z
E

σ

υ=

−  = −∑


 

With respect to the usual spectroscopic notation ( ) 2 1, SN N Lπ+′
  , this equa-
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tion becomes 

( ) 22 1

2
1

S
M i

i i

Z L
E

πσ

υ

+

=

 − = −∑                     (2) 

In this formula (2), L characterizes the considered quantum state (S, P, D …) 
and the symbol π is the parity of the system. 

In the photoionisation study, energy resonances are generally measured rela-
tively to the E∞ converging limit of a given (2S+1LJ) nl-Rydberg series. For these 
states, the general expression of the energy resonances is given by the formula of 
Sakho presented previously [10] (in Rydberg units): 

( ) ( )

( ) ( ) ( ) ( )

2 1 2 1
1 22

2

2 1
2

1 1

1
, , ,

S S
n J J

S
J

k k

E E Z L L
nn

L n m n q
f n m q s

µ

σ σ

σ

+ +
∞

+

= − − − ×


− × − × − 


∑
        (3) 

In this equation m and q (m < q) denote the principal quantum numbers of 
the (2S+1LJ)nl-Rydberg series of the considered atomic system used in the empiri-
cal determination of the σi(2S+1LJ)-screening constants, s represents the spin of 
the nl-electron (s = 1/2), E∞ is the energy value of the series limit generally de-
termined from the NIST atomic database, En denotes the corresponding energy 
resonance, and Z represents the nuclear charge of the considered element. The 
only problem that one may face by using the MAOT formalism is linked to the  

determination of the 
( )

1
, , ,k kf n m q s∑  term. The correct expression of this term  

is determined iteratively by imposing general Equation (3) to give accurate data 
with a constant quantum defect values along all the considered series. The value 
of µ  is fixed to 1 and 2 during the iteration. The quantum defect is calculated 
from the standard formula below  

( ) ( )
2

2
core

n core
n

RZ RE E n Z
E En

δ
δ

∞
∞

= − ⇒ = −
−−

          (4) 

In this equation, R is the Rydberg constant, E∞ denotes the converging limit, 
Zcore represents the electric charge of the core ion, and δ  means the quantum 
defect. 

2.2. Energy Resonances of the 2P˚_2s22p2(1D)nd(2P); 2P˚_2s22p2  
(1D)nd(2S); 2P˚_2s22p2 (1D) ns (2D); 2P˚_2s22p2 (1S)nd(2D) and  
2P˚_2s22p3(3P)np(2D) Rydberg Series from 2P˚ Metastable  
State of O+ 

In the framework of the MAOT formalism, the energy positions of the 
2P˚_2s22p2(1D)nd(2P); 2P˚_2s22p2 (1D)nd(2S); 2P˚_2s22p2 (1D) ns (2D); 
2P˚_2s22p2 (1S)nd(2D) and 2P˚_2s22p3(3P)np(2D) prominent Rydberg series 
from 2P˚ metastable state of O+ are given by (in Rydberg units) 
• For 2P˚_2s22p2(1D)nd(2P) levels  
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( ) ( )
( )

( ) ( ) ( ) ( )

2
1 22 3

2

3 3 4 5

1 1

1 1 1 1

nE E Z n m n q
nn n q s

n m s n m s n m s n q m s

σ
σ σ∞

 = − − − + × − × − × 
+ − 

+ + + + 
+ − + + + − + − + 

   (6) 

Using the experimental data of ALS [3], we obtain (in eV) E5 = 30.393 ± 0.15 
(m = 5) and E6 = 31.081 ± 0.15 (q = 6) respectively for the 2P˚_2s22p2(1D)5d 2P 
and 2P˚_2s22p2(1D)6d 2P levels. From NIST [11], we find E∞ = 32.617 eV. Using 
these data, Equation (6) gives σ1 = 6.012 ± 0.251 and σ2 = −0.166 ± 0.009  
• For 2P˚_2s22p2 (1D)nd(2S) levels: 

( ) ( )
( ) ( )

2

2
1 22 3 4

1 1 1
nE E Z n m n q

nn n m s n s
σ

σ σ∞

   = − − − + × − × − × +  
+ − −    

(7) 

For the 2P˚_2s22p2(1D)5d 2S and 2P˚_2s22p2(1D)6d 2S levels, we find using the 
experimental data of ALS et al. [3], E5 = 30.213 ± 0.150 (m = 5) and E6 = 30. 905 
± 0.150 (q = 6). From NIST [11], we find E∞ = 32.617 eV Equation (7) provides 
then σ1 = 6.061 ± 0.185 and σ2 = −0.367 ± 0.092  
• For 2P˚_2s22p2 (1D) ns (2D) levels  

( ) ( )
( )

( ) ( ) ( ) ( )

2
1 22 3

2

4 4 4 5

1 1

1 1 1 1
3

nE E Z n m n q
nn n q s

n q s m n q s n m s n q m s

σ
σ σ∞

 = − − − + × − × − × 
+ − 

+ + + + 
+ + − + − + − + − + 

  (8) 

For the 2P˚_2s22p2 (1D) 6s (2D) and 2P˚_2s22p2 (1D) 7s (2D) levels the experi-
mental energy positions ALS et al. [3] are, E6 = 30.578 ± 0.15 (m = 6) and E7 = 31. 
188 ± 0.15 (q = 7). From NIST [11], we find E∞ = 32.617 eV. In that case, we find 
using Equation (8) σ1 = 6.056 ± 0.322 and σ2 = −2.274 ± 0.413  
• For 2P˚_2s22p2 (1S)nd(2D) levels  

( ) ( )
( )( )

( ) ( )

2
1 22 2

2

3 4

1 1

1 1
2

nE E Z n m n q
nn n q m s n s

n m q n q s m

σ
σ σ∞

 = − − − + × − × − × 
+ − + − 

+ + 
+ − + + − 

 (9) 

From ALS of Aguilar et al. [3], we obtain for the 2P˚_2s22p2 (1S)4d(2D) and 
2P˚_2s22p2 (1S)5d(2D) E4 = 31.924 ± 0.15 (m = 4) and E5 = 33. 217 ± 0.15 (q = 5). 
From NIST [11], we find E∞ = 35.458 eV. We find then using Equation (9) σ1 = 
6.008 ± 0.167 and σ2 = −0.187 ± 0.05. 
• For 2s22p3(3P)np(2D) levels  

( ) ( )
( )

( ) ( ) ( )

2
1 22 2

2

2 3 4

1 1

1 1 1

nE E Z n m n q
nn n s

n s m n s m n s m

σ
σ σ∞

 = − − − + × − × − × 
− 

+ − + 
+ − + − + − 

      (10) 
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From ALS et al. [3], we obtain for the 2P˚_2s22p3(3P)3p(2D) and 
2P˚_2s22p3(3P)4p(2D) E3 = 39.478 ± 0.15 (m = 3) and E4 = 43.115 ± 0.15 (q = 4). 
From NIST [11], we find E∞ = 47.527eV. We find then using Equation (10) σ1 = 
5.411 ± 0.411 and σ2 = −0.844 ± 0.022  

3. Results and Discussions 

The results obtained in the present paper are listed in Tables 1-5 and compared 
with the Advanced Light Source experimental data of Aguilar et al. [3]. 

In Table 1, we quote the present MAOT results for energy resonances (E) and 
quantum defect (δ) of the 2P˚_2s22p2(1D)nd(2P) Rydberg series relatively to the 
2P˚_metastable state of O+ ion. The current energy positions are calculated from 
equations (6) along with Z = 8, m = 5, and q = 6,

 
σ1 = 6.012 ± 0.251 and σ2 = 

−0.166 ± 0.009. All these screening constant are evaluated using the Advanced 
Light Source (ALS) experimental results of Aguilar et al. [3], and take from NIST 
[11] the E∞ energy limits which is 32.617 eV. Then our results are converted into 
eV for direct comparison by using the infinite Rydberg (1 Ry = 0.5 a.u = 
13.605698 eV). It is seen that the data obtained compared very well to the expe-
rimental data of Aguilar et al. [3].  

Up to n = 11, the maximum energy differences relative to the experimental 
data is less than 0.006 eV. In addition, the present quantum defect is almost con-
stant up to n = 30. This may expect our results for n > 11 to be accurate.  

In Table 2, we compare the present MAOT energy resonances (E) and quan-
tum defect (δ) of the 2P˚_2s22p2(1D)nd(2S) Rydberg series relatively to the 
2P˚_metastable state of O+ ion to experimental data [3]. All our energy values 
are obtained empirically using Equation (7) and converted into (eV) for direct 
comparison. Here again, the agreements are seen to be very good. Along the se-
ries, the present quantum defect is almost constant.  

In Table 3, we show a comparison of the energy resonances (E) and quantum 
defect (δ) of the 2P˚_2s22p2(1D)ns (2D) Rydberg states relatively to the 
2P˚_metastable state of O+ ion. The current energy positions are calculated from 
equations (8) along with Z = 8, m = 6, and q = 7,

 
σ1 = 6.056 ± 0.322 and σ2 = 

−2.274 ± 0.413. The agreements between the studies are seen to be very good 
and the quantum defect is almost constant along the series. The agreements be-
tween the MOAT results and experimental data are seen to be very good. Along 
all the series investigated, the quantum defect is practically constant. This may 
expect our results up to n = 30 to be accurate.  

In Table 4, we list the present energy resonances (E) and quantum defect (δ) 
for the 2P˚_2s22p2(1S)nd (2D) Rydberg states relatively to the 2P˚_metastable 
state of O+ ion compared to the experimental data [3]. The current energy posi-
tions are calculated from equations (9) along with Z = 8, m = 4, and q = 5, E∞ = 
35.458 eV; σ1 = 6.008 ± 0.167 and σ2 = −0.187 ± 0.05. Comparison shows that the 
maximum energy deviation is at 0.006 up to n = 14. This indicates the very good 
accuracy between the results. For n ≥ 15 it should be underlined that, since the 
MAOT formalism reproduces excellently the experimental measurements [3], 
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the present results quoted in Table 4 for the 2P˚_2s22p2(1S)nd (2D) levels may be 
a very good representative of the nonexistent experimental data. 

 
Table 1. Energy resonances (E) and quantum defect (δ) of the 2P˚_2s22p2 (1D)nd (2P) 
Rydberg series observed in the photoionization spectra originating from the 2P˚ metasta-
ble states of O+. The present results (MAOT) are compared to the Advanced Light Source 
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in 
the present calculations and in the experimental data are indicated into parenthesis. 

 E (eV)   δ 

n MAOT ALS |ΔE| MAOT ALS 

5 30.393 (150) 30.393 (150) 0.000 0.054 0.054 

6 31.081 (150) 31.081 (150) 0.000 0.048 0.048 

7 31.496 (148) 31.496 (150) 0.000 0.032 0.033 

8 31.763 (138) 31.762 (150) 0.001 0.018 0.023 

9 31.955 (122) 31.948 (150) 0.005 0.004 −0.015 

10 32.074 (106) ----- --------- −0.008 − 0.092 

11 32.170 (92) 32.169 (150) 0.001 −0.020 −0.018 

12 32.241 (81)   −0.031  

13 32.297 (71)   −0.032  

14 32.341 (63)   −0.033  

15 32.377 (56)   −0.034  

16 32.406 (50)   −0.035  

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

32.431 (45) 

32.451 (41) 

32.468 (37) 

32.483 (34) 

32.495 (31) 

32.506 (28) 

32.515 (26) 

32.524 (24) 

32.531 (22) 

32.538 (21) 

32.543 (19) 

32.549 (18) 

32.553 (17) 

32.557 (16) 

  

−0.036 

−0.036 

−0.037 

−0.037 

−0.037 

−0.038 

−0.038 

−0.038 

−0.039 

−0.039 

−0.039 

−0039 

−0.038 

−0.039 

 

…      

∞a 32,617     

aNIST atomic database [11]. |ΔE|: energy differences relative to the experimental data.  

https://doi.org/10.4236/jmp.2021.1210086


M. Sow et al. 
 

 

DOI: 10.4236/jmp.2021.1210086 1441 Journal of Modern Physics 
 

Table 2. Energy resonances (E) and quantum defect (δ) of the 2P˚_2s22p2 (1D)nd (2S) 
Rydberg series observed in the photoionization spectra originating from the 2P˚ metasta-
ble states of O+. The present results (MAOT) are compared to the Advanced Light Source 
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in 
the present calculations and in the experimental data are indicated into parenthesis. 

n 
E (eV)   ˚ 

MAOT ALS |ΔE| MAOT ALS 

5 30.413 (200) 30.413 (150) 0.000 0.031 0.031 

6 31.105 (200) 31.105 (150) 0.000 0.001 0.001 

7 31.517 (182) --------  0.034 0.033 

8 31.781 (161) --------  0.020 0.023 

9 31.961 (140) --------  −0.016 −0.017 

10 32.088 (122) --------  −0.103 −0.092 

11 32.182 (106) --------  −0.018 −0.018 

12 32.252 (93)   −0.026  

13 32.307 (82)   −0.023  

14 32.350 (73)   −0.029  

15 32.385 (65)   −0.022  

16 32.414 (58)   −0.022  

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

32.437 (52) 

32.457 (47) 

32.473 (43) 

32.488 (39) 

32.500 (36) 

32.510 (33) 

32.519 (30) 

32.527 (28) 

32/534 (26) 

32.541 (24) 

32.546 (23) 

32.551 (21) 

32.556 (20) 

32.560 (19) 

 

 

 

 

 

−0.027 

−0.023 

−0.028 

−0.024 

−0.029 

−0.024 

−0.028 

−0.023 

−0.027 

−0.021 

−0.025 

−0.029 

−0.023 

−0.027 

 

…      

∞a 32,617     

aNIST atomic database [11]. |ΔE|: energy differences relative to the experimental data.  

https://doi.org/10.4236/jmp.2021.1210086


M. Sow et al. 
 

 

DOI: 10.4236/jmp.2021.1210086 1442 Journal of Modern Physics 
 

Table 3. Energy resonances (E) and quantum defect (δ) of the 2P˚_2s22p2 (1D)ns (2D) 
Rydberg series observed in the photoionization spectra originating from the 2P˚ metasta-
ble states of O+. The present results (MAOT) are compared to the Advanced Light Source 
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in 
the present calculations and in the experimental data are indicated into parenthesis. 

n 
E (eV)   ˚ 

MAOT ALS |ΔE| MAOT ALS 

6 30.578 (150) 30.578 (150) 0.000 0.834 0.834 

7 31.188 (150) 31.188 (150) 0.000 0.829 0.829 

8 31.562 (135) 31.561 (150) 0.002 0.826 0.822 

9 31.803 (119)   0.824  

10 31.971 (104)   0.822  

11 32.092 (93)   0.820  

12 32.182 (79)   0.818  

13 32.250 (70)   0.817  

14 32.304 (62)   0.815  

15 32.347 (55)   0.814  

16 32.381 (49)   0.813  

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

32.409 (44) 

32.433 (40) 

32.453 (36) 

32.469 (33) 

32.484 (30) 

32.496 (29) 

32.507 (26) 

32.516 (24) 

32.524 (22) 

32.531 (20) 

32.538 (19) 

32.543 (18) 

32.549 (17) 

32.553 (16) 

 
 

 

0.811 

0.810 

0.809 

0.808 

0.807 

0.805 

0.804 

0.803 

0.802 

0.801 

0.800 

0.799 

0.799 

0.800 

 

…      

∞a 32,617     

aNIST atomic database [11]. |ΔE|: energy differences relative to the experimental data. 
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Table 4. Energy resonances (E) and quantum defect (δ) of the 2P˚_2s22p2 (1S)nd (2D) 
Rydberg series observed in the photoionization spectra originating from the 2P˚ metasta-
ble states of O+. The present results (MAOT) are compared to the Advanced Light Source 
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in 
the present calculations and in the experimental data are indicated into parenthesis. 

n 
E (eV)   ˚ 

MAOT ALS |ΔE| MAOT ALS 

4 31.924 (150) 31.924 (150) 0.000 0.076 0.076 

5 33.217 (150) 33.217 (150) 0.000 0.072 0.072 

6 33.911 (125) 33.910 (150) 0.001 0.072 0.071 

7 34.332 (103) 34.328 (150) 0.004 0.071 0.061 

8 34.599 (85) 34.597 (150) 0,002 0.071 0.050 

9 34.785 (70) 34.782 (150) 0.003 0.071 0.028 

10 34.912 (59) 34.909 (150) 0.003 0.070 0.044 

11 35.012 (51) 35.008 (150) 0.004 0.070 0.004 

12 35.088 (44) 35.082 (150) 0.006 0.069 −0.030 

13 35.147 (38) 35.145 (150) 0.002 0.069 −0.185 

14 35.185 (33) 35.183 (150) 0.002 0.068 −0.066 

15 35.222 (29) 35.219 (150) 0.003 0.068 −0.088 

16 35.244 (26)   0.067  

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

35.268 (23) 

35.289 (21) 

35.306 (19) 

35.321 (17) 

35.334 (16) 

35.345 (14) 

35.355 (13) 

35.363 (12) 

35.370 (11) 

35.377 (11) 

35.383 (10) 

35.388 (09) 

35.393 (09) 

35.397 (08) 

  

0.067 

0.066 

0.066 

0.066 

0.067 

0.067 

0.067 

0.067 

0.067 

0.067 

0.067 

0.067 

0.067 

0.067 

 

…      

∞a 35,458     

aNIST atomic database [11]. |ΔE|: energy differences relative to the experimental data.  
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Table 5. Energy resonances (E) and quantum defect (δ) of the 2P˚_2s22p3 (3P˚)nd (2D) 
Rydberg series observed in the photoionization spectra originating from the 2P˚ metasta-
ble states of O+. The present results (MAOT) are compared to the Advanced Light Source 
(ALS) of Aguilar et al. [2]. The results are expressed in eV. The energy uncertainties in 
the present calculations and in the experimental data are indicated into parenthesis. 

n 
E (eV)   ˚ 

MAOT ALS |ΔE| MAOT ALS 

3 39.478 (150) 39.478 (150) 0.000 0.436 0.436 

4 43.115 (150) 43.115 (150) 0.000 0.576 0.576 

5 45.092 (150) 45.093 (150) 0.001 0.485 0.480 

6 46.009 (145)   0.483  

7 46.499 (138)   0.483  

8 46.788 (135)   0.483  

9 46.971 (133)   0.483  

10 47.095 (132)   0.482  

11 47.181 (131)   0.479  

12 47.244 (124)   0.479  

13 47.292 (116)   0.479  

14 47.328 (110)   0.480  

15 47.357 (106)   0.480  

16 47.380 (94)   0.480  

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

47.398 (84) 

47.412 (75) 

47.425 (68) 

47.436 (62) 

47.445 (56) 

47.453 (52) 

47.460 (47) 

47.466 (44) 

47.471 (40) 

47.475 (37) 

47.479 (35) 

47.483 (32) 

47.486 (30) 

47.489 (28) 

  

0.480 

0.480 

0.481 

0.481 

0.481 

0.481 

0.481 

0.481 

0.481 

0.481 

0.480 

0.480 

0.480 

0.480 

 

…      
 

∞a 47,527     

aNIST atomic database [11]. |ΔE|: energy differences relative to the experimental data. 
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In Table 5, we compare the present MAOT energy resonances (E) and quan-
tum defect (δ) of the 2P˚_2s22p2(1D)nd(2S) Rydberg series relatively to the 
2P˚_metastable state of O+ ion to experimental data [3]. Our current energy po-
sitions are calculated from Equations (10) with Z = 8 along with m = 3, and q = 4, 
E∞ = 47.527 eV, σ1 = 5.411 ± 0.411 and σ2 = −0.844 ± 0.022. Here again, the 
agreements are seen to be very good. Along the series, the present quantum de-
fect is almost constant. In a few series where discrepancies are observed, the 
maximum energy difference relative to the experimental data is at 0.001 eV. This 
indicates the excellent agreements between the present calculations and the ex-
perimental measurements for energy positions. 

For all the Rydberg series investigated, the slight discrepancies between the 
present calculations and experiment may be explain by the simplicity of the 
MAOT formalism which does not include explicitly any relativistic corrections. 

4. Summary and Conclusion 

In this paper, energy resonances of the 2s22p2(1D)ns(2D), 2s22p2(1D)nd(2P), 
2s22p2(1D)nd(2S), 2s22p2(1S)nd (2D), and 2s22p3(3P)np (2D) Rydberg series in the 
photoionization spectra originating from 2P metastable state of O+ ions are re-
ported in this paper using the Modified Orbital Atomic Theory (MAOT). Over 
the entire Rydberg series investigated, it is shown that the present MOAT results 
agree very well with the only available experimental data of ALS [3]. A host of 
accurate data up to n = 30 are quoted in the recent work. The very good result 
obtained is this work points out the possibilities to use the MAOT formalism in 
the investigation of high lying Rydberg series of ions containing several electrons 
in the framework of a soft procedure. This work may be of interest for future 
experimental and theoretical studies in the photoabsorption spectrum of O+. 
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Abstract 
Quantum gravitational theory, based on the hypothesis of the absolute refer-
ence system, reveals the function of the effects of the gravitational field at the 
microscopic and macroscopic scale. The quantum nature of gravitational po-
tential, and the dynamics and kinetic energy of photons and elementary par-
ticles under the influence of the gravitational field are studied, and a quantum 
interpretation of gravitational redshift is given. There is also a complete 
agreement of this quantum gravitational theory with the existing experimen-
tal data. 
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1. Introduction 

Quantum gravitational theory based on hypothesis of the absolute reference sys-
tem is fully compatible with quantum mechanics and quantum field theory, for 
the following reasons: 

1) Quantum gravity based on the hypothesis of the absolute reference system 
does not need the possibility of renormalization, since there are no infinities 
arising in calculated quantities. There is also no point-particle, since the ele-
mentary particles of matter have a specific structure, consisting of bound pho-
tons.  

2) Changes in the operating rate of clocks under the influence of a gravita-
tional field or due to motion at high speeds comparable to the speed of light in 
vacuum, based on the hypothesis of an absolute reference system, are not related 
to the concept of spacetime, but are related to the influences exerted on the 
structural elements of the particles, such as the effect of a gravitational field on 
bound photons, as well as Lorentz contraction.  
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3) Spacetime is not dynamic as in the general theory of relativity. The space of 
the hypothesis of the absolute reference system is a Euclidean space, and there is 
the possibility of an unambiguous description of all the cosmic events observed 
in the absolute reference system.  

The study of inertial systems based on the hypothesis of the absolute reference 
system is stated in [1] [2] [3]. In the present work, the quantum nature of the 
gravitational field is studied and in addition the effects of the gravitational field 
on physical phenomena are studied by supplementing what is already stated in 
[4]. 

Some references related to the general theory of relativity, in which are pre-
sented the principles of this gravitational theory by its author himself, are in 
[5]-[10]. 

2. Quantum Description of the Gravitational Field 

Based on the hypothesis of the absolute reference system, the elementary pho-
tonic wave is considered to be an oscillator whose mean value of kinetic energy 
is equal to ( )1 2 hν , where h is Plank’s constant and ν  is the frequency, and 
mean value of dynamic energy is also equal to ( )1 2 hν  ([2], subsection 3.3. 
Harmonic Oscillator). The total energy of a photon is equal to hν . Also ac-
cording to the section “Introduction to Particle Mechanics” in [1], we have the 
relation 2

phh m cν = , where phm  is the photonic mass and c is the speed of light 
in vacuum. We must then consider the effect of the gravitational field on a pho-
ton coming from a space in which there is no gravitational field, and then prop-
agates in a gravitational field, that is, on the already disturbed ether. 

We consider that outside the gravitational field is a body or a measuring in-
strument, when it is included in the natural reference frame of the celestial body 
to which the gravitational field is due, but it is very far from this celestial body, 
so that the effect of the gravitational field is considered practically zero. Also, we 
denote by 

ophm , oc  and oν  the mass, velocity and frequency of a photon, 
when it is outside the gravitational field, while these physical quantities will be 
denoted by phm , c and ν  respectively, when the same photon is inside the gra-
vitational field. 

The momentum of the photon, without the presence of a gravitational field, 
making use of the clock which is outside the gravitational field, is given by the 
relation 

o oph ph op m c=  ([1] section 4. Introduction to Particle Mechanics). 
The corresponding relation for a photon propagating in a gravitational field and 
resulting from the use of the aforementioned clock, in vector form, is: 

ph phm=p c                         (1) 

where phm , c  are functions dependent on the radius r ([4] section 2. Mass 
and velocity of a photon in the gravitational field). We consider that the 
photon propagates in space with the simultaneous presence of a gravitational 
field derived from the spherical body of mass M. 

Therefore, the momentum - energy relation of a photon that is a force carrier 
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of the gravitational field is: 
2
ph

ph
phm
=

p
                             (2) 

Suppose that in a small volume Vδ , at a radial distance r, a set of N force 
carriers of the gravitational field is an elementary part of the whole spherical 
wave of all force carriers of the gravitational field of a celestial spherical body of 
mass M. The wavefunction Ψ  of this system of N photons of different fre-
quencies will obey the classical differential equation of a spherical electromag-
netic wave. Specifically, the action of the kinetic energy operator1 on the wave-
function Ψ  is given by the equation: 

,
ˆ

2ph kin
i

t
∂Ψ

Ψ =
∂



                          (3) 

and gives us the equation of action of the total energy operator on the wavefunc-
tion Ψ  of the photon: 

,
ˆ ˆ2ph ph kin i

t
∂Ψ

Ψ = Ψ =
∂

                       (4) 

The momentum operator is ˆ ph i= − ∇p  . From Equations (1) and (2) we get 
the equation: 

2 2
2

1
ph phc
=p                             (5) 

from which we get the classical electromagnetic wave equation:  

( )
2

2
2 2

1 , 0r t
c t

 ∂
∇ − Ψ = 

∂ 
                      (6) 

where the wavefunction Ψ  depends on the radial distance r and not on the 
vector position r , since this wave is spherical. Under these conditions the ac-
tion of the operator 2∇  on the wavefunction Ψ  is expressed by the equation:  

2 2
2

1 r
r rr
∂ ∂Ψ ∇ Ψ =  ∂ ∂ 

 

so, Equation (6) can take the form: 

( ) ( )2 2

2 2 2

1 0
r r
r c t

∂ Ψ ∂ Ψ
− =

∂ ∂
                     (7) 

The solution of this differential equation, for N photons, which are force car-
riers in the elementary volume Vδ , is given by the relation: 

( ) ( )

1

1, e i i
N

i k r t
i

i
r t A

r
ω−

=

Ψ = ∑                      (8) 

where iA , for 1,2, ,i N=  , is constant. The gravitational potential, ( )U r , is 
proportional to the time-averaged absolute value of ( ),r tΨ , so it is in a form 
given by the relation: 

 

 

1The momentum and kinetic energy operators are described in the literature reference [2], subsec-
tion 2.2, Wave Function of a Free Particle, Equations (2.9) and (2.10). 
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( ) *~ AU r
r

Ψ = ΨΨ =                      (9) 

where 2
1

N
iiA A

=
= ∑ . If we denote by E  the intensity of the gravitational 

field (something analogous to the intensity of the electric field in electromagnet-
ism), then this is given by the relation: 

( ) ( )r U r= −∇E                       (10) 

On a photon located in the above elementary volume Vδ  and having mass 

phm  a gravitational force is exerted, determined by the equation: 

2
ˆph

ph ph r

GMm
m m U u

r
= = − ∇ = −F E               (11) 

where ˆru  is the unit radial vector. Therefore, the expression for gravitational 
potential, ( )U r , is: 

( ) GMU r
r

= −                         (12) 

We must also summarize the findings of the study regarding the dependence 
of the mass and velocity of a photon under the influence of a gravitational field, 
as stated in [4] (section 3, Mass and Velocity of a Photon in the Gravitational 
Field). This dependence of the velocity and mass of a photon on the radial dis-
tance r, which is the distance of the photon from the center of the spherical ce-
lestial body of mass M, is determined by the relations: 

1 2

2

41o
o

GMc c
rc

 
= − 

 
                      (13) 

3 4

2

41
oph ph

o

GMm m
rc

−
 

= − 
 

                    (14) 

Since the elementary particles have as structural elements the bound photons, 
the function of the photonic mass, which is due to the dependency on the radial 
distance, will be analogous to the corresponding function of the mass of a body 
located inside the gravitational field. If m and om  are the masses of a spherical 
body inside and outside the gravitational field respectively, and r is the radial 
distance, the mass function m is given by the relation: 

3 4

2

41o
o

GMm m
rc

−
 

= − 
 

                     (15) 

The dynamic energy of a photon, due to the effect of the gravitational field 
when moving from a position outside the gravitational field (i.e. theoretically 
from infinite distance) to a radial distance R, is calculated by the integral: 

( ) ( )( )d d
R

ph phR
V R m U r

∞

∞
= ⋅ = − − ∇ ⋅∫ ∫F r r             (16) 

With the help of the relation (11) and the relation (12) for the gravitational 
potential, we get: 
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( )
3 4

2 2

1 4
2 2

2

2 2

41 d

41

o

o o

o

ph phR
o

ph o ph o
o

ph o ph

GM GMV R m r
r rc

GMm c m c
Rc

m c m c

−
∞  

= − 
 

 
= − + − 

 
= − +

∫

             (17) 

The first-order approximation of this photon gravitational dynamic energy is 
calculated according to relation: 

( ) oph
ph

GMm
V R

R
−  

and respectively for a particle, which had mass om  when it was outside the gra-
vitational field, and now it is inside the gravitational field at a radial distance R, 
the gravitational dynamic energy is calculated approximately according to rela-
tion: 

( ) oGMm
V R

R
−  

The nature of this dynamic energy is studied in [4], section 2, The Origin of 
Attractive Force in a Gravitational Field, and we observe that the energy phE , 
which is also stated in [4] (section 2), at a radial distance r is equal to ( )phV r− . 
Indeed, by putting ( ) ˆrf r u=F , as stated in [4] (section 2, Equation (2)), we get 
the relation: 

( ) ( )
d

ˆ ˆ
d

ph
r r ph

E
f r u u V r

r
= = = −∇F               (18) 

which is easily confirmed according to relation (17). 
The total energy of a photon propagating inside a gravitational field at a radial 

distance R, using the measuring instruments of a laboratory located outside the 
gravitational field, according to relation (17) is: 

( )2 2
oph ph o phm c m c V R= +                   (19) 

where 2
phm c hν= , 2

oph o om c hν= , and the frequencies ν  and oν  are the fre-
quencies of the same photon when it is inside the gravitational field or outside it 
respectively, measured by a clock located outside the gravitational field. As al-
ready mentioned at the beginning of this section, there is a term for the kinetic  

energy of this photon, which is 21 1
2 2 oo ph oh m cν = , and two terms of dynamic  

energy, one of which is that of the elementary photonic harmonic oscillator 
equal to the kinetic energy term, and the other term of dynamic energy, ( )phV R , 
is due to the effect of the gravitational field on the photon. Due to this effect of 
the gravitational field, a physical system located within a gravitational field be-
comes non-inertial. Therefore, in order to estimate the kinetic energy of the 
photon using the above-mentioned clock, one must calculate the quantity 1

2 ohν , 
which is equal to the kinetic energy of the same photon, when this photon is 
outside the gravitational field. 
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The spherical electromagnetic wave, which consists of free photons of gravita-
tional field force carriers, comes from the continuous conversion of bound pho-
tons into free photons (and vice versa), and their frequency spectrum is the 
spectrum of the “mass frequency” of bound photons2 from which they originate. 
The density of these force carriers at a radial distance of r is proportional to the 
time-averaged value of the quantity *ΨΨ  (as mentioned in [2], subsection 2.2, 
Wave Function of a Free Particle), and is also proportional to the mass of the 
spherical homogeneous body from which the gravitational field originates. But 
the mass of the spherical homogeneous celestial body is affected by the gravita-
tional field created by the body itself. Suppose that the whole mass of the spheri-
cal body is converted to free photons in a space in which there is no gravitational 
field and that this measured mass of free photons is equal to oM . This mass, 

oM , is called non-gravitational mass. Therefore the mass of the spherical body 
before this conversion, that is, when it was in a solid state, must have been 
slightly greater than the measured mass of free photons, due to the existence of 
the gravitational field created by the body itself. This mass, which we consider 
equal to M, is called gravitational mass. 

If we want to calculate the gravitational mass, M, of this body we can do it 
with a good approximation ignoring terms of very small order of magnitude. 
Suppose first that a concentric spherical part of this body of radius r and gravita-
tional mass ( )r  is surrounded by a spherical shell of differential thickness 
dr  and differential gravitational mass ( )d r , as shown in Figure 1, and that 
the density ρ  of the non-gravitational mass is constant throughout the body. 
The differential gravitational mass of the spherical shell is given by the rela-
tion: 

( ) ( ) ( ) 3 4

2

4
d d 1o

o

G r
r r

rc

−
 

= − 
 


   

where ( )d o r  is the non-gravitational differential mass of the spherical shell. 
By setting ( ) ( )or r− = ∆    we get the approximate relation: 

( ) ( ) ( )
2 2 2 2

o o

o o o o

G r G r G rG
rc rc rc rc

∆
= + 

  
 

since the quantity ( ) ( )2
o oG r rc  is quite small (of the order of 10−5 for the 

solar system). If we denote by R the radius of the spherical body, the approx-
imate calculation of the gravitational mass of the body gives us: 

( ) ( ) ( )20 0

3
d 1 d

R R o
o

o

G r
M r r

rc
 

= + 
 

∫ ∫


             (20) 

Since the above density, ρ , is constant, it follows that the non-gravitational 
mass in the spherical part of radius r is ( ) 34

3o r rρ= π , and also 
( ) 2d 4 do r r rρ= π , so, it follows that using the previous integration, the gravi-

tational mass of the body is determined by the following relation: 

 

 

2The concept of mass frequency is described in [1], subsection 4.1, The Structure of the Smallest 
Elementary Particle. 
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Figure 1. A concentric spherical part of the body of 
radius r and gravitational mass ( )r  is surrounded 

by a spherical shell of differential thickness dr  and 
differential gravitational mass ( )d r . 

 

2

91
5

o
o

o

GM
M M

Rc
 

= + 
 

                   (21) 

where 34
3oM Rρ= π . 

3. Additional Effects of the Influence Exerted by the  
Gravitational Field on Matter 

As mentioned in the previous section, the kinetic energy of a photon propagat-
ing inside a gravitational field is equal to the kinetic energy of the same photon 
when it is outside the gravitational field. Also, the physical reference system of a 
massive celestial body M is not an inertial reference system, since it dynamically 
affects all the structural elements of all the elementary particles of matter. Ac-
cording to the hypothesis of the absolute reference system, these structural ele-
ments are the bound photons. 

Although all the internal dynamic energies of an elementary particle have a 
sum equal to zero in order for the particle to be in a stable state, the state of the 
particle due to the gravitational field remains as an exogenous non-inertial state 
of the particle. For example the effect on the velocity and mass of a captive pho-
ton, according to relations (13) and (14), gives us the total energy of the bound 
photon, but its kinetic energy is maintained equal to the kinetic energy estimated 
when this captive photon is outside the gravitational field. Therefore the kinetic 
energy of a particle is that which the particle had when it was outside the gravi-
tational field, moving in an inertial system at a speed measured by the measuring 
instruments of the same inertial system equal to the velocity of the particle inside 
the gravitational field that measured by same measuring instruments. The kinet-
ic energy of a particle which is at a radial distance r and moves with speed u 
measured by the measuring instruments of a laboratory located outside the gra-
vitational field, according to the hypothesis of the absolute reference system, is 
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given by the equation: 

2 2 2 2 21 1 1
2 2 2kin o o o o oE m c m c m uγ γ= − =  

where ( ) 1 22 21 ou cγ
−

= − . 
A notable change, due to the effect of the gravitational field, is the change in 

the quantitative estimation of the electric charge of an elementary charged par-
ticle. As has already been proved by the principles of the hypothesis of the abso-
lute reference system (in [1], subsection 2.4.2, The Charge and the Force Car-
rier of Electromagnetic Interactions, Equation (2.60)), a charged particle in-
itially accelerated by electromagnetic interactions in the inertial reference system 
of the laboratory, then moving at a constant velocity v  with respect to it 
measured by the instruments of the laboratory, has an electric charge equal to 
qv , while before acceleration, practically stationary in the laboratory, it had an 
electric charge equal to q. The corresponding relation is: 

qq
γ

=v
v

                          (22) 

A charged particle under the influence of a gravitational field, considered as 
stationary at a radial distance r, undergoes a change in the quantitative estima-
tion of its charge due to the expression of the estimated time3, obtained by using 
a clock that is at the same radial distance, r, as that of the electric charge, ac-
cording to relation: 

1 4

2

41g
o

GMt t
rc

 
= − 

 
                     (23) 

because this estimated time causes a change in the estimation of the emission 
rate of the force carriers in relation to the estimation of the emission rate of the 
force carriers resulting from a clock outside the gravitational field, as in the case 
of the aforementioned moving charged particle. 

We denote by q the electric charge of a particle located at a radial distance R 
within the gravitational field, which is measured by the measuring instruments 
of a laboratory located outside the gravitational field. Also, we denote by qo the 
electric charge of the same particle when this particle is outside the gravitational 
field, measured by the aforementioned laboratory. The functional relation be-
tween the quantities q and qo is: 

1 4

2

41o
o

GMq q
Rc

 
= − 

 
                    (24) 

If the measuring instruments and the aforementioned charged particle are lo-
cated inside the gravitational field, at a radial distance R, then the electric charge 
is evaluated as equal to qo. 

 

 

3The relation between the estimated time inside the gravitational field and the measured time with a 
clock outside the gravitational field, and the discussion regarding this relationship is in [4], section 4, 
Gravitational time dilation and redshift, Equation (21). 
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4. The Quantum Interpretation of Gravitational Redshift 

In order to study the phenomenon of gravitational redshift, we will study the 
energy emission spectrum derived from a hydrogen atom under the influence of 
a gravitational field, using the principles of quantum mechanics based on the 
absolute reference system hypothesis. 

We consider a hydrogen atom affected by the gravitational field of a spherical 
and homogeneous celestial body of mass M, and located at a constant radial dis-
tance R from the center of this spherical body. In order to study this phenome-
non according to the principles of hypothesis of the absolute reference system, 
the energy of this atomic electron should be estimated using the clock of the par-
ticle under study, i.e. the clock of the electron of the hydrogen atom. 

According to the relevant example in [2] (subsection 3.4, Hydrogen Atom, 
Equation (3.29)), if we use the subscript o for frequencies, measured with the in-
struments of a laboratory which is outside the gravitational field, where the 
phenomenon we are considering takes place, the average value of kinetic energy 
at the energy level of quantum number n, is given by the equation: 

,
1
2 okin n nE hnν=                      (25) 

In the same example (in [2], subsection 3.4, Hydrogen Atom, Equations 
(3.31), (3.33)), if we use the subscript o for mass and electric charge measured 
with the instruments of the above laboratory, it appears that: 

4

, 2 2

1
2

o o
kin n

m e
E

n
=



                     (26) 

Therefore: 
4

2 2

1 1
2 2o

o o
n

m e
hn

n
ν =



                    (27) 

But we need to understand the origin of the first member of the Equation (27). 
The definition of particle frequency is given in [2] (subsection 2.1, Par-
ticle-Frequency and Wavelength, Equation (2.3)) by the relation 1o i o

N
q uiν ν

=
= ∑ , 

where 
i ouν  is the frequency that comes from the kinetic energy of the i bound 

photon. The kinetic energy of the particle is: 

2 2

1

1 1
2 2 i o

N

kin o u
i

E m u hγ ν
=

= = ∑                  (28) 

Therefore the kinetic energy in relation to the particle frequency is: 

2 21 1
2 2 okin o qE m u hγ ν= =                   (29) 

Therefore the average value of kinetic energy, when 1γ  , is given by the re-
lation: 

21 1
2 2 okin o qE m u hν= =                    (30) 

where 
o oq nnν ν= , as formulated in [2] (subsection 2.4, Particle Motion in 
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Closed Orbits, Equation (2.23)), and finally a general equation is: 

21 1
2 2 okin o nE m u hnν= =                     (31) 

Suppose that the hydrogen atom moves slowly from a region outside the gra-
vitational field to the celestial spherical body, that is, it gradually enters the gra-
vitational field, and finally immobilizes at a radial distance R within the gravita-
tional field. Then according to the measurements of the laboratory instruments 
located outside the gravitational field, the Equation (27) is modified according to 
relation: 

4

2 2

1 1
2 2n

mehn
n

ν =


                      (32) 

According to the clock of the above laboratory, following the relevant wording 
in [4] (section 4, Gravitational Time Dilation and Redshift, Equation (18)), 
the frequency nν  is given by the equation: 

1 4

2

41
on n

o

GM
Rc

ν ν
 

= − 
 

                     (33) 

It is obvious that the first member of the Equation (32), is not equal to the av-
erage kinetic energy, according to the definition of kinetic energy given in the 
previous section, hence the Equation (32) no longer gives us the average kinetic 
energy. However, since the hydrogen atom is at a radial distance R inside the 
gravitational field, using a clock located at the same radial distance, according to 
the estimated time given by the relation (23), the estimated frequency, 

gnν , is 
calculated according to the equation: 

1 4

2

41
gn n

o

GM
Rc

ν ν
−

 
= − 

 
                    (34) 

This estimated frequency is equal to the frequency 
onν , measured when the 

effect occurs outside the gravitational field4. Therefore the mean value of kinetic 
energy is given by the equation: 

1 44

, 2 2 2

1 1 41
2 2gkin n n

o

me GME hn
n Rc

ν
−

 
= = − 

 

             (35) 

From the relations (15) and (24) the following equality results: 
1 4

4 4
2

41o o
o

GMme m e
Rc

 
= − 

 
                    (36) 

therefore the average kinetic energy of the electron of the hydrogen atom at the 
energy level n is: 

4

, 2 2

1
2

o o
kin n

m e
E

n
=



                        (37) 

 

 

4A similar description of this estimated frequency can be found in [4], section 4, Gravitational Time 
Dilation and Redshift, Equation (23). 
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The total energy of the electron is the sum of the time average value of kinetic 
energy, time average value of Coulomb energy, and gravitational potential ener-
gy. The time average of Coulomb energy is denoted by dynE . Since the gravita-
tional dynamic energy is constant, given that the radial distance R is constant, 
does not contribute to the energy difference of an energy transition of the elec-
tron, and, based on the virial theorem, 2 0kin dynE E+ =  ([11], paragraph 3-4, 
THE VIRIAL THEOREM), it follows that the energy of the electron, which ac-
tually contributes to the energy of an emitted or absorbed photon, is given by the 
relation: 

4

2 2

1
2

o o
n

m e
E

n
= −



                        (38) 

that is, it is equal to the energy of the electron when the phenomenon takes place 
outside the gravitational field. 

We now assume an energy transition of the electron of the hydrogen atom, 
from the initial energy level, 

1n
E , with quantum number 1n  to the final energy 

level, 
2nE , with quantum number 2n , so, for the emission of a photon the in-

equality 1 2n n>  must apply. 
The energy difference is calculated according to the known relation: 

2 1

4

2 2 2
2 1

1 1
2

o o
n n

m e
E E E

n n
 

∆ = − = − − 
 

               (39) 

The estimated, by the clock of the electron, energy of the emitted photon, as 
stated in [4] (section 4, Gravitational Time Dilation and Redshift, Equation 
(25)), is given by the relation: 

1 4

2

41
gph o

o

GMh
Rc

ν
−

 
= − 

 
                     (40) 

where 2
oo ph oh m cν = , and oν  is the frequency of the emitted photon within the 

gravitational field, estimated by the clock of the electron. This frequency is equal 
to the frequency which is measured by a clock outside the gravitational field, 
when the emitted photon has come out of the gravitational field. Given that 

gph E= −∆ , the relations (39) and (40) give us: 
1 44

2 2 2 2
2 1

1 1 41
2

o o
o

o

m e GMh
n n Rc

ν
−

  
− = −  

   

                 (41) 

If this phenomenon had taken place outside the gravitational field, then the 
energy of the emitted photon, estimated by a clock outside the gravitational field, 
would had been equal to: 

1 2

4

,2 2 2
2 1

1 1
2

o o
o n n

m e
h

n n
ν →

 
− = 

 

                    (42) 

where 
1 2,o n nν →  is the frequency of the emitted photon, estimated by a clock out-

side the gravitational field. From the relations (41) and (42) it appears that the 
photon whose emission takes place inside the gravitational field, when it has 
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come out of the gravitational field, it has shifted toward the red in relation to the 
photon emitted outside the gravitational field, according to the following rela-
tion: 

1 2 1 2

1 4

, ,2 2

41 1o o n n o n n
o o

GM GM
Rc Rc

ν ν ν→ →

   
= − −   

   
            (43) 

5. Experimental Confirmation of the Hypothesis of the  
Absolute Reference System 

In this section we examine the known experimental tests of the general theory of 
relativity, in order to determine whether the experimental results confirm the 
hypothesis of the absolute reference system. 

Everything in this section is a brief description of what is stated in [4], section 
4, and section 5. 

5.1. Gravitational Time Dilation 

According to the hypothesis of the absolute reference system, the bound photons, 
which are the building elements of the elementary particles of matter, will un-
dergo these changes in frequency and wavelength. If the closed orbit of a bound 
photon has a length equal to nλ , where 1,2,n =  , then the time of a period is 
T n cλ= , while, outside the gravitational field, the corresponding time is 

o o oT n cλ= . Therefore: 
1 4

2

41o
o o

o o

c GMT T T
c rc
λ
λ

−
 

= = − 
 

                 (44) 

According to the hypothesis of the absolute reference system, the estimated 
time is inversely proportional to the time of the aforementioned period ([1], 
2.4.1. Contraction of Length and Time, p. 440-441). Assuming that gt  is the 
estimated time recorded between two events occurring inside the gravitational 
field using a clock at a fixed position r  also inside the gravitational field, and t 
is the corresponding estimated time using a clock outside the gravitational field, 
then the correlation of these times is given by the equation: 

1 4

2 2

41 1g o
g

o o

t T GM GMt t t
t T rc rc

   
= ⇔ = − −   

   
          (45) 

The corresponding result of the general theory of relativity is: 
1 2

2 2

21 1g
o o

GM GMt t t
rc rc

   
= − −   

   
                (46) 

Therefore the estimated time, based on the hypothesis of the absolute refer-
ence system, with a very good approximation is the same as that of the general 
theory of relativity. This estimated time value has been experimentally con-
firmed ([12] [13]). 
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5.2. The Advance of the Perihelion of Mercury 

Denoting the mass of the Sun by M and the mass of Mercury by m, according to 
the Equation (15) and the relevant study in [4] (section 3, Mass and Velocity of 
a Photon in the Gravitational Field, Equation (15)), we get the equation: 

3 222

2 2 2

d 41
d

o

o

GMmu GMu
L rcθ

−
 

+ = − 
 

               (47) 

Given that 1u r= , and ( )( ) ( )3 22 21 4 1 6o oGM rc GM rc
−

− + , the first order 

approach is given by the differential equation: 
2 2 2 22

2 2 2 2

6d 1
d

o o

o

G M m GMmu u
c L Lθ

 
+ − = 
 

               (48) 

We define the constants:  
2 2 2

2 2

6
1 o

o

G M m
A

c L
= −  

2

2
oGMm

B
L

=  

The solution of the differential Equation (48) has the form: 

( )1 cosBu K A
r A

θ= = +                     (49) 

where K is constant. 
Two consecutive minimizations of the distance r are performed for 0Aθ =  

and for 2Aθ = π . For 0Aθ =  the angle θ  is zero, while for 2Aθ = π  
the angle θ  is given by the relation: 

2 2 2

2 2

62 2 o

o

G M m
c LA

θ
ππ

= π+                    (50) 

This result is the same as that of the general theory of relativity ([14], §101. 
Motion in a centrally symmetric gravitational field) and is confirmed by ob-
servations already announced in the 19th century. 

More details on this topic are given in [4], subsection 5.1, The Advance of the 
Perihelion of Mercury. 

5.3. The Deflection of Light in the Gravitational Field of the Sun 

When a photon enters the gravitational field of the sun, its energy changes from 
the value 2

oph om c  to the value 2
phm c , when it leaves the gravitational field, it 

takes again the value 2
oph om c . Also the motion of said photon at a great distance 

from the sun, where it can be considered to be outside the gravitational field, 
tends to be asymptotically a straight line, while inside the gravitational field it is 
curvilinear, due to the effect of the gravitational force of the Sun. Since the force 
is central, the trajectory equation has the geometric shape of the hyperbola, so, 
in polar coordinates r, Φ , obeys the equation: 
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( ) ( )2 2

1 1 cos
1 1r a a

ε
ε ε

= + Φ
− −

                 (51) 

where ε  is the eccentricity, which is greater than unit, and a is the distance 
from the center C to the vertex V called the semi-major axis (Figure 2). 

Holding only the first order terms, the approximate solution of the following 
differential equation: 

3 222

2 2 2

d 41
d

oph

o

GMmu GMu
L rcθ

−
 

+ = − 
 

                (52) 

as stated in [4] (subsection 5.2, The Deflection of Light in the Gravitational 
Field of the Sun, Equation (43)), is given by the equation: 

( )1 cosBu K A
r A

θ
′

′ ′= = +
′

                   (53) 

where ,A B′ ′  are the constants given by the equations: 
2 2 2

2 2

6
1 oph

o

G M m
A

c L
′ = −  

2

2
ophGMm

B
L

′ =  

The deflection angle is given by the equation: 

2δ
ε

                            (54) 

We get the result: 

2 .13δ ′′
  

 

 

Figure 2. The continuous curved line is the elliptical 
orbit of the photon within a gravitational field. The 
hyperbolic orbit asymptotically approaches the dashed 
lines which are the directions of motion of the photon at 
a great distance from the spherical body of mass M. The 
angle δ is the angle of deflection of the photon. 
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The corresponding value derived from the general theory of relativity is: 

GR 2

4 1 .75
o

GM
R cε

δ ′′=   

The result of calculating the deviation angle based on the hypothesis of the 
absolute reference system, which is 2''.13, is closer to the experimental value than 
the result of the general theory of relativity. This experimental value was ob-
tained from measurements at the Sobral in 1919 ([15], V. General Conclusions. 
p. 330), which were: 

From declinations 1''.94 
From right ascensions 2''.06 
More details on this topic can be found in [4], subsection 5.2, The Deflection 

of Light in the Gravitational Field of the Sun. 

5.4. The Time Delay of Light 

We will now study the test proposed by Irwin I. Shapiro in order to measure a 
time delay (Shapiro delay) in the round-trip travel time for radar signals reflect-
ing off other planets ([16]), sometimes called the fourth “classical test” of general 
relativity. 

We consider that an electromagnetic signal is emitted from Earth, reflected on 
a planet (or spacecraft) and returned to Earth, but under the influence of the 
Sun’s gravitational field during its motion towards the planet and during its re-
turn to the Earth. We will calculate the time delay due to the effect of the solar 
gravitational field on an elementary photonic signal, i.e. a photon. The path of 
the examined photon is the path CBABC, of the axis x shown in Figure 3. Of 
course the deflection angle, which was calculated in the previous section, is very 
small, so the above-mentioned orbit is considered straight. Here we have ig-
nored the motion of the Earth and planets during the round trip of the signal, 
because the corresponding velocities, estimated in the reference frame of the so-
lar system, are much slower than the speed of light in vacuum. 

The total time of the round trip path is calculated according to relation: 

( ) ( )( )
3 2

2 4 lne p e e p p

o o

x x r x r xGMt
c c d

 + + +
 ∆ = +
 
 

           (55) 

This result agrees with the corresponding result of the general theory of rela-
tivity ([17], 7.2 The Time Delay of Light, Equation (7.31)). 

More details on this topic can be found in [4], subsection 5.3, The Time De-
lay of Light. 

 

 

Figure 3. Geometry of light deflection measurements. 
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5.5. The Gravitational Redshift 

We will first study the redshift due to the Earth’s gravitational field for example, 
which is observed if two measurements of the estimated energy of a photon are 
taken at two different radial distances 1r  and 2r  that differ only slightly, and 

1 2r r< . Also we consider that 1r  is equal to the distance of the earth ground of 
the experiment from the center of the Earth. The ratio of the two estimated 
energies is calculated as follows: 

( )
( )

1 4
2

2
2 2 1 2

1 4 2
1 1 22

2
1

41
1

41

o
g

g

o

ph o
ph o

ph o
ph o

o

GMm cr r c r rGM
r r rcGMm c

r c

−

−

 
− 

− = −
 
− 

 






          (56) 

If 2 1h r r= −  is the height, R is the radius of the Earth, 2g GM R= , and 
2

1 2r r R , then the previous relation becomes: 

( )
( )

2

2
1

1g

g

ph

ph o

r gh
r c

−




                       (57) 

This result agrees with the corresponding prediction of the general theory of 
relativity and has been experimentally confirmed ([18]). 

More details on this topic can be found in [4], subsection 5.4, The Gravita-
tional Redshift. 

6. Conclusion 

The physics of an absolute reference system is a comprehensive and self-contained 
view of physical reality, extending to all areas of the physical sciences, and con-
firmed by a wide range of scientific observations and experiments, including 
all experiments performed from time to time in order to confirm the special 
and general theory of relativity. In this article, the quantum gravitational phe-
nomena are studied, and it is proved that the gravitational redshift is fully in-
terpreted based on the principles of the absolute reference system hypothesis. 
Also, the calculations are confirmed by the experimental results, and it is also 
found that the prediction for the experiment on the deflection of light in the 
gravitational field of the Sun on the basis of the hypothesis of the absolute ref-
erence system, is in better agreement with the experimental data compared to 
the corresponding prediction of the general theory of relativity. It is therefore 
necessary to carry out an experiment in order to take high-precision measure-
ments of light deflection, in the special case of the effect of the gravitational field 
of the Sun. 
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Abstract 
We summarize our results about the quantization of a charged particle mo-
tion without spin inside a flat box under a static electromagnetic field with 
Landau’s gauge for the magnetic field, where Fourier’s transformation was 
used to analyze the problem, to point out that there exists a wave function 
which is different to that one given by Landau with the same Landau’s levels. 
The quantization of the magnetic flux is deduced differently to previous one, 
and a new solution is presented for the case of symmetric gauge of the mag-
netic field, and having the same Landau’s levels. 
 

Keywords 
Landau’s Gauge, Symmetric Gauge, Quantum Hall Effect, Flat Box 

 

1. Introduction 

The work of Klitzing, Dora and Pepper [1] presented a breakthrough in expe-
rimental physics due to its success in measuring the Hall voltage of a two- 
dimensional electron gas realized in a MOSFET. The important fact discovered 
in this experiment was that the Hall resistance is quantized, and Landau’s eigen-
values solution [2] (Landau’s levels) of a charged particle in a flat surface with 
magnetic field has become of great importance in trying to understand integer 
Hall effect [1] [3] [4] [5] [6], fractional Hall effect [6] [7] [8] [9], and topological 
insulators [10]-[14]. This last elements promise to become essential for future 
nanotechnology devices [15] [16] [17]. Therefore, it is worth to re-take this 
problem and to consider in detail the characteristics that it presents. In our pre-
vious paper [18], we considered the static magnetic field given through the Lan-
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dau’s gauge and obtained, by using the Fourier transformation, a different solu-
tion for the eigenfunction to those given by Landau. We summarize those results 
here and make a different approach to obtain the quantization of the magnetic 
flux or the density of states between two Landau’s levels. We continue consider-
ing that this result could be relevant, because Landau’s solution is kept using in 
different works like Prange’s [19], Laughling’s [20], solid state and quantum 
transport books as well [3] [7] [21] [22]. In addition, for the especial case where 
the charged particle is moving on the plane x-y under the same static transversal 
magnetic field but defined by the symmetric gauge, we present a new solution, 
which matches the characteristics mentioned in [18] and on this paper, we have 
the same Landau’s Levels as solution of the eigenvalue problem. 

2. Analytical Approach with Landau’s Gauge 

Let us consider a charged particle “q” with mass “m” in the box with a constant 
magnetic field orthogonal to the flat surface x-y, ( )0,0, B=B , where the mag-
netic field is given in terms of the vector potential A , = ∇×B A , and let us 
choose the Landau’s gauge ( ),0,0By= −A  to represents this magnetic field.  

2.1. Analytical Approach for the Case ( )B B0,0,=  

For a nonrelativistic charged particle, the Hamiltonian of the system (units CGS) 
is  

( )2

,
2
q c

H
m

−
=

p A
                       (1) 

where p  is the generalized linear momentum, A  is the magnetic potential, 
and “c” is the speed of light. Therefore, the Hamiltonian has the following form 

( )2 2 2

2 2 2
yx zpp qBy c pH

m m m
+

= + + , which does not depend explicitly on time and 

the eigenvalue problem, Ĥ EΦ = Φ , for the Schrödinger’s equation [23] is  
2 22 2

2 2
2

ˆ ˆ1 2ˆ ˆ .
2 2 2

y z
x x

p pqB q Bp yp y E
m c m mc

   + + + + Φ = Φ  
   

          (2) 

The variable “z” is separable through the proposition  
( ) ( ), e ,zik z

zx y kφ −Φ = ∈ℜx , resulting in the following equation  
22 2

2 2
2

ˆ1 2ˆ ˆ ,
2 2

y
x x

pqB q Bp yp y E
m c mc

φ φ
    ′+ + + =  

   
            (3) 

where E′  is  
2 2

.
2

zkE E
m

′ = −


                        (4) 

Solving this equation through Fourier transformation [24] on the variable “x”, 

( ) [ ] ( )1ˆ , e , d
2

ikxk y x y xφ φ φ
ℜ

= =
π ∫

 , it is known [18] (Equation (18)) that one 
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gets the solution  

( )
1 4

,
1 e  .

c
z

z

m
i xy k z

c c
n k n

y z

m m
x

L L

ω
ω ω

ψ
 − + 
 

  Φ =        
x 

 

         (5) 

and  
2 2

,
1 .
2 2z

z
n k c

kE n
m

ω  = + + 
 



                     (6) 

where nψ  represents the solution of the quantum harmonic oscillator, and cω  
is the so called cyclotron frequency  

c
qB
mc

ω =                             (7) 

These eigenvalues represent just the Landau’s levels, but its solution (5) is dif-
ferent to that given by Landau on the variables “x’’ and “y’’. Note that there is 
not displacement at all in the harmonic oscillation solution. Now, assuming a 
periodicity in the z-direction, ( ) ( ), ,, , , ,

z zn k n k zt x y z L tΦ = Φ +x , the usual condi-
tion 2 ,z zk L n n′ ′= π ∈  makes the eigenvalues to be written as and the general 
solution of Schrödinger’s equation can be written as1  

( )
21 4

,
1 e  .

c

z

m ni xy z
Lc c

n n n
y z

m m
x

L L

ω
ω ω

ψ
 ′π

− + 
 

′

  Φ =        
x 

 

         (8) 

and  

( )
2 2

2
, 2

21 2 ,n n c
z

E n n
mL

ω′
π ′= + +




                   (9) 

On the other hand, we could have used the boundary conditions 
( ) ( ), ,, , 0 , , 0

z zn k n k zx y x y LΦ = Φ =  to obtain the same expression (9) but with the 
following eigenfunction  

( )
1 4

,
1 2e sin  .

cm
i xy

c c
n n n

zy z

m mn z x
LL L

ω
ω ω

ψ
 −  
 

′

  ′π Φ =           
x 

 

   (10) 

It is necessary to point out that the solution (10) is not separable solution type 
on the variables x and y, contrary to Landau’s solution. In addition, harmonic 
oscillator is on the variable x without displacement, contrary to Landau’s solu-
tion which the harmonic oscillator is on the variable y with a displacement. Now, 
the area of the surface of a circular ring of radius 1r  and 2r  is given classically 
by ( )2 2

2 1A r r∆ = π − , where 2 2 2r x y= +  and 2 1r r> . For the quantum case and 
using (8), one has  

 

 

1In fact, our Hamiltonian is invariant under translation in the x-direction, and this fact is represented 

by ˆˆ , 0xp H  =  , where ˆ xp  is the infinitesimal generator of the element of the group of symmetry, 

it is not difficult to see that ( ), , 1,ˆ 2
z z z

c
x n k c n k n k

mp m ix y ni ωω −Φ = − Φ − Φ



 is another eigenfunction 

of our Hamiltonian, ( ) ( ), , ,
ˆ ˆ ˆ

z zx n k n n x n kH p E p′Φ = Φ . In this way, one has that the energy being double 

degenerated by this symmetry. The same will happen with the next cases. 
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( )
2 2 2 2 1 1 1 1

2 2
, , , , 2 1

2 ,n n n n n n n n
c

A r r n n
mω′ ′ ′ ′
π ∆ = π Φ Φ − Φ Φ = − 
     (11) 

where the integration has been carried out on the region [ ]0, zz L∈ , 
,y yy L L ∈ −   and ( ),x∈ −∞ +∞ . Now, since c qB mcω = , the above expres-

sion brings about the relation 

( )
2 1 ,

2
qB A

n n j
c
∆

= − = ∈
π

                     (12) 

which represents the quatization of the magnetic flux [18] (expression (20)), and 
it is related with the density of states between two Landau’s levels [2]. If 

( )B AΦ = ∆  is the magnetic flux, and 0 2 2c qΦ = π  is the so called quantum 
magnetic flux [25] [26], this expression can be written as  

0

2 , .j jΦ
= ∈

Φ
                       (13) 

Thus, the general solution (absorbing the sign in the constants) is  

( )
,21 4

,

1, e e e  .
n nc

z

n Em i zi xy i tLc c
nn n

n ny z

m m
t C x

L L

ωω ω
ψ

′′π
− −

′
′

  Ψ =        
∑x  

 

  (14) 

where the constants nnC ′  must satisfy that 2
, 1nnn n C ′′ =∑ . The Landau’s levels 

,n nE ′  are given by expression (9).  

2.2. The Analytical Approach for Case B E⊥  

The magnetic is given as before and electric constant fields is given by 
( )0, ,0=E  , and yφ = − . Then, our Hamiltonian is [20] [21] [22]  

( )

2

ˆ
ˆ ,

2

q
cH q
m

φ

 − 
 = +

p Α
x                     (15) 

and using again the Fourier transformation on the Schrödinger’s equation, 

ˆi H
t

∂Ψ
= Ψ

∂
 , it is known [18] (Equation (39)) that a solution is given by  

( ) ( ),

1 4
,

,
1, e ,n kz

z

i tc c
n k n

y z

m m c tt x
BL L

φω ω
ψ−     Ψ = −         

xx
 


     (16) 

where the phase ( ), ,
zn k tφ x  has been defined as  

( ) ( )
2 2 2 2

, 2

2

2

, 1 2
2 2

.

z
z

n k c z
k mc tt n k z
m B

qB c t mcx y
c B qB

φ ω
 

= + + − − 
 

  + − −  
  

x 









 
           (17) 

asking for the periodicity with respect the variable “z”,  
( ) ( ), ,, , , ,

z zn k n k zt z y z L tΨ = Ψ +x , it follows that 2z zk L n′= π  where n′  is an 
integer number, and the above phase is now written as  
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( ) ( )
2 2 2 2 2

2 2

2

2

2 2, 1 2
2

.

nn c
zz

n mc t nt n z
LmL B

qB c t mcx y
c B qB

φ ω′

 ′ ′π π
= + + − − 
 

  + − −  
  

x 









 
        (18) 

Note from this expression that the term ( ),e i tφ− x  contains the element e
qBi xy

c  
which characterizes the non separability of the solution with respect these coor-
dinates. Using the same arguments as before (11) to calculate the magnetic flux 
crossing an area A∆ , one gets  

( )
2 , ,

qB A
j j

c
∆

= π ∈


                      (19) 

obtaining the same expression as (12). In this way, from these relations and the 
expression (16) we have a family of solutions ( ){ } ,

,nn n n
t′ ′∈

Ψ x


 of the Schrödin-
ger equation,  

( ) ( )

( )

1 4 2
,1 2, e .nni tc c

nn n
y z

m m j ct x t
q AL L

φω ω
ψ′−

′

  π Ψ = −      ∆    

xx 

 

    (20) 

Now, by the same arguments we did in the previous case, the general solution 
would be written of the form  

( ) ( )
,

, , ,nn nn
n n

t C t′ ′
′

Ψ = Ψ∑x x                     (21) 

where one must have 
2

, 1nnn n C ′′ =∑  .  

2.3. The Analytical Approach for Case B E  

The fields are of form ( )0, ,0B=B  and ( )0, ,0=E  . The scalar and vector 
potentials are chosen as ( ),0,0Bz=A  and yφ = − . The Shrödinger equation 
is for this case as  

( )2 2 2ˆˆ ˆ
,

2 2 2
yx zpp qBz c pi q y

t m m m

 −∂Ψ  = + + − Ψ 
∂   

             ( 22) 

the eigenvalue problem is now defined by the equation  
2 2 2 2 2 2 2 2

2
2 2 2 2 .

2 2 22
qB z q BE i z q y

m mc x m mx mc y z
∂ Φ ∂Φ ∂ Φ ∂ Φ

Φ = − + + Φ − − − Φ
∂∂ ∂ ∂

   

   (23) 

Using again the Fourier transform on the x-variable, it is known [18] (Equa-
tion (55)) that one gets the following solution  

( ) ( )( )
1 4

1
,

1 e  .
cm

i zxc c
n n n n n

y z

m m
a x Ai l y y

L L

ωω ω
ψ

− −
′ ′ ′

  Φ = −       
x 

 

  (24) 

where nφ  is the solution of the quantum harmonic oscillator, Ai  is the Airy 

function [27], and na ′  is its normalization constant ( )11n na Ai l y−
′ ′′= − . 

Now, using the same arguments as before (11), but with 1 2n n′ ′=  (due to Airy 
functions) to calculate the magnetic flux crossing an area A∆ , one gets  
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( )
2 , ,

qB A
j j

c
∆

= π ∈


                      (25) 

obtaining the same expression as (12). Then, we have obtained a family of solu-
tion of the Schrödinger Equation (22),  

( ) ( ),
, , e ,n niE t

n n nnt ′−
′ ′Ψ = Φx x                    (26) 

where the energies ,n nE ′  are given by ( ), 1 2n n c nE n q yω′ ′= + −   with 

n ny lξ′ ′=   and ( ) 0nAi ξ ′− = . The general solution of (22) can be written as  

( ) ( ),
, ,

,
, e e , ,

c
n n

m
i xz iE t

n n n n
n n

t C u x y
ω

′
− −

′ ′
′

Ψ = ∑x 

 

              (27) 

with the condition 
2

,, 1n nn n C ′′ =∑  , and where it has been defined the functions 

,n nu ′  as  

( ) ( )( )
1 4

1
, , .n c c

n n n n
y z

a m m
u x y x Ai l y y

L L
ω ω

ψ −′
′ ′

  = −       


 

      (28) 

3. Analytical Approach with Symmetric Gauge 
It is known that the selection of the gauge is not unique, there is always a trans-
form of the form L S χ= +∇A A , where ( ),0L By=A  is the Landau’s gauge and 

( ),
2S
B y x= −A  is the symmetric gauge, and the eigenvalue equation limited on 

the plane x-y is written as follows 

( ) ( )
2 2

2 2 2 2
2

1 ˆˆ ˆ ,
2 2 8x y z

qB q BE p p L x y
m mc mc

Ψ = + Ψ + Ψ + + Ψ         (29) 

where ˆ
zL  is the z-component of the angular momentum operator, 

ˆ ˆ ˆz y xL xp yp= − . This equation cannot be separated in cartesians or polar coordi-
nates. Let us now define a complex variables z x iy= +  and *z x iy= − , and 
the constants  

2 and ,
42

mE qB
c

ε α= =


                   (30) 

Equation (29) now takes the form of 

* *

2
* 2 * .

z zz z

z z zzε α α
 ∂ Ψ ∂ ∂

Ψ = − + − Ψ + Ψ  ∂ ∂ ∂ ∂ 
           (31) 

Proposing a solution of the form 

( ) ( )** *, e ,zzz z z zα−Ψ = Φ                    (32) 

in the Equation (31), the resulting equation for the function Φ  is 

( )
2

* 2 .z
zz z

α α ε∂ Φ ∂Φ
− = − Φ

∂∂ ∂
                  (33) 

this last expression can be separated. So, let us chose ( ) ( ) ( )* *,z z f z g zΦ = , 
and by substituting, dividing by ( ) ( )*f z g z′ , and making some arrangements, 
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it follows that 

( )
( ) ( ) ( )

( )

*

*
2 ,

g z f z
z

f zg z
α α ε

′
= + −

′
                 (34) 

since the expression on the left hand side of the above equality has a different 
mapping in the complex plane than the one on the right hand side, the latter ex-
pression will be generally satisfied if both of them are equal to a complex con-
stant λ ∈ , and we obtain the next couple of equation 

( ) ( ) ( ) ( )2 0.z f z f zα λ α ε′+ + − =                (35) 

( ) ( )* * ,g z g zλ′ = −                      (36) 

The solution of Equation (36) is straight forward and is given by  

,=)(
** zBezg λ−                       (37) 

where B is an arbitrary complex constant. Now, we search for integer complex 
solution of the expression Equation (35), writing the function as a power series 
of the variable z 

( )
0

,k
k

k
f z a z

∞

=

= ∑                       (38) 

substituting in Equation (35) and making some rearrangements, it follows that 

( ) ( )1
0

2 1 0,k
k k

k
a k a k zα α ε λ

∞

+
=

+ − + + =  ∑            (39) 

which brings about the following recurrent relation  

( )1
2 .

1k k
ka a

k
α α ε
λ+

+ −
= −

+
                    (40) 

Let us notice that we have the following asymptotic behavior  

1
1

2 .k
k

k

a
a

α
λ

+ →


                       (41) 

This means that there exist a natural number N such that for k N≥  we have 

that 1
2 k

k Na a α
λ+

 =  
 

. Therefore, one would have the series  

0 1

2 ,
kN

k
k N

k k N

za z a α
λ

∞

= = +

 +  
 

∑ ∑                    (42) 

which diverges for any value such that 2 1zα λ > . In this way, one must cut 
the series and obtain a polynomial. To obtain a polynomial solution, we must 
demand that at some integer number k n= , one must have that 1 0na + = , and 
this implies that 2 0nα α ε+ − = , or  

.
2

n n
ε α

α
−

= ∈                          (43) 

Thus, one can obtain that the energies of the system as  
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1 ,
2n cE nω  = + 

 
                        (44) 

Note that the direct integration of Equation (35) gives us the solution  

( ) ( )( ) 22 ,f z A z ε α αα λ −= +                     (45) 

where A and λ  are in general complex constants. Using the expression (43), 
this function is written as  

( ) ( ) ( )
0

2 2 ,
nn kn k k

k

n
f z A z A z

k
α λ λ α−

=

 
= + =  

 
∑            (46) 

where 
( )

!
! !

n n
k k n k
 

=  − 
 is the binomial number. Therefore, using the expres-

sions (46), (37), and (32), the solution of Equation (31) is  

( ) ( )* **, e 2 ,nzz z
n nz z A zα λ α λ− −Ψ = +                  (47) 

where nA  is the normalized constant given by  

( )
2 1

4 2

0

1 1e 2
2 2

nn

n
k

n
A n k k

k
λ α α

−
−

=

     = Γ − + Γ +     
    

∑          (48) 

In terms of the variables (x, y), the solution looks as  

( ) ( ) ( ) ( )( )
2 2

, e e 2 .
x y nx iy

n nx y A x iy
α λ α λ

− + − −Ψ = + +            (49) 

One must note that ˆ ˆ, 0zL H  =  , where ˆ
zL  is the infinitesimal generator of 

the element of the group of rotations around z-axis, which is the group of sym-
metries of our Hamiltonian. Therefore, ˆ

z nL Ψ  must be other eigenfunction of 
the Hamiltonian for the same eigenvalue nE . It is not difficult to see that  

* 2ˆ ,
2z n n

nzL z
z
αλ
α λ

 Ψ = + Ψ + 
                     (50) 

and that  

( ) ( )ˆ ˆ ˆ .z n n z nH L E LΨ = Ψ                     (51) 

Note that one gets the following expectetion value  

( )
2 2

22 2 2
2

0

1 12 e 2 1
2 2 4

nn
n

k

n
n r n A n k k

k

λ
α

λ
α

α
−

=

     = Γ − + + Γ + +     
    

∑    (52) 

which can be used to calculate the area of the surface of a ring of inner radius 1r  
and external radius 2r  on the plane x-y, given by ( )2 2

2 1A r r∆ = π −  classically, 
but in our quantum case, one has  

( ) ( ){ }2 2
2 1 ,A n r n n r n B n B n

α
π ∆ = π − = × −            (53) 

where ( )B n  has been defined as  

( )
0

0

1 11
2 2

1 1
2 2

n
k

n
k

n
n k k

k
B n

n
n k k

k

=

=

     Γ − + + Γ +     
    =

     Γ − + Γ +     
    

∑

∑
          (54) 
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Numerically, one finds that ( ) ( )2 2 1 2B n n= +  and ( )2 1 1B n n+ = +  for 
n∈ . Therefore, one gets that  

( ) ( )

2 1

2 1
2 1

2 1

2 1

even even
2( ) odd odd

1 2 eve odd
1 2 odd even

n n
n n

B n B n
n n
n n

− −
 − −− =  − − −
 − + −

           (55) 

Thus, this means that ( )2 Aα ∆ π  is an integer number independently on the 
integers 1n  and 2n , that is (see 12)  

( )
,

2
qB A

c
∆

∈
π

                         (56) 

or  

0

, ,j jΦ
= ∈

Φ
                        (57) 

where Φ  is the magnetic flux, ( )B AΦ = ∆ , and 0Φ  is the quantum magnetic 
flux, 0 2 c qΦ = π . 

One needs to mention that Laughlin [28] gave a solution to this problem 
which is equivalent Landau’ solution, and this equivalence was demonstrated by 
Orion [29]. Their solutions are of separable variable type in the polar coordi-
nates ϕ  and ρ  in the space x-y ( cosx ρ ϕ= , siny ρ κ= ). However, as one 
can see from (47) or (49), this solution is not of separable variable type in these 
coordinates, and this is consistent with the fact that the eigenvalue problem (29) 
written in polar coordinates 

2 2 2 2
2

2 2

1 1 ,
2 28

q B qBi E
m mcmc

ρ ρ
ρ ρ ρ ϕ ϕρ

  ∂ ∂Ψ ∂ Ψ ∂Ψ
− + + Ψ − = Ψ  ∂ ∂ ∂ ∂  



    (58) 

is not of separable variable type in these coordinates. Therefore, the solution (47) 
cannot be equivalent to Landau-Laughlin solutions. 

4. Conclusions and Comments 

We have summarized our previous results about the quantization of a charged 
particle in a flat box and under constants magnetic and electric fields for several 
electromagnetic static cases using Landau’s gauge for the static magnetic field, 
and using Fourier transformation to solve the linear differential equations re-
sulting from the Shrödinger’s equation. We have pointed out again that the full 
solution obtained is different from Landau’s solution for the wave function, but 
as expected, Landau’s levels appear as the solution of the eigenvalues. In all cas-
es, a characteristic phase appears which indicates the non separability on the re-
lated variables, which is consistent with the non separability of these variables on 
the eigenvalue differential equation defined by the Hamiltonian. The quantiza-
tion of the magnetic flux now appears by considering the number of states be-
tween two Landau’s levels, and this result is related with the density of states 
between these levels. Finally, we considered the case for symmetric gauge for the 
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static magnetic field on the two dimensional plane, and we have shown that a 
non separable solution exists which is different to Landau-Laughin solution, and 
the same Landau’s levels are obtained. We keep on considering that the ap-
proach given here could be very useful to understand quantum Hall effect and 
related phenomena mainly, because with our solutions a Hall’s voltage appears. 
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