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Abstract 
In safety dominant industries, nondestructive evaluation (NDE) is crucial in 
quality assurance and assessment. Phased array ultrasonic testing (PAUT) as 
one of the NDE methods is more promising compared with conventional ul-
trasonic testing (UT) method in terms of inspection speed and flexibility. To 
incorporate PAUT, the techniques should be qualified, which traditionally is 
performed by extensive physical experiments. However, with the develop-
ment of numerical models simulating UT method, it is expected to comple-
ment or partly replace the experiments with the intention to reduce costs and 
operational uncertainties. The models should be validated to ensure its con-
sistency to reality. This validation work can be done by comparing the model 
with other validated models or corresponding experiments. The purpose of 
current work focuses on the experimental validation of a numerical model, 
simSUNDT, developed by the Chalmers University of Technology. Validation 
is conducted by comparing different data presentations (A-, B- and C-scan) 
from experimental and simulated results with some well-defined artificial de-
fects. Satisfactory correlations can be observed from the comparisons. After the 
validation, sound field optimization work aiming at retrieving maximized echo 
amplitude on a certain defect can be started using the model. This also reveals 
the flexibility of parametric studies using simulation models. 
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1. Introduction 

In safety prioritized industries such as aerospace industry, newly adopted and 
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advanced technologies of Additive Manufacturing (AM) enable innovative de-
signs of complex-shaped components and have the potential to broaden the 
manufacturing possibilities. Since the safety aspect is crucial and must not be 
compromised, these new manufacturing approaches demand even higher accu-
racy and reliability in quality assessments. Nondestructive evaluation (NDE) is 
used to ensure the quality and integrity of the manufactured components and 
among others, conventional ultrasonic testing (UT) has been widely used in in-
dustries [1]. Within this area, the phased array ultrasonic testing (PAUT) tech-
nique has many possible advantages over conventional single-element UT me-
thods in terms of operational flexibility and increased inspection speed [2]. 
However, the complexity and flexibility of PAUT raise the need of understand-
ing the technique in qualification and evaluation procedures. There is also a 
need of adjustment for AM-specific defect characteristics and geometrical con-
straints of specific parts. 

The traditional approach to qualification work is associated with extensive 
and expensive physical experiments. However, with the development of mathe-
matical modelling of NDE methods in the last decades, the experimental work 
can be supported or partly replaced by the model-based data, provided that the 
model itself has been validated [3]. The validation of the mathematical model 
can be done by comparing it with other already validated models, but it should 
ultimately be compared with physical experiments in all perspectives to ensure 
its accuracy. Some works had been devoted to experimental validation of a si-
mulation model in terms of PAUT, see for example [4] and [5]. 

The phased array (PA) probe model implemented in a UT simulation soft-
ware, simSUNDT, developed by the Chalmers University of Technology, had 
been validated to some extent in terms of maximum echo amplitude towards 
well-defined artificial defects, i.e. side-drilled holes (SDHs) [6]. In the current 
paper, the model is to be further validated by comparing the data presentations 
(A-, B- and C-scan). These are retrieved from both experiments and corres-
ponding simulations, which address some well-defined artificial defects in 
noise-free test specimens. Satisfactory correlations can be observed from the 
comparisons and the model can be concluded as an alternative to the corres-
ponding experiments. The generated sound fields towards a certain type of de-
fect, i.e. surface breaking crack, are optimized with the help of this validated 
model as an applied practice. The optimization in this work aims at retrieving a 
maximized echo amplitude by adjusting the combination of probe angle and fo-
cusing distance, which is easy and essential to change in the phased array confi-
guration. The possibility and procedure of using the simulation model in sound 
field optimization work is hereby investigated. 

2. simSUNDT Software 

The simSUNDT software, developed at Chalmers University of Technology, 
composes of a Windows-based processor for simulation definition and result 
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analysis. A mathematical kernel, UTDefect, which conducts the actual mathe-
matical modelling [7] [8] [9] [10], has been validated by comparing with pre-
vious done and in literature available experiments [7] [8] [9] [11]. The 3D elas-
todynamic wave equation that defines the wave propagation in a homogeneous 
half space is solved by using vector wave functions [10]. The modelled geometry 
can be described as a plate bounded by the scanning surface, on which rectan-
gular mesh is used to define the scanning sequence. Scattering by defects is 
solved using analytical or semi-analytical methods. 

The simSUNDT can simulate the entire NDE inspection. In order to accom-
plish this, calibration option with reference reflector is available. These reflectors 
include side-drilled hole (SDH) [12] and flat-bottom hole (FBH), which is 
represented by a cylindrical cavity and an open circular crack, respectively. 

The volumetric and crack-like defects are available types of defect to be simu-
lated. The volumetric ones include a spherical/spheroid cavity (pore), a spherical 
inclusion (isotropic material differing from the surrounding material, i.e. slag) 
and a cylindrical cavity (SDH). Crack-like ones include rectangular/circular 
crack (lack of fusion) and strip-like crack (fatigue crack). Tilting planar back 
surface could also be modelled for the strip-like crack, but it is otherwise as-
sumed parallel to the scanning surface. The surface-breaking strip-like crack and 
rectangular crack close to the back surface can be used to model the corres-
ponding defects in the test piece. 

The conventional contact probe is represented as the boundary conditions 
representing a plane wave in the far-field at a certain angle. Different traction 
conditions represent different probe types under the effective area and are as-
sumed to be zero elsewhere. This enables the possibilities of simulating any types 
of the probe available on the market, by specifying related parameters such as 
wave types, crystal size and shape, angles, frequency ranges, contact conditions, 
etc. In addition, it is also possible to suppress the mode-converted wave compo-
nent in the simulation to eventually facilitate the analysis of the received signal. 
By modelling the receiver, a reciprocity argument [13] is applied. The arrange-
ment of the probe can be chosen among pulse-echo, separate with fixed trans-
mitter and tandem configuration (TOFD). 

Above principles are the same for the PA probe model, i.e. the individual ele-
ment is represented by the corresponding boundary conditions. The individual 
boundary conditions are translated into the main coordinate system and a PA 
wave front with certain nominal angle is formulated by constructive phase in-
terference. 

3. Experiments 
3.1. Experimental Instruments and Test Specimens 

The data acquisition hardware TOPAZ64 is a portable 64-channel PAUT device. 
It is connected to a computer with data communication through Gigabyte 
Ethernet cable. Operations are monitored on software UltraVision, which pro-
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vides real-time data presentation and visualization. The linear PA probe con-
nected to TOPAZ64 is labelled as LM-5MHz, which contains 64 elements that 
generate longitudinal waves. As indicated by its nomination, the nominal center 
frequency is 5 MHz and bandwidth (−6 dB) is 74%. Table 1 lists some key speci-
fications of this probe. In addition, two plastic wedges with and without angle 
labelled as LM-55SW and LM-0LW, respectively, are incorporated in all experi-
ments to protect the probe surface and to facilitate fixation of the probe on the 
mechanized gantry system. This gantry system is motor-controlled in horizontal 
(x-y) plane while the vertical position (z-axis) is manually adjusted at this mo-
ment. The bottom end of the z-axis has a spring load fork that can clamp the 
wedge with probe. The motors are embedded with encoders so that the horizon-
tal position of the probe can be obtained and read by UltraVision to present po-
sition-related visualizations. 

There are two stainless-steel test specimens with different artificial defects 
(SDH and surface breaking crack) included in this work, see Figure 1. The first 
specimen (#1) has 6 SDHs (2 mm in diameter) at depth from 10 mm to 60 mm 
with increment of 10 mm. The second one (#2) has 5 vertical surface breaking 
cracks (tilt angle of 0-degree) with height of 0.5 mm, 2 mm, 5 mm, 10 mm and 
15 mm. Table 2 summarizes the overall dimension and acoustic properties of  

 
Table 1. Specification of the linear PA probe used in the experiment. 

Specification Value 

Total elements 64 

Total length (mm) 38.3 

Elevation (mm) 10 

Pitch (mm) 0.6 

Kerf 0.1 

Center frequency (MHz) 5 

Relative bandwidth (%) 74 

 

 
Figure 1. Sketch profiles of the test specimens. 
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Table 2. Dimensions and acoustic properties of specimens. 

No. 
Length 
(mm) 

Height 
(mm) 

Width 
(mm) 

L-wave speed 
(m/s) 

T-wave speed 
(m/s) 

#1 250 65 39 5640 3110 

#2 500 35 50 5573 3150 

 
these specimens and all these defects span through the entire width of each spe-
cimen.  

3.2. Experimental Configurations 

The validations presented in the current work aim at comparing different data 
presentations (A-scan from the maximum echo amplitude, B- and C-scans) be-
tween physical experiments and corresponding simulations. Data acquisition is 
performed in pulse-echo mode and the probe inspects a test specimen with 
one-line scan on the specimen surface to obtain the signals from all involved de-
fects at once. 

On the first test specimen (#1), only the SDH at 50 mm depth is studied under 
four inspection cases, i.e. (a) non-angled sound beam without focusing effect; (b) 
non-angled sound beam with focusing at 50 mm depth; (c) 45-degree angled 
sound beam without focusing effect and (d) 45-degree angled sound beam with 
focusing at 50 mm depth. The direct echo from the SDH is stored as received 
signal. 

On the second test specimen (#2), all cracks except the largest one (height of 
15 mm) are studied under two general inspection cases, i.e. (a) 45-degree angled 
sound beam without focusing effect and (b) 45-degree angled sound beam with 
focusing at 35 mm depth. The surface breaking cracks are positioned so that the 
openings are on the bottom surface and corner echoes are the received signals. 

Within all these inspection cases, only the central 16 elements are activated in 
non-focusing cases to prevent ghost images, whereas all 64 elements are acti-
vated to generate proper focusing effect. 

4. Simulation Configuration 

To compare with experimental data presentations, the corresponding one-line 
scan simulations must cover a certain scan interval. This is to ensure that the 
maximum echo amplitude from the defect of interest can be retrieved to be pre-
sented in A-scan, and that sufficient amount of scan positions can be covered to 
visualize the defect in B-scan and echo dynamic curve in C-scan. Furthermore, 
the sampling time steps of A-scan signals should be small enough to ensure the 
accuracy of detailed comparisons. Under above reasons, all simulations for vali-
dation purpose are conducted in large scan and time intervals with scan incre-
ment of 0.1 mm and time step of 0.005 μs. These simulation parameters were 
determined in such a way that the resulted data presentations have a decent res-
olution to be compared with experiments. Parameters related to the PA probe 
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are set in accordance with the physical probe as in Table 1. 
As expected, the simulation time is positively correlated with the amount of 

scan and time positions, as well as the complexity of studied defect and inspec-
tion scenario. The simulation times of cracks with height of 5 mm and 10 mm 
involving focusing effect were observed to be extensively long using above men-
tioned simulation configurations. To avoid this, only certain scan and time in-
tervals where the maximum echo amplitudes are expected were simulated for 
these two cracks with focusing effect, while still keeping the scan increment of 
0.1 mm and time step of 0.005 μs unchanged. For this reason, the B-scan com-
parisons are neglected for these two cases due to insufficient scan positions. 

5. Probe Skew Angle Sensitivity 

For the physical experiments, there could be some practical uncertainties in the 
system affecting the results, one example is the probe skew angle. In order to ex-
plore if the minor variation of the probe skew angle can influence the received 
data, some parametric studies were performed with a set of probe skew angles, 
ranging from −5˚ to 5˚ with an increment of 0.5˚. The simulations were per-
formed towards the SDH at 50 mm depth in test specimen #1 under the inspec-
tion case of 45-degree angled beam with 50 mm focus depth, just as the case (d) 
on test specimen #1 in the experimental configurations. These simulated results 
are compared with available experimental data. 

6. Optimization of Received Signal 

It is noted that the optimization of the received signal is equivalent to the sound 
field in this pulse-echo situation. With the help of this simulation model and its 
flexibility of parametric studies, the generated sound field from a PA probe is 
explored to be optimized in order to receive a maximized echo amplitude to-
wards a crack, which has a specific character, i.e. size and tilt angle. The consi-
dered decision variables to this optimization problem are the probe (beam) angle 
and focus distance in this work. 

The optimization algorithm considered in this work is heuristic Nelder-Mead 
based Simplex method [14] [15] that solves non-linear single-objective optimi-
zation problems. This method compares the objective values at each chosen 
simplex vertex and moves the next simplex vertex accordingly based on the re-
sult evaluations using different operation strategies, i.e. reflection, expansion, 
contraction and shrink. 

The optimization procedure using Simplex algorithm is conducted using 
software modeFrontier (2020R1), in which the decision variables to an optimiza-
tion problem are explored. Simulation outputs from simSUNDT can be im-
ported into modeFrontier to help with optimization evolution according to the 
chosen algorithm. 

As mentioned earlier, the simulation towards a large crack where the focusing 
effect is involved takes extensive simulation time. It is therefore inefficient and 
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unfeasible to conduct the actual optimization work based on the simulation con-
figuration (large scan interval, small scan increment, nominal probe bandwidth 
of 74%, etc.) described in simulation configuration for validation purpose. Based 
on previous simulation experiences, the simulation time depends positively on 
the number of involved wave frequencies. Therefore, variations of probe band-
width are investigated in Table 3 in terms of simulation time and the influence 
on interested simulation output, i.e. the maximum echo amplitude. The simu-
lated defect is a surface breaking crack (opening at bottom surface) with 10 mm 
height and 0-degree tilt angle, corresponds to the 10 mm height crack in test 
specimen #2. Simulation scenario is 45-degree probe angle and 49.49 mm focus 
distance (corresponds to 35 mm focus depth). The scan interval is chosen so that 
within which the maximum echo amplitude is expected to appear. Scan posi-
tions are uniformly distributed inside this interval. 

The maximum echo amplitude of 76.8 dB in investigation No.1 obtained with 
nominal probe bandwidth of 74% is taken as a standard value to upcoming va-
riants (No.2 and 3). Investigation No.2 where bandwidth changes to only 0.02% 
gives its maximum echo amplitude of 76.9 dB, which differs only 0.1% from the 
standard value but reduces the simulation time significantly up to 91% if keeping 
all other parameters unchanged. Moreover, monochromatic frequency spectrum 
(bandwidth of 0%, only a center frequency content) simulated in investigation 
No.3 reduces almost 99% of standard simulation time, but the maximum echo 
amplitude of interest changed 8% to the standard value. These three investigated 
cases show that the second simulation scheme (bandwidth of 0.02%) could be 
considered reasonable and should be used in the later optimizations. 

7. Results and Discussion 
7.1. Validity of Simulation Model 

The model is validated in this work by comparing experiments and simulations 
in terms of data presentations (A-, B- and C-scans), see Figures 2-10, where all 
signals are normalized to their corresponding maximum values for easy com-
parison purposes. All simulated results are presented in black colour and expe-
rimental ones are in red colour. In A-scans, the experimental peaks (red dotted 
lines) are shifted in time so that they coincide with simulated peaks (black solid 
lines) for comparison purpose. The amount of shifted time could be correlated 
to e.g. experimental condition and setup, etc. In B-scans, the simulated and ex-
perimental results are ordered to the left and right, respectively. In C-scans, the  

 
Table 3. Optimization condition investigations. 

No. BW. (%) Scan pos. Time pos. Max. amp. (dB) Time (h) 

1 74 35 14,448 76.8 64 

2 0.02 35 14,448 76.9 6 

3 0 35 - 83 0.13 
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Figure 2. A-scan comparisons between simulations (black solid lines) and experiments 
(red dotted lines) on SDH at 50 mm depth in test specimen #1 under case: (a) non-angled 
beam without focusing effect, (b) non-angled beam with 50 mm focus depth, (c) 
45-degree angled beam without focusing effect and (d) 45-degree angled beam with 50 
mm focus depth. 

 

 
Figure 3. B-scan comparisons between simulations (grey scaled to the left) and experi-
ments (red scaled to the right) on SDH at 50 mm depth in test specimen #1 under case: 
(a) non-angled beam without focusing effect, (b) non-angled beam with 50 mm focus 
depth, (c) 45-degree angled beam without focusing effect and (d) 45-degree angled beam 
with 50 mm focus depth. 
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Figure 4. C-scan (echo dynamic curve) comparisons between simulations (black solid 
lines) and experiments (red dotted lines) on SDH at 50 mm depth in test specimen #1 
under case: (a) non-angled beam without focusing effect, (b) non-angled beam with 50 
mm focus depth, (c) 45-degree angled beam without focusing effect and (d) 45-degree 
angled beam with 50 mm focus depth. 

 
peaks (respective amplitude of 0 dB corresponds to the scan position where the 
maximum echo amplitude is detected) are also shifted to facilitate the comparisons. 

Comparisons for the SDH at 50 mm depth in test specimen #1 are shown in 
Figures 2-4. The experimental A-scans are shifted by (a) 0.01 μs, (b) −0.001 μs, 
(c) 0.29 μs and (d) 0.2 μs. Good correlations can be seen in all A- and C-scan 
comparisons. In one of the A-scans, case (c), a second somewhat weaker pulse 
can be observed. This is identified as a satellite pulse correlated to the surface 
wave traveling round the SDH. The mismatch of this weaker wave between si-
mulation and experiment could then be explained by inaccuracy of actual SDH 
diameter in the test specimen. This weaker pulse in case (d) diminishes since the 
wave energy is focused and mostly reflected. B-scans show indifferentiable shapes 
except for the second case, which could be caused by a variation in con-
tact-condition affected beam divergence, but the overall comparisons show good 
consistency. The echo dynamic curves above −10 dB correlate well. 

Comparisons for the four surface breaking cracks (height of 0.5 mm, 2 mm, 5 
mm and 10 mm) in test specimen #2 without focusing effect are shown in Fig-
ures 5-7. The experimental A-scans are shifted by (a) 0.06 μs, (b) 0.04 μs, (c) 
0.01 μs and (d) 0.05 μs. The wave form of the smallest crack (height 0.5 mm) 
does not correlate as good as others and the reason might be that the smallest 
crack stands more for a volumetric defect than a crack, which was actually mod-
elled and simulated. All B-scans show indifferentiable shapes. 

Comparisons for the four surface breaking cracks (height of 0.5 mm, 2 mm, 5 
mm and 10 mm) in test specimen #2 with 35 mm focus depth are shown in Fig-
ures 8-10. The experimental A-scans are shifted by (a) −0.27 μs, (b) −0.27 μs, (c) 
−0.14 μs and (d) −0.12 μs. As mentioned in simulation configuration that only a 
certain scan and time interval where the corresponding maximum echo ampli-
tude is expected was simulated for cracks with height of 5 mm and 10 mm, their  
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Figure 5. A-scan comparisons between simulations (black solid lines) and experiments 
(red dotted lines) on different surface breaking cracks in test specimen #2 without focus-
ing effect, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 mm. 

 

 
Figure 6. B-scan comparisons between simulations (grey scaled to the left) and experi-
ments (red scaled to the right) on different surface breaking cracks in test specimen #2 
without focusing effect, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 mm. 
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Figure 7. C-scan (echo dynamic curve) comparisons between simulations (black solid 
lines) and experiments (red dotted lines) on different surface breaking cracks in test spe-
cimen #2 without focusing effect, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 mm. 

 

 
Figure 8. A-scan comparisons between simulations (black solid lines) and experiments 
(red dotted lines) on different surface breaking cracks in test specimen #2 with 35 mm 
focus depth, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 mm 

 

 
Figure 9. B-scan comparisons between simulations (grey scaled to the left) and experi-
ments (red scaled to the right) on different surface breaking cracks in test specimen #2 
with 35 mm focus depth, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 mm. 
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Figure 10. C-scan (echo dynamic curve) comparisons between simulations (black solid 
lines) and experiments (red dotted lines) on different surface breaking cracks in test spe-
cimen #2 with 35 mm focus depth, crack height: (a) 0.5 mm, (b) 2 mm, (c) 5 mm, (d) 10 
mm. 

 
B-scans are incomplete and incomparable to experiments and are thus neglected 
in Figure 9. This also influences their C-scans in Figure 10 that only a small 
scan interval is comparable to experiments. It is noticed in Figure 9 that the 
B-scans at depth around 35 mm are identical while the experimental shapes have 
bottom part (tail) that simulations do not. These tails could be caused by beam 
divergence variations and possible further residual corner echos in experiments 
since the sound beam is focused at the backwall of the test specimen. 

7.2. Probe Skew Angle Sensitivity 

With the help of the model flexibility, a set of simulations were conducted with 
only the probe skew angle being varied from −5˚ to 5˚ with an increment of 0.5˚. 
This results in 21 simulations under the case of 45-degree angled beam with fo-
cus depth at 50 mm towards an SDH at 50 mm depth in test specimen #1. By 
comparing all these simulated A-scans with experiments, where the nominal 
physical probe skew angle is 0-degree, it is observed in Figure 11 that a simu-
lated probe skew angle of ±3.5 gives better A-scan waveform correlation to the 
experiment, even if the waveform shape does not differ that much. 

Figure 12 presents the maximum echo amplitudes for each simulated received 
signal under these probe skew angles. The values are normalized with the max-
imum echo amplitude obtained at probe skew angle of 0-degree. It can be no-
ticed that the normalized amplitude level is symmetric along 0-degree skew an-
gle, which indicates that the waveforms in A-scans are the same for the symme-
tric probe skew angles. 

7.3. Sound Field Optimization 

As mentioned in the optimization process that a bandwidth of 0.02% instead of 
the nominal 74% is used in the simulations for optimization work, which gene-
rates sufficiently accurate maximum echo amplitude while less time-consuming. 
An initialized sound field optimization work is conducted towards a surface 
breaking crack, which has a height of 10 mm and tilt angle of 0-degree that  
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Figure 11. A-scan comparisons between simulations (black solid lines) and experiments 
(red dotted lines) on SDH at 50 mm depth in test specimen #1 under the case of 
45-degree angled beam with 50 mm focus depth, simulated probe skew angle of 0-degree 
in (a) and ±3.5-degree in (b). 

 

 
Figure 12. Maximum echo amplitude (normalized at 0-degree probe skew angle, ex-
pressed in percentage) for each simulated probe skew angle under the inspection of SDH 
at 50 mm depth in test specimen #1 in the case of 45-degree angled beam with 50 mm 
focus depth.  

 
corresponds to the 10 mm height crack on test specimen #2. The crack opening 
is on the bottom surface of the test specimen, so the received signal (maximum 
echo amplitude) is the corner echo from the crack. The decision variables are the 
probe (beam) angle and focusing distance. Figure 13 shows the iteration processes 
of the optimization for this crack. It can be seen that after around 20 iterations, a 
maximized (optimal) echo amplitude of around 80.2 dB can be found under an 
optimal combination of 48-degree probe angle and 45.2 mm focusing distance 
(corresponds to a focusing depth of 30.2 mm at this angle), i.e. the optimal solu-
tion. Comparing with the second case in Table 3, where the same crack is simu-
lated but with an original combination of 45-degree probe angle and 49.49 mm 
focusing distance, it is obvious that the received maximum echo amplitude is 
larger using the optimal solution, i.e. 80.2 dB > 76.9 dB. 

Noticing the third investigation case in Table 3 where the unique monochro-
matic frequency spectrum is simulated, the accuracy of obtained maximum echo  
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Figure 13. Optimization iterations of decision variables (probe angle and focus depth) to 
maximize the echo amplitude towards a surface breaking crack with height of 10 mm and 
tilt angle of 0-degree, simulation bandwidth is 0.02%. 

 

 
Figure 14. Optimization iterations of decision variables (probe angle and focus depth) to 
maximize the echo amplitude towards a surface breaking crack with height of 10 mm and 
tilt angle of 0-degree, simulation frequency is monochromatic (bandwidth is 0%). 

 
amplitude cannot be guaranteed, but the simulation time is reduced significant-
ly. Thus, an optimization trial is performed using this monochromatic frequency 
configuration towards the same defect, i.e. surface breaking crack with 10 mm 
height and 0-degree tilt angle. The optimization iterations can be seen in Figure 
14 and the optimal combination of decision variables is found to be 48-degree 
probe angle and 45 mm focusing distance (corresponds to a focusing depth of 30 
mm at this angle), which gives the maximized echo amplitude of 86.2 dB. Com-
paring this optimal solution to the previous one using 0.02% bandwidth, it is 
found that the optimal combinations of the probe angle and focusing distance 
are almost the same whereas the maximized echo amplitudes differ. Note that it 
is the combination of decision variables that matters to the optimization prob-
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lem, therefore, it is reasonable to believe that a monochromatic frequency con-
figuration can be used in the further similar optimization processes. 

The increase in received signal amplitude from the surface breaking crack 
with 10 mm height and 0-degree tilt angle by using optimal parameter set is visi-
ble in Table 4. The optimal solution using nominal 74% bandwidth are com-
pared with the original one (i.e. nominal bandwidth of 74% and the parameter 
combination of 45-degree beam angle with 35 mm focus depth). A 4.1 dB in-
creased amplitude than original is observed. Besides, the experimental echo am-
plitude comparison using the original combination and the optimal one is also 
presented in Table 4 to verify that the optimal solution ensures an improvement 
of the received echo amplitude. Note that these amplitude results in the table are 
normalized by the one using the original combination, i.e. 76.8 dB with band-
width of 74%. 

After the above observations, Figure 15 presents an optimization case towards 
a surface breaking crack with height of 10 mm and tilt angle of 5-degree using 
monochromatic frequency configuration. After around 20 iterations, the optimal 
combination (optimal solution) of probe angle of 56-degree and focusing dis-
tance of 46.3 mm (corresponds to a focusing depth of 26 mm at this angle) is  

 
Table 4. Normalized comparisons of received signal amplitude using original and optim-
al combinations of decision variables and with different simulated bandwidth, normaliza-
tion reference is 76.8 dB. 

 Simulated amplitude delta (dB) Experimental amplitude delta (dB) 

Original (BW74%) 0 0 

Optimal (BW74%) +4.1 +1.4 

Optimal (BW0.02%) +3.4 - 

Optimal (BW0%) +9.4 - 

 

 
Figure 15. Optimization iterations of decision variables (probe angle and focus depth) to 
maximize the echo amplitude towards a surface breaking crack with height of 10 mm and 
tilt angle of 5-degree, simulation frequency is monochromatic (bandwidth is 0%). 
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found, which gives the maximized echo amplitude of 87.1 dB. This optimal solu-
tion is also verified afterwards by using 0.02% bandwidth, which gives the max-
imized echo amplitude of 81.4 dB under probe angle of 56-degree and focusing 
distance of 46.9 mm. 

8. Conclusions 

Numerical models in UT have many potential benefits to be a complement of 
physical experimental work and to the understanding of the techniques. To en-
sure the validity of these models, validation is essential, either by comparison to 
other validated models or to corresponding experimental scenarios. In the cur-
rent work, the PA probe model included in the UT simulation software sim-
SUNDT is further validated experimentally in terms of data presentation com-
parisons, i.e. A-, B- and C-scans. These data presentations under different in-
spection scenarios show satisfactory correlations to corresponding experiments 
in general, and confirm the validity of the simulation model. 

After the model is validated, it is further used in exploring the optimized 
sound field generated by a PA probe. The sound field optimization aims at re-
trieving the maximized echo amplitude as a function of the defect characteristics 
(size and tilt angle) by adjusting a combination of decision variables, i.e. probe 
angle and focusing distance, of PA probe. A surface breaking crack with certain 
height and tilt angle is considered as the targeted defect. It is observed before the 
optimization work that, instead of using the nominal probe parameter (i.e. band-
width), a change of this parameter not only maintains the echo amplitude level, 
but also significantly reduces the simulation time. Thus, this is used as an ap-
proach in the optimization process. It is then found by comparing this optimiza-
tion result with the one obtained using monochromatic frequency configuration 
that, the latter configuration ends up with the same optimal combination of de-
cision variables as the first one, even if the obtained maximized echo amplitudes 
differ. In other words, the monochromatic configuration can reduce the simula-
tion time significantly while still results in a set of reasonable optimal decision va-
riables. A brief experimental verification of the optimal solution is presented accor-
dingly and the improvement of sound field, i.e. the received signal amplitude in 
current situation, using the optimal solution is clearly observed. Thus, this optimi-
zation scheme can be used in optimization work with other defect characteristics. 
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Abstract 
This paper provides a scheme for generating maximally entangled qubit states 
in the anti-Jaynes-Cummings interaction mechanism, so called entangled an-
ti-polariton qubit states. We demonstrate that in an initial vacuum-field, Rabi 
oscillations in a cavity mode in the anti-Jaynes-Cummings interaction process, 
occur in the reverse sense relative to the Jaynes-Cummings interaction process 
and that time evolution of entanglement in the anti-Jaynes-Cummings interac-
tion process takes the same form as in the Jaynes-Cummings interaction 
process. With the generated anti-polariton qubit state as one of the initial qu-
bits, we present quantum teleportation of an atomic quantum state by apply-
ing entanglement swapping protocol achieving an impressive maximal tele-
portation fidelity 1Fρ = . 
 

Keywords 
Jaynes-Cummings, Anti-Jaynes-Cummings, Rabi Oscillations, Entanglement, 
Entanglement Swapping, Teleportation, Maximal Teleportation Fidelity 

 

1. Introduction 

The basic model of quantized light-matter interaction describing a two-level 
atom coupled to a single mode of quantized electromagnetic radiation is the 
quantum Rabi model (QRM) [1] [2] [3] [4] [5] initially introduced by Rabi, Isi-
dor Isaac [6] [7] to discuss the phenomenon of nuclear magnetic resonance in a 
semi-classical way. The Jaynes-Cummings (JC) Hamiltonian [3] [4] [5] [8] and 
the anti-Jaynes-Cummings (AJC) Hamiltonian [3] [4] [5] are both generated 
from the QRM. 

Exact analytical solutions of the eigenvalue equation for the QRM have been 
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determined in [1] [2] [9] [10]. However, a major challenge in the QRM that re-
mained an outstanding problem over the years is that while the JC component 
has a conserved excitation number operator and is invariant under the corres-
ponding U (1) symmetry operation, a conserved excitation number and corres-
ponding U (1) symmetry operators for AJC component had never been deter-
mined. Recently, it has been shown that the operator ordering principle distin-
guishes the JC and AJC Hamiltonians [3] [4] [5] as normal and anti-normal or-
der components of the QRM. In this approach the JC interaction represents the 
coupling of a two-level atom to the rotating positive frequency component of the 
field mode while the AJC interaction represents the coupling of the two-level 
atom to the anti-rotating (anti-clockwise or counter-rotating [2] [3] [4] [5] [8] 
[11]) negative frequency component of the field mode, because the electromag-
netic field mode is composed of positive and negative frequency components 
[12]. The long-standing challenge of determining a conserved excitation number 
and corresponding U (1) symmetry operators for the AJC component was finally 
solved in [3]. The discovery and proof of a conserved excitation number opera-
tor of the AJC Hamiltonian [3] now means that dynamics generated by the AJC 
Hamiltonian is exactly solvable, as demonstrated in the polariton and an-
ti-polariton qubit (photospin qubit) models in [4] [5]. 

Noting that fundamental features namely: collapses and revivals in the atomic 
inversion [13], generation of Schrdinger cat states of the quantized field [14] 
[15], transfer of atomic coherence to the quantized field [16], vacuum-field Rabi 
oscillations in a cavity [17] and many more have been extensively studied in the 
JC model in both theory and experiment in quantum optics, we now focus atten-
tion on the AJC model which has not received much attention over the years due 
to the erroneously assumed lack of a conserved excitation number operator. 

We observe that the failure of the JC interaction component to account for 
some experimental features characterised by blue-sideband transitions has dri-
ven various workers to apply numerical methods to probe the full QRM into the 
ultrastrong coupling (USC) and deep strong coupling (DSC) regimes [18] [19] 
[20] [21] [22] to indirectly monitor the dynamical effects of the AJC interaction 
component. However, even such advanced approaches do not give explicitly the 
dynamical features generated solely by the AJC interaction. Fortunately, the re-
formulation developed in [3] [4] [5], drastically simplifies exact solutions of the 
AJC model, which we shall here apply. 

In this paper, we are interested in analysis of quantum state configuration of 
the qubit states in the AJC model, entanglement of qubits in the AJC model and 
the application of the entangled qubit state vectors in teleportation of an entan-
gled atomic quantum state. 

The content of this paper is therefore summarized as follows. Section 2 
presents an overview of the theoretical model. In Section 3, Rabi oscillations in 
the AJC model are studied. In Section 4, entanglement of AJC qubit state vectors 
is analysed. In Section 5, teleportation as an application of entanglement is pre-
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sented. AJC state engineering and experimental implementation is briefly dis-
cussed in Section 6 and finally Section 7 presents the conclusion. 

2. The Model 

The quantum Rabi model of a quantized electromagnetic field mode interacting 
with a two-level atom is generated by the Hamiltonian [3] 

( ) ( )( )† † †
0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2R zH a a aa s a a s sω ω λ + −= + + + + +� � �          (1) 

noting that the free field mode Hamiltonian is expressed in normal and an-

ti-normal order form ( )† †1 ˆ ˆ ˆ ˆ
2

a a aaω +� . Here, †ˆ ˆ, ,a aω  are quantized field  

mode angular frequency, annihilation and creation operators, while 0 ˆ ˆ ˆ, , ,zs s sω + −  
are atomic state transition angular frequency and operators. The Rabi Hamilto-
nian in Equation (1) is expressed in a symmetrized two-component form [3] [4] 
[5] 

( )1 ˆˆ ˆ
2RH H H= +                         (2) 

where Ĥ  is the standard JC Hamiltonian interpreted as a polariton qubit Ha-
miltonian expressed in the form [3] 

†

† 0

1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ;
2

ˆ ˆ ˆ ˆ ˆ ˆ ;
2z

H N A N a a s s

A s as a s

ω λ ω

ω ω
α α

λ

+ −

+ −

= + − = +

−
= + + =

� � �
             (3) 

while Ĥ  is the AJC Hamiltonian interpreted as an anti-polariton qubit Ha-
miltonian in the form [3] 

†

† 0

1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ;
2

ˆ ˆ ˆ ˆ ˆ ˆ ; .
2z

H N A N aa s s

A s as a s

ω λ ω

ω ω
α α

λ

− +

− +

= + − = +

+
= + + =

� � �
             (4) 

In Equations (3) and (4), ˆˆ ,N N  and ˆˆ,A A  are the respective polariton and an-
ti-polariton qubit conserved excitation numbers and state transition operators. 

Following the physical property established in [5], that for the field mode in 
an initial vacuum state only an atom in an initial excited state e  entering the 
cavity couples to the rotating positive frequency field component in the JC inte-
raction mechanism, while only an atom in an initial ground state g  entering 
the cavity couples to the anti-rotating negative frequency field component in an 
AJC interaction mechanism, we generally take the atom to be in an initial ex-
cited state e  in the JC model and in an initial ground state g  in the AJC 
model. 

Considering the AJC dynamics, applying the state transition operator Â  
from Equation (4) to the initial atom-field n-photon ground state vector ,g n , 
the basic qubit state vectors gnψ  and gnφ  are determined in the form 
( 0,1,2,n = � ) [5] 
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, ; , , 1gn gn gn gng n c g n s e nψ φ= = − + +             (5) 

with dimensionless interaction parameters gnc , gns  and Rabi frequency gnR  
defined as 

( )
2

02

2 1; ; 2
2

1 ;
16

gn gn gn gn
gngn

gn

nc s R A
R R

A n

δ λ λ

δ δ ω ω
λ

+
= = =

= + + = +

             (6) 

where we have introduced sum frequency 0δ ω ω= +  to redefine α  in Equa-
tion (4). 

The qubit state vectors in Equation (5) satisfy the qubit state transition alge-
braic operations 

ˆ ˆ;gn gn gn gn gn gnA A A Aψ φ φ ψ= =                (7) 

In the AJC qubit subspace spanned by normalized but non-orthogonal ba-
sic qubit state vectors gnψ , gnφ  the basic qubit state transition operator 
ˆ

gε  and identity operator ˆ
gI  are introduced according to the definitions [5] 

2
2

2

ˆ ˆˆ ˆˆ ˆ;g g g g
gn gn

A AI I
A A

ε ε= = ⇒ =                 (8) 

which on substituting into Equation (7) generates the basic qubit state transition 
algebraic operations 

ˆ ˆ;

ˆ ˆ;

g gn gn g gn gn

g gn gn g gn gnI I

ε ψ φ ε φ ψ

ψ ψ φ φ

= =

= =
                 (9) 

The algebraic properties 2 ˆˆ k
g gIε =  and 2 1ˆ ˆk

g gε ε+ =  easily gives the final prop-
erty [5] 

( ) ( )ˆ ˆ ˆe cos singi
g gI iθε θ θ ε− = −                  (10) 

which is useful in evaluating time-evolution operators. 
The AJC qubit Hamiltonian defined within the qubit subspace spanned by the 

basic qubit state vectors gnψ , gnφ  is then expressed in terms of the basic 
qubit states transition operators ˆ

gε , ˆ
gI  in the form [5] 

3ˆ ˆ ˆ .
2g g gn gH n I Rω ε = + + 

 
� �                   (11) 

We use this form of the AJC Hamiltonian to determine the general time-evolving 
state vector describing Rabi oscillations in the AJC dynamics in Section 3 below. 

3. Rabi Oscillations 

The general dynamics generated by the AJC Hamiltonian in Equation (11) is 
described by a time evolving AJC qubit state vector ( )gn tΨ  obtained from the 
time-dependent Schrödinger equation in the form [5] 
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( ) ( ) ( )
ˆˆ ˆ; e g

i H t

gn g gn gt U t U tψ
−

Ψ = = �              (12) 

where ( )ˆ
gU t  is the time evolution operator. Substituting ˆ

gH  from Equation 
(11) into Equation (12) and applying appropriate algebraic properties [5], we use 
the relation in Equation (10) to express the time evolution operator in its final 
form 

( ) ( ) ( ){ }
3
2ˆ ˆ ˆe cos sin

i t n

g gn g gn gU t R t I i R t
ω

ε
 − + 
 = −            (13) 

which we substitute into equation Equation (12) and use the qubit state transi-
tion operations in Equation (9) to obtain the time-evolving AJC qubit state vec-
tor in the form 

( ) ( ) ( ){ }
3
2e cos sin

i t n

gn gn gn gn gnt R t i R t
ω

ψ φ
 − + 
 Ψ = −         (14) 

This time evolving state vector describes Rabi oscillations between the basic 
qubit states gnψ  and gnφ  at Rabi frequency gnR . 

In order to determine the length of the Bloch vector associated with the state 
vector in Equation (14), we introduce the density operator 

( ) ( ) ( )ˆ
gn gn gnt t tρ = Ψ Ψ                    (15a) 

which we expand to obtain 

( ) ( ) ( )

( ) ( )

2

2

ˆ cos sin 2
2

sin 2 sin .
2

gn gn gn gn gn gn gn

gn gn gn gn

it R t R t

i R t R t

ρ ψ ψ ψ φ

φ ψ φ φ

= +

− +
       (15b) 

Defining the coefficients of the projectors in Equation (15b) as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2 12

21 22 2

cos ; sin 2
2

sin 2 ; sin
2

gn gn gn gn

gn gn gn gn

it R t t R t

it R t t R t

ρ ρ

ρ ρ

= =

= − =
           (15c) 

and interpreting the coefficients in Equation (15c) as elements of a 2 2×  den-
sity matrix ( )gn tρ , which we express in terms of standard Pauli operator ma-
trices I, xσ , yσ  and zσ  as 

( ) ( ) ( )
( ) ( ) ( )( )

11 12

21 22
1
2

gn gn
gn gn

gn gn

t t
t I t

t t
ρ ρ

ρ ρ σ
ρ ρ

 
= = + ⋅  
 

� �
          (15d) 

where ( ), ,x y zσ σ σ σ=
�

 is the Pauli matrix vector and we have introduced the 
time-evolving Bloch vector ( )gn tρ

�
 obtained in the form 

( ) ( ) ( ) ( )( ), ,x y z
gn gn gn gnt t t tρ ρ ρ ρ=
�

               (15e) 

with components defined as 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

12 21

12 21

11 22

0

sin 2

cos 2

x
gn gn gn

y
gn gn gn gn

z
gn gn gn gn

t t t

t i t t R t

t t t R t

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

= + =

= − = −

= − =

            (15f) 
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The Bloch vector in Equation (15e) takes the explicit form 

( ) ( ) ( )( )0, sin 2 ,cos 2gn gn gnt R t R tρ = −
�

             (15g) 

which has unit length obtained easily as 

( ) 1gn tρ =
�

                        (15h) 

The property that the Bloch vector ( )gn tρ
�

 is of unit length (the Bloch sphere 
has unit radius), clearly shows that the general time evolving state vector 

( )gn tΨ  in Equation (14) is a pure state. 
We now proceed to demonstrate the time evolution of the Bloch vector 
( )gn tρ

�
 which in effect describes the geometric configuration of states. We have 

adopted class 4 Bloch-sphere entanglement of a quantum rank-2 bipartite state 
[23] [24] to bring a clear visualization of this interaction. In this respect, we con-
sider the specific example (which also applies to the general n-photon case) of an 
atom initially in ground state g  entering a cavity with the field mode starting 
off in an initial vacuum state 0 , such that the initial atom-field state is ,0g . 
It is important to note that in the AJC interaction process the initial atom-field 
ground state ,0g  is an absolute ground state with both atom and field mode 
in the ground state g , 0 , in contrast to the commonly applied initial 
atom-field ground state ,0e  in the JC model where only the field mode 0  
is in the ground state and the atom in the excited state e . 

In the specific example starting with an atom in the ground state g  and the 
field mode in the vacuum state 0  the basic qubit state vectors 0gψ  and 

0gφ , together with the corresponding entanglement parameters, are obtained 
by setting 0n =  in Equations (5) and (6) in the form 

0 0 0 0

2 2
0 0 0

0 0

,0 ; ,0 ,1 ;

2 1; ; 16
2 2

,0 0 ; ,1 1

g g g g

g g g
g g

g c g s e

c s R
R R

g g e e

ψ φ

δ λ λ δ

= = − +

= = = +

= ⊗ = ⊗

          (16) 

The corresponding Hamiltonian in Equation (11) becomes ( 0n = ) 

0
3ˆ ˆ ˆ
2g g g gH I Rω ε= +� �                     (17) 

The time-evolving state vector in Equation (14) takes the form ( 0n = ) 

( ) ( ) ( ){ }
3
2

0 0 0 0 0e cos sin
i t

g g g g gt R t i R t
ω

ψ φ
−

Ψ = −         (18) 

which describes Rabi oscillations at frequency 0gR  between the initial separable 
qubit state vector 0gψ  and the entangled qubit state vector 0gφ . 

The Rabi oscillation process is best described by the corresponding Bloch 
vector which follows from Equation (15g) in the form ( 0n = ) 

( ) ( ) ( )( )0 0 00, sin 2 ,cos 2g g gt R t R tρ = −
�

              (19) 

The time evolution of this Bloch vector reveals that the Rabi oscillations be-
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tween the basic qubit state vectors 0gψ , 0gφ  describe circles on which the 
states are distributed on the Bloch sphere as we demonstrate in Figure 1. 

In Figure 1 we have plotted the AJC Rabi oscillation process with respective 
Rabi frequencies 0gR  determined according to Equation (16) for various values 
of sum frequency 0δ ω ω= + . We have provided a comparison with plots of the 
corresponding JC process in Figure 2. 

To facilitate the desired comparison of the AJC Rabi oscillation process with 
the standard JC Rabi oscillation process plotted in Figure 2, we substitute the 
redefinition 0 2δ ω ω δ ω= + = +  to express the Rabi frequency 0gR  in Equa-
tion (16) in the form 

( )22
0

1 16 2 .
2gR λ δ ω= + +                   (20) 

In the present work, we have chosen the field mode frequency 2ω λ=  
( 0.5λ ω= ) such that for both AJC and JC processes we vary only the detuning 
frequency 0δ ω ω= − . The resonance case 0δ =  in the JC interaction now 
means 2 4δ ω λ= =  in the AJC interaction. 

For various values of ,3 ,0δ λ λ= , we use the general time evolving state vec-
tor in Equation (18), with 0gR  as defined in Equation (20) to determine the  

coupled qubit state vectors 0gψ , 0gφ  in Equation (16) by setting 0 2gR t = π ,  

describing half cycle of Rabi oscillation as presented below. In each case we have 
an accumulated global phase factor which does not affect measurement results 
[25] [26] [27], but we have maintained them here in Equations (21a)-(21c) to 
explain the continuous time evolution over one cycle. 

79 79
82 415 4; 5 : ,0 e ,0 ,1 e ,0

41 41

i i
g g e gδ λ δ λ

− π − π 
= = → − + → 

 
  (21a) 

113 113
130 657 43 ; 7 : ,0 e ,0 ,1 e ,0

65 65

i i
g g e gδ λ δ λ

− π − π 
= = → − + → 

 
 (21b) 

21 10; 4 : ,0 e ,0 ,1 e ,0
2 2

i ig g e gδ δ λ − π − π 
= = → − + → 

 
   (21c) 

The AJC Rabi oscillations for cases ,3 ,0δ λ λ=  are plotted as red, black and 
blue circles in Figure 1, while the corresponding plots in the JC process are pro-
vided in Figure 2 as a comparison. Here, Figure 1 is a Bloch sphere entangle-
ment [23] that corresponds to a 2-dimensional subspace of 2 2⊗    

{ }0 0Span ,0 , ,0 ,1g gg c g s e− +  with 0
02g

g

c
R
δ

=  and 0
0

2
g

g

s
R
λ

=  while 

Figure 2 is a Bloch sphere entanglement corresponding to a 2-dimensional sub-

space of 2 2⊗   { }0 0Span ,0 , ,0 ,1e ee c e s g+  with 0
02e

e

c
R
δ

=  and 

0
0

2
e

e

s
R
λ

= , where we recall that, in the JC interaction the initial atom-field 

ground state with the field mode in the vacuum state is ,0e . 

https://doi.org/10.4236/jmp.2021.124029


C. Mayero et al. 
 

 

DOI: 10.4236/jmp.2021.124029 415 Journal of Modern Physics 
 

 
Figure 1. Rabi oscillations in AJC interaction mechanism. The Rabi oscillations for values 
of sum frequencies are shown by red ( 5 ;δ λ δ λ= = ), black ( 7 ; 3δ λ δ λ= = ) and blue 

( 04 ; 0δ λ δ ω ω= = − = ). 
 

 
Figure 2. Rabi oscillations in JC interaction mechanism. Here, blue circle is at resonance 
with detuning 0 0δ ω ω= − = , red circle is for detuning δ λ=  and black circle for de-
tuning 3δ λ= . 

 
In Figure 1 we observe: 
1) that due to the larger sum frequency 2δ δ ω= +  in the AJC interaction 

process as compared to the detuning frequency δ  in the JC interaction 
process, the Rabi oscillation circles in the much faster AJC process are much 
smaller compared to the corresponding Rabi oscillation circles in the slower JC 
interaction process. This effect is in agreement with the assumption usually 
adopted to drop the AJC interaction components in the rotating wave approxi-
mation (RWA), noting that the fast oscillating AJC process averages out over 
time. We have demonstrated the physical property that the size of the Rabi os-
cillations curves decreases with increasing Rabi oscillation frequency by plotting 
the AJC oscillation curves for a considerably larger Rabi frequency 0gR  where 
we have set the field mode frequency 10ω λ=  ( 0.1λ ω= ) in Figure 3. It is 
clear in Figure 3 that for this higher value of the Rabi frequency 0gR  the Rabi 
oscillation curves almost converge to a point-like form; 

2) that Rabi oscillations in the AJC interaction process as demonstrated in 
Figure 1 occur in the left hemisphere of the Bloch sphere while in the JC interaction 
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Figure 3. Rabi oscillations in AJC interaction mechanism. The Rabi oscillations for values 
of sum frequencies are shown by red ( 21 ;δ λ δ λ= = ) and black ( 23 ; 3δ λ δ λ= = ). 

 
process the oscillations occur in the right hemisphere as demonstrated in Figure 
2. This demonstrates an important physical property that the AJC interaction 
process occurs in the reverse sense relative to the JC interaction process; 

3) an interesting feature that appears at resonance specified by 0δ = . While 
in the JC model plotted in Figure 2 the Rabi oscillation at resonance 0δ =  
(blue circle) lies precisely on the yz-plane normal to the equatorial plane, the 
corresponding AJC Rabi oscillation (blue circle in Figure 1) is at an axis away 
from the yz-plane about the south pole of the Bloch sphere. This feature is due to 
the fact that the frequency detuning 2δ ω=  takes a non-zero value under re-
sonance 0δ =  such that the AJC oscillations maintain their original forms 
even under resonance. 

We note that the qubit state transitions described by the Bloch vector in the 
AJC process (Figure 1) are blue-side band transitions characterized by the sum 
frequency 0 2δ ω ω δ ω= + = +  according to the definition of the Rabi fre-
quency 0gR  in Equation (20). 

The geometric configuration of the state space demonstrated on the 
Bloch-sphere in Figure 2 determined using the approach in [5] agrees precisely 
with that determined using the semi-classical approach in [28] corresponding to 
a 2-dimensional subspace of 2  Span { },e g . In the approach [28], at re-
sonance where detuning 0δ =  the atomic population is inverted from e  to 
g  and the Bloch-vector ( ) ( ) ( ) ( ) ( )( )sin cos ,sin sin ,cosr θ φ θ φ θ=

�
 describes 

a path along the yz-plane on the Bloch-sphere. For other values of detuning, the 
atom evolves from e  to a linear superposition of e  and g  and back to 
e  and the Bloch-vector r�  describes a circle about the north pole of the 

Bloch-sphere. 

4. Entanglement Properties 

In quantum information, it is of interest to measure or quantify the entangle-
ment of states. In this paper we apply the von Neumann entropy as a measure of 
entanglement. The von Neumann entropy [29] [30] [31] [32] [33] of a quantum 
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state ρ̂  is defined as 

( ) ( )ˆ ˆ ˆlog logd i d i
i

S trρ ρ ρ λ λ= − = −∑               (22) 

where the logarithm is taken to base d, d being the dimension of the Hilbert 
space containing ρ̂  and iλ ‘s are the eigenvalues of ρ̂ . It follows that 

( )ˆ0 1S ρ≤ ≤ , where ( )ˆ 0S ρ =  if and only if ρ̂  is a pure state. 
Further, the von Neumann entropy of the reduced density matrices of a bipar-

tite pure state ˆAB AB ABρ ψ ψ=  is a good and convenient entanglement 
measure ( )ˆABE ρ . The entanglement measure defined as the entropy of either 
of the quantum subsystem is obtained as 

( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆlog logAB A A B BE tr trρ ρ ρ ρ ρ= − = −            (23) 

where for all states we have ( )ˆ0 1ABE ρ≤ ≤ . Here the limit 0 is achieved if the 
pure state is a product A Bψ ψ ψ= ⊗  and 1 is achieved for maximally en-
tangled states, noting that the reduced density matrices are maximally mixed 
states. 

In this section we analyse the entanglement properties of the qubit state vectors 
and the dynamical evolution of entanglement generated in the AJC interaction. 

4.1. Entanglement Analysis of Basic Qubit  
State Vectors gψ 0  and gφ 0  

Let us start by considering the entanglement properties of the initial state 0gψ  
which according to the definition in Equation (16) is a separable pure state. The 
density operator of the qubit state vector 0 ,0g gψ =  is obtained as 

0ˆ ,0 ,0g g gρ =                       (24a) 

Using the definition ,0 0g g= ⊗ , we take the partial trace of 0ˆgρ  in 
Equation (24a) with respect to the field mode and atom states respectively, to 
obtain the respective atom and field reduced density operators ˆAρ , ˆFρ  in the 
form (subscripts atomA ≡  and fieldF ≡ ) 

( ) ( )0 0ˆ ˆ ˆ ˆ; 0 0A F g F A gtr g g trρ ρ ρ ρ= = = =          (24b) 

which take explicit 2 2×  matrix forms 

0 0 1 0
ˆ ˆ;

0 1 0 0A Fρ ρ
   

= =   
   

                 (24c) 

The trace of ˆAρ , 2ˆAρ  and ˆFρ , 2ˆFρ  of the matrices in Equation (24c) are 

( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ1; 1A A F Ftr tr tr trρ ρ ρ ρ= = = =            (24d) 

The unit trace determined in Equation (24d) proves that the initial qubit state 
vector 0 ,0g gψ =  is a pure state. 

Next, we substitute the matrix form of ˆAρ  and ˆFρ  from Equation (24c) 
into Equation (23) to obtain equal von Neumann entanglement entropies 

( ) ( ) ( )0ˆ ˆ ˆ 0g A FE S Sρ ρ ρ= = =                  (24e) 
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which together with the property in Equation (24d) quantifies the initial qubit 
state vector 0 ,0g gψ =  as a pure separable state, agreeing with the definition 
in Equation (16). 

We proceed to determine the entanglement properties of the (transition) qubit 
state vector 0gφ  defined in Equation (16). For parameter values , 5δ λ δ λ= =  
we ignore the phase factor in Equation (21a), to write the transition qubit state 
vector in the form 

0
5 4; 5 : ,0 ,1
41 41g g eδ λ δ λ φ= = = − +           (25a) 

The corresponding density operator of the state in Equation (25a) is 

0
25 20 20 16ˆ ,0 ,0 ,0 ,1 ,1 ,0 ,1 ,1
41 41 41 41g g g g e e g e eρ = − − +    (25b) 

which takes the explicit 4 4×  matrix form 

0

0 0 0 0
16 200 0
41 41ˆ
20 250 0
41 41

0 0 0 0

gρ

 
 
 −
 =  
 −
 
 
 

                  (25c) 

with eigenvalues 1 1λ = , 2 0λ = , 3 0λ = , 4 0λ = . Applying Equation (22), its 
von Neumann entropy 

( )0
ˆ 0gS ρ =                         (25d) 

quantifying the state 0gφ  in Equation (25a) as a bipartite pure state. 
Taking the partial trace of 0

ˆ
gρ  in Equation (25b) with respect to the field 

mode and atom states respectively, we obtain the respective atom and field re-
duced density operators ˆ ˆ,A Fρ ρ  together with their squares in the form 

( )

( )

2
0

2
0

25 16 625 256ˆ ˆ ˆ;
41 41 1681 1681
25 16 625 256ˆ ˆ ˆ0 0 1 1 ; 0 0 1 1
41 41 1681 1681

A F g A

F A g F

tr g g e e g g e e

tr

ρ ρ ρ

ρ ρ ρ

= = + = +

= = + = +
  (25e) 

The trace of 2ˆ
Aρ  and 2ˆ

Fρ  in Equation (25e) gives 

( ) ( )2 2 881ˆ ˆ 1
1681A Ftr trρ ρ= = <                   (25f) 

demonstrating that ˆ
Aρ  and ˆ

Fρ  are mixed states, satisfying the general prop-
erty ( )2ˆ 1tr χρ <  for a mixed state ˆχρ . 

To quantify the mixedness we determine the length of the Bloch vector along 
the z-axis as follows 

( ) ( ) 9ˆ ˆˆ ˆ
41z A z F zr tr trρ σ ρ σ= = =                 (25g) 

which shows that the reduced density operators ˆ ˆ,A Fρ ρ  are non-maximally 
mixed states. 
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The eigenvalues ( )1 2,λ λ  of ˆ
Aρ  and ˆ

Fρ  are 16 25,
41 41

 
 
 

 and 25 16,
41 41

 
 
 

 

respectively, which on substituting into Equation (22), gives equal von Neumann 
entanglement entropies 

( ) ( ) ( )0 2 2
16 16 25 25ˆ ˆ ˆ log log 0.964957
41 41 41 41g A FE S Sρ ρ ρ    = = = − − =   

   
 (25h) 

Taking the properties in Equations (25d), (25f)-(25h) together clearly charac-
terizes the qubit state 0gφ  in Equation (25a) as an entangled bipartite pure 
state. However, since ( ) ( )ˆ ˆ 1A FS Sρ ρ= <  the state is not maximally entangled.  

Similarly, the transition qubit state vector 0
7 4,0 ,1
65 65g g eφ = − +  ob-

tained for 3 , 7δ λ δ λ= =  in Equation (21b) is an entangled bipartite pure 
state, but not maximally entangled. 

Finally, we consider the resonance case 0δ = , characterized by 4δ λ=  in 
the AJC model. Ignoring the phase factor in Equation (21c) the transition qubit 
state vector 0gφ  takes the form 

0
1 10; 4 : ,0 ,1
2 2g g eδ δ λ φ= = = − +            (26a) 

The corresponding density operator of the state in Equation (26a) is 

0
1 1 1 1ˆ ,0 ,0 ,0 ,1 ,1 ,0 ,1 ,1
2 2 2 2g g g g e e g e eρ = − − +      (26b) 

which takes the explicit 4 4×  matrix form 

0

0 0 0 0
1 10 0
2 2ˆ
1 10 0
2 2

0 0 0 0

gρ

 
 
 −
 =  
 −
 
 
 

                   (26c) 

with eigenvalues 1 2 3 41, 0, 0, 0λ λ λ λ= = = = . Applying Equation (22) its von 
Neumann entropy 

( )0
ˆ 0gS ρ =                         (26d) 

quantifying the state in Equation (26a) as a bipartite pure state. 
Taking the partial trace of 0

ˆ
gρ  in Equation (26b) with respect to the field 

mode and atom states respectively, we obtain the respective atom and field re-
duced density operators ˆ ˆ,A Fρ ρ  together with their squares in the form 

( )

( )

2
0

2
0

1 1 1 1ˆ ˆ ˆ;
2 2 4 4
1 1 1 1ˆ ˆ ˆ0 0 1 1 ; 0 0 1 1
2 2 4 4

A F g A

F A g F

tr g g e e g g e e

tr

ρ ρ ρ

ρ ρ ρ

= = + = +

= = + = +
    (26e) 

The trace of 2ˆ
Aρ  and 2ˆ

Fρ  in Equation (26e) is 

( ) ( )2 2 1ˆ ˆ 1
2A Ftr trρ ρ= = <                    (26f) 

https://doi.org/10.4236/jmp.2021.124029


C. Mayero et al. 
 

 

DOI: 10.4236/jmp.2021.124029 420 Journal of Modern Physics 
 

which reveals that the reduced density operators ˆ ˆ,A Fρ ρ  are mixed states. To 
quantify the mixedness, we determine the length of the Bloch vector along the 
z-axis as follows 

( ) ( )ˆ ˆˆ ˆ 0z A z F zr tr trρ σ ρ σ= = =                  (26g) 

showing that the reduced density operators ˆ
Aρ  and ˆ

Fρ  are maximally mixed 
states. 

The eigenvalues ( )1 2,λ λ  of ˆ
Aρ  and ˆ

Fρ  are 1 1,
2 2

 
 
 

 respectively which 

on substituting into Equation (22), gives equal von Neumann entanglement en-
tropies 

( ) ( ) ( )0 2 2
1 1 1 1ˆ ˆ ˆ log log 1
2 2 2 2g A FE S Sρ ρ ρ    = = = − − =   

   
     (26h) 

The unit entropy determined in Equation (26h) together with the properties 
in Equations (26d)-(26g) quantifies the transition qubit state determined at re-
sonance 0δ =  in Equation (26a) (or Equation (21c)) as a maximally entangled 
bipartite pure state. Due to this maximal entanglement property, we shall use the 
resonance transition qubit state 0gφ  in Equation (26a) to implement telepor-
tation by an entanglement swapping protocol in Section 5 below. 

Similar proof of entanglement of the AJC qubit states is easily achieved for all 
possible values of sum frequency parameter 0δ ω ω= + , confirming that in the 
initial vacuum-field AJC interaction, reversible transitions occur only between a 
pure initial separable qubit state vector 0gψ  and a pure entangled qubit state 
vector 0gφ . This property of Rabi oscillations between an initial separable state 
and an entangled transition qubit state occurs in the general AJC interaction de-
scribed by the general time evolving state vector ( )gn tΨ  in Equation (14). 

4.2. Entanglement Evolution 

Let us consider the general dynamics of AJC interaction described by the general 
time-evolving qubit state vector ( )gn tΨ  in Equation (14). Substituting 

( )gn tΨ  from Equation (14) into Equation (15a) and using the definitions of 

gnψ , gnφ  in Equation (5) the density operator takes the form 

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ){ }

2 2 2

2

2

2 2

ˆ cos sin , ,

cos sin sin , , 1

cos sin sin , 1 ,

sin , 1 , 1

gn gn gn gn

gn gn gn gn gn gn

gn gn gn gn gn gn

gn gn

t R t c R t g n g n

is R t R t c s R t g n e n

is R t R t c s R t e n g n

s R t e n e n

ρ = +

+ − +

+ − − +

+ + +

   (27) 

The reduced density operator of the atom is determined by tracing over the 
field states, thus taking the form 

( ) ( ) ( )ˆ
A g et P t g g P t e eρ = +                 (28) 

after introducing the general time evolving atomic state probabilities ( )gP t , 
( )eP t  obtained as 
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( ) ( ) ( )
( ) ( )

2 2 2

2 2

cos sin

sin

g gn gn gn

e gn gn

P t R t c R t

P t s R t

= +

=
               (29) 

where the dimensionless interaction parameters gnc , gns  are defined in Equa-
tion (6) and the Rabi frequency takes the form 

( )2 21 16 1
2gnR nλ δ= + +                    (30) 

Expressing ( )ˆ
A tρ  in Equation (28) in 2 2×  matrix form 

( ) ( )
( )
0ˆ

0
e

A
g

P t
t

P t
ρ

 
=   
 

                    (31) 

We determine the quantum system entanglement degree ( )E t  defined in 
Equation (23) as 

( ) ( )( ) ( )( ) ( )
( )

( )
( )

2
2

2

0 log 0ˆ ˆlog
0 0 log

e e
A A

g g

P t P t
E t tr t t tr

P t P t
ρ ρ

   
= − = −          

(32) 

which takes the final form 

( ) ( ) ( ) ( ) ( )2 2log loge e g gE t P t P t P t P t= − −             (33) 

Using the definitions of the dimensionless parameters gnc , gns  and the Rabi 
frequency gnR  in Equations (6), (30), we evaluate the probabilities in Equation 
(29) and plot the quantum system entanglement degree ( )E τ  in Equation (33) 
against scaled time tτ λ=  for arbitrarily chosen values of sum frequency 

2 ,6 ,8δ λ λ λ=  and photon number 1,2,3,6n =  in Figures 4-6. 
The graphs in Figures 4-6 show the effect of photon number n and sum fre-

quency 0δ ω ω= +  on the dynamical behavior of quantum entanglement 
measured by the von Neumann entropy ( )E τ  ( ( )min 0E τ = ; ( )max 1E τ = ).  

 

 

Figure 4. Degree of entanglement against scaled time for sum frequency 2δ λ=  when 1n =  
and 2n = . 
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Figure 5. Degree of entanglement against scaled time for sum frequency 6δ λ=  and 8δ λ=  
when 1n = . 

 

 

Figure 6. Degree of entanglement against scaled time for sum frequency 8δ λ=  when 1n = , 
2n = , 3n =  and 6n = . 

 
In the three figures, the phenomenon of entanglement sudden birth (ESB) and 
sudden death (ESD) is observed during the time evolution of entanglement sim-
ilar to that observed in the JC model [34] [35] [36]. In ESB there is an observed 
creation of entanglement where the initially un-entangled qubits are entangled 
after a very short time interval. For fairly low values of photon numbers n and 
sum frequency δ  as demonstrated in Figure 4 for 2δ λ=  plotted when 

1n = , 2n = , the degree of entanglement rises sharply to a maximum value of 
unity ( ( )maxE τ ) at an entangled state, stays at the maximum level for a reasona-
bly short duration, decreases to a local minimum, then rises back to the maxi-
mum value before falling sharply to zero ( ( )minE τ ) at the separable state. The 
local minimum disappears for larger values of sum frequency 6δ λ≥  at low 
photon number n and re-emerge at high photon number 4n ≥  (see Figure 5 
and Figure 6) as examples. However, in comparison to the resonance case 
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0δ =  in the JC model [36] we notice a long-lived entanglement at ( )max 1E τ =  
in the cases of 6δ λ=  plotted when 1n =  in Figure 5 and 8δ λ=  plotted 
when 3n =  in Figure 6. The process of ESB and ESD then repeats periodically, 
consistent with Rabi oscillations between the qubit states. 

In Figure 4 and Figure 6 sum frequencies are kept constant at 2δ λ=  and 
8δ λ=  respectively and photon number n is varied in each case. We clearly see 

that the frequency of oscillation of ( )E τ  increases with an increase in photon 
number n. This phenomenon in which the frequency of oscillation of ( )E τ  
increases with an increase in photon number n is also observed in the JC model 
[35] [36]. 

To visualize the effect of sum frequency parameter δ  on the dynamics of 
( )E τ , we considered values of sum frequency set at 6δ λ=  and 8δ λ=  for 

photon number 1n =  in Figure 5. It is clear that the frequency of oscillation of 
( )E τ  increases with an increase in sum frequency 0δ ω ω= + . In the JC mod-

el when detuning 0δ ω ω= −  is set at off resonance 0δ ≠  results into a de-
crease in the frequency of oscillation of ( )E τ  as seen in [35] [36] [37] in com-
parison to the resonance case 0δ = . 

Finally, for 8δ λ=  plotted when 1n =  in Figure 5 and in Figure 6 in 
comparison to 6δ λ=  plotted when 1n =  in Figure 5, it is clear in Figure 5 
that the degree of entanglement ( )E τ  decreases at a high value of sum fre-
quency a phenomenon similar to the JC model in [37]. The observed decrease in 
degree of entanglement is due to the property that the system loses its purity and 
the entropy decreases when the effect of sum frequency is considered for small 
number of photons n. This is remedied when the effect of sum frequency is con-
sidered for higher photon numbers n as shown in Figure 6. 

5. Teleportation 

In the present work we consider an interesting case of quantum teleportation by 
applying entanglement swapping protocol (teleportation of entanglement) [38] 
[39] [40] [41] where the teleported state is itself entangled. The state we want to 
teleport is a two-atom maximally entangled state in which we have assigned 
subscripts to distinguish the atomic qubit states in the form [42] 

( )12 1 2 1 2

1
2

e g g eϕ = −                  (34) 

and it is in Alice’s possession. In another location Bob is in possession of a 
maximally entangled qubit state 0gφ  generated in the AJC interaction in Equ-
ation (21c) and expressed as 

3 3 3

1 10 1
2 2x x xg eΦ = − +                 (35) 

where we have also assigned subscripts to the qubits in Equation (35) to clearly 
distinguish them. 

An observer, Charlie, receives qubit-1 from Alice and qubit-x from Bob. The 
entire state of the system 
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12 3xχ ϕ= ⊗ Φ                      (36a) 

which on substituting 
12ϕ  and 

3xΦ  from Equations (34), (35) and reorga-
nizing takes the form 

3 2 3 2 3 2 3 2
1 1

3 2 3 2 3 2 3 2
1 1

1
2 2 2

2 2

x x

x x

e g g e e g g e

g g e e g g e e

χ + −

− +

  +   − 
= Ψ + Ψ           

 −   + 
− Φ − Φ          

  (36b) 

after introducing the emerging Bell states obtained as 

1 1
1

1 1
1

1 1
1

1 1
1

1 0

2
1 0

2
0 1

2
0 1

2

x x
x

x x
x

x x
x

x x
x

e g

e g

e g

e g

+

−

−

+

+
Ψ =

−
Ψ =

−
Φ =

+
Φ =

                   (37) 

Charlie performs Bell state projection between qubit-1 and qubit-x (Bell state 
measurement (BSM)) and communicates his results to Bob which we have pre-
sented in Section 5.1 below. 

5.1. Bell State Measurement 

BSM is realized at Charlie’s end. Projection of a state Λ  onto Σ  is defined 
as [43] 

:PΣ = Σ Λ Σ                        (38) 

Using χ  from Equation (36b) and applying Equation (38) we obtain a Bell 
state projection outcome communicated to Bob in the form 

3 2 3 2
1 32

1 1
2 22x

e g g e
χ− − − 

Ψ = = Ψ  
 

          (39a) 

The Bell state 
32

−Ψ  in Equation (39a) is in the form of Alice’s qubit in Eq-
uation (34). Alice and Bob now have a Bell pair between qubit-2 and qubit-3. 
Similarly the other three Bell projections take the forms 

3 2 3 2
1 32

1 1
2 22x

e g g e
χ+ + + 

Ψ = = Ψ  
 

         (39b) 

3 2 3 2
1 32

1 1
2 22x

e e g g
χ− − − 

Φ = = Φ  
 

          (39c) 

3 2 3 2
1 32

1 1
2 22x

e e g g
χ+ + + 

Φ = − = − Φ  
 

        (39d) 

For these cases of Bell state projections in Equations (39b)-(39d) it will be ne-
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cessary for Bob to perform local corrections to qubit-3 by Pauli operators as 
shown in Table 1. We also see that the probability of measuring states 

32ψ  in  

Equations (39a)-(39d) in Charlie’s lab is 1
4

p = . In general, by application of the  

entanglement swapping protocol (teleportation of entanglement), qubit-2 be-
longing to Alice and qubit-3 belonging to Bob despite never having interacted 
before became entangled. Further, we see that a maximally entangled an-
ti-symmetric atom-field transition state 0gφ  (in Equation (21c)) easily gener-
ated in the AJC interaction, can be used in quantum information processing 
(QIP) protocols like entanglement swapping (teleportation of entanglement) 
which we have demonstrated in this work. We note that it is not possible to gen-
erate such an entangled anti-symmetric state in the JC interaction starting with 
the atom initially in the ground state and the field mode in the vacuum state [5]. 
Recall that the JC interaction produces a meaningful physical effect, namely, 
spontaneous emission only when the atom is initially in the excited state and the 
field mode in the vacuum state. 

5.2. Maximal Teleportation Fidelity 

For any two-qubit state ρ̂  the maximal fidelity is given by [44] 

ˆ
ˆ

2 1
3

f
F ρ
ρ

+
=                         (40) 

where ˆfρ  is the fully entangled fraction defined in the form [32] 
2

1 1
2 2

ˆ expected measured expectedˆ ˆ ˆ ˆmaxf trρ ρ ρ ρ ρ
Ψ

  = Ψ Ψ =  
  

         (41) 

From Table 1 

( ) ( )
expected 12 12

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

ˆ
1
2
1
2

1 1 0
0 12

e g g e e g g e

e e g g e g g e

g e e g g g e e

ρ ϕ ϕ=

 = − ⊗ − 

=  −

− + 
− =  − 

       (42) 

 
Table 1. Showing how Bob applies an appropriate gate to his qubit based on BSM from 
Charlie. 

12
ϕ  32

ψ
 UNITARY OPERATION 

( )1 2 1 2

1
2

e g g e+
 

( )3 2 3 2

1
2

g g e e− +
 

( ) ( )atom3 atom2
ˆˆ

x Iσ− ⊗
 

 ( )3 2 3 2

1
2

g g e e− −
 

( ) ( )atom3 atom2
ˆˆ

yi Iσ− ⊗
 

 ( )3 2 3 2

1
2

e g g e+
 

( ) ( )atom3 atom2
ˆˆ

z Iσ ⊗
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( ) ( )
measured 32 32

3 2 3 2 3 2 3 2

3 3 2 2 3 3 2 2

3 3 2 2 3 3 2 2

ˆ

1
2
1
2

1 01
0 12

e g g e e g g e

e e g g e g g e

g e e g g g e e

ρ ψ ψ=

 = − ⊗ − 

= −

− + 
− 

=  − 

       (43) 

Substituting the results in Equation (42) and Equation (43) into the fully en-
tangled fraction Equation (41) we obtain 

2

ˆ

1 0
2 1

10
2

f trρ

  
   = =  

      

                    (44) 

Substituting the value of the fully entangled fraction into Equation (40) we get 

ˆ 1Fρ =                            (45) 

a maximal teleportation fidelity of unity, showing that the state was fully recov-
ered, i.e. Alice’s qubit in Equation (34) was successfully teleported to Bob. We 
obtain an equal outcome to all the other measured states. We have thus achieved 
teleportation using a maximally entangled qubit state generated in an AJC inte-
raction, using the case where the atom and field are initially in the absolute 
ground state g , 0  as an example. 

6. AJC State Engineering and Experimental Implementation 

In order to systematically implement the AJC Hamiltonian with a single tuned 
blue-sideband interaction, the simulation process will involve AJC state prepara-
tion followed by unitary transformation and measurement. 

The state of the whole system as an interaction of a two-level atom and one 
photon where both the atom and photon are in ground state g , 0  will take 
the form of Equation (18). In a field mode that keeps the cavity field with upto 
one photon, the main focus should be to determine the experimental values of 
the probability amplitudes 

( ) ( )0cos gt R tα =                       (46a) 

( ) ( )0sin gt i R tβ = −                     (46b) 

for the initial states 0gψ  and 0gφ  respectively in Equation (18) and show 
their variation with time that has a direct correspondence to Rabi frequency 

0gR , which is of the form 

2 2
0

1 16
2gR λ δ= +                      (46c) 

The measurement procedure can be easily implemented using efficient expe-
rimental schemes for manipulating quantum entanglement with atoms and 
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photons in a cavity strictly in the AJC model, during which process difficulties 
can be determined as appropriate. The most common scheme being cavity 
quantum electrodynamics [45]. 

Entanglement swapping is realised in an experimental set-up through Bell 
state measurement. Initially, the two sets of entangled states in Equations (34) 
and (35) are prepared. The entire state of the system then takes the form of Equ-
ation (36b). The required Bell state measurement is achieved in this case by first 
applying a quantum controlled-NOT(C-NOT) gate operation followed by a 
quantum Hadamard gate operation to qubit 1, which we now explain with ex-
amples below. In order to realise a C-NOT quantum gate operation in this case, 
we note that state evolution operator in the AJC interaction is generated by the 
time evolution operator in Equation (12), which on substituting the Hamiltonian  

Ĥ  from Equation (11) and dropping the factorizable global phase factor  
3 ˆ
2e

gi t n Iω  − + 
  , we define a C-NOT gate operator in the AJC model in the general 

form in Equation (10), which we rewrite here for ease of reference 

( ) ( )ˆ ˆ ˆe cos singi
g gI iθε θ θ ε− = −                  (10') 

The C-NOT gate process consists of a two-level atom as the control qubit, 
which constitutes a two dimensional Hilbert space spanned by the atomic ex-
cited and ground states e , g  as basis vectors. Two non-degenerate and or-
thogonal polarized cavity modes AC  and BC  make the target qubit. The target 
qubit is defined in two-dimensional Hilbert space spanned by the state vector 

1 1 ,0A Bµ = , which expresses the presence of one photon in mode A, when 
there is no photon in mode B, and the state vector 2 0 ,1A Bµ = , which indi-
cates that mode A is in the vacuum state and one photon is present in mode B. 

Let us consider the case when qubit 1 (in Charlie’s possession) in ground state 

1g  enters an electromagnetic cavity with mode A in vacuum state and a single 
photon in mode B. The atom couples to the anti-rotating negative frequency 
component of the field mode undergoing an AJC qubit state transition. After the  

atom interacts with mode A for a time 
0g

t
R

=
π

, equal to half Rabi oscillation 

time, the driving field is modulated such that 

0 02g gR t A tθ λ= = = π                     (47) 

Redefining [5] 

0 2
2 2 2

ω ω ωδ δ ωα
λ λ λ λ

− +
= = = +                 (48) 

and considering a resonance case where 0 0δ ω ω= − =  with the coupling 
strength λ  far much greater than the quantized field mode angular frequency 
ω , that is λ ω�  in the deep strong coupling regime of the AJC model, α  in 
Equation (48) becomes very small thus 

2
tθ λ= =

π                          (49) 
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since 0 1gA =  in Equation (47) determined from the general form in Equation 
(6). The evolution of this interaction determined by applying the AJC qubit state 
transition operation in Equation (10) noting the definition of ˆ

gI  and ˆ
gε  [5] 

in Equation (8) is of the form 

( ) ( )ˆ
e ,0 cos ,0 sin ,1gi

A A Ag g i eθε θ θ− = −            (50a) 

which reduces to 

,0 ,1A Ag i e→ −                      (50b) 

We observe that the atom interacted with mode A and completed half of the 
Rabi oscillation, as a result, it contributed a photon to mode A and evolved to 
excited state e . Now, after the interaction time, it enters mode B containing a 
single photon, interacting with the cavity mode as follows 

( ) ( )ˆe ,1 cos ,1 sin ,0ei
B B Bi e i e gθε θ θ− = − +           (50c) 

After an interaction with mode B for a time 1 2t t=  such that  

( )0 1
1

0 1

g e

g e

R R
t

R R

+π
= , the driving field is modulated such that 0 1

0 1 2
g e

g e

R R
t

R R
θ

 
= =  
 

π
+

 

with 0 02 2g gR Aλ λ= =  since 0 1gA =  and 1 12 2e eR Aλ λ= =  since 1 1eA = . 

Therefore, 
2

tλ =
π . The form of Equation (50c) results into the evolution 

,1 ,0B Bi e g− →                      (50d) 

The results in Equation (50d) show that the atom evolves to ground state and 
absorbs a photon initially in mode B. Therefore the atom clearly performs a 
swapping of the electromagnetic field between the two field modes by controlled 
interaction. 

When the atom in ground state g , enters the electromagnetic cavity con-
taining a single photon in mode A and mode B in vacuum state, the atom and 
the field interact as follows 

( ) ( )ˆ
e ,0 cos ,0 sin ,1gi

B B Bg g eθε θ θ− = −            (50e) 

After an interaction with field mode B for a time 
0g

t
R

=
π

 equal to half Rabi 

oscillation time, the driving field is modulated such that 0gR tθ = = π , with 

0 02 2g gR Aλ λ= =  since 0 1gA = . Therefore 
2

tθ λ= =
π . The form of Equation 

(50e) results in the evolution 

,0 ,1B Bg e→ −                       (50f) 

The atom then enters mode A containing one photon and interacts as follows 

( ) ( )ˆe ,1 cos ,1 sin ,0ei
A A Ae e i gθε θ θ− = − −           (50g) 

After an interaction with the cavity mode for a time 1 2t t=  such that 

( )1 0
1

1 0

e g

e g

R R
t

R R

+π
=  we obtain a driving field modulation 1 0

1 0 2
e g

e g

R R
t

R R
θ

 
= =  
 

π
+

, 
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with 1 12 2e eR Aλ λ= =  since 1 1eA =  and 0 02 2g gR Aλ λ= =  since 0 1gA = . 

Therefore 
2

tθ λ= =
π . The form of Equation (50g) results into the evolution 

,1 ,0A Ae i g→                       (50h) 

This shows that the atom evolves to ground state and performs a field swap-
ping by absorbing a photon in mode A. 

When the qubit 1, a two-level atom in excited state 
1e  enters mode A in 

vacuum state, that is target qubit 2µ , the atom propagates as a free wave 
without coupling to the field mode in vacuum state 0  [5], leaving the cavity 
without altering the state of the cavity-field mode. A similar observation is made 
when the atom in excited state 

1e  enters cavity B in vacuum state for the case 
of target qubit 1µ . 

The Hadamard gate operation then follows. Noting the qubit state transition 
algebraic operations in Equation (9), we identify the normalized qubit state tran-
sition operator ˆ

gε  defined in Equation (8) as the AJC Hadamard gate operator 
which we use Equation (4) to express in the general form 

†ˆ ˆ ˆ ˆ ˆˆ z
g

gn

s as a s
A

α
ε − ++ +

=                     (51a) 

where gnA  is defined in Equation (6). For the specific example where atom be-
gins in the ground state 

1g  and the field mode in the vacuum state 0 , we 
set 0n =  and take 4δ λ=  in Equation (6) to define the corresponding Ha-
damard gate operator in the form 

( )†
0

0

1ˆ ˆ ˆ ˆ ˆ ˆ2 ; 2g z g
g

s as a s A
A

ε − += + + =              (51b) 

Applying this Hadamard gate operator, rotates the initial atomic ground state 

1g  to 

( )1 1 1

1
2

g e g→ −                    (51c) 

On the other hand, if the atom starts from an initial excited state 
1e , the 

appropriate Hadamard gate operator for such a process follows from the defini-
tion of the relevant normalised qubit state transition operator ˆ

eε  in [5], which 
on setting 4δ λ=  and 1n =  takes the form 

( )†
1

1

1ˆ ˆ ˆ ˆ ˆ ˆ2 ; 2e z e
e

s as a s A
A

ε − += + + =              (52a) 

which rotates the initial atomic excited state e  to 

( )1 1 1

1
2

e e g→ +                    (52b) 

Application of the C-NOT and Hadamard gate operations using the respective 
operators defined in Equation (10') or earlier (10) and Equations (51b), (52a) as 
briefly explained in the above example, provides a practical platform for experi-
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mental implementation of the AJC quantum teleportation process described in 
Sec. 5. Here, results of the Bell state measurement are communicated to Bob (by 
Charlie) who applies appropriate single-qubit rotation to qubit 3 in his posses-
sion. Details of experimental design, procedures and difficulties can be provided 
as appropriate, noting that the quantum Rabi interaction is generally achieved in 
cavity or circuit quantum electrodynamics, quantum dots or ion traps, etc. 

7. Conclusion 

In this paper we have analysed entanglement of a two-level atom and a quan-
tized electromagnetic field mode in an AJC qubit formed in the AJC interaction 
mechanism. The effect of sum-frequency parameter and photon number on the 
dynamical behavior of entanglement measured by von Neumann entropy was 
studied which brought a clear visualization of this interaction similar to the 
graphical representation on Bloch sphere. The graphical representation of Rabi 
oscillations on the Bloch sphere demonstrated an important physical property 
that the AJC interaction process occurs in the reverse sense relative to the JC in-
teraction process. We further generated an entangled AJC qubit state in the AJC 
interaction mechanism which we used in the entanglement swapping protocol as 
Bob’s qubit. We obtained an impressive maximal teleportation fidelity 1Fρ =  
showing that the state was fully recovered. This impressive result of fidelity, 
opens all possible directions for future research in teleportation strictly within 
the AJC model. In conclusion we observe that the operator ordering that distin-
guishes the rotating (JC) component and anti-rotating component (AJC) has an 
important physical foundation with reference to the rotating positive and an-
ti-rotating negative frequency components of the field mode which dictates the 
coupling of the degenerate states of a two-level atom to the frequency compo-
nents of the field mode, an important basis for realizing the workings in the AJC 
interaction mechanism and JC interaction mechanism. 
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Abstract 
The existence of several TeV superheavy particles (SHPs) is predicted by 
theories beyond the Standard Model. Particles with a mass exceeding the 
energy in the center of mass in the collision of protons with protons can be 
produced in subthreshold heavy ion collisions at the LHC. The purpose of the 
performed research was to estimate the rate of a rare process of SHPs 
production. It was shown that the data on the subthreshold production of 
antiprotons can be explained by the phenomenological parton model. The 
obtained parton distribution function was used to determine the number of 
SHPs produced in subthreshold heavy ion collisions at the LHC. In one 
month of collision of lead with lead, the yield of 16 TeVparticles is about 70 
per year. To study the kinematically forbidden phenomena in proton-proton 
interactions in collisions of heavy nuclei at the LHC, an experiment on the 
production of antiprotons is proposed in the ALICE fixed target project. 
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1. Introduction 

In Grand Unification Theory, it is assumed that the first massive particles which 
are responsible for the symmetry breaking up to the symmetry of the Standard 
Model at the distances larger than 10−29 cm have masses of the order of 1012 TeV. 
In the simple version of this theory next masses arise only at distances about 
10−16 cm, where the particles with masses of the order of 102 GeV should be con-
sidered. They are connected to the breaking of electroweak symmetry, so called 
Higgs scalar bosons. Therefore a rather artificial hypothesis was proposed on the 
existence of the “gauge dessert”, i.e. no particles have masses between 0.2 - 1012 
TeV. However, some other possibility for high mass production is predicted by 
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Large Extra Dimension theories, where our 3 + 1 dimensional world is consi-
dered as a “brane” in the higher dimensional space. Then the Planck mass can be 
brought down to a level of the order of one TeV [1]. Then Superheavy Particles 
with masses of several TeV, such as mini Black Holes, could be produced if the 
extra dimension is equal to seven. 

Additionally, more complicated models have been proposed with multistep 
breaking of the symmetry at super high energy down to the symmetry of the 
Standard Model, where some new particles could be adopted with masses in the 
interval filling the “gauge dessert”. One of the most interesting possibilities pro-
vides theory based on new symmetry principle connecting the particles with dif-
ferent statistics, so-called Supersymmetry Theory. New types of heavy quarks 
and leptons are introduced in this theory: s-quarks and s-leptons and corres-
ponding supersymmetry partners. In that respect, we can take into account new 
possibilities for producing the masses up to 103 TeV with the LHC with heavy ions 
as an opportunity to search for new superheavy supersymmetry particles. We can 
expect rather small coupling between these new types of physical objects and par-
ticles of the ordinary world. Therefore, one can look for superheavy particles with 
a large lifetime. Although there are several proposals for the search for long-lived 
particles, none of them are considering particles with a mass of several TeV. 

The unique possibility of relativistic heavy ion collisions is production with 
considerable probability of particles which are kinematically forbidden for nucle-
on-nucleon collisions with the same energy per nucleon. The essential increase in 
the “subthreshold” antiproton production cross section for nucleus-nucleus colli-
sion normalized per one nucleon in comparison to nucleon-nucleus collision 
was observed [2] [3] [4] [5] [6]. This increase can reach two orders of magnitude 
and cannot be explained by Fermi motion in the incident and target nuclei [7]. 
However, this approach took into account only nucleon-nucleon collisions. 
“Subthreshold” particle production could be due to multinucleon or multiquark 
correlation in heavy nuclei. It can be assumed that this correlation is determined 
by the parton distribution function with a scaling parameter greater than unity. 

The total energy in the center of mass system for Pb-Pb collisions at the LHC 
is approximately 1150 TeV. Therefore, the unique possibility could be consi-
dered to produce Super Heavy Particles (SHPs) by nucleus-nucleus collisions 
with masses much larger than the center of mass energy in p-p collisions. To 
date, there is no theory for calculating the cross section for SHPs production in 
collisions of heavy ions. However, to plan a possible experiment, it is necessary 
to estimate the number of particles produced. In this article, it is proposed to use 
for this estimate the parton distribution function obtained for the subthreshold 
antiproton production. 

2. Parton Model for Particle Production  
in Heavy Ion Collisions 

For the analysis of the subthreshold hadron production at intermediate energies 
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the phenomenological parton model was proposed [8]. It was observed that the 
subthreshold and near threshold production cross section in proton-nucleus and 
nucleus collisions for pions, kaons and antiprotons could be expressed as a uni-
versal function of the scaling quark-parton parameters, such as the Bjorken 
scaling parameter x for deep inelastic electron scattering, but take into account 
the production of massive particles and is now different in incident (Z) and in 
target (X) nuclei. Values Z and X larger than 1 arise to provide the production of 
particles at subthreshold energies for nucleon-nucleon process. As usually a 
physical interpretation of these scaling parameters in a quark-parton model 
means that XPb correspond to parton 4-momentum in a target nuclei, where Pb 
is 4-momentum of a nucleon in a target nucleus. X could take the values in an 
interval 0 < X < A, where A is the atomic number of a target. On the other hand 
the same parton model could be applied to the incident particle ZPa. 

For antiproton production the value of X for fixed Z could be obtained: 

( ) ( )
( ) ( )

2 21
2a d a n n d

a b a b b d b n

Z P P Zm m m m
X

Z P P Zm m P P m m

+ + −
=

− − −
               (1) 

which is derived from the conservation of the 4-momentum in the collision. 
Here Pd is the 4-momentum of the antiproton, a b nm m m -mass of the nucleon in 
the incident and in target nuclei, and md-mass of the antiproton. Because of the 
exponential dependence of the production cross section on the scaling parame-
ters, this equation matches the smallest values of X and Z parameters corres-
ponding to the smallest energy in the center of mass of partons interaction. 

For proton-nucleus and nucleus-nucleus interactions, the experimental data 
over a wide energy interval for different incident and target nuclei could be ap-
proximated with the same scaling law. Those are the data for antiproton produc-
tion with Ne and Ni nuclei with 1 - 2 GeV/nucl. at GSI [6], proton and carbon 
nuclei with 3.65 GeV/nucl. at JINR [2] [3], with a deuteron beam at KEK [5] and 
protons and a Si-beam at LBL for antiproton and K− production [4]. The scaling 
in Figure 1 is observed with a Z-parameter equal 1 for proton beam, 1.3 for 
deuteron, 2 for carbon beams and 3 for Si, Ne, and Ni nuclei [8]. The production 
cross sections were reduced by (A1A2)0.43 according to A-dependence investi-
gated in [9] and due to the different absorption nuclear effects for pions, kaons 
and antiprotons. 

The considerable increase in the ratio of kaon to pion production rates in 
nucleus-nucleus collision compared to the same ratio in deuteron-nucleus colli-
sion was also explained by the scaling dependence on the Z parameter for Z < 1, 
but with the parameter X = 2 for incident carbon nuclei and X = 1.5 for incident 
deuterons [10]. 

The considerable increase in the production rates for kaons and antiprotons 
compared to pions in nucleus-nucleus collisions was interpreted as the indica-
tion of collective parton effect and was quantitatively reproduced by the intro-
duction of scaling parameters larger than one. From Figure 2 we see that the  
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Figure 1. Systematics of Lorentz invariant antiproton subthreshold production cross sec-
tion dependence on the scaling parameter X with Z = 1 for incident protons, Z = 1.3 for 
deuterons, Z = 2 for carbon ions, Z = 3 for heavy nuclei. Points p + C, open circles d + C, 
crosses C + C and C + Cu [2] [3], triangles p + C and d + C [5], squares p + Cu [7], 
rhombs Si + Si [4], stares Ne + Sn and Ni + Ni [6]. Only some statistical errors are pre-
sented to show the order of uncertainty for the measurements of subthreshold production. 

 
dependence of the Lorenz invariant inclusive cross section, or of the structure 
function, on the scaling parameter is close to the exponent. The “subthreshold” 
structure function in Figure 2 could be approximated as: 

( ) ( )
3

0.4 2 3 13
1 2 1 3 mb GeV c sr 0.57ed xp 0.158

d
A A E

p
Xσ − −− ⋅ ⋅ = −  ⋅⋅      (2) 

where A1 and A2 are the mass numbers of colliding nuclei. 
This curve can be used to describe the experimental data in the range of cross 

section 10−1 - 10−5 mb with an accuracy less than an order of magnitude for X = 1 
- 3 for the data from approximately 2 to 6 GeV per nucleon. 

The enhancement of kaon and antiproton production is quantitatively repro-
duced by the introduction of a large Z scaling parameter: Z = 1.3 for deuterons, 
Z = 3 for all heavy colliding nuclei. For incident protons Z is equal to one. 

This scaling was observed for different quark flavors. Therefore one can ex-
pect that the model can be applied to some heavier unknown quarks and that 
these collective phenomena could be due to some general space-time properties 
of nucleus-nucleus interaction or to the universal structure function of a nuc-
leus. 
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Figure 2. χ2-Fit to the invariant antiproton production cross section dependence on the 
X-scaling parameter. Only data for the interaction of protons with carbon (open marks) 
and with copper (filled marks) are shown. 

3. Estimate of Production Yield of  
Super Heavy Particle Production 

From Equation (2) we see that the cross section strongly depends on the para-
meter X. Therefore, to produce SHP with considerable probability, one should 
look for the kinematics with the smallest X and Z possible. To estimate the SHP 
production cross section for the LHC using the scaling dependence of the struc-
ture function for nM m�  we can determine Z and X from the relation on the 
threshold for SHP production: 

2S E X Z M= ⋅ = ,                     (3) 

where M is the mass of SHP, mn is the mass of nucleon, E is the energy per 
nucleon of colliding nuclei. 

To estimate the production rate of SHP with the mass M, Equation (2) could 
be used with Z = 3 for nucleus-nucleus collision and X to be determined from 
Equation (3). 
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The absolute value of the momentum P of SHP is obtained from the equation 

( )( )
( )( )

2
1

2
1

2 cos
4 2 cos

Z E E E P M
X

Z E E E E P
θ

θ

⋅ − ⋅ ⋅ −
=

⋅ − ⋅ + ⋅ ⋅
               (4) 

which is derived from the conservation of the 4-momentum in the collision. 
Here E1 is the total energy of SHP, θ is the angle between SHP and Z parton. 

Assuming that SHPs are produced with small transverse momentum in the 
narrow forward-backward cone we obtain for the masses M larger than 1 TeV, 
the velocities of SHP are of the order of 0.1 - 0.9 c. 

Accepting that the multi quark correlations are the intrinsic property of nuclei 
and do not depend on the collision energy, we can try to use the “subthreshold” 
structure function from Equation (2) to estimate the production rate of SHPs 
depending on their mass in Pb-Pb collisions: 

( )2
3

1
3

3
1 mb GeV c sr 56exp 0.

d
8d 15XE

p
σ − −  = ⋅ ⋅ ⋅ −           (5) 

For the obtained luminosity L = 2 × 1027 cm−2∙sec−1 for one month of the run 
and an opening angle of approximately 100 msr for the forward detector we ob-
tain an estimate of the SHP yield for a mass approximately 16 TeV near the 
threshold on the order of 70 per year. For larger SHP masses the production 
cross section is greatly reduced due to the increasing parameter X in the expo-
nential dependence. The results obtained can be used when planning an 
experiment at the LHC. Assuming SHPs are long-lived particles, the forward 
detectors will see very large signals. For a short lifetime, barrel detectors will 
detect events with anomalously high multiplicity. 

The question remains about the possibility of applicability of the empirical 
scaling law, obtained at intermediate energies, to interactions at ultrahigh LHC 
energies. Unfortunately, it is impossible to measure the scattering and produc-
tion of particles kinematically forbidden for nucleon-nucleon interactions at an-
gles greater than 90 degrees on collider experimental facilities, that is, at X > 1. 

Very promising possibilities for studying subthreshold phenomena are opened 
up in the case of experiments with a fixed target at the LHC [11] [12] [13]. The 
AFTER or ALICE-FT project provides for the placement of a solid or gaseous 
target in the beam halo when using all detectors of the ALICE facility. In this 
case, it is possible to measure the production of particles, in particular antipro-
tons, at large parameters X [13] even at X > 1, which will make it possible to 
check the existence of the scaling, considered in this work, at the energies of ion 
beams at the LHC. For a fixed target with a beam energy of 2.76 TeV per nucle-
on and Z = 3 from Equation (4) we obtain X = 1.75 for a production angle of 28 
degrees. 

4. Conclusion 

The extrapolation of the scaling observed in the parton model for subthreshold 
antiproton production in the collision of heavy ions to high energies was per-
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formed, in order to obtain estimates of the cross section and yield for the 
production of particles with masses up to 16 TeV. It is proposed to investigate 
subthreshold phenomena in an experiment with a fixed target at the LHC. 
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Abstract 
The Gauss-linking integral for disjoint oriented smooth closed curves is de-
rived linking integrals from the Biot-Savart description of the magnetic field. 
DeTurck and Gluck extend this linking from 3-space 3R  to ( )2SU  space 

of the unit 3-sphere and hyperbolic space in Minkowski 1,3R . I herein extend 
Gauss-linking to self-linking and develop the concept of self-dual, which is 
then applied to gravitomagnetic dynamics. My purpose is to redefine Whee-
ler’s geon from unstable field structures based on the electromagnetic field to 
self-stabilized gravitomagnetic field structures. 
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Maxwell’s Eqns, Gravitomagnetism, Self-Dual, Geons 

 

1. Introduction 

In several recent papers [1] [2] I have developed the theory of a self-interacting 
primordial field. Formulated in Hestenes’ Geometric Calculus, the theory de-
rives Heaviside’s equations in a strength-independent manner. This differs from 
the usual derivation of the equations via linearization of Einstein’s general rela-
tivistic field equations in that linearization is characterized as the weak field ap-
proximation. The implication of the new derivation is that not only weak fields 
but all gravitational fields obey Heaviside’s equations. The fact that this appears 
to be true has been discussed by Clifford Will [3] and others, but no explanation 
has been offered. 

My analysis of the Kasner metric for the primordial field [4] associates the 
metric with the gravitomagnetic field and emphasizes Vishwakarma’s major point 
[5] that only density-based solutions exist. This, combined with all-strength solu-
tions extends the theory of gravitation into physical ranges that have not been 
treated. The goal is to explore gravity in these previously ignored realms, based 
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on, where feasible, analogy with Maxwell’s field equations, upon which Heavi-
side modeled his theory of gravity. 

The close resemblance between Maxwell’s electromagnetic field equations and 
Heaviside’s gravitomagnetic field theory and the fact that Einstein’s non-linear 
field equations are compatible with Heaviside’s equations, suggests that we ex-
plore the physics of gravity based on similarity of the field equations while also 
analyzing the differences between the fields. Probably the key difference is that 
electromagnetic fields, being uncharged, do not interact with themselves, while 
the gravitomagnetic field does interact with itself. Thus the electromagnetic field 
cannot source itself while the momentum of the gravitomagnetic field can source 
a derived field, and effectively link to itself. The question explored in this paper 
is whether this linkage supports stable structure. This is pursued by analyzing 
the linking of the field to its source, and, in particular, Gauss-linking formalism 
developed for the electromagnetic field by DeTurck, Gluck, and others. 

Gauss-linking is claimed to have originated in computing the linking number 
of the earth’s orbit with the orbits of certain asteroids. DeTurck and Gluck [6] 
derive Gauss-linking integrals from the Biot-Savart description of the magnetic 
field, then extend the linking from 3-space 3ℜ  to the ( )2SU -space of the unit 
3-sphere and hyperbolic space in Minkowski’s 1,3ℜ . This potentially extends 
Gauss-linking to Stern-Gerlach analysis based on ( )2SU -space and equivalent 
geometric algebra of bivectors. In [7] I derive Hamiltonian physics based in Euc-
lidean space in which Pythagorean distance is defined by 2 2 2d d ds t x= + →∞  
while Minkowski invariant distance is defined by photon physics:  

2 2 2d d d 0s t x= − = , where photon speed 1c = . This paper extends linking asso-
ciated with the electromagnetic field to self-linking of the gravitomagnetic field. 
I ask whether self-stabilized field structures are possible in this context. 

The goal of this paper is to extend the physical concepts and mathematical 
equations associated with Gauss-linking to self-linking in hope of deriving a 
framework capable of supporting calculation of self-stabilized field structures. 
The mathematics (calculus, topology and geometry) is complex; therefore we re-
view the background in detail before extending Gauss- to self-linking. 

The plan of this paper is as follows: 
Section 1 introduces aspects of a new derivation of the law of gravity from a 

primordial field. The key aspect is that Heaviside’s equations are strength inde-
pendent. Also key is that solutions to the field equations in the Kasner metric are 
density-dependent. These suggest the possibility of stable field structures which 
we investigate in terms of Gauss-linking. 

Section 2 introduces key terms and concepts associated with linking integrals 
in 3ℜ . For completeness we define relevant concepts for 3S  and 3H ; our 
focus will be on linking in three-space. The ( )2SU -space relates primarily to 
spin and Minkowski invariance to inertial mass. 

Section 3 introduces Geometric Calculus multi-vectors in field equations and 
multi-vector operators, including inverse operators. Green’s function is then in-
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troduced and explained and the linking integral of section 1 is reformulated in 
terms of Green’s function. This is shown to allow extension of Gauss-linking 
from 3ℜ  to ( )2SU  and Minkowski invariant formalisms. 

Section 4 reviews derivation of field equations from discrete inverse operators 
and association of the Gauss-linking terms with current-based fields in the Bi-
ot-Savart framework. 

Section 5 explores the Biot-Savart formula and the definition of helicity. These 
link Gauss-linked closed curves to electromagnetism and set up Calugareanu’s 
specialization of Gauss-linking to twisting, writhing, and helicity, all of which 
are relevant to self-linked solitonic structures. 

Section 6 introduces the concept of Link Duality, which is believed to be a 
novel result of this paper. The physical implications are presented for electro-
magnetic theory. 

Section 7 introduces the concept of Helical Duality in terms of solenoidal as-
pects of electromagnetism. This concept is also believed to be a novel result of 
this paper. 

Section 8 extends the concepts of the previous sections and formulates the 
symmetry and asymmetry associated with the linkage of charge to electromag-
netic field. 

Section 9 introduces the concept of self-dual field and discusses why electro-
magnetism fails to be self-dual. Gravito-magnetism is then explored in these 
terms and we observe that the gravitomagnetic field is dualistically self-linked. 
The key diagram of this paper is then shown and explained as the basis of the 
planned study of self-stabilized structures. 

Section 10 summarizes the above; the conjectured self-dual formalism has 
been successfully developed, and will be explored in future in terms of self-stabilized 
structures. 

2. Relevant Background 

Consider two disjoint oriented smooth closed curves in Euclidean 3-space 3ℜ , 
parameterized as ( ){ }1 sκ = x  and ( ){ }2 tκ = y  with ( ),α x y  defined as the 
distance from x  to y . The linking number of these two curves is defined to 
be the intersection number of either one of them with an oriented surface 
bounded by the other. The symmetry is such that the linking number does not 
depend on which of the curves is used to bound the surface, nor on the type of 
surface chosen. The formalism is based on the Euclidean inner product in 4ℜ , 
( ) 0 0 1 1 2 2 3 3, x y x y x y x y= + + +x y . For completeness we define relevant concepts 
for unit sphere ( ){ }3 4 : , 1S R= ∈ =x x x  and Minkowski hyperboloid  

( ){ }3 1,3
0: , 1 and 1H x= ∈ℜ = >x x x  although our focus will be on linking in 

3-space. For example, the Biot-Savart law links circulation at a field point in 
3-space, a distance r  from a source point in 3-space. The topology, shown in 
Figure 1, shows two interlinked curves, ( ){ }1 sκ = x  and ( ){ }2 tκ = y , both of 
which are parameterized (by s and t respectively), with specific points  ( )sx   
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Figure 1. Two linked curves representative of the Gauss-linking problem. 

 
and ( )ty  a distance ( ),x yα = −x y  apart. Also shown are the tangents at 
( )sx  and ( )ty , denoted d dsx  and d dty  respectively. In these terms the 

Gauss-integral formula for linking numbers in Euclidian 3-space is given: 

( )
1 2

1 2 3

1 d d, d d
4 d d

Link s t
s tκ κ

κ κ
×

−
= × ⋅

−π ∫
x y x y

x y
             (1) 

It can be seen that if both tangents are in a plane, then 
d d 0
d ds t

× =
x y

 and there 

is no Gauss-linking. 

3. Field Equations and Inverse Field Equations 

We begin with Maxwell’s equation for electrostatic field ( )0 1ρ ε⋅ = =E∇  and 
the definition of the field as gradient of potential φ= −E ∇  where ( )ρ x  is 
charge density distribution and potential ~ 1 rφ . The geometric algebra form 
of Maxwell’s equations: 

( ) ( ), ,F t J t∇ =x x                        (2) 

where 1
c t
∂ ∇ = + ∂ 

∇  is the multi-vector differential operator, ( ),F tx  is the 

multi-vector field and ( ),J tx  is a multi-vector source and the overbar indi-
cates multi-vector. The general form (including wave equations) is 

( ) ( )L̂F J=x x                         (3) 

where L̂  is an operator formed from a linear combination of linear operators: 
21, , , ,t tt∇ ∂ ∂∇ . The solutions have a linear structure and the most general solu-

tion has the form 

( ) ( ) ( ) ( )3
0, d d , ; , , ,F t x t G t t J t F t′ ′ ′ ′ ′ ′= +∫x x x x x           (4) 

where 0F  is any solution of 0 0LF =  and ( ), ; ,G t t′ ′x x  is the Green’s func-
tion to be determined. To understand the meaning of the Green’s function re-
write Equations (3) and (4) to obtain 

( ) ( ) ( ) ( )( )3ˆ ˆ, , d d , ; , ,J t LF t L x t G t t J t′ ′ ′ ′ ′ ′= = ∫x x x x x
 

Since the integral is over x′  and t′  and the linear operators are with respect 
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to x and t we can move the operators inside the integral to obtain 

( ) ( ) ( )3 ˆ, d d , ; , ,J t x t LG t t J t′ ′ ′ ′ ′ ′= ∫x x x x               (5) 

We observe that the source at point x  is given as an integral over all values 
′x  in the region. If this integral is to reduce to ( ),J tx  then function 
( ), ; ,LG t t′ ′x x  must pick out the value x  from all possible values ′x  hence 

the generalized Green’s function must behave like a Dirac delta 

( ) ( ) ( )ˆ , ; ,LG t t t tδ δ′ ′ ′ ′= − −x x x x                 (6) 

For static fields a Green’s function for the Laplacian ∆ = ⋅∇ ∇  is  

( ) 1,
4

G
π
−′ =

′−
x x

x x
 and the Laplacian-based delta function in 3ℜ  is  

( ) 21 1
4

δ
 −′− = ∇   ′− π

x x
x x

. If we define ( ) 1ϕ α α=  and substitute it into 

linking Equation (1) we obtain the equivalent: 

( ) ( )
1 2

1 2
1 d d, , d d

4 d d yLink x y s t
s tκ κ

κ κ ϕ
×

= ⋅∇
π

×∫
x y

           (7) 

where differentiation y∇  is with respect to the y-variable and function ϕ  is 
the fundamental solution of the Laplacian ϕ δ∆ = . In extending the linking 
integral from 3ℜ  to 3S  and 3H , DeTurck and Gluck retain the Equation (7) 
integral but redefine the solution of the Laplacian, 0ϕ  

3
0

1: ( )
4

ϕ α ϕ δ
απ

 ℜ = − ∆ = 
 

          (8a) 

( ) ( ) ( )3
0

1: csc
4

S ϕ α α α ϕ ϕ δ
α

 = − − ∆
 π

− = π         (8b) 

( ) ( )3
0

1: csch
4

H ϕ α α ϕ ϕ δ
α

 = − ∆ + = 
 π

        (8c) 

In short, field equations of the form sϕ∆ =  have a solution based on the in-
verse anti-derivative: 

( )1s sϕ ϕ −∆ = ⇒ = ∆ , 1

M M

G G−

∂

∆ = +∫ ∫�             (9) 

where the Green’s function is calculated over the region inside the boundary and 
optionally a second integral of the derivatives normal to the bounding surface of 
the field. Boundaries are often chosen primarily to simplify the field solution.  

We know from vector calculus 3

1
r r

  = 
 

r
∇  and we know that ( ) 1

4
r

r
ϕ = −

π
 is  

the fundamental solution of the Laplacian in 3ℜ : ϕ δ∆ =  where δ  is the 
Dirac delta function. Thus Gauss-linking of Equation (1) is equivalent to Equa-
tion (7): 

( )

( )

1 2

1 2

1 2 3

1 d d, d d
4 d d

1 d d , d d
4 d d y

Link s t
s t

x y s t
s t

κ κ

κ κ

κ κ

ϕ

×

×

π

π

−
= × ⋅

−

⇒ × ⋅∇

∫

∫

x y x y
x y

x y
           (10) 
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As shown in Equation (8) DeTurck and Gluck extended the linking integral to 
3S  and 3H , by retaining the 3ℜ  equation and specializing the fundamental 

solution of the Laplacian in 3ℜ . This clever translation from Euclidean-specific 
coordinate-based function ( ) ( )3 1 1r r rϕ− −→ →r ∇  to generalized Green’s 
function inverse operator vastly extends the topology range of linking. 

4. Derivation of Field Solution from  
Discrete Inverse Operators 

Recently an alternative technique of inverting field equations developed [8] 
based on exact discrete inverse operators. For magnetic field Equation (11) de-
scribing the circulation of the field induced by current density j  we use the 
discrete inverse curl operator 

( ) 1−× = ⇒ = ×f j f j∇ ∇ ,                 (11) 

where ( ) 1−×∇  is proved to be ( )×r : 

× = ⇒ = ×f j f r j∇                    (12) 

In Euclidian 3-space 3ℜ , the classical convolution formula of Biot and Savart 
gives the magnetic field ( )B j  of a compactly supported current flow j : 

( )( ) ( )3
3

3

1 d
4

y x
y xℜ

−
= ×

π −
∫

y xB j j x                (13) 

Of course Biot and Savart did not derive this equation from a convolution 
formula; they derived it based on experiments with current carrying wires, 
compass needles, and torsion balances. Physically, if current flows in a wire loop, 
the circulation of the resulting magnetic field around a second disjoint from it is 
equal to the flux of the current through a cross-section of the wire loop multip-
lied by the linking number of the two loops. An example is shown in Figure 2. 
This of course agrees with loop-based formulas for induction in transformers 
and in solenoidal magnets. 

Consider Ampere’s law of magnetic circulation [9], 

~×B J∇                           (14) 

based on charge current density 3q rρ= =J v v  [where ~ implies scale factor]. 
The discrete inverse curl operator ( ) ( )1−× = ×r∇  solves for magnetic field B   

 

 
Figure 2. Multi-linking example. 
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in terms of current density J : 

3 3 3

q q
r r r

= × = × = × = ×
v r rB r J r v j                (15) 

where we let q=j v  represent charge q moving with velocity v , such that the 
magnitude of the magnetic field induced at position r  with respect to q is [ig-
noring signs]: 

( ) 3

1
rr

 = × = ×  
 

rB r j j ∇ .                   (16) 

5. The Biot-Savart Formula and Helicity 

Based on Figure 1 we identify the tangent to the 1κ -curve as current at y: 
d dy t=j  and the tangent to the 2κ -curve as magnetic field d dx s=B  and 

substitute these into Equation (1) to obtain: 

( )
1 2

1 2 3

1, d d
4

Link s t
κ κ

κ κ
×

−
= × ⋅

−π ∫
x yB j
x y

             (17) 

We use vector identity ( ) ( )⋅ × = ⋅ ×A B C B C A  to re-arrange  

( ) ( )3r ⋅ ×r B j  and Equation (16) to interpret the result as follows: 

3r
 ⋅ × ⇒ ⋅ 
 

rB j B B                     (18) 

In order to further understand the meaning of this term, we discuss the fact 
that, independently, Calugareanu [10] defined a real-valued invariant of a 
smooth simple closed curve in 3ℜ  by allowing the two curves in Gauss’s link-
ing integral to come together. In the limit, points ( )x s  and ( )y t  now run 
along the same curve in Euclidean 3-space 3ℜ , with linking number [Equation 
(1)] 

( )
1 2

1 2 3

1 d d, d d
4 d d

Link s t
s tκ κ

κ κ
×

−
= × ⋅

−π ∫
x y x y

x y  
The helicity of a vector field ( )v x  defined on a boundary domain Ω  in 
3ℜ  is given by 

( ) ( ) ( ) 3 3
3

1, d d
4

Heli x y
Ω×Ω

−
Ω Ω = × ⋅

−π ∫
x yv x v y
x y

.         (19) 

The integral is over the volume elements and vector field ( )v x  is a flow 
density. Helicity is a measure of the extent to which the orbits of v  wrap and 
coil around each other. The potential problem of 1 x y−  is compensated by 
terms in the denominator that approach zero faster than ( )ϕ α . This new inva-
riant measures the extent to which the curve wraps and coils around itself, and, 
per Parsley [11]: “the helicity of a vector field is bounded by its 2L  energy.” 
Energy density of the B-field is 2B , which corresponds to Calugareanu’s cons-
truction 1 2κ κ κ κ× → × . Calugareanu’s specialization of Gauss-linking to 
twisting, writhing, and helicity, is considered relevant to self-linking into soli-
tonic structures. The application of these concepts spans the biophysics of DNA 
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helices, plasma fields in solar winds, knot theory, etc. The end goal of this work 
will be the determination of a self-linking, self-curling stable field construction. 
If such exists, I postulate it will have a boundary threshold, below which stability 
does not hold. 

6. Link Duality 

Duality is a complicated concept. Electric field E  and magnetic field B  are 
dual in that the transformation ,→ → −E B B E  satisfies Maxwell’s equations. 
In geometric algebra the duality operator î  transforms elements to their dual, 
for example i∧ = − ×a b a b  converts the bivector ∧a b  into the (axial) vector 
cross product ×a b . We now consider the interesting duality of B  and j  
implied by the linking number. The Figure 1 topology has dual nature; 1κ  can 
represent the magnetic field ( )B x  induced by the current density ( )j y  at y  
on 2κ  curve, but it can also represent the magnetic field at ( )B y  on 2κ  in-
duced by current density ( )j x  on 1κ . 

The mathematical form of the linking integral shown in Figure 1 is such that 
the linking number depends neither on the choice of surface (bounded by 
curves) nor on which of the curves is used to bound the surface. Interestingly 
this “equivalence” extends to the case shown in Figure 3, in which the source 
current J  can be assigned to 1κ  with the induced field B  represented by 

2κ , or these can be reversed and the physics is equivalent. This differs from the 
principle of covariance. These linkages are shown in Figure 3 and obey the Link 
duality formula: 

( ) ( ) ( ) ( )1 2 1 2, ,Link Linkκ κ κ κ≡      B j j B             (20) 

as seen in Figure 3. 

7. Helical Duality 

We observe that the radius of 2κ  can be expanded without limit so the curve at 
point y becomes essentially a straight line parallel to the tangent d dy t  while 
curve 1κ  remains unchanged. In fact it is quite fascinating that both physical 
situations retain meaning in this case and display a duality or symmetry of J  
and B . This interesting extension of link duality exhibits scale invariance of the  

 

 
Figure 3. The linking duality is such that the linking number depends neither on the 
choice of surface nor which of the curves is used to bound the surface. In (a) current J  
induces field B  in 1κ  boundary, while in (b) current in the 1κ  boundary induces 
field B  in 2κ . 
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radius of curve when the radius of 2κ  grows without limit and the segment con-
taining point y becomes a straight line parallel to the tangent, d dy t . In Figure 4 
we illustrate the duality that is expressed as ( ) ( )1−× = ⇔ × =J B B J∇ ∇ . 

Symbolically, the discrete inverse curl operator ( ) ( )1 1~

r

−× → ×
∂ × ∂ 

r∇   

therefore we focus on the physical meaning of r , which is the directed distance 
from x  on the source curve to y  on the induced curve. In Figure 4(a), the 
current source density J  is in the wire helix with radius r  centered on the 
axis of the helix. We consider the induced B  field along the axis of the helix 
and the field is defined by = ×B r J  as indicated. In Figure 4(b) the current 
density J  flows along the center of the helix and the induced B  field lies on 
the helix with radius r  and is once again defined as = ×B r J . 

8. Extending Duality 

Linking and helicity have been defined as integrals and associated with current 
source density J  that induces an electromagnetic field B  via the Ampere 
Law and the Law of Biot-Savart. As noted above, “duality” is an interesting con-
cept. Most examples are essentially “one-dimensional”; the electromagnetic field 
example { } { }, ,⇔ −E B B E  swaps two fields and changes the sign (direction) 
of one of the fields. The duality operator in geometric algebra exchanges one 
geometric algebra entity with its dual entity { } { }vector bivector⇔ , etc. What 
we have revealed above is a more complex duality involving fields, currents, 
geometry, and topology. We now ask whether this can be pushed further, and we 
do so using electromagnetic induction as an example. 

?= ⋅J B B                           (21) 

The key aspect of the duality discussed above is that the helical current induc-
es a linear field at its center and a linear current induces a helical field sur-
rounding it. The current has charge, mass, and momentum, while the magnetic 
field has energy density and angular momentum. The helical duality shown in 
Figure 4 is geometrical and topological. The linking is directly physical, in the 
sense that current flow through the surface bounded by a curve will induce a 
field circulation in the boundary tangent to the boundary. The inverse operation 
is more subtle; if the change in field occurs in a current carrying boundary, an 
electromotive force (a voltage) is induced that generates a change in current. The 
formal description of this physics is given by Lenz’s Law. Hence there is a certain  

 

 
Figure 4. Solenoidal dual helical aspects of electromagnetism. The unique duality allows 
both source and field to link to helix of other entity. 
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symmetry associated with the linking, but there is an indirectness (the “emf”) 
that corresponds to a certain asymmetry as well. 

The basic experiments from which the laws were derived utilize metallic wire 
to conduct the charge current, but the electromagnetic laws operate without 
wire, as in charged plasma current flows distributed over space. 

mass mass
charge uncharged

momentum momentum

⋅   
   
   ≠   
   
      

J B B

                 (22) 

What we’re asking in this section is how one might extend the linking pheno-
menon such that the field might link to itself. From the relation between the current 
J  that induces the field, and the energy density (with mass-density-equivalence) of 
field ⋅B B  we observe that the field is uncharged and therefore cannot act upon 
itself in the manner that charge acts to produce the field. Similarly, the field acts 
upon the charge of the current flow. So it is electric charge that is at the heart of 
this physical phenomenon and this represents a basic asymmetry since the field 
is always inherently uncharged. 

Our conclusion is that the electromagnetic field of Maxwell’s laws will not 
support the hoped-for extension of duality. There is, however, an alternative, 
which we look at next. 

9. A Self Linking Field 

The above analysis indicates that the absence of charge of the electromagnetic 
field prevents the field from linking to itself in a “self-dual” matter. Is any other 
field “self-dual” as described here? 

In 2011 the Gravity Probe B experiment proved the existence of the gravito-
magnetic field, first proposed by Oliver Heaviside in 1893. I’ve recently pub-
lished papers on different aspects of gravito-magnetism and will not go into 
much depth in this paper except on the question of self-linking. The gravitation-
al field resolves into a gravito-electric field G  analogous to the electric field E  
and a gravitomagnetic field C  analogous to magnetic field B . The analogy is 
mathematical, the gravitational field does not possess electric charge, nor does 
the gravitomagnetic C-field act on electric charge, per se. The gravito-dynamic 
equations however are almost identical to Maxwell’s equations when electric 
charge density is replaced by mass density. Here we focus on the C-field analogy 
with the B-field and observe: 

( ) ( )1 ,−× = × =J B B J∇ ∇                  (23a) 

( ) ( )1 ,−× = × =P C C P∇ ∇                  (23b) 

where scalar constants ( 1g c= = ) have been set to one. From previous sections 
we conclude that the momentum density mρ=P v  induces a C -field circula-
tion around P  analogous to the charge density flow qρ=J v  inducing a B
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-field circulation around J . We expect the helical topology shown in Figure 4 to 
describe gravito-magnetism, and it does. However there is an aspect of the C -field 
that is missing from the magnetic B -field—the C -field interacts with itself! 
Like the B -field, the C -field has energy density and momentum density and 
we see from Equation (23b) that momentum density induces C -field circula-
tion. This newly induced C -field circulation possesses (mass) energy density 
and momentum density and hence induces still more C -field circulation, etc. as 
shown in “Iterating with Fuzzy Parameters…”. Compare this result with the re-
lation 

mass mass
momentum momentum

⋅   
   ≅   
   
   

P C C
                 (24) 

We see that the momentum P  that induces ×C∇  produces momentum 
associated with field energy density ⋅C C  and this field thus links to itself, 
which is what we were searching for. 

The physics, geometry, and topology all support self-linking in the dualistic 
manner described. The nature of the cross product is orthogonality, so that cir-
culation induced by the momentum at distance r  from the momentum is or-
thogonal to the momentum. We next look more closely at the induced field or-
thogonal to the momentum. Einstein and deHaas [12] experimentally proved 
that the magnetic field possesses angular momentum. In fact, the gravitomag-
netic field is mathematically identical to angular momentum when one ignores 
the scalar constants. 

= ×L r P                           (25) 

~ ×C r P                           (26) 

where the ~ indicates a scale factor ( 2g c ) is required. 
In other words the gravitomagnetic C -field circulation actually is physically 

circulating! For instance the Gravity Probe B detection [13] of the “Lenz-Thirring” 
effect is thought of in metric terms as ‘frame dragging’, but in actuality, the C -field 
is in motion, and this motion imparts a momentum density to the energy density 
of the C -field. 

This momentum density ′P  of the induced field is, as noted, orthogonal to 
the inducing momentum P , and the second order induction arising from ′P  
will be orthogonal to ′P . We depict this in Figure 5 where red and green are 
used to emphasize orthogonality. Red is parallel to red and green is parallel to 
green, while red and green are orthogonal to each other. 

We note explicitly the colors (red and black) in earlier diagrams were used to 
distinguish between charge current (black) and physical field (red). Our use of 
color here is to distinguish directions of momentum associated with higher or-
der induction. The key result we wish to focus on here is the fact that while the 
first-order induction is orthogonal to the inducing momentum, the second-order 
induction of the induced momentum has a component that is in exactly the  
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Figure 5. Color-coded diagram of first and second order induction of C -field. 

 
same direction as the first-order momentum. This type of feedback suggests sta-
bility and thus we have grounds to hope that a self linking field may support sta-
ble field configurations. 

Two aspects are key: first, the induced C -field momentum induces a second 
order C -field circulation. This circulation has one component, shown in Fig-
ure 5, that self-reinforces the original momentum, but the same circulation has 
another component (only implicitly shown) that exactly opposes the original 
momentum. But the reinforcing momentum component is closer to the original 
momentum, and thus the reinforcing interaction is stronger than the opposing 
interaction, as would be required for self-stabilizing field configurations. 

Second, the Heaviside gravitomagnetic equations are generally known as the 
“weak field approximation” and as such are argued not to produce higher order 
self-interaction. This is addressed in The Primordial Principle of Self-Interaction 
where it is shown that “weak field” is a misnomer. The Heaviside equation is de-
rived in a strength-independent manner, assumed valid even at the big bang, 
therefore the equation is for all fields, not just weak fields. Clifford Will and 
others have remarked on the surprising accuracy of the equation for strong 
fields. 

10. Conclusion 

We have reviewed topological linking and helicity formulas and discussed the 
relation of these concepts to electromagnetic phenomena. I have then intro-
duced and focused on the concept of duality in this context and asked whether a 
self-dual or self-linking field exists which might support self-stabilized field con-
figurations. I then review the nature of the gravitomagnetic field equations in 
terms of the self-dual linking and helicity that we were searching for. The com-
bination of the mathematics, the physics, the geometry and the topology lends a 
certain complexity to this enterprise, but I have produced a schematic proof that 
the self-dual gravitomagnetic field density supports higher order stabilization 
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through self-dual self-induction. 
To put things in context, Wheeler [14] believed that nature would avail itself 

of all opportunities offered by the equations of valid theories. In particular he 
defined a “geon” as a gravitating body made entirely of electromagnetic fields 
and hoped that they would give “mass without mass”, but later showed that 
these are unstable—they would quickly self destruct if they were ever to form. I 
have shown herein that, although electromagnetic field structures are unstable, gra-
vitomagnetic fields support self-stabilizing structure that may lead to self-stabilized, 
soliton-like structures that represent a resonance or even enduring entities. I plan to 
follow this paper with analysis of such. 
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Abstract 
When :ξ η→  is a linear differential operator, a “direct problem” is to 
find the generating compatibility conditions (CC) in the form of an operator 

1 :η ζ→  such that ξ η=  implies 1 0η = . When   is involutive, 
the procedure provides successive first order involutive operators 1, , n�   
when the ground manifold has dimension n, a result first found by M. Janet 
as early as in 1920, in a footnote. However, the link between this “Janet se-
quence” and the “Spencer sequence” first found by the author of this paper in 
1978 is still not acknowledged. Conversely, when 1  is given, a more diffi-
cult “inverse problem” is to look for an operator :ξ η→  having the ge-
nerating CC 1 0η = . If this is possible, that is when the differential module 
defined by 1  is torsion-free, one shall say that the operator 1  is para-
metrized by   and there is no relation in general between   and 2 . 
The parametrization is said to be “minimum” if the differential module de-
fined by   has a vanishing differential rank and is thus a torsion module. 
The solution of this problem, first found by the author of this paper in 1995, 
is still not acknowledged. As for the applications of the “differential double 
duality” theory to standard equations of physics (Cauchy and Maxwell equa-
tions can be parametrized while Einstein equations cannot), we do not know 
other references. When 1n =  as in control theory, the fact that controllabil-
ity is a “built in” property of a control system, amounting to the existence of a 
parametrization and thus not depending on the choice of inputs and outputs, 
even with variable coefficients, is still not acknowledged by engineers. The 
parametrization of the Cauchy stress operator in arbitrary dimension n has 
nevertheless attracted, “separately” and without any general “guiding line”, 
many famous scientists (G.B. Airy in 1863 for 2n = , J.C. Maxwell in 1863, 
G. Morera and E. Beltrami in 1892 for 3n = , A. Einstein in 1915 for 4n = ). 
The aim of this paper is to solve the minimum parametrization problem in 
arbitrary dimension and to apply it through effective methods that could even 
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be achieved by using computer algebra. Meanwhile, we prove that all these 
works are using the Einstein operator which is self-adjoint and not the Ricci 
operator, a fact showing that the Einstein operator, which cannot be parame-
trized, has already been exhibited by Beltrami more than 20 years before 
Einstein. As a byproduct, they are all based on the same confusion between 
the so-called div operator induced from the Bianchi operator 2  and the 
Cauchy operator which is the formal adjoint of the Killing operator   pa-
rametrizing the Riemann operator 1  for an arbitrary n. We prove that this 
purely mathematical result deeply questions the origin and existence of gra-
vitational waves. We also present the similar motivating situation met in the 
study of contact structures when 3n = . Like the Michelson and Morley ex-
periment, it is thus an open historical problem to know whether Einstein was 
aware of these previous works or not, but the comparison needs no comment. 
 

Keywords 
Differential Operator, Differential Sequence, Killing Operator, Riemann 
Operator, Bianchi Operator, Cauchy Operator, Electromagnetism, Elasticity, 
General Relativity, Gravitational Waves 

 

1. Introduction 

We start recalling the basic tools from the formal theory of systems of partial 
differential (PD) equations and differential modules needed in order to under-
stand and solve the parametrization problem presented in the abstract. As these 
new tools are difficult and not so well known, we advise the interested reader to 
follow them step by step on the explicit motivating examples illustrating this 
paper, in particular the example of the system of infinitesimal Lie equations de-
fining contact transformations when 3n = . The main difficulty for the reader 
not familiar with these new tools is that certain concepts are evident in one 
framework but not at all in the other and conversely. Considering the single in-
put/single output (SISO) classical control system 0y u− =�� �  with standard nota-
tions for ordinary differential (OD) equations, we notice that both y and u can 
be given arbitrarily separately but that the new quantity z y u= −�  cannot as it 
must satisfy the autonomous OD equation 0z =�  that, of course, cannot be 
controlled. This is the reason for which a controllable system cannot surely pro-
vide such elements called “torsion elements” in module theory. The fact that the 
controllability just amounts to the lack of any torsion element or, equivalently, 
to the possibility to parametrize the control system, is left to the reader as a 
tricky exercise leading to compare with the basic system 0y u− =�  which is 
controllable and can be simply parametrized by the only arbitrary potential y 
through the formula ,y u y y= =� . As we shall see, the surprising fact is that the 
lack of torsion elements (or the generating ones) can only be tested by the possi-
bility to parametrize the given equations (or to “measure” how it cannot be pa-
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rametrized) and no other classical method can work. 
In Section 2, once we shall have found the possibility to parametrize the sys-

tem or the corresponding operator, that is to say once we know that the corres-
ponding differential module is torsion-free, we shall discover that many possible 
parametrizations may exist. The idea will then be to modify the formal test in 
order to compute the minimum number of potentials needed and to find a con-
structive way to obtain at least one such minimum parametrization. 

In Section 3, we shall study with more details the parametrization problems 
that are existing in continuum mechanics for an arbitrary dimension n of the 
ground manifold, the case 2n =  allowing to understand why the Airy operator 
is just the formal adjoint of the Riemann operator, the case 3n =  allowing to 
compare the results respectively obtained by Beltrami, Maxwell and Morera, the 
case 4n =  allowing to understand why such a parametrization problem is 
leading to the self-adjoint Einstein operator and why the so-called “gravitational 
waves” operator is nothing else than the formal adjoint of the Ricci operator 
without any reference to Einstein equations. 

In Section 4, we shall finally add a few unexpected results coming from the use 
of the symbol sequences existing for certain generic covectors. 

1.1. System Theory 

If X is a manifold of dimension n with local coordinates ( ) ( )1, , nx x x= � , we 
denote as usual by ( )T T X=  the tangent bundle of X, by ( )* *T T X=  the 
cotangent bundle, by *r T∧  the bundle of r-forms and by *

qS T  the bundle of 
q-symmetric tensors. More generally, let E be a vector bundle over X with local 
coordinates ( ),i kx y  for 1, ,i n= �  and 1, ,k m= �  simply denoted by 
( ),x y , projection ( ) ( ): : ,E X x y xπ → →  and changes of local coordinate 

( ) ( ),x x y A x yϕ= = . We shall denote by *E  the vector bundle obtained by 
inverting the matrix A of the changes of coordinates, exactly like *T  is obtained 
from T. We denote by ( ) ( )( ): : ,f X E x x y f x→ → =  a global section of E, 
that is a map such that Xf idπ =�  but local sections over an open set U X⊂  
may also be considered when needed. Under a change of coordinates, a section 
transforms like ( )( ) ( ) ( )f x A x f xϕ =  and the changes of the derivatives can al-
so be obtained with more work. We shall denote by ( )qJ E  the q-jet bundle of E 
with local coordinates ( ) ( ), , , , ,i k k k

i ij qx y y y x y=�  called jet coordinates and sec-
tions ( ) ( ) ( ) ( )( ) ( )( ): , , , , ,k k k

q i ij qf x x f x f x f x x f x→ =�  transforming like the 
sections ( ) ( ) ( ) ( ) ( )( ) ( )( )( ): , , , , ,k k k

q i ij qj f x x f x f x f x x j f x→ ∂ ∂ =�  where 
both qf  and ( )qj f  are over the section f of E. For any 0q ≥ , ( )qJ E  is a 
vector bundle over X with projection qπ  while ( )q rJ E+  is a vector bundle 
over ( )qJ E  with projection , 0q r

q rπ + ∀ ≥ . 
DEFINITION 1.1.1: A linear system of order q on E is a vector sub-bundle 

( )q qR J E⊂  and a solution of qR  is a section f of E such that ( )qj f  is a sec-
tion of qR . With a slight abuse of language, the set of local solutions will be de-
noted by EΘ ⊂ . 
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Let ( )1, , nµ µ µ= �  be a multi-index with length 1 nµ µ µ= + +� , class i if 

1 1 0, 0i iµ µ µ−= = = ≠�  and ( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +� � . We set  

{ }|1 ,0k
qy y k m qµ µ= ≤ ≤ ≤ ≤  with k ky yµ =  when 0µ = . If E is a vector 

bundle over X and ( )qJ E  is the q-jet bundle of E, then both sections 
( )q qf J E∈  and ( ) ( )q qj f J E∈  are over the section f E∈ . There is a natu-

ral way to distinguish them by introducing the Spencer operator  
( ) ( )*

1: q qd J E T J E+ → ⊗  with components ( ) ( ) ( ) ( )1 1, i

k k k
q ii

df x f x f xµ µµ+ += ∂ − . 
The kernel of d consists of sections such that  

( ) ( ) ( )1 1 2 1 1q q q qf j f j f j f+ − += = = =� . Finally, if ( )q qR J E⊂  is a system of 
order q on E locally defined by linear equations ( ) ( ), 0k

q kx y a x yτ τµ
µΦ ≡ =  and 

local coordinates ( ),x z  for the parametric jets up to order q, the r-prolongation 
( ) ( ) ( ) ( )( )q r r q r q q r r qR R J R J E J J Eρ+ += = ⊂∩  is locally defined when 1r =  

by the linear equations ( ), 0qx yτΦ = ,  
( ) ( ) ( )1 1, 0k k

i q k i ki
d x y a x y a x yτ τµ τµ

µ µ+ +Φ ≡ + ∂ =  and has symbol  
( )*

q r q r q r q rg R S T E J E+ + + += ⊗ ⊂∩  if one looks at the top order terms. If 

1 1q qf R+ +∈  is over q qf R∈ , differentiating the identity ( ) ( ) 0k
ka x f xτµ

µ ≡  with 
respect to ix  and subtracting the identity ( ) ( ) ( ) ( )1 0

i

k k
k i ka x f x a x f xτµ τµ

µ µ+ + ∂ ≡ , 
we obtain the identity ( ) ( ) ( )( )1 0

i

k k
k ia x f x f xτµ

µ µ+∂ − ≡  and thus the restriction 
*

1: q qd R T R+ → ⊗ . More generally, we have the restriction: 

( )( )
( ) ( )( )( )

* 1 *
1 ,

, 1 ,

: :

i

s s k I
q q I

k k i I
i I I

d T R T R f x dx

f x f x dx dx

µ

µ µ

+
+

+

∧ ⊗ → ∧ ⊗

→ ∂ − ∧
            (1) 

using standard multi-index notation for exterior forms, namely { }1 2 rI i i i= < < <� , 
1 *ri iI rdx dx dx T= ∧ ∧ ∈∧�  for a finite basis, and one can easily check that 

0d d =� . The restriction of d−  to the symbol is called the Spencer map 
* 1 *

1: s s
q qT g T gδ +
+∧ ⊗ → ∧ ⊗  and 0δ δ =�  similarly, leading to the algebraic 

δ -cohomology ( )s
q r qH g+  [1]-[7]. 

DEFINITION 1.1.2: A system qR  is said to be formally integrable when all 
the equations of order q r+  are obtained by r prolongations only, 0r∀ ≥  or, 
equivalently, when the projections :q r s

q r q r sR Rq rπ + +
+ + + → +  are epimorphisms 

, 0r s∀ ≥ . 
Finding an intrinsic test has been achieved by D.C. Spencer in 1970 [7] along 

coordinate dependent lines sketched by M. Janet in 1920 [8]. The next procedure 
providing a Pommaret basis and where one may have to change linearly the in-
dependent variables if necessary, is intrinsic even though it must be checked in a 
particular coordinate system called δ -regular [1] [4] [9]. 
• Equations of class n: Solve the maximum number n

qβ  of equations with re-
spect to the jets of order q and class n. Then call ( )1, , nx x�  multiplicative 
variables. 

• Equations of class 1i ≥ : Solve the maximum number i
qβ  of remaining eq-

uations with respect to the jets of order q and class i. Then call ( )1, , ix x�  
multiplicative variables and ( )1, ,i nx x+ �  non-multiplicative variables. 

• Remaining equations of order 1q≤ − : Call ( )1, , nx x�  non-multiplicative 
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variables. 
In actual practice, we shall use a Janet tabular where the multiplicative “va-

riables” are in upper left position while the non-multiplicative variables are 
represented by dots in lower right position. 

DEFINITION 1.1.3: A system of PD equations is said to be involutive if its 
first prolongation can be obtained by prolonging its equations only with respect 
to the corresponding multiplicative variables. In that case, we may introduce the  

characters 
( )
( ) ( )

1 !
1 ! !

i i
q q

q n i
m

q n i
α β

+ − −
= −

− −
 for 1, ,i n= �  with 1 0n

q qα α≥ ≥ ≥�  

and we have ( ) 1 n
q q qdim g α α= + +�  while ( ) 1

1
n

q q qdim g nα α+ = + +� . 

REMARK 1.1.4: As long as the Prolongation/Projection (PP) procedure has 
not been achieved in order to get an involutive system, nothing can be said about 
the CC (fine examples can be found in [6] and the recent [10]). A proof that the 
second order system defined by Einstein equations is involutive has been given 
by J. Gasqui in 1982 but this paper cannot be applied to the minimum parame-
trizations that need specific δ -regular coordinates as we shall see [11]. 

When qR  is involutive, the linear differential operator  
( ) ( ) 0:

qj

q q qE J E J E R F
Φ

→ → =  of order q is said to be involutive. Introducing 
the Janet bundles: 

( ) ( )( )* * 1 * *
1

r r r
r q q qF T J E T R T S T Eδ −

+= ∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗           (2) 

we obtain the canonical linear Janet sequence (introduced in [1], p 185 + p 391): 
1 2

0 10 0
n

nE F F F→Θ→ → → → → →�
 

               (3) 

where each other operator, induced by the Spencer operator, is first order invo-
lutive and generates the compatibility conditions (CC) of the preceding one. Si-
milarly, introducing the Spencer bundles: 

( )* 1 *
1/r r

r q qC T R T gδ −
+= ∧ ⊗ ∧ ⊗                 (4) 

we obtain the canonical linear Spencer sequence also induced by the Spencer 
operator: 

1 2

0 10 0
q nj DD D

nC C C→Θ→ → → → →�                  (5) 

1.2. Module Theory 

Let K be a differential field with n commuting derivations ( )1, , n∂ ∂�  and con-
sider the ring [ ] [ ]1, , nD K d d K d= =�  of differential operators with coeffi-
cients in K with n commuting formal derivatives satisfying i i id a ad a= + ∂  in 
the operator sense. If [ ]P a d D K dµ

µ= ∈ = , the highest value of µ  with 
0aµ ≠  is called the order of the operator P and the ring D with multiplication 

( ),P Q P Q PQ→ =�  is filtred by the order q of the operators. We have the fil-
tration 0 10 qK D D D D D∞⊂ = ⊂ ⊂ ⊂ ⊂ ⊂ =� � . As an algebra, D is gener-
ated by 0K D=  and 1 0T D D=  with 1D K T= ⊕  if we identify an element 

i
id Tξ ξ= ∈  with the vector field ( )i

ixξ ξ= ∂  of differential geometry, but 
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with i Kξ ∈  now. It follows that D DD D=  is a bimodule over itself, being at 
the same time a left D-module by the composition P QP→  and a right D 
-module by the composition P PQ→ . We define the adjoint functor 

( ) ( ): : 1opad D D P a d ad P d aµµ µ
µ µ→ = → = −  and we have ( )( )ad ad P P=  

both with ( ) ( ) ( ) , ,ad PQ ad Q ad P P Q D= ∀ ∈ . Such a definition can be ex-
tended to any matrix of operators by using the transposed matrix of adjoint op-
erators (see [5] [9] [12] [13] [14] [15] [16] for more details and applications to 
control theory or mathematical physics). 

Accordingly, if ( )1, , my y y= �  are differential indeterminates, then D acts 
on ky  by setting k k k k

i id y y d y yµ µ= → =  with 1i

k k
id y yµ µ+=  and 0

k ky y= . 
We may therefore use the jet coordinates in a formal way as in the previous sec-
tion. Therefore, if a system of OD/PD equations is written in the form 

0k
ka yτ τµ

µΦ ≡ =  with coefficients a K∈ , we may introduce the free differential 
module 1 m mDy Dy Dy D= + +�   and consider the differential module of 
equations I D Dy= Φ ⊂ , both with the residual differential module  
M Dy D= Φ  or D-module and we may set DM M=  if we want to specify the 
ring of differential operators. We may introduce the formal prolongation with 
respect to id  by setting ( )1i

k k
i k i kd a y a yτ τµ τµ

µ µ+Φ ≡ + ∂  in order to induce maps 

1: : k k
i i

d M M y yµ µ+→ →  by residue with respect to I if we use to denote the re-
sidue : k kDy M y y→ →  by a bar like in algebraic geometry. However, for 
simplicity, we shall not write down the bar when the background will indicate 
clearly if we are in Dy  or in M. As a byproduct, the differential modules we 
shall consider will always be finitely generated ( 1, ,k m= < ∞� ) and finitely 
presented ( 1, , pτ = < ∞� ). Equivalently, introducing the matrix of operators 

( )ka dτµ
µ=  with m columns and p rows, we may introduce the morphism  

( ) ( ):p mD D P P τ
τ τ→ → Φ


 over D by acting with D on the left of these row vectors  

while acting with   on the right of these row vectors by composition of oper-
ators with ( )im I= . The presentation of M is defined by the exact cokernel 
sequence 0p mD D M→ → →


. We notice that the presentation only depends 

on ,K D  and Φ  or  , that is to say never refers to the concept of (explicit 
local or formal) solutions. It follows from its definition that M can be endowed 
with a quotient filtration obtained from that of mD  which is defined by the or-
der of the jet coordinates qy  in qD y . We have therefore the inductive limit 

0 10 qM M M M M∞⊆ ⊆ ⊆ ⊆ ⊆ ⊆ =� �  with 1i q qd M M +⊆  and qM DM=  
for 0q�  with prolongations , , 0r q q rD M M q r+⊆ ∀ ≥ . 

DEFINITION 1.2.1: An exact sequence of morphisms finishing at M is said 
to be a resolution of M. If the differential modules involved apart from M are 
free, that is isomorphic to a certain power of D, we shall say that we have a free 
resolution of M. 

Having in mind that K is a left D-module with the action  
( ) ( ), : ,i iD K K d a a→ →∂  and that D is a bimodule over itself, we have only 
two possible constructions: 

DEFINITION 1.2.2: We may define the right (care!) differential module 
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( ),Dhom M D . 
DEFINITION 1.2.3: We define the system ( ),KR hom M K=  and set 

( ),q K qR hom M K=  as the system of order q. We have the projective limit 

1 0qR R R R R∞= → → → → →� � . It follows that : k k
q qf R y f Kµ µ∈ → ∈  

with 0k
ka fτµ

µ =  defines a section at order q and we may set f f R∞ = ∈  for a 
section of R. For an arbitrary differential field K, such a definition has nothing to 
do with the concept of a formal power series solution (care). 

PROPOSITION 1.2.4: When M is a left D-module, then R is also a left D 
-module. 

Proof: As D is generated by K and T as we already said, let us define: 

( )( ) ( ) , ,af m af m a K m M= ∀ ∈ ∀ ∈  
( )( ) ( ) ( ) , ,i

if m f m f m a d T m Mξ ξ ξ ξ= − ∀ = ∈ ∀ ∈  
In the operator sense, it is easy to check that i i id a ad a= + ∂  and that 

[ ],ξη ηξ ξ η− =  is the standard bracket of vector fields. We finally get 
( ) ( )( ) 1i

k k k k
i i id f d f y f fµ µ µµ += = ∂ −  and thus recover exactly the Spencer opera-

tor of the previous section though this is not evident at all. We also get 

( ) 1 1 1 1 , , 1, ,
j i i j

k k k k k
i j ij i j i j j id d f f f f f d d d d i j nµ µ µ µµ + + + += ∂ − ∂ − ∂ + ⇒ = ∀ = �  and 

thus 1i q q id R R d R R+ ⊆ ⇒ ⊂  induces a well defined operator  
* : i

iR T R f dx d f→ ⊗ → ⊗ . This operator has been first introduced, up to 
sign, by F.S. Macaulay as early as in 1916 but this is still not acknowledged [17]. 
For more details on the Spencer operator and its applications, the reader may 
look at [15] [18] [19] [20] [21]. 

Q.E.D. 
DEFINITION 1.2.5: With any differential module M we shall associate the 

graded module ( )G gr M=  over the polynomial ring ( ) [ ]gr D K χ
 by set-

ting 0q qG G∞
== ⊕  with 1q q qG M M −=  and we get *

q qg G=  where the symbol 

qg  is defined by the short exact sequences: 

1 10 0 0 0q q q q q qM M G g R R− −→ → → → ⇔ → → → →  
We have the short exact sequences 10 0q q qD D S T−→ → → →  leading to 
( )q qgr D S T

 and we may set as usual ( )* ,KT hom T K=  in a coherent way 
with differential geometry. 

The two following definitions, which are well known in commutative algebra, 
are also valid (with more work) in the case of differential modules (see [5] for 
more details or the references [9] [22] [23] [24] for an introduction to homolog-
ical algebra and diagram chasing). 

DEFINITION 1.2.6: The set of elements  
( ) { }| 0 , 0t M m M P D Pm M= ∈ ∃ ≠ ∈ = ⊆  is a differential module called the 

torsion submodule of M. More generally, a module M is called a torsion module 
if ( )t M M=  and a torsion-free module if ( ) 0t M = . In the short exact se-
quence ( )0 0t M M M ′→ → → → , the module M ′  is torsion-free. Its defin-
ing module of equations I ′  is obtained by adding to I a representative basis of 
( )t M  set up to zero and we have thus I I ′⊆ . 
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DEFINITION 1.2.7: A differential module F is said to be free if rF D  for 
some integer 0r >  and we shall define ( )Drk F r= . If F is the biggest free 
dfferential module contained in M, then M/F is a torsion differential module and 

( ), 0Dhom M F D = . In that case, we shall define the differential rank of M to be 
( ) ( )D Drk M rk F r= = . Accordingly, if M is defined by a linear involutive oper-

ator of order q, then ( ) n
D qrk M α= . 

PROPOSITION 1.2.8: If 0 0M M M′ ′′→ → → →  is a short exact sequence 
of differential modules and maps or operators, we have  

( ) ( ) ( )D D Drk M rk M rk M′ ′′= + . 
In the general situation, let us consider the sequence 

f g
M M M′ ′′→ →  of mod-

ules which may not be exact and define ( ) ( )B im f Z ker g H Z B= ⊆ = ⇒ = . 
LEMMA 1.2.9: The kernel of the induced epimorphism ( ) ( )coker f coim g→  

is isomorphic to H. 
Proof: It follows from a snake chase in the commutative and exact diagram 

where ( ) ( )coim g im g
: 

( )

( )

0

0 0

0 0

0 0

0 0

0

g

H

B M coker f

Z M coim g

H

↓

↓ ↓ ↓
→ → → →

↓ ↓

→ → → →
↓ ↓ ↓

↓

�

 

Q.E.D. 
In order to conclude this section, we may say that the main difficulty met 

when passing from the differential framework to the algebraic framework is the 
“inversion” of arrows. Indeed, when an operator is injective, that is when we  

have the exact sequence 0 E F→ →


 with ( ) ( ),dim E m dim F p= = , like in the 

case of the operator ( )0
qj

qE J E→ → , on the contrary, using differential mod-

ules, we have the epimorphism 0p mD D→ →


. The case of a formally surjective 

operator, like the div operator, described by the exact sequence 0E F→ →


 is 
now providing the exact sequence of differential modules  

0 0p mD D M→ → → →


 because   has no CC. 

2. Parametrization Problem 

In this section, we shall set up and solve the minimum parametrization problem 
by comparing the differential geometric approach and the differential algebraic 
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approach. In fact, both sides are essential because certain concepts, like “tor-
sion”, are simpler in the module approach, as we already said, while others, like 
“involution” are simpler in the operator approach. However, the reader must 
never forget that the “extension modules” or the “side changing functor” are 
pure product of differential homological algebra with no system counterpart. 
Also, the close link existing between “differential duality” and “adjoint operator” 
may not be evident at all, even for people quite familiar with mathematical 
physics [5] [12] [15] [16]. 

Let us start with a given linear differential operator 
1

η ζ→


 between the sec-
tions of two given vector bundles 0F  and 1F  of respective fiber dimension m 
and p. Multiplying the equations 1η ζ=  by p test functions λ  considered as 

a section of the adjoint vector bundle ( ) * *
1 1

nad F T F= ∧ ⊗  and integrating by 

parts, we may introduce the adjoint vector bundle ( ) * *
0 0

nad F T F= ∧ ⊗  with 

sections µ  in order to obtain the adjoint operator 
( )1ad

µ λ←


, writing on pur-
pose the arrow backwards, that is from right to left. As any operator is the ad-
joint of another operator because ( )( )ad ad =  , we may decide to denote by 

( )ad

v µ←


 the generating CC of ( )1ad   by introducing a vector bundle E with 

sections ξ  and its adjoint ( ) * *nad E T E= ∧ ⊗  with sections ν . We have thus 
obtained the formally exact differential sequence: 

( ) ( )1ad ad

ν µ λ← ←
 

 
and its formally exact adjoint sequence: 

1

ξ η ζ→ →


 
providing a parametrization if and only if 1  generates the CC of 1 . Such a 
situation may not be satisfied but we shall assume it from now on because oth-
erwise 1  cannot be parametrized according to the double differential duality 
test, for example in the case of the Einstein equations [25] [26] [27] or the exten-
sion to the conformal group and other Lie groups of transformations [15] [19] 
[20] [21] [28] [29] [30]. Nevertheless, for the interested reader only, we provide 
the following key result on which this procedure is based (see [5] [12] [13] [14] 
[16] for more details): 

THEOREM 2.1: If M is a differential module, we have the exact sequence of 
differential modules: 

( ) ( )( )0 , ,D Dt M M hom hom M D D
ε

→ → →              (6) 

where the map ε  is defined by ( )( ) ( ) ( ), , ,Dm f f m m M f hom M Dε = ∀ ∈ ∈ . 
Moreover, if N is the differential module defined by ( )ad  , then  
( ) ( )1 ,Dt M ext N D= . 
In order to pass to the differential module framework, let us introduce the free 

differential modules , ,l m pD D D D D Dξ η ζ   . We have similarly the ad-
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joint free differential modules , ,l m pD D D D D Dν µ λ   , because  
( )( ) ( )dim ad E dim E=  and ( ),m m

Dhom D D D . Of course, in actual practice, 
the geometric meaning is totally different because we have volume forms in the 
dual framework. We have thus obtained the formally exact sequence of differen-
tial modules: 

1p m lD D D→ →
 

 
and the formally exact adjoint sequence: 

( ) ( )1ad ad
p m lD D D← ←

 

 
The procedure with 4 steps is as follows in the operator language: 

• STEP 1: Start with the formally exact parametrizing sequence already con-
structed by differential biduality. We have thus ( ) ( )1im ker=   and the 
corresponding differential module 1M  defined by 1  is torsion-free by 
assumption. 

• STEP 2: Construct the adjoint sequence which is also formally exact by as-
sumption. 

• STEP 3: Find a maximum set of differentially independent CC ( ) :ad µ ν′ ′→  
among the generating CC ( ) :ad µ ν→  of ( )1ad   in such a way that 

( )( )im ad ′  is a maximum free differential submodule of ( )( )im ad   that 
is any element in ( )( )im ad   is differentially algebraic over ( )( )im ad ′ . 

• STEP 4: Using differential duality, construct ( )( )ad ad′ ′=  . 
It remains to prove that 1  generates the CC of ′  in the following dia-

gram: 

( ) ( )

( )

1

1

4 '

1

2

3

0 0

ad ad

ad

ξ

ξ η ζ

ν µ λ

ν

′

′

↑

→ →

← ←

↑

′

↑





 









              (7) 

PROPOSITION 2.2: ′  is a minimum parametrization of 1 . 
Proof: Let us denote the number of potentials ξ  by l  (respectively ξ ′  by 

l′ ), the number of unknowns η  by m and the number of given equations ζ  
by p. As ( )ad ′  has no CC by construction, then ( ) :ad µ ν′ ′→  is a for-
mally surjective operator. On the differential module level, we have the injective 
operator ( ) : l mad D D′′ →  because there are no CC. Applying ( ),Dhom D•  
or duality, we get an operator m lD D ′→  with a cokernel which is a torsion 
module because it has rank ( ) ( )( ) 0D Dl rk l rk ad l l′ ′ ′ ′ ′ ′− = − = − =  . 
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However, in actual practice as will be seen in the contact case, things are not 
so simple and we shall use the following commutative and exact diagram of dif-
ferential modules based on a long ker/coker long exact sequence (compare to 
[31] and [32]): 

( )( )
( )

( )( )0 0

0 0

0

ad
l m

l

ker ad D D coker ad

L

D ′

→ → → → →

↑

↑



 

 

 

  (8) 

Setting ( )( )lL D ker ad=   and introducing the biggest free differential 
module lD L′ ⊆  we have ( ) ( ) ( )l l

D D Drk D rk L rk D l l′ ′= ≤ ⇒ ≤ , we may de-
fine the injective (care) operator ( )ad ′  by the composition of monomor-
phisms l mD L D′ → →  where the second is obtained by picking a basis of lD ′ , 
lifting it to lD  and pushing it to mD  by applying ( )ad  . We notice that L 
can be viewed as the differential module defined by the generating CC of 

( )ad   that could also be used as in [31]. 
Then we have ( ) ( ) ( )1 1 10 0ad ad ad′ ′ ′= = ⇒ =� � �       and thus 

1  is surely among the CC of ′ . Therefore, the differential sequence 
1

ξ η ζ
′

′→ →


 on the operator level or the sequence 
1p m lD D D

′
′→ →

 
 on the  

differential module level may not be exact and we can thus apply the previous 
Lemma. Changing slightly the notations, we have now  

( ) ( ) ( )1B im ker ker Z′= = ⊆ =   . But we have also ( ) ( )D Drk B m rk= −  , 
( ) ( ) ( ) ( ) ( ) 0D D D Drk Z m rk rk H rk rk′ ′= − ⇒ = − =    by construction. 
Taking into account the previous Lemma, we may set ( )1 1

lcoim M D= ⊆  
by assumption and consider ( ) 1

lim M D ′′ ′= ⊆  in order to obtain the short 
exact sequence of differential modules 1 10 0H M M ′→ → → → . As H is a tor-
sion module and the differential module 1M  defined by 1  is torsion-free by 
assumption, the only possibility is that 0H =  and thus ( ) ( )1im ker ′=  , 
that is ′  is a minimum parametrization of 1  with l l′ ≤  potentials. 

Q.E.D. 
EXAMPLE 2.3: Contact transformations 
With ( ) ( )1 2 33, , ,m n K x x x x= = = =� � , we may introduce the so-called 

contact 1-form 1 3 2dx x dxα = − . The system of infinitesimal Lie equations de-
fining the infinitesimal contact transformations is obtained by eliminating the 
factor ( )xρ  in the equations ( )ξ α ρα=  where   is the standard Lie de-
rivative. This system is thus only generated by 1η  and 2η  below but is not 
involutive and one has to introduce 3η  defined by the first order CC: 

1 2 3 2 3
3 2 1 0xζ η η η η≡ ∂ − ∂ − ∂ + =  

in order to obtain the following involutive system with two equations of class 3 
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and one equation of class 2, a result leading to 3 2 1
1 1 12, 1, 0β β β= = = : 

( )

3 3 2 3 2 1
3 2 1 1

2 1 3 2
3 3

21 1 3 2 3 1 3 2 3
2 2 1 1

2 0 1 2 3
0 1 2 3

1 20

x

x

x x x

η ξ ξ ξ ξ

η ξ ξ

η ξ ξ ξ ξ ξ

 ≡ ∂ + ∂ + ∂ − ∂ = ≡ ∂ − ∂ =
 •≡ ∂ − ∂ + ∂ − ∂ − =  

The characters are thus 3 2 1
1 1 13 2 1 3 1 2, 3 0 3α α α= − = < = − = = − =  with sum 

equal to ( )11 2 3 6 3 3 3dim g+ + = = = × − . In this situation, if M is the differen-
tial module defined by this system or the corresponding operator  , we know 
that ( ) ( ) ( )3

1 1 3 2D D Drk M rk D rkα ξ= = = − = −  . Of course, a differential 
transcendence basis for   can be the operator { }2 3: ,ξ η η′ →  but, in view 
of the CC, we may equally choose any couple among { }1 2 3, ,η η η  and we obtain 

( ) ( ) 2D Drk rk′ = =   in any case, but now ′  is formally surjective, con-
trary to  . The same result can also be obtained directly from the unique CC 
or the corresponding operator 1  defining the differential module 1M . Final-
ly, we have ( ) ( ) ( )1 13 1 2D D Drk M rk D rkη= − = = −   and we check that we 
have indeed ( ) ( ) ( )1 1 2 3D D Drk M rk M rk Dξ+ = + = = . 

It is well known that such a system can be parametrized by the injective para-
metrization (see [2] and [3] for more details and the study of the general dimen-
sion 2 1n p= + ): 

3 1 2 3 3 1 3 2
3 3 2 1, ,x x xφ φ ξ φ ξ φ φ ξ ξ ξ φ− ∂ + = − ∂ = ∂ + ∂ = ⇒ − =  

It is however not so well known and quite striking that such a parametrization 
can be recovered independently by using the parametrization of the differential 
module defined by 1 0η =  with potentials 1ξ  and 2ξ  while setting: 

( ) ( )21 2 3 1 3 2 3 1 3 2
2 2 1 1, x x xξ ξ ξ ξ ξ ξ ξ→ = ∂ − ∂ + ∂ − ∂

 
Taking into account the differential constraint 2 1 3 2

3 3 0xη ξ ξ≡ ∂ − ∂ = , that is 

( )2 1 3 2
3 xξ ξ ξ= −∂ −  and substituting in 3 0η = , we get no additional con-

straint. We finally only need to modify the potentials while “defining” now 
1 3 2 1xφ ξ ξ ξ= − =  as before. 

The associated differential sequence is: 
1 1

0 0φ ξ η ζ
−

→ → → → →
 

 
0 1 3 3 1 0→ → → → →  

with Euler-Poincaré characteristic 1 3 3 1 0− + − =  but is not a Janet sequence 
because 1−  is not involutive, its completion to involution being the trivially 
involutive operator ( )1 1:j jφ φ→ . 

Introducing the ring [ ] [ ]1 2 3, ,D K d d d K d= =  of linear differential operators 
with coefficients in the differential field K, the corresponding differential module 
M D  is projective and even free, thus torsion-free or 0-pure, being defined 
by the split exact sequence of free differential modules: 

1 13 30 0D D D D
−

→ → → → →
 

 
We let the reader prove as an exercise that the adjoint sequence: 
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( ) ( ) ( )1 1

0 0
ad ad ad

θ ν µ λ
−

← ← ← ← ←
  

 
0 1 3 3 1 0← ← ← ← ←  

starting from the Lagrange multiplier λ  is also a split exact sequence of free 
differential modules. 

We finally prove that the situation met for the contact structure is exactly the 
same as the one that we shall meet in the metric structure, namely that one can 
identify 1−  not with 1  of course but with ( )1ad  . For this, let us modify 
the “basis” linearly by setting ( )1 1 3 2 2 2 3 3, ,xξ ξ ξ ξ ξ ξ ξ= − = =  and suppress-
ing the bar for simplicity, we obtain the new injective parametrization: 

1 2 3 3
3 2 1, , xφ ξ φ ξ φ φ ξ= − ∂ = ∂ + ∂ =  

and may eliminate φ  in order to consider the new involutive system, renum-
bering the equations through a cyclic permutation of ( )1,2,3 : 

1 3 2 3 2 1
3 2 1 1

3 1 2
3

2 1 3 1 3
2 1

0 1 2 3
0 1 2 3

1 20

x

x

η ξ ξ ξ ξ

η ξ ξ

η ξ ξ ξ

 ≡ ∂ + ∂ + ∂ − ∂ =
 ≡ ∂ + =
 •≡ ∂ + ∂ − =  

with the unique first order CC defining 1 : 
2 3 3 3 1

3 2 1 0xζ η η η η≡ ∂ − ∂ − ∂ + =  
Multiplying by λ  and integrating by parts, we obtain for ( )1ad  : 

1 1 2 2 3 3 3
3 2 1, , xη λ µ η λ µ η λ λ µ→ = → −∂ = → ∂ + ∂ =  

obtaining therefore ( ) ( )1 1 1 1ad ad− −= ⇔ =     exactly. 
As for ξ η= , we obtain the formal operator matrix: 

3
1 2 1 3
3

2 1

3

0 1
1 0

d d x d d
d x d

d

 − +
 

+ − 
 
   

Similarly, for ( )ad   we obtain the formal operator matrix: 

( )
( )

3
1 2 1 3

3
2 1

3

0 1

1 0

d d x d d

d x d

d

 − + −
 
 − +
 
 − −
   

and finally discover that ( )ad = −  , a striking result showing that both oper-
ators have the same CC and parametrization even though   is not self-adjoint. 

3. Einstein Equations 

Linearizing the Ricci tensor ijρ  over the Minkowski metric ω , we obtain the 
usual second order homogeneous Ricci operator RΩ→  with 4 terms: 

( )2 2rs
ij rs ij ij rs ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =            (9) 

( ) ( )ij ij ru sv
ij ij rs uvtr R R d tr dω ω ω ω= = Ω − Ω             (10) 

https://doi.org/10.4236/jmp.2021.124032


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 466 Journal of Modern Physics 
 

We may define the Einstein operator by setting ( )1
2ij ij ijE R tr Rω= −  and 

obtain the 6 terms [33]: 

( )
( )

2 rs
ij rs ij ij rs ri sj sj ri

rs uv ru sv
ij rs uv rs uv

E d d d d

d d

ω

ω ω ω ω ω

= Ω + Ω − Ω − Ω

− Ω − Ω
            (11) 

We have the (locally exact) differential sequence of operators acting on sec-
tions of vector bundles where the order of an operator is written under its arrow: 

*
2 1 21 2 1

Killing Riemann Bianchi
T S T F F→ → →                   (12) 

( ) ( ) ( )( )
1 22 2 2 21 2 1 12 1 2 24n n n n n n n n→ + → − → − −
 

 
Our purpose is now to study the differential sequence onto which its right part 

is projecting: 

* * *
2 22 1

0
Einstein div

S T S T T→ → →
 

( ) ( )1 2 1 2 0n n n n n+ → + → →  
and the following adjoint sequence where we have set [15] [19] [20] [31] [34]: 

( ) ( ) ( ), ,Cauchy ad Killing Beltrami ad Riemann Lanczos ad Bianchi= = =  

( ) ( ) ( ) ( )*
2 1 2

Cauchy Beltrami Lanczos
ad T ad S T ad F ad F← ← ←           (13) 

In this sequence, if E is a vector bundle over the ground manifold X with di-
mension n, we may introduce the new vector bundle ( ) * *nad E T E= ∧ ⊗  where 

*E  is obtained from E by inverting the transition rules exactly like *T  is ob-
tained from T. We have for example ( ) * * * 1 *n n nad T T T T T T−= ∧ ⊗ ∧ ⊗ ∧   
because *T  is isomorphic to T by using the metric ω . The 10 × 10 Einstein 
operator matrix is induced from the 10 × 20 Riemann operator matrix and the 
10 × 4 div operator matrix is induced from the 20 × 20 Bianchi operator matrix. 
We advise the reader not familiar with the formal theory of systems or operators 
to follow the computation in dimension 2n =  with the 1 × 3 Airy operator 
matrix, which is the formal adjoint of the 3 × 1 Riemann operator matrix, and 

3n =  with the 6 × 6 Beltrami operator matrix which is the formal adjoint of the 
6 × 6 Riemann operator matrix which is easily seen to be self-adjoint up to a 
change of basis. 

With more details, we have: 
• 2n = : The stress equations become 11 12 21 22

1 2 1 20, 0d d d dσ σ σ σ+ = + = . 
Their second order parametrization 11 12 21 22

22 12 11, ,d d dσ φ σ σ φ σ φ= = = − =  
has been provided by George Biddell Airy in 1863 [35] and is well known [5]. 
We get the second order system: 

11
22

12
12

22
11

0 1 2
0 1

10

d

d

d

σ φ

σ φ

σ φ

 ≡ =
− ≡ = •
 •≡ =  
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which is involutive with one equation of class 2, 2 equations of class 1 and it is 
easy to check that the 2 corresponding first order CC are just the Cauchy equa-
tions. Of course, the Airy function (1 term) has absolutely nothing to do with the 
perturbation of the metric (3 terms). With more details, when ω  is the Eucli-
dean metric, we may consider the only component: 

( ) ( )( ) ( )11 22 11 22 11 11 12 12 22 22

22 11 11 22 12 12

2
2

tr R d d d d d
d d d

= + Ω +Ω − Ω + Ω + Ω

= Ω + Ω − Ω  
Multiplying by the Airy function φ  and integrating by parts, we discover 

that: 

( ) ( )Airy ad Riemann Riemann ad Airy= ⇔ =  
in the following differential sequences: 

1 2
2 3 1 0

Killing Riemann
→ → →

 

1 2
0 2 3 1

Cauchy Airy
← ← ←

 
• 3n = : It is more delicate to parametrize the 3 PD equations: 

11 12 13
1 2 3

21 22 23
1 2 3

31 32 33
1 2 3

0,

0,

0

d d d

d d d

d d d

σ σ σ

σ σ σ

σ σ σ

+ + =

+ + =

+ + =  
A direct computational approach has been provided by Eugenio Beltrami in 

1892 [36] [37], James Clerk Maxwell in 1870 [38] and Giacinto Morera in 1892 
[37] [39] by introducing the 6 stress functions ij jiφ φ=  in the Beltrami parame-
trization. The corresponding system: 

11
33 22 22 33 23 23

12
33 12 12 33 13 23 23 13

22
33 11 11 33 13 13

13
23 12 12 23 22 13 13 22

23
23 11 11 23 12 13 13 12

33
22 11 11 22 12 12

1 2 32 0
1 2 30
12 0

0
0

2 0

d d d
d d d d

d d d
d d d d

d d d d
d d d

σ φ φ φ
σ φ φ φ φ

σ φ φ φ
σ φ φ φ φ
σ φ φ φ φ

σ φ φ φ

 ≡ + − =

− ≡ + − − =
 ≡ + − =


≡ + − − =
− ≡ + − − =


≡ + − =

2 3
1 2
1 2
1 2

•
•
•

 
is involutive with 3 equations of class 3, 3 equations of class 2 and no equation of 
class 1. The three characters are thus  

3 2 1
2 2 21 6 3 3 2 6 3 9 3 6 0 18α α α= × − = < = × − = < = × − =  and we have  
( )

( ) ( )
1 2 3

2 2 2 2

* * *
2 2 2

18 9 3 30

6 6 6

dim g

dim S T S T dim S T

α α α= + + = + + =

= ⊗ − = × −
 [1]. The 3 CC are describing 

the stress equations which admit therefore a parametrization... but without any 
geometric framework, in particular without any possibility to imagine that the 
above second order operator is nothing else but the formal adjoint of the Rie-
mann operator, namely the (linearized) Riemann tensor with ( )2 2 1 2 6n n − =  
independent components when 3n =  [31]. Breaking the canonical form of the 
six equations which is associated with the Janet tabular, we may rewrite the Bel-
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trami parametrization of the Cauchy stress equations as follows, after exchang-
ing the third row with the fourth row, keeping the ordering  
( ) ( ) ( ) ( ) ( ) ( ){ }11 12 13 22 23 33< < < < < : 

33 23 22

33 23 13 12
1 2 3

23 22 13 12
1 2 3

33 13 11
1 2 3

23 13 12 11

22 12 11

0 0 0 2
0 0

0 0 0
0 0

0 0 0 0
0 2 0 0

0 0 0
0 0

2 0 0 0

d d d
d d d d

d d d
d d d d

d d d
d d d

d d d
d d d d

d d d

− 
 − −   − −  ≡   −  

  − −
  −   

as an identity where 0 on the right denotes the zero operator. However, if Ω  is 
a perturbation of the metric ω , the standard implicit summation used in con-
tinuum mechanics is, when 3n = : 

11 12 13 22 23 33
11 12 13 22 23 33

22 33 11 33 22 11 23 23 11

23 13 12 13 23 12 12 33 12 33 12 12

2 2 2

2

ij
ij

d d d
d d d d

σ σ σ σ σ σ σ

φ φ φ
φ φ φ φ

Ω = Ω + Ω + Ω + Ω + Ω + Ω

= Ω +Ω − Ω +

+Ω +Ω −Ω −Ω +

�
�  

because the stress tensor density σ  is supposed to be symmetric. Integrating 
by parts in order to construct the adjoint operator, we get: 

11 33 22 22 33 23 23

12 13 23 23 13 33 12 12 33

2d d d
d d d d

φ
φ

→ Ω + Ω − Ω

→ Ω + Ω − Ω − Ω  
and so on, obtaining therefore the striking identification: 

( ) ( )Riemann ad Beltrami Beltrami ad Riemann= ⇔ =  
between the (linearized) Riemann tensor and the Beltrami parametrization. 

Taking into account the factor 2 involved by multiplying the second, third and 
fifth row by 2, we get the new 6 × 6 operator matrix with rank 3: 

33 23 22

33 23 13 12

23 22 13 12

33 13 11

23 13 12 11

22 12 11

0 0 0 2
0 2 2 0 2 2
0 2 2 2 2 0

0 2 0 0
2 2 2 0 2 0

2 0 0 0

d d d
d d d d

d d d d
d d d

d d d d
d d d

− 
 − − 
 − −
 

− 
 − −
  −   

clearly providing a self-adjoint operator. 
Surprisingly, the Maxwell parametrization is obtained by keeping  

11 22 33, ,A B Cφ φ φ= = =  while setting 12 23 31 0φ φ φ= = =  in order to obtain the 
system: 

11
33 22

22
33 11

23
23

33
22 11

13
13

12
12

1 2 30
1 2 30
1 20
1 20
10
10

d B d C
d A d C

d A
d A d B

d B
d C

σ
σ
σ

σ
σ
σ

 ≡ + =


≡ + =
 •− ≡ =
 •≡ + =
 • •− ≡ =


• •− ≡ =  
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However, this system may not be involutive and no CC can be found “a pri-
ori” because the coordinate system is surely not δ -regular. Indeed, effecting the 
linear change of coordinates 1 1 2 2 3 3 2 1, ,x x x x x x x x= = = + +  and taking out 
the bar for simplicity, we obtain the new involutive system: 

33 13 23 12

33 13

33 23

23 22 13 13 12

23 22 13 12 11

22 22 12 11 11

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2
2 0 1 2

2 0 1 2

d C d C d C d C
d B d B
d A d A
d C d C d C d B d C
d A d C d B d C d C
d A d C d C d C d B

+ + + =
 + =
 + =
 + − − − = •
 − + + − = •


+ − + + = •  
and it is easy to check that the 3 CC obtained just amount to the desired 3 stress 
equations when coming back to the original system of coordinates. However, the 
three characters are different as we have now  

3 2 1
2 2 23 3 0 2 3 3 3 3 3 0 9α α α= − = < = × − = < = × − =  with sum equal to  
( )2 6 3 6 18 6 12dim g = × − = − = . We have thus a minimum parametrization that 

cannot be parametrized again. 
Again, if there is a geometrical background, this change of local coordinates is 

hidding it totally. Moreover, we notice that the stress functions kept in the pro-
cedure are just the ones on which 33d  is acting. The reason for such an appar-
ently technical choice is related to very general deep arguments in the theory of 
differential modules that will only be explained at the end of the paper. 

The Morera parametrization is obtained similarly by keeping now  

23 13 12, ,L M Nφ φ φ= = =  while setting 11 22 33 0φ φ φ= = = , namely: 

23

33 13 23

13

22 23 12

11 12 13

12

0
0

0
0
0

0

d L
d N d L d M
d M
d M d N d L
d L d M d N
d N

=
 − − =
 =
 − − =
 − − =


=  

Using now the same change of coordinates as the one already done for the 
Maxwell parametrization, we obtain the following system with 3 equations of 
(full) class 3 and 3 equations of class 2 in the Pommaret basis corresponding to 
the Janet tabular: 

( ) ( )
( )
( )

33 23 13 12

33 13

33 23

23 23 23 13 13 13 12

23 13 13 13 12 11

22 12 12 12 11

0 1 2 3
0 1 2 3

0 1 2 3
0 1 2

2 0 1 2
0 1 2

d N d N d N d N
d M d M
d L d L
d N d M d L d N d M d L d N
d M d N d M d L d M d L

d M d N d M d L d L

+ + + =
 + =
 + =
 + − + − + + = •
 + − − + − = •


+ − − + = •  
After elementary but tedious computations (that could not be avoided!), one 

can prove that the 3 CC corresponding to the 3 dots are effectively satisfied and 
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that they correspond to the 3 Cauchy stress equations which are therefore para-
metrized. The parametrization is thus provided by an involutive operator defin-
ing a torsion module because the character 3

2α  is vanishing in δ -regular 
coordinates, just like before for the Maxwell parametrization. We have thus 
another minimum parametrization that cannot be parametrized again. Of 
course, such a result could not have been understood by Beltrami in 1892 be-
cause the work of Cartan could not be adapted easily as it is using the language 
of exterior forms and the work of Janet only appeared in 1920 with no explicit 
reference to involution because only Janet bases are used [8] while the Pomma-
ret bases have only been introduced in 1978 [1]. 

On a purely computational level, we may also keep only { }11 12 22, ,φ φ φ  and 
obtain the different involutive system with the same characters and, in particu-
lar, 3

2 0α = : 
11

33 22
12

33 12
22

33 11
13

23 12 13 22
23

23 11 13 12
33

22 11 11 22 12 12

1 2 30
1 2 30
1 2 30
1 20
1 20
1 22 0

d
d

d
d d

d d
d d d

σ φ
σ φ

σ φ
σ φ φ
σ φ φ

σ φ φ φ

 ≡ =

− ≡ =
 ≡ =
 •≡ − =
 •− ≡ − =


•≡ + − =  
So far, we have thus obtained three explicit local minimum parametrizations 

of the Cauchy stress equations with ( )1 2 3n n − =  stress potentials but there 
may be others [21]. 
• 4n = : It just remains to explain the relation of the previous results with 

Einstein equations. The first surprising link is provided by the following 
technical proposition: 

PROPOSITION 3.1: The Beltrami parametrization is just described by the 
Einstein operator when 3n = . The same confusion existing between the Bianc-
hi operator and the Cauchy operator has been made by both Einstein and Bel-
trami because the Einstein operator and the Beltrami operator are self-adjoint in 
arbitrary dimension 3n ≥ , contrary to the Ricci operator. 

Proof: The number of components of the Riemann tensor is  
( ) ( )2 2

1 1 12dim F n n= − . We have the combinatorial formula  

( ) ( ) ( )( )( )2 2 1 12 1 2 1 2 3 12n n n n n n n n− − + = + + −  expressing that the num-
ber of components of the Riemann tensor is always greater or equal to the num-
ber of components of the Ricci tensor whenever 2n > . Also, we have shown in 
many books [1] [2] [3] [4] [15] [19] or papers [10] [21] [29] [30] that the num-
ber of Bianchi identities is equal to ( )( )2 2 1 2 24n n n− − , that is 3 when 3n =  
and 20 when 4n = . Of course, it is well known that the div operator, induced as 
CC of the Einstein operator, has n components in arbitrary dimension 3n ≥ . 

Accordingly, when 3n =  we have ( ) ( )2 2 1 12 1 2 6n n n n− = + =  and it 
only remains to prove that the Einstein operator reduces to the Beltrami opera-
tor and not just to the Ricci operator. The following formulas can be found in 
any textbook on general relativity: 
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Hence the difference can only be seen when 0i jω ≠ = . In our situation with 
3n =  and the Euclidean metric for simplicity, we have: 

( ) ( )
( ) ( )

12 12 11 22 33 12 12 11 22 33

11 12 12 22 13 23 12 11 22 12 23 13

33 12 12 33 13 23 23 13

2 2R E d d d d

d d d d d d
d d d d

= = + + Ω + Ω +Ω +Ω

− Ω + Ω + Ω − Ω + Ω + Ω

= Ω + Ω − Ω − Ω  

( ) ( )
( )

( ) ( ) ( )

11 11 22 33 11 11 11 22 33

11 11 12 12 13 13

22 33 11 11 22 33 12 12 13 13

2

2

2

R d d d d

d d d

d d d d d

= + + Ω + Ω +Ω +Ω

− Ω + Ω + Ω

= + Ω + Ω +Ω − Ω + Ω  

( ) ( )
( )

11 22 11 33 22 11 22 33 33 11 33 22

12 12 13 13 23 232

tr R d d d d d d

d d d

= Ω + Ω + Ω + Ω + Ω + Ω

− Ω + Ω + Ω
 

11 22 33 33 22 23 232 2E d d d− = Ω + Ω − Ω  

In the light of modern differential geometry, comparing these results with the 
works of both Maxwell, Morera, Beltrami and Einstein, it becomes clear that 
they have been confusing the div operator induced from the Bianchi operator 
with the Cauchy operator. However, it is also clear that they both obtained a 
possibility to parametrize the Cauchy operator by means of 3 arbitrary potential 
like functions in the case of Maxwell and Morera, 6 in the case of Beltrami who 
explains the previous choices, and 10 in the case of Einstein. Of course, as they 
were ignoring that the Einstein operator was self-adjoint whenever 3n ≥ , they 
did not notice that we have ( )Cauchy ad Killing=  and they were unable to 
compare their results with the Airy operator found as early as in 1870 for the 
same mechanical purpose when 2n = . To speak in a rough way, the situation is 
similar to what could happen in the study of contact structures if one should 
confuse 1−  with 1  [29]. Finally, using Theorem 2.1 or Proposition 2.2, we 
can choose a differential transcendence basis with ( )1 2n n −  potentials that 
can be indexed by ij jiφ φ=  with i j<  or 1 , 1i j n≤ ≤ −  or even 2 ,i j n≤ ≤  
when the dimension 2n ≥  is arbitrary (see [2] or [40] for more details on dif-
ferential algebra). 

Q.E.D. 
REMARK 3.2: In the opinion of the author of this paper who is not a histo-

rian of sciences but a specialist of mathematical physics interested in the analogy 
existing between electromagnetism (EM), elasticity (EL) and gravitation (GR) by 
using the conformal group of space-time (see [3] [10] [28] [29] [30] [41] [42] 
[43] [44] for related works), it is difficult to imagine that Einstein could not have 
been aware of the works of Maxwell and Beltrami on the foundations of EL and 
tensor calculus. Indeed, not only they were quite famous when he started his re-
search work but it must also be noticed that the Mach-Lippmann analogy [45] 
[46] [47] [48] was introduced at the same time (see [3] and [49] for more details 
on the field-matter couplings and the phenomenological law discovered by... 
Maxwell too). The main idea is that classical variational calculus using a Lagran-
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gian formalism must be only considered as the basic scheme of a more general 
and powerful “duality theory” that only depends on new purely mathematical 
tools, namely “group theory” and “differential homological algebra” (see [4] or 
[15] for the theory and [21] for the applications). 

The two following crucial results, still neither known nor acknowledged today, 
are provided by the next proposition and corresponding corollary [40]: 

PROPOSITION 3.3: The Cauchy operator can be parametrized by the formal 
adjoint of the Ricci operator (4 terms) and the Einstein operator (6 terms) is 
thus useless. The so-called gravitational waves equations are thus nothing else 
than the formal adjoint of the linearized Ricci operator. 

Proof: The Einstein operator EΩ→  is defined by setting  

( )1
2ij ij ijE R tr Rω= −  that we shall write Einstein C Ricci= �  where  

* *
2 2:C S T S T→  is a symmetric matrix only depending on ω , which is inverti-

ble whenever 3n ≥ . Surprisingly, we may also introduce the same linear trans-

formation ( )1:
2

C trωΩ→Ω = Ω− Ω  and the unknown composite operator 

: EΩ→Ω→  in such a way that Einstein C= �  where   is defined by 
(see [33], 5.1.5 p 134): 

2 rs rs rs
ij rs ij ri sj sj ri

ru sv
ij rs uv

E d d d

d

ω ω ω

ω ω ω

= Ω − Ω − Ω

+ Ω
 

Now, introducing the test functions ijλ , we get: 

( )1
2

1
2

ij ij
ij ij ij

ij rs ij ij
rs ij ij

E R tr R

R R

λ λ ω

λ λ ω ω λ

 = − 
 

 = − = 
 

 

Integrating by parts while setting as usual rs
rsdω= , we obtain: 

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω          (14) 

Moreover, suppressing the “bar” for simplicity, we have: 

0

rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − −

=
 

As Einstein is a self-adjoint operator (contrary to the Ricci operator), we have 
the identities: 

( ) ( ) ( ) ( )
( ) ( )

ad Einstein ad C ad Einstein C ad

ad Ricci ad Ricci

= ⇒ =

⇒ = ⇒ =

� � 

   

Indeed, ( )ad C C=  because C is a symmetric matrix and we know that 
( )ad Einstein Einstein= . Accordingly, the operator ( )ad Ricci  parametrizes 

the Cauchy equations, without any reference to the Einstein operator which has 
no mathematical origin, in the sense that it cannot be obtained by any diagram 
chasing. The three terms after the Dalembert operator factorize through the di-
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vergence operator ri
id λ . We may thus add the differential constraints 0ri

id λ =  
without any reference to a gauge transformation in order to obtain a (minimum) 
relative parametrization (see [14] and [18] for details and explicit examples). 
When 4n =  we finally obtain the adjoint sequences: 

( )

4 10 10

0 4 10 10

Killing Ricci

ad RicciCauchy

→ →

← ← ←  

without any reference to the Bianchi operator and the induced div operator. 
Finally, using Theorem 2.1 or Proposition 2.2, we may choose a differential 

transcendence basis made by { }|ij i jλ <  or { }|1 , 1ij i j nλ < < −  or even 

{ }| 2 ,ij i j nλ < <  when the dimension 2n ≥  is arbitrary (see again [2] or [40] 

for more details on differential algebra). 
Q.E.D. 

COROLLARY 3.4: The differential module N defined by the Ricci or the 
Einstein operator is not torsion-free and cannot therefore be parametrized. Its 
torsion submodule is generated by the 10 components of the Weyl operator that 
are separately killed by the Dalembert operator. 

Proof: In order to avoid using extension modules, we present the 5 steps of the 
double differential duality test in this framework: 

Step 1: Start with the Einstein operator 1 :10 10
Einstein
→ . 

Step 2: Consider its formal adjoint: ( )1 :10 10
Einstein

ad ← . 
Step 3: Compute the generating CC, namely the Cauchy operator:  

( ) : 4 10
Cauchy

ad ← . 

Step 4: Consider its formal adjoint: ( )( ) : 4 10
Killing

ad ad= →  . 

Step 5: Compute the generating CC, namely the Riemann operator:  

1 :10 20
Riemann

′ → . 

With a slight abuse of language, we have the direct sum Riemann Ricci Weyl= ⊕  
with 20 10 10= + . It follows from differential homological algebra that the 10 
additional CC in 1′  that are not in 1 , are generating the torsion submodule 
( )t N  of the differential module N defined by the Einstein or Ricci operator. In 

general, if K is a differential field with commuting derivations 1, , n∂ ∂� , we way 
consider the ring [ ] [ ]1, , nD K d d K d= =�  of differential operators with coef-
ficients in K and it is known that ( ) ( )( )D Drk rk ad=   for any operator ma-
trix   with coefficients in K. In the present situation, as the Minkowski metric 
has coefficients equal to 0,1, 1− , we may choose the ground differential field to 
be K =  . Hence, there exist operators   and   such that we have an 
identity: 

Weyl Ricci=� �   

One may also notice that ( ) ( )D Drk Einstein rk Ricci=  with: 
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( ) ( ) ( )

( ) ( ) ( )

1 1
,

2 2
1 1

2 2

D

D

n n n n
rk Einstein n

n n n n
rk Riemann n

+ −
= − =

+ −
= − =

 

The differential ranks of the Einstein and Riemann operators are thus equal, 
but this is a pure coincidence because ( )Drk Einstein  has only to do with the 
div operator induced by contracting the Bianchi operator, while ( )Drk Riemann  
has only to do with the classical Killing operator and the fact that the corres-
ponding differential module is a torsion module because we have a Lie group of  

transformations having 
( ) ( )1 1

2 2
n n n n

n
− +

+ =  parameters (translations + rota- 

tions). Hence, as the Riemann operator is a direct sum of the Weyl operator and 
the Einstein or Ricci operator according to the previous theorem, each compo-
nent of the Weyl operator must be killed by a certain operator whenever the 
Einstein or Ricci equations in vacuum are satisfied. It is not at all evident that we 
have =   acting on each component of the Weyl operator. A direct tricky 
computation can be found in ([49], p 206), ([50], exercise 7.7) and ([15], p 95). 
With more details, we may start from the long exact sequence: 

0 4 10 20 20 6 0
Killing Riemann Bianchi

→Θ→ → → → → →  

This resolution of the set of Killing vector fields is not a Janet sequence be-
cause the Killing operator is not involutive as it is an operator of finite type with 
symbol of dimension ( )1 2 6n n − =  and one should need one prolongation for 
getting an involutive operator with vanishing second order symbol. Splitting the 
Riemann operator we get the commutative and exact diagram: 

0 0 0

0 10 16 6 0

4 10 20 20 6 0

10 10 4 0

0 0 0

Killing Riemann Bianchi

Einstein div

↓ ↓ ↓
→ → →

↓ ↓↑ ↓

→ → → → →
↓↑ ↓ ↓

→ → →
↓ ↓ ↓





 

Passing to the module point of view, we have the long exact sequence: 

6 20 20 10 40 0
KillingBianchi Riemann

D D D D D M→ → → → → → →  

which is a resolution of the Killing differential module ( )M coker Killing=  
and we check that we have indeed the vanishing of the Euler-Poincaré characte-
ristic 6 20 20 10 4 0− + − + = . Accordingly, we have  

( ) ( ) 4N coker Riemann im Killing D′ = ⊂  and thus N ′  is torsion-free with 
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( ) 4 0 4Drk N n′ = − = =  because ( ) 0Drk M = . 
We have the following commutative and exact diagram where  

( )N coker Einstein= : 

( )

4 10 10

6 20 20 10

6 16 10

0

0 0 0

0 0

0 0

0 0 0

0 0 0

div Einstein

Bianchi Riemann

t N

D D D N

D D D D N

D D D

↓

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓ ↓

′→ → → → → →

↓ ↓ ↓ ↓

→ → →

↓ ↓ ↓





 

If L is the kernel of the epimorphism N N ′→ , it is a torsion module because 
( ) ( ) ( ) 4 4 0D D Drk L rk N rk N ′= − = − = . We have thus ( )L t N⊆  in the fol-

lowing commutative and exact diagram: 

( )

( )

0 0

0

0 0

0

0 0

L t N

N N

N N t N

↓ ↓

→ →

↓ ↓

→ = →

↓ ↓

′ → →

↓ ↓

 

where ( )N t N  is a torsion-free module by definition. A snake chase allows to 
prove that the cokernel of the monomorphism ( )L t N→  is isomorphic to the 
kernel of the induced epimorphism ( )N N t N′ →  and must be therefore, at 
the same time, a torsion module because ( ) ( )( ) 0D Drk L rk t N= =  and a tor-
sion-free module because 4N D′ ⊂ , a result leading to a contradiction unless it 
is zero and thus ( )L t N= . A snake chase in the previous diagram allows to ex-
hibit the long exact connecting sequence: 

( )6 16 100 0D D D t N→ → → → →  
It must be noticed that one cannot find canonical morphisms between the 

classical and conformal resolutions constructed similarly because we recall that, 
for 4n =  (only), the CC of the Weyl operator are of order 2 and not 1 like the 
Bianchi CC for the Riemann operator (see [37] for a computer algebra check-
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ing !). However, it follows from the last theorem that the short exact sequence 
10 20 100 0D D D→ → → →  splits with 20 10 10D D D⊕  but the existence of a 

canonical lift 20 10 0D D→ →  in the above diagram does not allow to split the 
right column and thus ( )N N t N′≠ ⊕  as N ′  is not even free. Hence, one can 
only say that the space of solutions of Einstein equations in vacuum contains the 
generic solutions of the Riemann operator which are parametrized by arbitrary 
vector fields. As for the torsion elements, we have ( ) ( )16 10t N coker D D= →  
and we may thus represent them by the components of the Weyl tensor, killed 
by the Dalembertian. This module interpretation may thus question the proper 
origin and existence of gravitational waves because the div operator on the upper 
left part of the diagram has strictly nothing to do with the ( )Cauchy ad Killing=  
operator which cannot appear anywhere in this diagram. 

Q.E.D. 
COROLLARY 3.5: More generally, when   is a Lie operator of finite type, 

that is when [ ],Θ Θ ⊂ Θ  under the ordinary bracket of vector fields or 
,q q qR R R  ⊂   under the bracket of Lie algebroids and 0q rg + =  for r large 

enough, then the Spencer sequence is locally isomorphic to the tensor product of 
the Poincaré sequence for the exterior derivative by a finite dimensional Lie al-
gebra. It is thus formally exact both with its adjoint sequence. As it is known that 
the extension modules do not depend on the resolution used, this is the reason 
for which not only the Cauchy operator can be parametrized but also the Cosse-
rat couple-stress equations ( )1ad   can be parametrized by ( )2ad  , a result 
not evident at all (see [41] and [43] for explicit computations). 

REMARK 3.6: A similar situation is well known for the Cauchy-Riemann eq-
uations when 2n = . Indeed, any infinitesimal complex transformation ξ  must 
be solution of the linear first order homogeneous system 2 1 1 2

2 1 2 10, 0ξ ξ ξ ξ− = + =  
of infinitesimal Lie equations though we obtain 1 1 2 2

11 22 11 220, 0ξ ξ ξ ξ+ = + = , that is 
1ξ  and 2ξ  are separately killed by the second order Laplace operator 

11 22d d∆ = + . 
REMARK 3.7: A similar situation is also well known for the wave equations 

for the EM field F in electromagnetism. Indeed, starting with the first set of 
Maxwell equations 0dF =  and using the Minkowski constitutive law in vacuum 
with electric constant 0ε  and magnetic constant 0µ  such that 2

0 0 1cε µ =  for 
the seconf set of Maxwell equations, a standard tricky differential elimination 
allows to avoid the Lorenz (no “t”) gauge condition for the EM potential and to 
obtain directly 0F =  (see [15] and [40] for the details). 

Using computer algebra or a direct checking with the ordering  
11 12 13 22 23 33< < < < < , we obtain: 

44
33 44 33E d lower termsω= Ω +  

44
23 44 23E dω= Ω �  

We have therefore the following Janet tabular: 
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1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3
1 2 3
1 2 3
1 2 3

•
•
•
•

 
we are in the position to compute the characters of the Einstein operator but a 
similar procedure could be followed with the Ricci operator. We obtain at once: 

( )
( )
( )
( )

4 4
2 2

3 3
2 2

2 2
2 2

1 1
2 2

6 10 1 6 4

4 10 2 4 16

0 10 3 0 30

0 10 4 0 40

β α

β α

β α

β α

= ⇒ = × − =

= ⇒ = × − =

= ⇒ = × − =

= ⇒ = × − =  
a result leading to ( ) 1 2 3 4

2 2 2 2 2 90dim g α α α α= + + + =  and  

( ) 1 2 3 4
3 2 2 2 22 3 4 164dim g α α α α= + + + =  along with the long exact sequences: 

* * *
2 2 2 20 0g S T S T S T→ → ⊗ → →  

* * * * *
3 3 2 20 0g S T S T T S T T→ → ⊗ → ⊗ → →  

Now, we have by definition ( )1 2 3 4, , ,div d d d d=  and  
( )0,0,0,0div Einstein =� . 

As the Einstein operator is a self-adjoint 10 × 10 operator matrix up to a 
change of basis [27], we obtain therefore, with a slight abuse of language, 

( ) 0det Einstein =  because: 

11

12

13

1 2 3 4 14

1 2 3 4 22

1 2 3 4 23

1 2 3 4 24

33

34

44

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

E
E
E

d d d d E
d d d d E

d d d d E
d d d d E

E
E
E

 
 
 
 
 

    
    
     =
    
    

   
 
 
 
 
 

�
�
�
�

 
a result not evident at first sight that must be compared with the Poincaré situa-
tion when 3n = : 

( ) ( )
3 2

1 2 3 3 1

2 1

0
0 0 0 0

0

d d
d d d d d

d d

− 
 − = 
 −   
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4. Symbol Sequences 

A way to study the formal properties of a linear differential operator 

0: E F F→ =  of order q between the sections of two vector bundles over a 
manifold X with dimension n is to consider the symbol of   at the covector 

( )*T Xχ ∈ , namely the map ( )χσ   obtained from the leading terms of order 
q. With more details, if   is described by the operator matrix ( )ka dτµ

µ  with 
0 qµ≤ ≤  and *i

idx Tχ χ= ∈ , then ( ) 0: E Fχσ →  is described by the po-
lynomial matrix ( )kaτµ

µχ  with qµ = . When   is formally integrable, then 
χ  is said to be characteristic if ( )χσ   fails to be injective and we may intro-
duce the characteristic set V as usual. When   is involutive, it is known after 
the work of M. Janet (1920) that one can construct first order operators 

1, , n�  , each one generating the compatibility conditions (CC) of the pre-
ceding one. However, the symbol maps ( ) 1:i i iF Fχσ − →  for 1, ,i n= �  may 
not provide an exact sequence and any non-zero covector is characteristic for 
these operators. A comparison of the operators involved in a control system with 

1n = , in the study of the contact transformations with 3n =  and of the linea-
rized Einstein equations with 4n =  proves that the preceding definition must 
be conveniently refined by saying that a covector is systatic if the matrix 

( )χσ   fails to have its maximum generic rank and the previous symbol se-
quence is exact otherwise and we may introduce the systatic set W as in [1] [4] 
[5]. What we have done with the Janet sequence can also be done with the 
Spencer sequence that only involves first order operators induced by the Spencer 
operator. A close link with differential homological algebra and the correspond-
ing differential extension modules can also be established and illustrated [14]. 
These new results are adding doubts to the ones we have already expressed on 
the origin and existence of gravitational waves as follows. 

First of all, we must distinguish two cases: 
• ( )( ) 0n

qmax rk mχ χσ α< ⇔ > : Any covector is characteristic and we have 
*W V T⊂ =  with a slight abuse of language. This is the situation for each of 

the operators 1, , n�  . 
• ( )( ) 0n

chi qmax rk mχ σ α= ⇔ = : The symbol map ( )χσ   fails to be in-
jective if and only if all the m m×  submatrices have vanishing determinants 
and we have *=W V T⊂ . 

PROPOSITION 4.1: If   is involutive, the symbol sequence of the Janet 
sequence: 

( )( )
( ) ( ) ( )1

00 0
n

nker E F F
χ χ χσ σ σ

χσ→ → → → → →�
  

          (15) 

is exact if and only if Wχ ∉ . 
Proof: Using the Janet tabulars for   and 1  with ( )dim E m= , we get: 

( )( )( ) ( )( ) ( ) ( )

( ) ( )( )( )1 1 1

n n
q q

n

dim im rk m

dim ker

χ χ

χ

σ σ α β

α σ

= = − =

= =

   

 
 

and so on. 
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Q.E.D. 
When 3n = , coming back to the Beltrami operator, that is the Einstein oper-

ator which is known to be involutive, we may change the local coordinates as we 
did for the Maxwell and Morera parametrizations. With  

( )3 1 2 3 1,1,1dx dx dx dxχ = = + + = , then ( )( )ker χσ   is defined by: 

22 33 23

12 33 23 13

11 33 13

12 23 13 22

11 23 13 12

11 22 12

2 0
0

2 0
0
0

2 0

φ φ φ
φ φ φ φ
φ φ φ
φ φ φ φ
φ φ φ φ
φ φ φ

+ − =
 + − − =
 + − =
 + − − =
 + − − =


+ − =  
Multiplying the fourth equation by 2 and substituting the first, the third and 

the sixth, we get: 
 

( ) ( ) ( )11 22 22 33 11 33 222 0φ φ φ φ φ φ φ+ + + − + − =  
whenever 23 22 33 13 11 33 12 11 222 , 2 , 2φ φ φ φ φ φ φ φ φ= + = + = + . This unexpected result, 
which has only to do with the use of δ -regular local coordinates, is proving that 
the choice of the stress potentials has strictly nothing to do with the comple-
mentary cancellations respectively adopted by Maxwell or Morera according to 
Beltrami because, in both cases, V Wχ ∉ =  but ( )3 0,0,1dx V Wχ = = ∈ = . 
This result can be extended to an arbitrary dimension. 

5. Conclusion 

After teaching elasticity for 25 years to high level students in some of the best 
french civil engineering schools, the author of this paper still keeps in mind one 
of the most fascinating exercises that he has set up. The purpose was to explain 
why a dam made with concrete is always vertical on the water-side with a slope 
of about 42 degrees on the other free side in order to obtain a minimum cost and 
the auto-stability under cracking of the surface under water (see the introduction 
of [5] for more details). Surprisingly, the main tool involved is the approximate 
computation of the Airy function inside the dam. The author discovered at that 
time that no one of the other teachers did know that the Airy parametrization is 
nothing else than the adjoint of the linearized Riemann operator used as gene-
rating CC for the deformation tensor by any engineer. Being involved in General 
Relativity (GR) at that time, it took him 25 years (1970-1995) to prove that the 
Einstein equations could not be parametrized [25] [26] [27]. However, nobody is 
a prophet in his own country and it is only recently that he discovered that GR 
could be considered as a way to parametrize the Cauchy operator. It follows that 
exactly the same confusion has been done by Maxwell, Morera, Beltrami and 
Einstein because, in all these cases, the operator considered is self-adjoint. As a 
byproduct, the variational formalism cannot allow to discover it as no engineer 
could have had in mind to confuse the deformation tensor with its CC in the 
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Lagrangian used for finite elements computations. It is thus an open historical 
problem to know whether Einstein knew any one of the previous works done as 
all these researchers were quite famous at the time he was active. In our opinion 
at least, the comparison of the various parametrizations described in this paper 
needs no comment as we have only presented facts, just facts. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudo-

groups. Gordon and Breach, New York; Russian Translation: MIR, Moscow (1983). 

[2] Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York. 

[3] Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New 
York. 

[4] Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Kluwer, 
Dordrecht. https://doi.org/10.1007/978-94-017-2539-2 

[5] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-010-0854-9 

[6] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 371-401.  
https://doi.org/10.4236/jmp.2019.103025 

[7] Spencer, D.C. (1965) Bulletin of the AMS, 75, 1-114. 

[8] Janet, M. (1920) Journal de Mathematique, 8, 65-151. 

[9] Pommaret, J.-F. (2005) Algebraic Analysis of Control Systems Defined by Partial 
Differential Equations. In: Advanced Topics in Control Systems Theory, Springer, 
Berlin, Lecture Notes in Control and Information Sciences 311, Chapter 5, 155-223.  
https://doi.org/10.1007/11334774_5 

[10] Pommaret, J.-F. (2020) Journal of Modern Physics, 11, 1672-1710.  
https://doi.org/10.4236/jmp.2020.1110104 

[11] Gasqui, J. (1982) Compositio Mathematica, 47, 43-69. 

[12] Bjork, J.E. (1993) Analytic D-Modules and Applications. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-017-0717-6 

[13] Kashiwara, M. (1995) Algebraic Study of Systems of Partial Differential Equations. 
Mémoires de la Société Mathématique de France, 63 (Transl. from Japanese of His 
1970 Master’s Thesis). 

[14] Pommaret, J.-F. (2015) Multidimensional Systems and Signal Processing, 26, 405-437.  
https://doi.org/10.1007/s11045-013-0265-0 

[15] Pommaret, J.-F. (2018) New Mathematical Methods for Physics. Mathematical 
Physics Books, Nova Science Publishers, New York, 150 p. 

[16] Schneiders, J.-P. (1994) Bulletin de la Société Royale des Sciences de Liège, 63, 
223-295. 

[17] Macaulay, F.S. (1916) The Algebraic Theory of Modular Systems. Cambridge Tract 
19, Cambridge University Press, London. (Reprinted by Stechert-Hafner Service 
Agency, New York, 1964) https://doi.org/10.3792/chmm/1263317740 

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.1007/978-94-017-2539-2
https://doi.org/10.1007/978-94-010-0854-9
https://doi.org/10.4236/jmp.2019.103025
https://doi.org/10.1007/11334774_5
https://doi.org/10.4236/jmp.2020.1110104
https://doi.org/10.1007/978-94-017-0717-6
https://doi.org/10.1007/s11045-013-0265-0
https://doi.org/10.3792/chmm/1263317740


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 481 Journal of Modern Physics 
 

[18] Pommaret, J.-F. (2012) Spencer Operator and Applications: From Continuum Me-
chanics to Mathematical Physics. In: Yong, G., Ed., Continuum Mechanics-Progress 
in Fundamentals and Engineering Applications, InTech, Rijeka, 1-32.  
https://doi.org/10.5772/35607 

[19] Pommaret, J.-F. (2016) Deformation Theory of Algebraic and Geometric Structures. 
Lambert Academic Publisher (LAP), Saarbrucken.  
http://arxiv.org/abs/1207.1964  
https://doi.org/10.1007/BFb0083506 

[20] Pommaret, J.-F. (2016) Journal of Modern Physics, 7, 699-728.  
https://arxiv.org/abs/1803.09610  

[21] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1454-1486.  
https://doi.org/10.4236/jmp.2019.1012097 

[22] Hu, S.-T. (1968) Introduction to Homological Algebra. Holden-Day, San Francisco. 

[23] Northcott, D.G. (1966) An Introduction to Homological Algebra. Cambridge Uni-
versity Press, Cambridge. 

[24] Rotman, J.J. (1979) An Introduction to Homological Algebra (Pure and Applied 
Mathematics). Academic Press, Cambridge. 

[25] Pommaret, J.-F. (1995) Comptes Rendus Académie des Sciences Paris, Série I, 320, 
1225-1230. 

[26] Zerz, E. (2000) Topics in Multidimensional Linear Systems Theory. Lecture Notes 
in Control and Information Sciences, LNCIS 256, Springer, Berlin. 

[27] Pommaret, J.-F. (2013) Journal of Modern Physics, 4, 223-239.  
https://doi.org/10.4236/jmp.2013.48A022 

[28] Pommaret, J.-F. (2014) Journal of Modern Physics, 5, 157-170.  
https://doi.org/10.4236/jmp.2014.55026 

[29] Pommaret, J.-F. (2020) The Conformal Group Revisited.  
https://arxiv.org/abs/2006.03449  

[30] Pommaret, J.-F. (2020) Nonlinear Conformal Electromagnetism and Gravitation.  
https://arxiv.org/abs/2007.01710  

[31] Pommaret, J.-F. (2016) Journal of Modern Physics, 7, 699-728.  
https://doi.org/10.4236/jmp.2016.77068 

[32] Pommaret, J.-F. and Quadrat, A. (1999) Systems & Control Letters, 37, 247-260.  
https://doi.org/10.1016/S0167-6911(99)00030-4 

[33] Foster, J. and Nightingale, J.D. (1979) A Short Course in General Relativity. Long-
man, London. 

[34] Lanczos, C. (1962) Reviews of Modern Physics, 34, 379-389.  
https://doi.org/10.1103/RevModPhys.34.379 

[35] Airy, G.B. (1863) Philosophical Transactions of the Royal Society of London, 153, 
49-80. https://doi.org/10.1098/rstl.1863.0004 

[36] Beltrami, E. (1892) Atti della Accademia Nazionale dei Lincei, 1, 141-142. 

[37] Landriani, G.S. (2017) Meccanica, 52, 2801-2806.  
https://doi.org/10.1007/s11012-016-0611-z 

[38] Maxwell, J.C. (1870) Transactions of the Royal Society of Edinburgh, 26, 1-40.  
https://doi.org/10.1017/S0080456800026351 

[39] Morera, G. (1892) Atti della Accademia Nazionale dei Lincei, 1, 137-141 + 233-234. 

[40] Pommaret, J.-F. (2017) Journal of Modern Physics, 8, 2122-2158.  

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.5772/35607
http://arxiv.org/abs/1207.1964
https://doi.org/10.1007/BFb0083506
https://arxiv.org/abs/1803.09610
https://doi.org/10.4236/jmp.2019.1012097
https://doi.org/10.4236/jmp.2013.48A022
https://doi.org/10.4236/jmp.2014.55026
https://arxiv.org/abs/2006.03449
https://arxiv.org/abs/2007.01710
https://doi.org/10.4236/jmp.2016.77068
https://doi.org/10.1016/S0167-6911(99)00030-4
https://doi.org/10.1103/RevModPhys.34.379
https://doi.org/10.1098/rstl.1863.0004
https://doi.org/10.1007/s11012-016-0611-z
https://doi.org/10.1017/S0080456800026351


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2021.124032 482 Journal of Modern Physics 
 

https://doi.org/10.4236/jmp.2017.813130 

[41] Cosserat, E. and Cosserat, F. (1909) Théorie des Corps Déformables. Hermann, 
Paris. 

[42] Pommaret, J.-F. (1997) Annales des Ponts et Chaussées, 82, 59-66. 

[43] Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55.  
https://doi.org/10.1007/s00707-010-0292-y 

[44] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1566-1595.  
http://arxiv.org/abs/1802.02430  
https://doi.org/10.4236/jmp.2019.1013104 

[45] Adler, F.W. (1907) Annalen der Physik und Chemie, 22, 578-594.  
https://doi.org/10.1002/andp.19073270314 

[46] Lippmann, G. (1876) Comptes rendus de l’Académie des Sciences, 82, 1425-1428. 

[47] Lippmann, G. (1907) Annalen der Physik und Chemie, 23, 994-996.  
https://doi.org/10.1002/andp.19073281017 

[48] Mach, E. (1900) Prinzipien der Wärmelehre, 2, Aufl. J.A. Barth, Leipzig, 330. 

[49] Choquet-Bruhat, Y. (2015) Introduction to General Relativity, Black Holes and 
Cosmology. Oxford University Press, Oxford. 

[50] Hughston, L.P. and Tod, K.P. (1990) An Introduction to General Relativity. London 
Mathematical Society Student Texts 5. Cambridge University Press, Cambridge.  
https://doi.org/10.1017/CBO9781139171977 

 
 

https://doi.org/10.4236/jmp.2021.124032
https://doi.org/10.4236/jmp.2017.813130
https://doi.org/10.1007/s00707-010-0292-y
http://arxiv.org/abs/1802.02430
https://doi.org/10.4236/jmp.2019.1013104
https://doi.org/10.1002/andp.19073270314
https://doi.org/10.1002/andp.19073281017
https://doi.org/10.1017/CBO9781139171977


Journal of Modern Physics, 2021, 12, 483-512 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2021.124033  Mar. 18, 2021 483 Journal of Modern Physics 
 

 
 
 

Christoffel Symbols and Chiral Properties of the 
Space-Time Geometry for the Atomic Electron 
States 

Claude Daviau, Jacques Bertrand 

Fondation Louis de Broglie, Paris, France 

 
 
 

Abstract 
Quantum electron states, in the case of an improved Dirac equation, are 
linked to the Christoffel symbols of the connection of space-time geometry. 
Each solution of the wave equation, in the case of the hydrogen atom induces 
a connection which is completely calculated. This allows us to discover the 
global and chiral properties of the space-time connection, with spin 2. 
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1. Introduction 

After L. de Broglie’s discovery of the quantum wave [1], Dirac formulated his 
relativistic wave equation for the electron [2], correcting the non-relativistic 
Schrödinger equation, and conserving the probability density linked to the wave. 
The main success of this wave equation was its application to the case of the hy-
drogen atom: all the expected quantum numbers were obtained, as well as the 
true number of states, and the true energy levels [3]. Moreover, the Dirac equa-
tion explained the spin 1/2 of the electron. The main problem was the presence 
of negative energies which were then accounted for as due to charge conjuga-
tion. 

Following de Broglie’s ideas on the necessity of non-linearity to unify quan-
tum physics and gravitation, an improved Dirac equation was studied [4]-[43]. 
This relativistic wave equation was extended to a wave equation of all fermions 
and anti-fermions of the first generation, as described in “Developing a Theory 
of Everything” [41]. The resolution of the wave equation in the case of the hy-
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drogen atom was completed in [42]. The aim of the present work is the use of 
these solutions as physical examples of the differential geometry linked to the 
quantum wave. The calculation of the Christoffel symbols was previously made 
only in the case of plane waves: geometry of space-time was characterized by a 
not null torsion and a null curvature. The torsion was linked to the mass term of 
the electron. The case of the electron in the hydrogen atom is much more com-
plicated indeed, and also much more interesting because it will allow us to en-
counter the geometric aspect of chirality in quantum mechanics. 

2. Tensorial Densities without Derivative 

Early on, the Dirac theory encountered 16 of the 36 tensorial densities that may 
be computed without derivatives from the electron wave. This is easy to see with 
the Pauli algebra [5] [7] [8]. From the wave of the electron, ( )xφ φ= , we get 
four space-time vectors (16 densities): 

1 2† † 1 2

2 1 2 1

: , 0,1, 2,3; : 2 ; 2 .Dµ µ

ξ η ξ ξ
φσ φ µ φ φ

ξ η η η
−   

= = = =    −   
    (1) 

And we get 20 densities (2 with 0S  and 6 for each kS ) as the components 
of: 

1 2

2 1

: ; : 2 .Sµ µ

η η
φσ φ φ

ξ ξ
 

= =  − 
                  (2) 

The previous equalities use the three well-known Pauli matrices 1σ , 2σ , 3σ  
and we let 0 : 1σ = , identifying real numbers and scalar matrices. The 16 densi-
ties of the early theory were the components of the probability current 0J : D= , 
the 3K : D=  current, the 3S  bivector (6 components) and the 1Ω  and 2Ω  
invariants, satisfying: 

( ) ( ) ( )† 1
0 1 1 2 2 1 2 1 2

2

det 2 e 2   ,iS iβ ξ
φφ φ ξ η ξ η ρ η η

ξ
 

= = = + = = Ω + Ω =  
 

  (3) 

where β  is the Yvon-Takabayasi angle. We just encountered the right (ξ ) and 
left (η ) parts of the wave. We also need: 

1 1† 1 2

2 22 1

0 0ˆ ˆ: 2 ; R : 2 ; L : 2
0 0

ξ ηη ξ
φ φ

ξ ηη ξ
 −    

= = = =     
    

       (4) 

† †: RR ; : LL .R LD D= =  
Currents RD  and LD  are the chiral currents that dominate in weak interac-

tions. They satisfy: 

0 3; .R L R LD D D D D D= + = −                    (5) 

From the beginning of Dirac’s research, relativistic quantum mechanics is a 
non-local theory, because the wave equation is not the only condition that go-
verns the dynamics of the wave: 

0Jd 1.v
c
=∫∫∫ �

                          (6) 
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We explained in 1.5.5 of [41] how this condition is a physical law that issues 
from the principle of equivalence. This law, joined with the invariance under the 
greater group *

3Cl , implies the quantization of the kinetic momentum [41] [43]. 
The four Dµ  currents form an orthogonal basis of space-time because they sa-
tisfy: 

2
0 0 1 1 2 2 3 30, ; .D D D D D D D D D Dµ ν µ ν ρ⋅ = ≠ ⋅ = = − ⋅ = − ⋅ = − ⋅      (7) 

The φ  wave of the electron defines a similitude: 
† †

x : x ,D X X X X X Dµ ν ν
µ ν νσ φ φ φ σ φ= = = =�           (8) 

†.D Dµ
ν ν µ νσ φσ φ= =                       (9) 

This variable basis is then associated with an affine connection. This also al-
lows us to use the Cartan’s mobile basis ( )0 1 2 3, , ,D D D D . This connection was 
first studied in [15]. We let: 

; dx d ,D X D
X

µ ν
ν ν µ νν

∂
= = ∂ =
∂

∂                  (10) 

d d .D X Dβ ν
µ µν β= Γ                       (11) 

This gives if 0ρ ≠ : 

dx dx d d ,D X D Xµ µ ν ν
µ ν µ νσ σ= = =  

( )† 1;  .D D D D
βµ

ν ν ν µ µ βµ
φσ φ σ σ −= = =               (12) 

Now we use the similitude D  such as: 

( ) ˆx x .D φ φ=                         (13) 

We have 

( ) ( )

( )( )
( ) ( )

† 2

2

1 2

ˆx x x e x e x,

x x,

x x .

i iD D D D

D D

D D

β βφφ φφ ρ ρ ρ

ρ

ρ

−

−

− −

 = = = = 

=

=

�

�         (14) 

And we get: 

( ) ( ) ( )
( )( )1

d d d d

d d .

D D X D X D X

D D D X D X

ν ξ ν ξ ν
µ ν µ ν µ ξ ν µ ξ

βξ ν β ν
ν µ β µν βξ

σ σ

−

= = =

= = Γ

∂ ∂ ∂

∂
        (15) 

Therefore the coefficients of the connection satisfy: 

( )( )1 ;  .D D D
ββ ξ τ

µν ν µ ν ν τξ

−Γ = = ∂∂ ∂                 (16) 

By using the D  similitude we get: 

( )2 ;  .D D Dβ ξ β τ
µν ν µ ξ ν ν τρ −Γ = = ∂∂ ∂                 (17) 

Since 0 0
0 0D D=  and 0

0
j

jD D= −  we have: 

( ) ( )0 1 2 3
0 1 2 3 ln ln .Dµ
ν ν ν ν ν ν µρ ρΓ = Γ = Γ = Γ = = ∂      ∂         (18) 
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The Christoffel symbols of this connection satisfy (see [41] 4.1): 

x x dx x dx ,α α α α β γ
βγ′ = + + Γ                    (19) 

For the complete calculation of these coefficients of the connection we need 
the following quantities: 

( ) ( ) ( ) ( ) ( ) ( )
† †

† †
: ; : .

det det
k k

k k k k
S AS

i i
φ φ

∇′ ′+ = + =               (20) 

With the improved wave equation of the electron, we obtained in D.4 of [41] 
the following symbols: 

( ) ( )
0 2
1 1 22 2 ,D q mµ µ µρδ Γ = ⋅ − +                  (21) 

( ) ( )
0 1
2 2 12 2 ,D q mµ µ µρδ Γ = ⋅ + −                  (22) 

( )
0
3 3 ,Dµ µΓ = ⋅                         (23) 

( ) ( )
2
3 1 22 ,D qµ µ

 ′ ′Γ = − ⋅ −                      (24) 

( ) ( )
3
1 2 12 ,D qµ µ

 ′ ′Γ = − ⋅ +                      (25) 

( )
1 0
2 3 2 2 ,D qA mµ µ µρδ ′Γ = − ⋅ + −                  (26) 

( )0 1 2 3
0 1 2 3 ln ,Dµ µ µ µ µ ρΓ = Γ = Γ = Γ = ⋅∇               (27) 

0
0 ,  1, 2,3,j

j jν νΓ = Γ =                      (28) 

 ,  1, 2,3,  1, 2,3,  .j k
k j j k k jν νΓ = −Γ = = ≠               (29) 

with 0
0 1δ = , 1, 1, 2,3j

j jδ = − =  and 0,ν
µδ µ ν= ≠ . Since these tensorial densi-

ties are defined through partial derivatives of the φ  wave of the electron, these 
definitions need the wave equation that we present now. 

3. Improved Dirac Wave Equation 

The improvement of the Dirac equation was first presented in the frame of the 
Clifford algebra of space-time used by Hestenes, who considered the µγ  ma-
trices of the Dirac theory as a basis of space-time [44] [45]. Read now in 3Cl  
the Lagrangian density of the Dirac equation is: 

( )21
ˆ ˆ: cos ,qA mφ φσ φ φ ρ β= ∇ + +                (30) 

where 21 2 1 3: iσ σ σ σ= = − , A is the electromagnetic potential space-time vector 
and X  is the real part of X. The improved wave equation is obtained by sim-
plifying the Lagrangian density as: 

21
ˆ ˆ: .qA mφ φσ φ φ ρ= ∇ + +                   (31) 

The improved equation which comes from this simplified Lagrangian density 
reads: 

21
ˆ ˆ0 e .iqA m βφσ φ φ−= ∇ + +                    (32) 
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This non-linear wave equation has the Dirac equation as linear approximation 
when the Yvon-Takabayasi β  angle is null or negligible: 

21
ˆ ˆ0 .qA mφσ φ φ= ∇ + +                      (33) 

The mass term of the improved Equation (32) comes from Lochak’s theory of 
the magnetic monopole [46]-[53] in the particular case where the Dirac Lagran-
gian is the linear approximation of the simplified Lagrangian density. The first 
improvement of this simplification is the resolution of the problem of the nega-
tive energies, because the positron is no longer associated with non-physical 
negative energy (see for instance [41] 1.5.3 and 1.5.6). Another improvement is 
the partial decoupling of the left and right spinors, the wave equation also reads: 

( ) 0
21

ˆ ˆ0 v ; v : .
D

qA mφσ φ
ρ

= ∇ + + =                 (34) 

The momentum-energy of the electron vqA m+  is the sum of an electro-
magnetic part qA  and an inertial part vm . Hence the improved equation may 
be generalized to all fermions, it is compatible with the entire gauge group of the 
Standard Model, ( ) ( ) ( )1 2 3U SU SU× × , and it is also compatible with the rela-
tivistic invariance of general relativity. This is the reason for the appearance of 
the Christoffel symbols that we will calculate from the solutions of the improved 
equation in the case of the hydrogen atom. 

4. Resolution in the Case of the Hydrogen Atom 

The Dirac equation was solved as early as 1928 by the mathematician C. G. Dar-
win using the previous resolution of the non-relativistic equation for an electron 
with spin found by Pauli. This method used kinetic momentum operators, which 
is ill-suited to the resolution of a non-linear equation like (32). Fortunately 
another method exists, found more recently by H. Krüger [54], who discovered a 
very astute method of separation of variables in spherical coordinates. This uses: 

1 2 3sin cos ;  sin sin ;  cos .x r x r x rθ ϕ θ ϕ θ= = =           (35) 

We use the following notations: 

1 23 1 2 31 2 3 12 3: ;  : ;  : ,i i i i i iσ σ σ σ σ σ= = = = = =            (36) 

( )3 2
1

12 2 2ˆ: e e ;  : sin ,
i i

S r S
ϕ θ

θ
− − −−= Ω = Ω =               (37) 

3 1 2
1 1: .

sinr r rθ ϕσ σ σ
θ

′∂ = ∂ + ∂ + ∂
�

                (38) 

H. Krüger obtained the remarkable identity: 
1,−′∂ = Ω∂ Ω

� �
                         (39) 

which with: 

0 0 3 1 2
1 1: ,

sinr r rθ ϕσ σ σ
θ

 ′ ′∇ = ∂ − ∂ = ∂ − ∂ + ∂ + ∂ 
 

�
          (40) 

gives also: 
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1 1.− −′Ω ∇ = ∇ Ω                         (41) 

For either the Dirac equation or the improved equation, to obtain the separa-
tion of the temporal variable 0x ct=  and the angular variable ϕ  from the 
radial variable r and the other angular variable θ , we let: 

3 0e ; ,iX Exζφ ζ λϕ δ= Ω = − +                   (42) 

where X is a function, with value in the Pauli algebra, of only r and θ , cE�  is 
the energy of the electron, and δ  is an arbitrary phase that plays no role here 
because the wave equations are electric gauge invariant. We get: 

3 31 1 ˆ ˆe ; e .i iX Xζ ζφ φ− −Ω = Ω =                    (43) 

For the ρ  density that satisfies (7) we also have: 

( ) ( ) ( ) ( )3e det det det det e ,ii X ζβρ φ= = Ω              (44) 

( ) ( ) ( ) ( )
312

2

det
det sin ; det e 1; e .

sin
i i X

r
r

ζ βθ ρ
θ

−−Ω = = =          (45) 

Then if we let: 

( )e : det ,Xi
X Xβρ =                       (46) 

we get: 

2  ;  .
sin

X
Xr

ρ
ρ β β

θ
= =                      (47) 

Then the Yvon-Takabayasi angle depends neither on the time nor on the ϕ  
angle. It depends only on r and θ . Therefore the separation of variables can be-
gin similarly for both the Dirac equation and the improved equation. We have: 

31
0 3 1 2

1 1ˆ ˆe ,
sin

i
r X

r r
ζ

θ ϕφ σ σ σ
θ

−    ′∇ Ω = ∂ − ∂ − ∂ − ∂    
        (48) 

( ) ( ) ( )3 3 3 3
0 3

ˆ ˆ ˆ ˆe e ; e ei i i i
r rX EXi X Xζ ζ ζ ζ∂ = − ∂ = ∂            (49) 

( ) ( ) ( )3 3 3 3
3

ˆ ˆ ˆ ˆe e ; e e .i i i iX X X Xiζ ζ ζ ζ
θ θ ϕ λ∂ = ∂ ∂ =            (50) 

We then get: 

3
3 3 1 2 3

1ˆ ˆ ˆ ˆ ˆ e .
sin

i
rEXi X X Xi

r r
ζ

θ
λφ σ σ σ
θ

 ∇ = Ω − − ∂ − ∂ − 
 

       (51) 

For the hydrogen atom we have: 
2

0  ;  ,eqA qA
r c
α α= = − =

�
                   (52) 

where α  is the fine structure constant. We have: 

3 3
12 3 3 3

ˆ ˆ ˆ ˆe e .i iqA i Xi Xi
r r r

ζ ζα α αφσ φ  = − = − Ω = Ω − 
 

         (53) 

Also the improved Equation (32) becomes: 

3 3 1 2 3 3 3
1ˆ ˆ ˆ ˆ ˆ e 0.

sin
i

rEXi X X Xi Xi m Xi
r r r

β
θ

λ ασ σ σ
θ

−− − ∂ − ∂ − − + =     (54) 
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This means: 

3 3 1 2 3 3
1ˆ ˆ ˆ ˆ e ,

sin
i

rE Xi X X Xi m Xi
r r r

β
θ

α λσ σ σ
θ

− + + ∂ + ∂ + = 
 

      (55) 

while the Dirac equation gives: 

3 3 1 2 3 3
1ˆ ˆ ˆ ˆ .

sinrE Xi X X Xi mXi
r r rθ
α λσ σ σ

θ
 + + ∂ + ∂ + = 
 

        (56) 

Now we let: 

( )1 2
1 1 2 2

2 1

: ; det ,
R L

X X R L R L
R L

 −
= = + 
 

              (57) 

where 1 2 1 2, , ,R R L L  are functions with complex values of the real variables r 
and θ . We get: 

† †1 2 1 2 1 2

2 1 2 1 2 1

ˆ ˆ; ; .
L R R R L L

X X X X
L R L L R R

     −
= = = =     

− −     
      (58) 

Therefore the improved equation reads: 

2 11 2 1 2

1 22 1 2 1

2 1 1 2

1 2 2 1

1

e .
sin

r r

r r

i

L RL R L R
i E

r r L RL R L R

L R mR mL
i

r L R mR mL

θ θ

θ θ

β

α

λ
θ

−

     ∂ ∂∂ −∂ + + +       ∂ −∂− −∂ −∂      
   −

+ =   
− − −   

      (59) 

Conjugating the equations containing the conjugates we obtain the system: 

1 1 2 1

2 2 1 2

2 2 1 2

1 1 2 1

1 e ,
sin

1 e ,
sin

1 e ,
sin

1 e .
sin

i
r

i
r

i
r

i
r

i E L L L im R
r r

i E R R R im L
r r

i E L L L im R
r r

i E R R R im L
r r

β
θ

β
θ

β
θ

β
θ

α λ
θ

α λ
θ

α λ
θ

α λ
θ

−

−

   + + ∂ + ∂ + =   
   
   − + − ∂ + ∂ − = −   
   

   + − ∂ + ∂ − =   
   
   − + + ∂ + ∂ + = −   
   

        (60) 

Next we let: 

1 2 2 1: ;  : ;  : ;  : ,R AU L BV R CV L DU= = = =              (61) 

where A, B, C and D are functions of r while U and V are functions of θ . The 
(60) system becomes: 

1 e ,
sin

1 e ,
sin

1 e ,
sin

1 e .
sin

i

i

i

i

i E DU D U V V B im AU
r r

i E CV C V U U A im BV
r r

i E BV B V U U D im CV
r r

i E AU A U V V C im DU
r r

β

β

β

β

α λ
θ

α λ
θ

α λ
θ

α λ
θ

−

−

   ′ ′+ + + + =   
   
   ′ ′− + − + − = −   
   

   ′ ′+ − + − =   
   
   ′ ′− + + + + = −   
   

       (62) 
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Then using a κ  constant satisfying: 

;  ,
sin sin

U U V V V Uλ λκ κ
θ θ

′ ′− = − + =               (63) 

the (62) system becomes: 

e

e

e

e

i

i

i

i

i E D D B im A
r r

i E C C A im B
r r

i E B B D im C
r r

i E A A C im D
r r

β

β

β

β

α κ

α κ

α κ

α κ

−

−

  ′+ + + = 
 
  ′− + − − = − 
 

  ′+ − − = 
 
  ′− + + + = − 
 

                (64) 

5. Christoffel Symbols 

We need to calculate ( )ln ρ∇  and the † , 1, 2,3kS k∇ =  terms. We use: 

( )
( ) ( )

( ) ( )
( )†

† † †
3

3 3† † †

ˆ ˆ ˆ1ln ; ,ˆ ˆ ˆ2
i

φφ φφ φσ φ
ρ

φφ φφ φφ

  ∇ ∇ ∇   ′∇ = + + =  
   

       (65) 

( )
( ) ( ) †

† †
3 3

3 † †

ˆ ˆ1
ˆ ˆ2

φσ φ φσ φ

φφ φφ

  ∇ ∇  = +  
   

                (66) 

( ) ( ) ( ) ( )† † † † † †
3 3

ˆ ˆ ˆ; ,XX S X Xφφ σ′ ′∇ = Ω∇ Ω ∇ = Ω∇ Ω          (67) 

( ) ( )32† † † †
1 2 1 2

ˆe .iS iS X i Xζ σ σ ′∇ ± = Ω∇ ± Ω              (68) 

These terms have the form: 

( ) ( )† † † ,M M M′ ′ ′Ω∇ Ω = Ω ∇ Ω +Ω∇ Ω               (69) 

where the underlined refers to: 

† † † † †
0 3 1 2

1 1 .
sinrM M M M M

r rθ ϕσ σ σ
θ

′∇ Ω = ∂ Ω − ∂ Ω − ∂ Ω − ∂ Ω     (70) 

We let 
u v

M
w s
 

=  
 

, we then get: 

† † † †
3 1 2

1 10
sinrM M M M

r rθ ϕσ σ σ
θ

′∇ Ω = − ∂ Ω − ∂ Ω − ∂ Ω       (71) 

( )

( )

1
2 2

1
2 2

sin

cos 1
2sin 2sin

1 cos
2 2sin

u v
r S

w s

w s
r S

u v

θ

θ
θθ

θ
θ

−−

−−

 
=  − − 

 − − − 
 +  − −    − − 
 

†

†
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( )

( )
( )

3
2 2

1
2 2

0cos sin 2sin
sin cos 0

2
cos
sinsin .                       (72)

cos
sin

i
iw is

r S
iu iv i

u s v s
r S

w u s u

θ θ
θ

θ θ

θ
θθ

θ
θ

−−

−−

 
   

+    − − −     − 
 

 + + 
 =
 − + − + 
 

†

†  

If † †
0

ˆ ˆM XX X Xσ= =  and since: 

( )† †ˆ det e ; 0,i
XXX X u s v wβρ −= = = = = =             (73) 

we get: 

( )
2 2† †

†0
3 1 2 2†

ˆ 2 cos ; .
sin sin sindet

X
DAU BCVX X

r r r rX
σ ρθσ σ ρ

θ θ θ

+′∇ Ω  = + Ω = =  
  (74) 

5.1. Terms with Index 0 and 3 

For the 0σ  case we have: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

† † † † † †

† † † ††

†
† †

3 1†

e e e
ln

e e
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ 2 cos .ˆ sin

i i i

i i

i
i

XX XX XX

XX XX

XX
S S S S

r rXX

β β β

β β

ρ ρ β ρ
ρ β

ρ ρ

φφ

φφ

θσ σ
θ

− − −

− −

∇ ∇ − ∇
= = ∇ − ∇

′ ′ ′∇ Ω∇ Ω Ω∇ Ω +Ω∇ Ω
= = =

Ω Ω ΩΩ

′∇  = + +  

   (75) 

Next we have: 

( ) ( )
( )
( )

† 2 2
3 1

2 2 2 2
3

1

1ˆ

2

rXX DAU BCV
r

D AU DA U B CV BC V

DAUU BCVV
r

θσ σ

σ

σ

 ′∇ = − ∂ + ∂ + 
 

′ ′ ′ ′= − + + +

′ ′− +

        (76) 

Using (63) and (64) we obtain: 

e ,iA i E A C im D
r r

βα κ − ′ = − + − + 
   

e ,iB i E B D im C
r r

βα κ − ′ = + − − 
   

e iC i E C A im B
r r

βα κ − ′ = + − − 
 

                (77) 

e ,iD i E D B im A
r r

βα κ − ′ = − + − + 
   

; .
sin sin

U U V V V Uλ λκ κ
θ θ

′ ′= − = − +               (78) 
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We let: 

( ) ( )
( )

( )
( )

2 2

1 1 2 ††
: ; :

detdet

BB CC V AA DD U DA BC UV
r p ip

XX

+ − + −
= + =     (79) 

( )( )
( ) ( )

2 2 2 2

1 2 1 2† †
: ; : .

det det

DC BA U V DAU BCVq iq s is
X X

+ + −
+ = + =

 
These functions 1 1 2 1 2 1 2, , , , , ,r p p q q s s  depend on r and θ , with values in  . 

We get: 

( )
( ) ( )

( ) ( )

†

1 2 1 2 1 3†

1 2 1 2 1

ˆ
2ˆ

2 2 .
sin

XX
i E s is q iq imr

r rXX

s is p ip
r r

α κ σ

λ κ σ
θ

′∇   = − + + + + +    
 + − + + +  

       (80) 

We then get: 

( ) ( ) ( )

( ) ( )

†
1 2 1 2 1

1 2 1 2 1 3

2 2 cosln
sin sin

22 .

S i S s is p ip
r r r

i E s is q iq imr
r r r

λ κ θρ β σ
θ θ

α κ σ

 ∇ − ∇ = − + + + +     
  + + + + + + +    

 (81) 

This gives: 

( ) †
1 1 1 1 3

2 2 cos 2ln
sin sin

S s p q S
r r r r r

λ κ θ κρ σ σ
θ θ

    ∇ = − + + + +        
    (82) 

( ) † 0
0 0 0 0ln ; : ; 0,S S µ

µρ σ∇ = = =  
�
K K K K              (83) 

2 1 31
0 0 1 0 1 2

cos 2 2 20; ; 2 .
sin

s p q E s
r r r r r
θ λ κ κ α

θ
−  = = + = + − + 

 
K K K

 

We let: 

( ) ( )
( )

( )
( )

2 2

2 3† †
: ; : ,

det det

AA DD U BB CC V DB AC UV
r r

X X

+ + + ℜ −
= =

 

( )
( )

( )( )
( )

2 2

4 1 2 ††
: ; : ,

detdet

DC BA U VBD CA UV
r v iv

XX

− −ℑ −
= + =         (84) 

( )
( )

( )
( )1 2 1 2† †

: ; :
det det

DC BA UV DC BA UV
t it u iu

X X

− +
+ = + =

 
where 2 3 4 1 2 1 2 1 2, , , , , , , ,r r r v v t t u u  depend on r and θ , with values in  . The 

3σ  case gives: 

† 1 1 2 2 1 2
3

2 1 1 1 2 2

2ˆ: ,
2

L R L R L R
M X X

L R L R L R
σ

 −
= =  

− + 
           (85) 

1 1 2 2 1 2 2 1; 2 ; 2 ; ,u L R L R v L R w L R s u= − = = = −            (86) 

Using (72) we get: 
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( )
1

2 2

cos0
sinsin

cos 0
sin

v u
M r S

w u

θ
θθ

θ
θ

−−

 − 
′  ∇ Ω =

 − + 
 

† †  

( )

( ) ( ) ( )

1 2 2 1
1†

1 1 2 2 †
†

1 2 2 1 2 2 1 1
2 2

1 1 2 2 1 1 2 2

†
1 2 1 1 2 2 1 2 2

1
cosdet
sin

1 cos .
sin

L R L R
L R L RM S S

r L R L R L R L Ri i
L R L R L R L R

S t it u iu i s is i S
r

σ

θφ σ σ
θ

θσ σ σ
θ

 −
+ +′Ω∇ Ω  =

 + −
+ + 

+ +  
 = + + + − +  

  (87) 

Next we have the following, with the radial and angular functions previously 
defined in (61): 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

2 2
†

3 2 2

2 2 3

2 2 3

1 2

1

1
2ˆ

1 2

12
2

12
2

r

r

DAU BCV DCUVrX X
BAUV BCV DAU

r

DA U BC V BA UV
r

DA U BC V DC UV
r

DA BCUU VV BA UV i
r r

DA BCUU VV DC UV
r r

θ

θ

σ

σ

σ

σ σ

σ

 −∂ − ∂  − ′∇ =     −  − ∂ ∂ 
 

+ ′ ′ ′= − + −  
− ′ ′ ′+ − + −  

 ′′ ′+ − + + − 
 
 ′′ ′+ + − − 
 

( )2 .iσ+

  (88) 

( ) ( ) ( ) ( )

( )( ) ( )

( ) ( )

† 2 2
3

3 1

2

ˆ

1

2 .

BA DCX X DA U BC V UV
r

DC BA UV BA DC UV
r

DAUU BCVV BA DC UV i
r

σ

σ σ

σ

+′ ′ ′′∇ = − + −

′′+ − + −

 ′′ ′+ − − +  

     (89) 

And we get, using (77) and (78): 

( )
( )

†
3

2 1 2 3 3 2†

4 2

ˆ
2 2ˆ

2 2 .
sin

X X
i E imr v iv mr

r rXX

mr i
r

σ α κ σ σ

λ σ
θ

′∇  = + − + + + 
 
 + + 
 

      (90) 

We then get: 

( )
( )

( )

( )

†
3† 1 2

2 1 3 2†

2 11 2
4 2

1 2 3

ˆ
2 2

det

cos22
sin sin

,

t itS S i E imr mr
r r

s isiu uiimr
r r r

v iv
r

φσ φ α σ σ
φ

θλ σ
θ θ

κ σ

∇ + = + − + + 
 

− −
+ + + + 
 

+ +

    (91) 
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( )
( )
( )

( )
( )

†
† †

3 3 †
33 † †

†1 2 2
1 2 1 3

ˆ ˆ1
2 det det

cos
sin

S S

t u sS v S
r r r r

φσ φ φσ φ

φ φ

θ κσ σ σ
θ

  ∇ ∇  = + =  
   
  = + − + +  

  

 K
          (92) 

0 1 2 31 2 2
3 3 3 3 3 1

cos0; ; 2 ; .
sin

t u smr v
r r r r

θ κ
θ

= = = − + =K K K K         (93) 

5.2. Calculation of the Currents 

We have: 

3 3
3 3

†
† † † †

2

e e
e e .

sin

i i
i i X X

D X X S S
r

ζ ζ
µζ ζ

µ µ µ

σ
φσ φ σ

θ

−
−= = Ω Ω =       (94) 

We then let, for any space-time vector  : 

3 3† †: ; d : e e .i iS S X Xζ ζ
µ µσ

−= =V                 (95) 

We then have: 

( ) ( )

† † † †

† † †

ˆˆ ˆ ˆ2 d d

ˆˆd d 2d 2d 2d .

D D D S S S S S S S S

S S S S SS

µ µ µ µ µ

µ µ µ µ µ

⋅ = + = +

= + = ⋅ = ⋅ = ⋅

   V V

V V V V V
  (96) 

This allows us a simplification of the scalar product. We get: 

† 1 1 2 2 1 2 1 2
0

2 1 2 1 1 1 2 2

d ,
R R L L R R L L

XX
R R L L L L R R

 + −
= =  

− + 
             (97) 

0 3 1 2
0 0 1 1 2 2 0 0 1 2 1 2d d ; d d ,R R L L i R R L L+ = + − = −             (98) 
0 3 1 2
0 0 1 1 2 2 0 0 2 1 2 1d d ; d d .L L R R i R R L L− = + + = −             (99) 

Similarly we have: 

† 1 1 2 2 1 2 1 2
3 3

2 1 2 1 1 1 2 2

d ,
R R L L R R L L

X X
R R L L L L R R

σ
 − +

= =  
+ − + 

          (100) 

0 3 1 2
3 3 1 1 2 2 3 3 1 2 1 2d d ; d d ,R R L L i R R L L+ = − − = +            (101) 

0 3 1 2
3 3 1 1 2 2 3 3 2 1 2 1d d ; d d .L L R R i R R L L− = − + + = +            (102) 

Sum and difference of 0d  and 3d  are simple, which will be useful. We get: 

( ) † 1 1 1 2
0 3 3

2 1 2 2

d d 1 2 ,
R R R R

X X
R R R R

σ
 

+ = + =  
 

           (103) 

( ) † 2 2 1 2
0 3 3

2 1 1 1

d d 1 2 .
L L L L

X X
L L L L

σ
 −

− = − =  
− 

           (104) 

Next we have: 

( )3 1 2 1 12 † 2
1 2 1 2

2 2 2 1

d d e 2e ,i i R L R L
i X i X

R L R L
ζ ζσ σ

− 
+ = + =  − 

       (105) 
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( )32 † 2 2 1 2 2
1 2 1 2

1 1 1 2

d d e 2e .i i L R L R
i X i X

L R L R
ζ ζσ σ −  −

− = − =  
 

      (106) 

5.3. Calculation of 12 Christoffel Symbols 

We have: 

( ) ( )
0 0
0 0 3 33ln d ; d .D Dµ µ µ µ µ µρΓ = ⋅∇ = ⋅ Γ = ⋅ = ⋅K K        (107) 

We also get the symbols: 

( ) ( ) ( )
( ) ( ) ( )

0 0 1 1 1 2 2 2 3 3 3
30 33 0 3 3 0 3 3 0 3 3

1 2 3
1 2 2 1 3 1 2 3 1 1 2 2 3

d d d d d d

2 ,R R R R R R R R R R

Γ +Γ = − + − + − +

= − + − ℑ − −

K K K

K K K
   (108) 

( ) ( ) ( )
( ) ( ) ( )

0 0 1 1 1 2 2 2 3 3 3
30 33 0 3 3 0 3 3 0 3 3

1 2 3
1 2 2 1 3 2 1 3 1 1 2 2 3

d d d d d d

2L L L L L L L L L L

Γ −Γ = − − − − − −

= + + ℑ + −

K K K

K K K
    (109) 

( ) ( ) ( )
( ) ( )
( )

0 0 1 1 1 2 2 2 3 3 3
31 32 1 2 3 1 2 3 1 2 3

2 1 2 2
1 1 2 2 3 1 1 2 2 3

2 3
1 2 2 1 3

d d d d d d

e e

e .

i i

i

i i i i

R L R L i R L R L

R L R L

ζ ζ

ζ

Γ + Γ = − + − + − +

= − − + +

+ −

K K K

K K

K

      (110) 

We obtain also: 

( )( ) ( )
( )

( )
( )

†
† †† 3 3†

3 3 † †

2 1 1
2 3 1 4 2 2 3

ˆ ˆ
2 2

2 det det

2 cos
2 2 2

sin

SS qA S i S
i r

t s uE mr mr mr v
r r r r

φσ φ φσ φ α
φ φ

λ θ κσ σ σ
θ

  ∇ ∇  ′ ′= + = − −  
   

−   = − + + + + + +   
   

K
  (111) 

0 1 2
3 2 3 32 ; 2

tE mr mr
r

′ ′= − = +K K                 (112) 

2 31 1
3 4 3 2

2 cos2 ; .
sin sin

u smr v
r r r r

λ θ κ
θ θ

′ ′= + + − =K K
 

We then get from (15): 
1 0
2 32 d ,mµ µ µρδ ′Γ = − − ⋅K                    (113) 

( )
( ) ( )
( )

1
20 0 3

0
1 1 2 2 1 1 2 2 3

1 2
1 2 1 2 3 1 2 1 2 3

3
1 1 2 2 1 1 2 2 3

2 d
12
2

1 ,
2

m

m R R R R L L L L

R R L L R R L L

R R R R L L L L

ρ

ρ

′Γ = − − ⋅

′= − − + + +

′ ′+ℜ − + ℑ +

′+ − − +

K

K

K K

K

         (114) 

( )
( ) ( )
( )

1 0
23 3 3 1 1 2 2 1 1 2 2 3

1 2
1 2 1 2 3 1 2 1 2 3

0
1 1 2 2 1 1 2 2 3

1d
2

1 ,
2

R R R R L L L L

R R L L R R L L

R R R R L L L L

′ ′Γ = − ⋅ = − − − +

′ ′+ℜ + + ℑ +

′+ − − +

K K

K K

K
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( )
( ) ( )
( ) ( )

1 1
21 22 1 3 2 3

2 0 2 1
1 2 2 1 3 1 1 2 2 3

2 2 2 3
1 1 2 2 3 1 2 2 1 3

d d

e e

  e e .

i i

i i

i i

R L R L R L R L

i R L R L R L R L

ζ ζ

ζ ζ

′ ′Γ + Γ = − ⋅ + ⋅

′ ′= − + + −

′ ′− + + − −

K K

K K

K K

    (115) 

5.4. Terms with Index 1 and 2 

Now we consider: 

( ) ( )3 32 2† †
1 2 1 2

ˆ ˆ: e ; : e ,i iM X i X M X i Xζ ζσ σ σ σ+ −= + = −        (116) 

This gives: 

( )
2

† 2 2 2 2
1 2 1 1 2 1 2 22

e cos2
sinsin

i

M L L i L L L L S
r

ζ θσ σ
θθ

+   ′∇ Ω = + + − +    
†   (117) 

( )
2

† 2 2 2 2
1 2 1 1 2 1 2 22

e cos2 .
sinsin

i

M R R i R R R R S
r

ζ θσ σ
θθ

−
−   ′∇ Ω = − + + − +    

†  (118) 

Then we have: 

� ( )
�

( )

( ) ( )

( )

( )

3 3

3 3

3

† † †
1 2 1 2

† ††

†2 † † 2 †
1 2 1 2

† † † †

2 †
1 2

†

2 2 2 2 2
1 2 1 1 2 1 2 2

ˆe e
= ˆ

ˆ ˆe e
ˆ ˆ

ˆe
ˆ

1 cos2e 2
sin

   

i i

i i

i

i

i X i X

XX

X i X X i X

XX XX

X i X
S

XX

L L L L L L i
r

ζ ζ

ζ ζ

ζ

ζ

φ σ σ φ σ σ

φφ

σ σ σ σ

σ σ

θσ σ
θ

−   ′∇ + Ω∇ + Ω   
Ω Ω

 ′ ′Ω∇ + Ω Ω∇ + Ω = +
Ω Ω Ω Ω


  ′∇ + =




  + + − +   + †
†

.ˆ S
XX



 




    (119) 

So we get: 

( ) ( )
( )

( ) ( )

( )

† †† † † †
1 2 1 21 2 1 2

††

2 2 2 2 2
1 2 1 1 2 1 2 2

†
† †

ˆ ˆ22
ˆdet

1 cos2e 22 sin
.ˆ ˆ

i

i iqA iS iS iqA S iS

L L L L L L iM i M rrS S
XX XX

ζ

φ σ σ φ φ σ σ φ

φφφ

θα σ σ
θ

+ +

 ∇ + + +∇ + + +  =

   + + − +′  ∇ −     = +
 
 
 

 (120) 

We calculate now: 

( )32 †
0 3 1 2 1 2

2 2
2

2 2

2
1 1 ˆe 2

sin

4 e

i
r

i

M iqAM

X i X i M
r r r

BDUV D U
i

r B V BDUV

ζ
θ ϕ

ζ

ασ σ σ σ σ
θ

α

+ +

+

′∇ +

   = ∂ − ∂ − ∂ − ∂ + −    
 − 

= −    −   

 
 

 (121) 

https://doi.org/10.4236/jmp.2021.124033


C. Daviau, J. Bertrand 
 

 

DOI: 10.4236/jmp.2021.124033 497 Journal of Modern Physics 
 

( )( ) ( )2 2 2 2
0

12e 2e ,
sin

i i
r

iDBUV B V
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Similarly we have: 
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We calculate now: 
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This gives: 

( )
( )

( )
( )

† †
1 2 1 2 †

† †

ˆ ˆ
2

det det

i i
iqA S S

φ σ σ φ φ σ σ φ

φ φ
− −

− −

 ∇ − ′ ′−    − =  ′ ′ 

 
 

     (137) 

( )
( )

( )

2

†
2 2

2 e
2e ,
det

i
i i E AC im DC AB

UV r
X A C

r

β
ζ

α

κ

−
−

−

  − + + −    ′ =
 

−  

        (138) 

( )
( )

( )

2 22

†

22e ,
det e

i

i

i E AC A CUV r r
X im DC AB

ζ

β

α κ

−
−

  + − −   ′ =  
 + − 

           (139) 

( )
( )2 2 2

2

2 2†

2 e
2e ,

2 cosdet
sin

i
i AC U V im DAU

r
A UX ACUV

r r

β
ζ

κ

λ θ
θ

−
−

−

 − + + 
′  =

− − +  

         (140) 

( )
( )2 2 2

2

2 2†

2 e
2e .

2 cosdet
sin

i
i AC U V im BCV

r
C VX ACUV

r r

β
ζ

κ

λ θ
θ

−
−

−

 − + + 
′  =

+ − +  

         (141) 

5.5. Calculation of 16 Christoffel Symbols 

We finally have all the pieces to finish the calculation of the Christoffel symbols. 
We encountered in (21) to (26) left and right terms: 
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This allows us to calculate the four ( )0 3 0 2
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This allows to calculate the four ( )0 3 0 2
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We let: 

( ) ( )0 30 0 2 3 3 2
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This gives: 
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These equations give for instance: 
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The same calculation must be made for the right terms: 
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We let: 

( ) ( )0 32 0 0 2 3 3
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( ) ( )1 22 1 1 2 1 1
1 1 2 2 1 2e : e ; e : e .i ii ii iδ δζ ζρ ρ′ ′′ ′= + = +R R R R          (173) 

This gives: 
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( ) ( )1 1
1 1 1 2 1 1cos 2 ; sin 2ρ ζ δ ρ ζ δ′ ′ ′ ′= − + = − +R R           (175) 

( ) ( )2 2
1 2 2 2 2 2cos 2 ; sin 2ρ ζ δ ρ ζ δ′ ′ ′ ′= − − + = − +R R          (176) 

( ) ( )3 3
1 3 3 2 3 3cos 2 ; sin 2ρ ζ δ ρ ζ δ′ ′ ′ ′= − + = − +R R           (177) 

Then (166) and (167) read: 
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6. Torsion and Symmetric Part of the Connection 

The 64 Christoffel symbols may be calculated from the 4 7 28× =  independent 
terms, using the 36 relations described in (16), (17) and (18): 

0 0 1 0
0 0 3 3 2 3d ; d ; d 2mµ µ µ µ µ µ µρδ′Γ = ⋅ Γ = ⋅ Γ = − ⋅ −K K K         (180) 

0 2 31 1 1 1
1 1d 2 ; d

2 2
mµ µ µ µ µρδ

+ −
Γ = ⋅ + Γ = ⋅

L R L R           (181) 

0 1 22 2 2 2
2 3d 2 ; d .

2 2
mµ µ µ µ µρδ

− − −
Γ = ⋅ − Γ = ⋅

L R L R          (182) 

The torsion tensor is usually defined as: 

( )1: ; 01,02,03,12,23,31, 0,1,2,3.
2jk jk kj jkµ µ µ µ= Γ −Γ = =T      (183) 
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This tensor is then antisymmetric: ( :kj jk
µ µ= −T T ). Here, for instance, eight 

terms contain the K  space-time vectors, without other terms: 

[ ]0 0
30 03 3 0 0 3

1 d d ,
2

= − = − ⋅ + ⋅T T K K                (184) 

[ ]1 1
12 21 1 3 2 0

1 d d ,
2

′= − = ⋅ + ⋅T T K K                (185) 

[ ]2 2
12 21 2 3 1 0

1 d d ,
2

′= − = ⋅ − ⋅T T K K                (186) 

[ ]3 3
30 03 0 0 3 3

1 d d ,
2

= − = ⋅ − ⋅T T K K                (187) 

Rodichev [55] studied the torsion in the frame of a Euclidean geometry with 
torsion. The present study acts in the frame of a space-time manifold, not Eucli-
dean, so we get very different properties. In space-time the torsion tensor has 24 
independent components while the connection contains 28 independent Chris-
toffel symbols. We obtain these 28 symbols from the 4 8 32× =  functions naµ  
defining a dilator M (see ([41] 4.1.2), satisfying: 

( )0 3 71 dx ,j j
j jM a a a i a iµ

µ µ µ µσ σ+= + + + +              (188) 

where we have: 
0 1 2 3 0
0 1 2 3 2 ,aµ µ µ µ µ= = = =Γ Γ Γ Γ                 (189) 

1 0 1 2 0 2 3 0 3
0 1 0 2 0 32 ;  2 ;  2 ,a a aµ µ µ µ µ µ µ µ µ= = = = = =Γ Γ Γ Γ Γ Γ       (190) 

2 3 4 3 1 5 1 2 6
3 2 1 3 2 12 ;  2 ;  2 .a a aµ µ µ µ µ µ µ µ µ= − = = − = = − =Γ Γ Γ Γ Γ Γ      (191) 

7. Concluding Remarks 

The principle of equivalence between inertia and gravitation being simply the 
equality between the ρ

µνΓ  and the ρ
µνΓ , the solutions studied here show that all 

28 functions come simply from scalar products of the four contravariant Dµ  by 
the seven covariant vectors: 

† † †
0 0 3 3 6 3: ; : ; : ,S S S S S S′= = =V K V K V K             (192) 

† † † †
1 1 1 1 2 2 2 22 : ; 2 : ; 2 : ; 2 : .S S S S S S S S= = = =   L R L R  

These vectors allow us to obtain all Christoffel symbols as scalar products: 
0 1 2 3 0
0 1 2 3 02 ,a Dµ µ µ µ µ µΓ = Γ = Γ = Γ = = ⋅V              (193) 

3 0 3
0 3 32 ,a Dµ µ µ µΓ = Γ = = ⋅V                   (194) 

1 2 6 0
2 1 62 2 ,a D mµ µ µ µ µρδΓ = −Γ = = ⋅ −V               (195) 

while the 32 other symbols use the right and left vectors: 

( )1 0 1 2
0 1 1 12 2 ,a D mµ µ µ µ µρδΓ = Γ = = ⋅ + +              (196) 

( )2 0 2 1
0 2 2 22 2 ,a D mµ µ µ µ µρδΓ = Γ = = ⋅ − −              (197) 
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( )2 3 4
3 2 2 22 ,a Dµ µ µ µΓ = −Γ = = ⋅ − −                (198) 

( )3 1 5
1 3 1 12 .a Dµ µ µ µΓ = −Γ = = ⋅ −                 (199) 

The chiral structure of the connection appears here, from the fact that three 
definitions only act with indexes 0 and 3 while four definitions act with the left 
and right vectors. Moreover only the symbols containing the three indexes 1, 2, 
0, contain the mass term 2mρ . This chirality is also linked to the electric gauge 
transformation, which acts everywhere in quantum mechanics, even in the 
non-relativistic case. It induces a rotation in the 1-2 plane, in the direction from 
1 to 2: the rotation transforming 1 into 2 transforms 2 into −1. This partially re-
mains in non-relativistic quantum mechanics, where the conservation of the 
probability density still acts. 

The previous calculation must be completed by the examination of the differ-
ent cases corresponding to the different quantum numbers characterizing the 
electron states. This will be carried out in the second part of this work. These states 
are different first from the sign of the κ  number. This number is present in the  
previous calculation, not only by the value of E which contains 2κ , but also 

directly in the 
r
κ  terms, and also in the λ  terms: the values of λ  are 

, 1, , 1,j j j j− − + −�  with 1
2

j κ= − . The linking of the states with 0κ >  to  

the states with 0κ <  is not a one-to-one link: the other quantum numbers are 
the integer degree 1n  of angular polynomial functions and the integer degree 

2n  of radial polynomial functions, and there is no state with 0κ <  and 

2 0n = . Consequently ( )1+n n  states exist with 0κ >  and only ( )1−n n  
states with 0κ < , for each principal quantum number n . The symmetry be-
tween these two kinds of states is then a false symmetry. This mainly comes from 
the property demonstrated in the next appendix: even if Gegenbauer’s polyno-
mials are different in the cases 0κ >  and 0κ < , the angular functions U and 
V encountered in the previous calculation are exactly proportional. The result of 
this similarity is the very popular Pauli’s tale of the spin-up, spin-down states 
which doubles the 2n  number issued from the spectroscopy and also from the 
Schrödinger wave equation. 

It is only a tale, even if ( ) ( ) 21 1 2+ + − =n n n n n , as may be seen in our pre-
vious calculation: the spin effect is much more complicated. The λ  factor (with 
half-integer value) present in the 0xEζ λϕ δ= − +  electric phase of the elec-
tron wave is doubled in all the 2ζ  terms, but is even quadrupled in the 

( )2e cos 2i
n

ζ ζ δ+  terms in (163). It then happens that space-time turns more 
rapidly than the wave (or the wave turns less rapidly than the space time). 
Space-time geometry defined by the Christoffel symbols is animated not only by 
waves with a 2ζ  phase, but also by waves with a 4ζ  phase. This kind of 
phase was first encountered in general relativity as waves with spin 2. Our calcu-
lation shows that it is linked to the quantum wave of the electron, as suspected 
by Feynman [56]. 
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Appendix: Angular Functions 

The angular functions are calculated from the auxiliary ( )C θ  function using 
the differential equation of Gegenbauer’s polynomials (see [41] C.2): 

( ) 2

0

1 1
2 2 sin ,
1 2!
2

nn n

n

n

C
n

λ κ λ κ
θθ

λ

∞

=

   − − + +        =     + 
 

∑          (200) 

where κ  is any integer not equal to zero. This condition on κ  results from 
the necessity of the normalization of the φ  wave. We first consider the case 

0κ >  and 0λ >  for which we must have 1 3 1, , ,
2 2 2

λ κ= −�  (for other val-

ues of λ  and if 0κ =  the φ  function is ill-defined): 

( ) 2

0

1 1
2 2 sin ,
1 2!
2

nn n

n

n

C
n

λ κ λ κ
θθ

λ

∞

=

   − − + +        =     + 
 

∑          (201) 

with: 

( ) ( ) ( ) ( ) ( )0 1 1: 1; : ; : 1 .na a a a a a a n
+

= = = + +�           (202) 

We then have: 

( )( )
1 1
2

1 1 2 1 0 0.
2 2λ κ

λ κ λ κ
− + + +

   − − = − − − − =   
   

�         (203) 

And any other term with upper n is also null. Then the infinite sum is reduced 
to: 

( )
1
2

2

0

1 1
2 2 sin ,
1 2!
2

n
nn n

n

n

C
n

κ λ λ κ λ κ
θθ

λ

= − +

=

   − − + +        =     + 
 

∑         (204) 

whose derivative is: 

( )
1
2

2 1

1

1 1
2 2cos sin .
12 2!
2
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n

n

C n
n

κ λ λ κ λ κ
θ θθ

λ

= − +

−

=

   − − + +         ′ =        + 
 

∑    (205) 

All angular functions satisfy: 

( )
1sin cos ,

2 2 2sin
U C Cλ

θ θκ λ
θ

      ′= − − +            
         (206) 

( )
1cos sin .

2 2 2sin
V C Cλ

θ θκ λ
θ

      ′= + − +            
         (207) 

Since the term of C′  with rank 0 is null from the n factor: 
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The last term of this sum is null, as it is a difference of two equal terms. Then 
the sum contains one term less and we obtain: 
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And we have: 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

1 1

1 1 1 .
n

n

a a n a a a n a n

a a a n a n a a

+ = + + − +  
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�

�
      (210) 

which implies: 
1 1 1 1 .
2 2 2 2n n

n κ λ λ κ λ κ λ κ       − − + − − = − − − +              
     (211) 

We then finally obtain: 

( )

1
2

2

0

1 1
2 21 cos sin .
12 2 2sin !
2

n
nn n

n

n

U

n

κ λ

λ

λ κ λ κ
θ θλ κ

θ λ

= − −

=

   − + + +           = − −           + 
 

∑  (212) 

Next for V we have: 

( )

1
2

2 2 1

0

1
2

2 1

0

1 1
2 21 sin sin
12 2sin !
2

1 1
2 21 sin
12 2!
2

n
nn n

n

n

n
nn n

n

n

V n
n

n

κ λ

λ

κ λ

λ κ λ κ
θ θ

θ λ

λ κ λ κ
θκ λ

λ

= − +

−

=

= − +

+

=

   − − + +          = −            + 
 

   − − + +         + + −       + 
 

∑

∑

 (213) 

Therefore we have: 

( )

1
2

2 1

1

1
2

2 1

0

1 1
2 2 sin
1 2sin !
2

1 1
2 21 sin
12 2!
2

n
nn n

n

n

n
nn n

n

n

V n
n

n
n

κ λ

λ

κ λ

λ κ λ κ
θ

θ λ

λ κ λ κ
θκ λ

λ

= − +

−

=

= − +

+

=

   − − + +        =     + 
 

   − − + +         + − + + −       + 
 

∑

∑

 (214) 
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In the first sum we let 1n n′= +  while in the second sum we use the cancella-
tion of the last term, so we have one term less: 

( )

1
2

2 11 1

0

1

1
2

2 1

0

1 1
2 2 sin
1 2sin !
2
1 1
2 2 1 sin .
1 2 2!
2

n
nn n

n

n

n
nn n

n

n

V

n

n
n

κ λ

λ

κ λ

λ κ λ κ
θ

θ λ

λ κ λ κ
θκ λ

λ

′= − −
′+′ ′+ +

′=

′+

= − −

+

=

   − − + +        =     ′+ 
 

   − − + +          + − + + −        + 
 

∑

∑

 (215) 

In the first sum the n′  variable is replaced by n. In the second sum the 
1
2

n κ λ − + + − 
 

 factor gives also one term less and we obtain: 

( )

1
2

2 11 1

0

1

1
2

2 1

0

1 1
2 2 sin
1 2sin !
2
1 1
2 2 1 sin .
1 2 2!
2

n
nn n

n

n

n
nn n

n

n

V

n

n
n

κ λ

λ

κ λ

λ κ λ κ
θ

θ λ

λ κ λ κ
θκ λ

λ

= − −

++ +

=

+

= − −

+

=

   − − + +        =     + 
 

   − − + +          + − + + −        + 
 

∑

∑

 (216) 

And we have: 

1

1 1 1 ,
2 2 2n n

λ κ λ κ λ κ
+

    − − = − − − +    
    

           (217) 

1

1 1 1 ,
2 2 2n n

nλ κ λ κ λ κ
+

     + + = + + + + +     
     

          (218) 

1 1 1 1 .
2 2 2 2n n

nλ κ κ λ λ κ λ κ      − − − + + − = − − − − +      
      

     (219) 

Then we obtain: 

( )

1
2

0

2 1

1
2

2 1

0

1

1 1
2 21
12sin !
2

1
2 1 sin

1 2
2

1 1
2 21 sin .

12 2!
2

n
n n

n

n

n

n
nn n

n

n

V

n

n

n

n

κ λ

λ

κ λ

λ κ λ κ
λ κ

θ λ

λ κ θ

λ

λ κ λ κ
θκ λ κ

λ

= − −

=

+

= − −

+

=

+

   − + + +        = − −     + 
 

 + + +   × −   
  + +

 
   − + + +         = − −       + 

 

∑

∑

  (220) 

Consider now the case 0κ <  that means κ κ= − . Still for 0λ >  we have 
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now 1 3 1, , ,
2 2 2

λ κ= −� , and: 

( ) 2

0

1 1
2 2 sin
1 2!
2

nn n

n

n

C
n

λ κ λ κ
θθ

λ

∞

=

   + − − +        =     + 
 

∑          (221) 

Now it is the second factor which contains a negative integer and then this 
product cancels from some rank. Since this rank is (for a negative -a integer) the 
a rank, we have: 

( )
1
2

2

0

1 1
2 2 sin ,
1 2!
2

n
nn n

n

n

C
n

κ λ λ κ λ κ
θθ

λ

= − −

=

   + − − +        =     + 
 

∑        (222) 

We see that this sum has one term less than in the case 0κ > . We could ex-
pect that U and V should be very different from the functions previously calcu-
lated. Yet we will see that this is untrue. We have: 

( )
1
2

2 1

0

1 1
2 2cos sin
12 2!
2

n
nn n

n

n

C n
n

κ λ λ κ λ κ
θ θθ

λ

= − −

−

=

   + − − +         ′ =        + 
 

∑    (223) 

(206) gives for U: 

( )

1
2

2 1

0

1
2

2

0

1 1
2 2sin cos sin
12 2 2sin !
2

1 1
2 21 cos sin .
12 2 2!
2

n
nn n

n

n

n
nn n

n

n

U n
n

n

κ λ

λ

κ λ

λ κ λ κ
θ θ θ

θ λ

λ κ λ κ
θ θλ κ

λ

= − −

−

=

= − −

=

   + − − +           =            + 
 

   + − − +           + + −           + 
 

∑

∑

 

(224) 

Then distributing the product in the second sum, we have: 

( )

1
2

0

2

1cos
2 2sin

1 1
2 2 sin .
1 2!
2

n

n

nn n

n

U n

n

κ λ

λ

θ λ κ
θ

λ κ λ κ
θ

λ

= − −

=

   = + + −   
   

   + − − +        ×     + 
 

∑

        (225) 

And we have with (211): 

1 1 1 1 .
2 2 2 2n n

n λ κ λ κ λ κ λ κ     + + − + − = + − + +     
     

    (226) 

We then obtain: 
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( )

1
2

2

0

1 1
2 21 cos sin .
12 2 2sin !
2

n
nn n

n

n

U

n

κ λ

λ

λ κ λ κ
θ θλ κ

θ λ

= − −

=

   + + − +           = + −           + 
 

∑  

(227) 

Comparison with (212) indicates, for 0λ > : 

( ) ( )

1
2 .
1
2

U Uκ κ κ κ

λ κ

λ κ
= =−

+ −
=

− −
                 (228) 

Next for V we start from (207) which gives: 

( )

1
2

2 2 1

0

1
2

2 1

0

1 1
2 2cos sin
12 2sin !
2

1 1
2 21 sin .
12 2!
2

n
nn n

n

n

n
nn n

n

n

V n
n

n

κ λ

λ

κ λ

λ κ λ κ
θ θ

θ λ

λ κ λ κ
θλ κ

λ

= − −

−

=

= − −

+

=

   + − − +         =        + 
 

   + − − +         − + −       + 
 

∑

∑

 (229) 

The first sum splits into two sums by using ( ) ( )2 2cos 1 sina a= − : 

( )

1
2

2 1

0

1
2

2 1

0

1
2

0

1 1
2 2 sin
1 2sin !
2

1 1
2 2 sin
1 2!
2

1 1
2 21
12
2

n
nn n

n

n

n
nn n

n

n

n
n n

n

V n
n

n
n

κ λ

λ

κ λ

κ λ

λ κ λ κ
θ

θ λ

λ κ λ κ
θ

λ

λ κ λ κ
λ κ

λ

= − −

−

=

= − −

+

=

= − −

=

   + − − +        =     + 
 

   + − − +        −     + 
 

   + − − +        − + −    +


∑

∑

∑ 2 1sin .
2!

n

n

n

θ+  
   




 (230) 

The first sum begins truly with 1n =  and we let 1n n′= + . We group to-
gether the last two sums: 

( )

11
2

2 11 1

1 1

1

1
2

2 1

0

1 1
2 2 sin
1 2sin !
2

1 1
2 21 sin .
12 2!
2

n
nn n

n

n

nn n

n

n

V

n

n
n

κ λ

λ

κ λ

λ κ λ κ
θ

θ λ

λ κ λ κ
θλ κ

λ

′+ = − −
′+′ ′+ +

′+ =

′+

− −

+

=

   + − − +        =     ′+ 
 

   + − − +         − + + −       + 
 

∑

∑

 (231) 

In the first sum we replace n′  by n and we add a null term that changes 
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nothing. In the second sum we again use (211), this gives: 
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λ κ λ κ
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λ

= − −

++ +

=

+
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+

=

   + − − +        =     + 
 

   + + − +         − + −       + 
 

∑

∑

  (232) 

This implies: 
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2 1

1
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2 1
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1 1
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2

1
2 1 sin

1 2
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1 1
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n
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λ
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λ κ
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λ

λ κ λ κ
θκ λ κ

λ

= − −

=

+

= − −

+

=

+

   − + + +        = + −     + 
 

 − + +   × −   
  + +

 
   − + + +         = − + −       + 

 

∑

∑

 (233) 

Comparison with (220) proves: 

| 0 | 0 | 0 | 0

1
2 ;  
1
2

V V UV UVκ κ κ κ

λ κ

λ κ
> < > <

− −
= − = −

+ −
            (234) 
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Abstract 
We conjecture the existence of massless neutrinos that are in the line of 
Standard Model (unable to account for the neutrino mass) but have characte-
ristics that are not accounted for the Standard Model: they use a shorter radi-
al path than the photon and possess bosonic flavors, considered like bosons 
instead of fermions. We call this theory “neutrino temporal oscillation”. 
Faced with some experimental comparisons solar neutrinos, neutrinos from 
SN 1987A, cosmological neutrinos, the theory gives better results, explana-
tions and sense than the complicated theory of neutrino oscillations (trans-
formism). The deficit of detection of solar neutrinos would have been blindly 
attributed to the “neutrino oscillation” by physicists who quickly concluded 
that the neutrino and the photon follow the same transverse path. The 
“OPERA” experiment which measured the speed of neutrinos in 2011 re-
sulted, after a “superluminal” saga, in neutrino speeds consistent with the 
speed of light, in data that the three existing types of neutrinos cannot ex-
plain, with the final outcome of a fourth “sterile” neutrino with non-standard 
interaction. OPERA findings aren’t just in conflict with existing theory, but 
other measurements as well. For example, a study from the Kamiokande II 
experiment in Japan of the supernova SN1987A found that light and neutri-
nos that departed this exploded star arrived at Earth within hours of each 
other. Even though measurements of the neutrinos emitted by this supernova 
strongly suggest that their speeds differ from light by less than one part in a 
billion, the fact remains that two types of data were collected, and that only 
one was retained to be consistent with the existing theory. Thus, the OPERA 
observation is in conflicts with the result of SN1987A, which itself is highly 
doubtful. And what about the neutrinos and antineutrinos born during the 
big bang, except that they were never detected and there is nothing to indicate 
that their speed could be other than that of light. Neutrino physics seems sick, 
belief is transformed into evidence. The theory of “Neutrino temporal oscilla-
tion” shows hint that massless neutrinos can take a shortcut through the three 
spatial dimensions of the space-time that we know. It represents within the 
Standard Model an open window on a “new physics” that has a connection 
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with physical reality. 
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1. Introduction 
1.1. History of the Neutrino 

In 1930, Wolfgang Pauli rescues conservation of energy by hypothesizing an un-
seen particle that takes away energy missing from some radioactive decays. 
Enrico Fermi in 1933 formulates the theory of beta-decay incorporating Pauli’s 
particle, called the neutrino (little neutral one). Frederick Reines and Clyde Co-
wen first detect the neutrino in 1956 and at Brookhaven in 1962 the first accele-
rator beam of neutrinos proves the distinction between electron-neutrinos and 
muon-neutrinos. In 1969, Raymond Davis, Jr., first measures neutrinos from the 
Sun, using 600 tons of cleaning fluid in a mine in Homestake, S.D. The tau lep-
ton and b quark are discovered in 1975-1977, revealing a third generation of 
quarks and leptons. W and Z bosons are discovered at CERN in 1983: they are 
carriers of the weak force, which mediates neutrino reactions. The Z decay rate 
was measured at SLAC and CERN in 1989, showing there are only three active 
neutrino generations. In 1987, the IMB and Kamiokande proton decay experi-
ments detect 19 neutrinos from Supernova 1987A in the Large Magellanic Cloud 
[1]. 

1.2. The Theory of Neutrino Oscillations 

The theory of neutrino oscillations arises in the late 1990s. Neutrinos were found 
to have mass and a speed under the light speed after having thought the opposite 
for decades. Since then, neutrinos metamorphose: they shift among three known 
neutrino types. As they propagate at nearly the speed of light through space, the 
celestial bodies, or our body, they often change identities, oscillating between 
three varieties, or “flavors”, the electron, the muon and the tau. Quantum me-
chanics permits neutrinos to oscillate between flavors only if they have mass and 
if each flavor has a different mass. Super-K in 1998 assembles evidence of neu-
trino oscillation using atmospheric neutrinos [2]. 

1.3. Cosmic Mismatch Hints at the Existence of an Enormously 
Heavy Neutrino or a Lightly Sterile Neutrino 

All neutrinos are classified as leptons, meaning that they do not feel the strong 
force and, lacking electrical charge, they do not feel electromagnetic forces, ei-
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ther. That leaves the weak interaction and the force of gravity for the three 
known flavors. Neutrinos must be left-handed to feel the weak force, responsible 
for radioactive decay. Theorists know that they have mass (a rest mass referring 
to the mass that matter is made out) but not how much, that they come in at 
least three flavors but there may be more. They hint that a fourth type of hither-
to unseen neutrino exists. Even if particles physicists would prefer a new type of 
neutrino enormously heavy, theorists perceive them with a little bit of mass, 
enough to have the ability to swap flavors [3]. Very sensitive experiments have 
revealed that neutrinos do have a very small non-zero rest mass: in 2019, 
KATRIN (Karlsruhe Tritium Neutrino experiment) scientists estimated that the 
range for the rest mass of the neutrino is no larger than about 1 eV. Therefore, 
they travel at a speed very close to c but slightly lower. 

1.4. Neutrinos with Zero Rest Mass 

In 2007, an experiment on neutrinos created at Fermilab in Illinois and beamed 
through the Earth to the Soudan Mine in Minnesota showed that the neutrino 
speeds were consistent with the speed of light. Measurements of neutrinos emit-
ted from a supernova in the Large Magellanic Cloud in 1987, moreover, sug-
gested that their speeds differed from light by less than one part in a billion. This 
suggests the existence of neutrinos without rest mass, as originally planned. 
Once thought to be massless and to travel at the speed of light, the neutrinos can 
sail through walls and planets like wind through a screen door. By Einstein’s eq-
uation 2E mc= , a particle’s total energy or mass-energy includes the particle’s 
rest mass and momentum. When a nucleus goes through the process of beta de-
cay, the electrons that are emitted have a range of kinetic energies. This variation 
confirms that there is an extra particle in the mix. If neutrinos have a nonzero 
rest mass, then the very high end of the electron energy spectrum will be slightly 
distorted, and the highest electron energy will be less than the maximum possi-
ble energy by a very small amount—the tiny mass of the neutrino. So far, inves-
tigators have managed to observe only a non-significant distortion at the end of 
the energy spectrum. Therefore we still can consider that a moving neutrino’s 
mass-energy comes mainly from its momentum [4]. Neutrinos are massless in 
the Glashow-Salam-Weinberg Standard Model [5] [6] [7]. 

During the years 2009 to 2011, neutrino beams were fired repeatedly from 
CERN towards a detector in Italy’s Gran Sasso tunnel, some 4˚ south and 7˚ east 
of CERN, at a distance of 730 km, in the shape of short bunches of particles. 
Their time of flight (2.5 msec) was measured at high accuracy (ns) with caesium 
clocks. In 2011, the CNRS team found a deficit of ~57.8 ns compared with 
propagation at the speed of light, and announced a superluminal speed. In 2012, 
the Italian OPERA scientists reported that the neutrinos “respect the cosmic 
speed limit” and that there was an error in the speed measurement due to an in-
correctly screwed cable of the experiment’s fiber-optic timing system [8]. It 
turns out the master clock in charge of keeping time for the experiment was also 
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improperly calibrated. Ironically enough, this miscalibration would make the 
neutrinos appear to travel slower, but this error wasn’t large enough to cancel 
out the faulty cable. Accounting for these two sources of error eliminated the 
faster-than-light results. The difference between the measured and expected ar-
rival time of neutrinos (compared to the speed of light) was approximately 6.5 ± 
15 ns. Thus, the speed of neutrinos is consistent with the speed of light within 
the margin of error. It was the end of the apparently faster-than-light neutrino 
anomaly for most scientists. 

For some, it is always an open question. We agree that the speed of neutrinos 
is consistent with the speed of light. But the difference between the measured 
and expected arrival time of neutrinos, although it was greatly reduced com-
pared to the initial results (from ~57.8 ns to ~6.5 ± 7.4 ns), is still longer than the 
expected time of the neutrinos. This is an indication that even if there is no fast-
er-than-light neutrino speed, the neutrinos followed a shorter path and makes 
our theory plausible. 

Even though OPERA’s counter-expertise is convincing, its findings do not fall 
within the margin that would make the faster-than-light appearance indefensi-
ble. Often theorists take the results of some retests for granted because they 
reinforce their definitive conceptions of science. We have set out this point of 
view in the article Recycled Relativity [9]. In this regard, we present in Section 2 
an ad hoc formula for the CERN apparently superluminal neutrino while res-
pecting the principle of the speed limit of light. In Section 3 we submit the 
theory of neutrino temporal oscillation which incorporates the longitudinal 
wave. In section 4 we confront this theory with the experimental observations 
relating to the solar neutrino, the supernova 1987A and the cosmological neu-
trino. We suggest the new “bosonic” flavors. Discussion in Section 5: Analysis of 
the proposed theory where neutrinos at the speed of light follow a shortcut in 
space-time and of the current theory where massive neutrinos metamorphose by 
moving with a speed below the speed of light. Finally, we conclude in Section 6. 

2. Ad Hoc Formula for the CERN Apparent  
Superluminal Neutrinos 

Are we going to believe a measure of complacency? Recall that the physics is not 
completed, as well as those experiences, and we want to explore the hypothesis 
that neutrinos detected by Opera have apparently traveled faster than light, while 
respecting the inviolability of the speed of light which is the pivot of relativity. 
We suggest the following ad hoc formula which gives the apparent drift of the 
supraluminal neutrino without violating the sacred principle of speed light inva-
riance 

( ) ( ) 1 21 22 2 21 1 sino Ev c v c c GM R xc = − = −  .          (1) 

(GME/c2 is the Schwarzschild radius of Earth, or the interval the space ds2; vo is 
the apparent superluminal speed of the neutrino; c is the static speed of propa-
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gation; v is the velocity of the source; R is the distance done by the photon be-
tween the emitter and the receiver; Rsinx is the distance traveled by the neutrino 
between the transmitter and the receiver.) 

Since we know the distance (730 km), the journey time (2.4 milliseconds) and 
the anticipation of neutrinos of 60 nanoseconds on this distance compared with 
photons, one can express 60 nsec in terms of distance on the distance of 730 km, 
or 18.25 m (750 km × 60 nsec/2.4 msec). 

We assume that the apparent superluminal velocity of the neutrino at the end 
of the trip of 2.4 milliseconds is at least 299,792,476.3 m/s  
( 18.25 m 299792476.3 m sov c= + = ). 

( )1 22 2299792476.3 m s 1c v c= − ; 2v  is equivalent to 105 km/s squared. In 
general relativity, 2v  acts as gravitational potential. 

( ) ( ) 1 21 22 2299792476.3 m s 1 1 tc c c GM Rc = −Φ = −         (2) 

Although GME/c2 is the Schwarzschild radius, or the interval of space ds2, R is 
not the radius of the Earth but represents a journey of 730 km that a photon 
would do if he left from the Earth’s center. However, a neutrino would not fol-
low the transversal path of the photon but a radial path that would be 730 sinx 
km. 

( )
( )

1 22

1 224 2

299792476.3 m s 1 730000sin

1 5.98 10 kg 730000sin 2.85

tc GM xc

c G c

= −

 = − × 
�

    (3) 

2.85x = �  indicates a radial path. 730,000 sin2.85˚ reduces to 36.3 km the path 
radially traveled by the neutrino at speed apparently superior to light. 

We can imagine with difficulty that a neutrino crosses radially 36.3 km 
through the superimposed curvatures of the Earth to arrive slightly before a 
photon having traveled 730 km. This formula is not a guarantee of validity, but 
an interesting mathematical option. It has the merit of leaving the speed appar-
ently faster than the speed of light and illustrates the trend of the neutrino to 
follow a shortened radial path rather than a transverse path. Without significant 
comparison with what follows, except for the shortened course, it preludes the 
“neutrino temporal oscillation” which stands out with a non-exceeded speed of 
light. 

3. Theory of Neutrino Temporal Oscillation 
3.1. Uncertainty of Neutrino Oscillations 

Scientists of neutrino do not know its mass, its energy, the distance it travels, 
and if they know how much between two points they are unable to tell what path 
he traveled. Moreover, they ignore its speed. What do they know? Statistical av-
erages. And a nice theory, the neutrino oscillations, which says that the neutrino 
has a mass and this ability to metamorphose. Like all elementary matter par-
ticles, they come in three versions, called flavors. The electron (e) has two heavi-
er replicas, the muon (μ) and the tau (τ), and each has a neutrino partner: the 
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electron-neutrino (ve), the muon-neutrino (vμ) and the tau-neutrino (vτ). But 
whereas the electron, the muon and the tau have specific masses, the three neu-
trino flavors do not. If you measure the mass of a neutrino with a given flavor, 
you get one of three answers at random, with a certain probability for each. 
Conversely, if you measure the flavor of a neutrino with a given mass, you get 
one of three answers. A neutrino can have either a specific flavor or specific 
mass but not both at the same time. Neutrinos thus violate a basic intuition we 
have about objects [10]. With the glorious uncertainty of this dominant theory, 
an alternative or complementary theory would not be superfluous. 

3.2. Neutrino Temporal Oscillation 

We term “temporal oscillation” an economy of time generated by a wave intrin-
sically less broad than the standard wave. It is also a quantum mechanical pheno-
menon whereby a neutrino created with a specific bosonic flavor (neutrino-photon, 
neutrino-graviton) can later be measured to have a different flavor. Flavors will 
be addressed in Section 5. We begin by the first part of the definition. 

3.3. What Is the Shortest Line? Transversal Way for the Photons 
and Shorter Longitudinal Way for the Neutrinos 

Right now the path taken by a photon actually defines what a straight line is. But 
is it the shortest distance between two points? Concerning an undulation, we 
think it is the longest path. Grossly, we consider two kinds of paths for a particle 
at the speed of light: transversal way and longitudinal way (or radial). Science 
picks up electromagnetic waves and so measures the universe. They follow a 
transversal path. There is a transverse wave when the oscillatory motion of any 
part of the system is at right angles to the direction in which the wave is travel-
ing. There is a longitudinal wave when the oscillatory motion of a part of the 
system is in the same direction that the wave is traveling. 

The sinusoid ACBDE of the following drawing shows two semi-circumferences 
ACB and BDE. If we put the two half-circumferences of the sinusoid directly on 
top of each other, they form a concentric circle. The diameter d (AOB = BO'E) 
divides the circumference and the circle into two equal parts. The radius OC, 
OB, O'B, O'D are equal. 

The photon follows a transverse wave at the speed of light. Its measurement 
between A and E is that of the sinusoid ACBDE, or the circumference of the 
concentric circle having O (or O') at the center. We postulate the existence of a 
sort of neutrinos with a mass equal to the mass of light, the lightest known mass. 
The measurement of the neutrino at the speed of light between A and T (we use 
T of the word Time in Figure 1) is the radial line (or longitudinal) AOBO'ET. 
When the photon has traveled the metric of the sinusoid ACBDE equivalent to 
the circumference of a circle with O (or O') at the center, the neutrino has tra-
veled radially πd, as if we undid the circumference for stretch it in a straight line 
(Figure 2). We associate the photon to the circumference and the neutrino to 
the diameter. 
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Figure 1. Sinusoid. (While the photon follows the transverse wave toc on the sine wave 
ACBDE (equivalent to a circle) at the speed of light, the neutrino follows the longitudinal 
wave tc along the radial sinusoid AOBO’ET(equivalent to ~π diameter) at the speed of 
light. The ordinary transverse second of the photon is ~π times longer than the longitu-
dinal second of the neutrino: 1 second t = ~π second to.) 

 

 
Figure 2. “Radial” sinusoid. (The longitudinal wave toc of the neutrino follows the flat-
tened sinusoid ABEF while the transverse wave tc of the photon follows the sinusoid 
ACBDE of Figure 1, equivalent to the ACBD circumference in Figure 2. The neutrino is 
associated with diameter. The photon is associated with the circumference.) 

 
In other words, we pretend that the massless neutrino follows the longitudinal 

way (or radial) while the photon follows the transversal way. The term toc 
represents a longitudinal wave and 1 sec (to) is the second of the neutrino asso-
ciated with the longitudinal way. The term tc means a transverse wave and 1 sec 
(t) is the second of the particle associated with transversal way. In circular time 
(or Newtonian time), which is the one we use, 1 second corresponds to π linear 
seconds: 1 sec (t) = π sec (to). The ordinary transverse second t is 3.1416 times 
longer than the longitudinal second to. Both particles go to the speed of light, so 

o o o ot c t t c t tc t c= π π = = .                   (4) 

This means that if a particle has to travel the distance AB ot cλ= = , it will 
take to time. Then the wave and the particle are propagating at the speed of light, 
and the direction in which the wave is traveling and the line of the oscillatory 
motion of the particle are making one line. But if the oscillatory motion of the 
particle is at right angles to the direction in which the wave is traveling, the time 
required for the particle to travel from A to B is πtoc, because the particle is cov-
ering πtoc distance, running in circle around the line AB. Note that we should 
say about π, or about 3, because we must envision the encirclement of a spiral 
structure instead of a closed two dimensions circle. 
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3.4. Discussion: Range of Longitudinal Waves and the Rule of the 
Displacement of the Nodes Due to the Inverse Sine 

We suppose that in most of the cases, the neutrino follows a different path from 
the photon to browse the same distance, even if it keeps the speed of light. It 
means that the sinusoid traveled by the neutrino flattens, becomes “radial”, what 
drives knots further away on the straight line AF (Figure 2). The sinusoid being 
completely spread over the radial line, we can say that when a photon travels a 
radius with regard to a circumference, the neutrino browses linearly π time this 
distance, what amounts to a half-circumference; when the photon travels a diame-
ter, the neutrino travels radially π diameters, i.e. equivalent to a circumference. 

Most neutrino physicists believe that the neutrino follows the same path the 
photon and that the transverse path of the photon is the straight line. That is not 
supported by the fact that according to our theory of temporal oscillations, the 
longitudinal path of the neutrino turns out to be the straight line. It follows that 
an observer B, who anticipates to receive from A in one ordinary second (trans-
verse), a full neutrino flux will be surprised to receive just about thirty-three 
percent of the expected flux, the two other thirds having already reached the F 
point. However, it is assumed that there is a range of wavelength between the 
transverse wave and the radial wave. The current theory of neutrino oscillation 
(transformism) follows the transverse way perpendicular to the radial direction 
of the wave. In this case, the neutrino, lively at speed c, follows the same sinusoid 
that the photon between nodes A and E on Figure 1 and travels the same metric 
at the same time. The second of the photon is then equivalent to the second of 
the neutrino and can be imagined by using a kind of rule of displacement of 
nodes due to the trigonometric function cosecant defined as the inverse sine. 
This rule of an angular cosecant is a simple supposition. So, for the time factor: 

( ) ( )1 sec for the neutrino sine90 1 sec for the photonot v t γ=� .     (5) 

The intent is to show that the photon travels from A to B via C in one trans-
versal sec and that the neutrino flies in the same way from A to B in one trans-
versal sec. Sine 90˚ indicates that they follow the same transverse path, or spiral. 
Considering the distance factor in this case, the photon and the neutrino travel 
the same distance, we can write 

( ) ( )1 m sine90 1 m ot t vγ =� .                   (6) 

If we suppose in terms of time a displacement of the nodes due to the inverse 
sine 85˚, we obtain 

( ) ( )1 sec sine85 1.0038198 secot v t γ=� .              (7) 

Thus, we can say that to go from to A to F (due to sine 85˚), the neutrino uses 
1 longitudinal sec whereas the photon uses 1.0038198 transversal sec. In terms of 
length, we can put 

( ) ( )1 m sine85 1.0038198 m ot t vγ =� .               (8) 

Consider the 730-kilometre trip from CERN in Switzerland to the Gran Sasso 
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underground laboratory in Italy. Suppose that photons and neutrinos start at the 
same time and make the journey in a straight line. The agreed line is that of the 
transverse photon. While the photon complete 730 km, the longitudinal neutri-
no passing through the Earth at light speed would have traveled 2294 km (730 × 
π). If we apply in terms of distance the displacement of the nodes due to the in-
verse sine, 

( ) ( )1 m sine18 .5607 3.14159 m ot t vγ =� .             (9) 

While the photon travels a circle that seems to merge with a diameter in the 
radial direction of propagation, the neutrino moves around 3.14159 m; the 
length of the straight neutrinos is 

730 km sine18 .56075 2294 km ot t=� .              (10) 

This means that the 730 km serpentine path of the electromagnetic particle is 
radially stretched over a distance of 2294 km. In terms of time, 

( ) ( )1 sec sine18 .56075 3.14159 secot v t γ=� ,           (11) 

which signifies that the photon goes from A to E along a transverse path (sinu-
soid ACBDE on Figure 1) in 3.1415917 radial sec while the neutrino travels 
from A to B along a longitudinal path in one radial sec. We can also say that the 
photon travels from A to B along a transverse path (equal to the straight line ABEF 
on Figure 2) in 1 sec t while the neutrino goes radially from A to B in 1 sec t/π. 

3.5. About the Longitudinal Wave 

By scanning the history of longitudinal and transverse waves we notice a kind of 
cycle, the periods of longitudinal wave which alternate with the periods of 
transverse wave. The theory of Huygens, contemporary of Newton, was based on 
a profound analogy between light and sound waves. One hundred fifty years lat-
er, Fresnel was led to assume that light does not consist of longitudinal vibra-
tions, such as those of sound in air, as Huygens thought, but transversal, and 
that alone a special medium having the properties of a hard body could convey 
them in universal space. Poisson discovered that the waves in an elastic solid are 
of both kinds: transverse and longitudinal. To rule out the contradictions which, 
in a series of cases arose from both theories, Maxwell thought that light does not 
consist of Huygen’s longitudinal waves neither of Fresnel’s transverse waves of 
ether, but in waves of an autonomous electromagnetic field. H.A. Lorentz 
showed that the electromagnetic theory of Maxwell, explained by the mechanical 
theory of ether, required the introduction, in addition to the light waves, of lon-
gitudinal waves of ether [11] [12] [13]. 

While it is recognized that the longitudinal waves propagate in air, liquid and 
solid, modern mainstream technology has been optimized to deal solely with 
transverse waves and is therefore largely incapable of measuring, let alone de-
tecting, longitudinal waves. We still found some books on physical electronic in-
troducing longitudinal theories, such as the longitudinal space-charge wave 
theory [14]. 
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Since Einstein rejected the ether as superfluous, only the transverse waves can 
propagate in the vacuum. Physicists consider that it is mathematically and geo-
metrically impossible for a longitudinal wave to have both electric and magnetic 
components simultaneously. For this reason physicists dismiss the possibility of 
longitudinal E/M waves. 

A changing voltage field can give rise to concussive waves that are radiated 
away in the direction of propagation. The fluctuations, with a curl-free vector 
potential and without magnetic fields, are longitudinal rather than transverse. 
These longitudinal waves are what Maxwell termed displacement current. They 
do not violate Maxwell’s equations that state there must be an induced magnetic 
field for every change in the electric field. There is a longitudinal E/M wave 
when all the magnetic fields cancel and yet there is still a displacement current. 
Usually current is defined as a flow of charges, but across a capacitor consisting 
of two conductors separated by an insulator that allows no charge to pass, oscil-
lating energy can still transfer. Aside from a changing voltage field, current flows 
from a large flat metal plate charged to a steady high voltage can give rise to a 
steady electric field pointing out and away from the plate in the direction of rad-
iation. The resulting wave that also fluctuates in the direction of propagation is 
longitudinal. 

Maxwell equations allow two possibilities: transverse EM waves and longitu-
dinal E/M wave. Longitudinal E/M waves are just as real as transverse EM waves 
but are more difficult to detect. The assumption that “what cannot be measured 
does not exist” fails to take into account that the shortcoming might be with 
technology rather than reality. 

4. Comparisons with Experimental Observations 
4.1. Solar Neutrino 

In the 1929s and 1930s, scientists proposed [15] [16] [17] that nuclear fusion 
reactions among light elements occur near the centre of the Sun and provide the 
energy that the Sun has emitted for four-and-a-half billion years [18]. The sim-
plest of all possible reactions is the nuclear reaction in proton-proton (p-p) colli-
sions, which yields low-energy neutrinos: H H D e v++ = + + . The deuterons 
formed will quickly react further, and the end product of p-p reaction of hydro-
gen is helium. 98 percent of the Sun energy comes from the nuclear reaction 
chain p-p [19]. While most of this energy ends up as electromagnetic radiation 
from the surface, approximately three per cent are believed to be emitted directly 
from the centre of the Sun in the form of neutrinos [20]. 

Knowing the energy radiated by the Sun and the part of fusion energy carried 
away by a neutrino, we easily deduce the amount of neutrinos escaping from the 
Sun per unit of time. The Sun produces only electron neutrinos. We therefore 
deduce, aware of the Earth-Sun distance, the theoretical neutrino flux per unit 
area and per unit time at the level of Earth. The flux of neutrinos at Earth is sev-
eral tens of billions per square centimetre per second. They cross the entire 
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Earth, interact weakly with matter and are difficult to detect. From the characte-
ristics of the detector, the amount of neutrinos that is to be detected per day in 
this flux is found. All experiments (on different time scales, with many detectors 
based on different principles) to measure the flow of electronic neutrinos from 
the Sun showed that the number detected was much lower than predicted. In 
various experiments, with detectors that became very sensitive, the number defi-
cit was between one half and two thirds. 

Few separate experiments to detect neutrinos from the Sun which confirmed a 
deficit in the flux relative to the predictions of standard theories of nuclear 
physics, have led to suggestions that neutrinos may have small masses and may 
oscillate between different types. In 1968, Pontecorvo proposed that if neutrinos 
had mass, then they could change from one type to another [21]. Essentially, the 
“missing” solar neutrinos could be electron neutrinos which changed into other 
types along the way to Earth and therefore were not seen by the detectors in the 
Homestake Mine in the late 1960s and contemporary neutrino observatories. 
Thus, the discrepancy between measurements of the numbers of neutrinos 
flowing through the Earth and theoretical models of the solar interior, lasting 
from the mid-1960s to about 2002, has since presumably been resolved by new 
understanding of neutrino physics, requiring a modification of the Standard 
Model of particle physics—specifically, neutrino oscillation. 

That being said, we believe that a significant alternative could explain why the 
measurements of solar neutrino fluxes all agree with theoretical expectations to 
within a factor of two or three and why persistent deficits of electron-type neu-
trinos exist in all solar-neutrino experiments. In line with the theory “neutrino 
temporal oscillation”, the fundamental error is to believe that the neutrino and 
the photon follow the same transverse path, and that it is the shortest way. The 
longitudinal path (straight line) is shorter than the traverse path (the curve). The 
solar neutrino would have a longitudinal wave and its time would be about one 
third of the time of the photon. The second of the neutrino is therefore approx-
imately one third of the second of the photon (or the Newtonian second). If 1to 
is the second of the neutrino, then t, or 1πto, is the second of the photon (1πto = 
1t). During one second of the photon, the neutrino will have travel 1πtoc, say π 
times more distance in straight line than the photon (1t/π = 1toc). As physics 
uses the ordinary transverse second of the photon which is ~3.1416 times longer 
than the longitudinal second to calculate the neutrino flux, it appears that the 
neutrino flux for the distance 1toc will be about 3 times less dense, because the 
flux of neutrinos expected by the usual second of the light is spread over a radial 
path two or three times more distant. 

In short, physicists have predicted detect in one “ordinary” second a number 
of electron neutrinos consistent with physical models of the Sun’s interior. Only 
a third to half the predicted number of neutrinos has been detected. The theory 
of neutrino temporal oscillation, without requiring a neutrino rest mass, ex-
plains the difference like this: the neutrino flux travels radially, not transversely, 
which means a solar neutrino flux anticipated in an ordinary second divided by 
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a number between two or three. 
Imagine that a flux of 730 million solar neutrinos per second, having theoret-

ically traveled through a transverse wave, is expected on Earth as predicted from 
the luminosity of the Sun. We can write 

730 million sin 90˚ = flux of 730 million neutrinos per second.    (12) 

If the flux measured directly is 243 million neutrinos, i.e. one third of what 
was expected; we are entitled, to explain the difference, to assume that the neu-
trinos traveled a less transverse, more longitudinal wave, as if the nodes were 
stretched radially. Depending on the flow detected we can calculate 

730 million sin 19.451˚ = flux of 243 million neutrinos per second.   (13) 

4.2. Supernova 1987A 

In February 1987, SN 1987A was the first nearby supernova that could be seen 
well since 1604. It was located about 168,000 light years (ly) from Earth in the 
Large Magellanic Cloud, a small galaxy gravitationally linked to the Milky Way. 
The energy calculated to be produced from the collapse of type II supernovae is 
almost 1000 times larger than that observed as light. Standard astrophysical 
theory indicates that more than 99 per cent of the energy is emitted in the form 
of neutrinos [22] and holds that a collapsing star should release a burst of neu-
trinos before the light from the explosions. 

The Mont Blanc team believed that they had discovered such a burst. On 24 
February 1987, the Italian/Soviet collaboration was the first to report a burst of 
neutrinos from SN 1987A, detected at their underground observatory at Mont 
Blanc, after other astronomers had reported optical observation of the supernova 
[23]. But four and a half hours (h) after the Mont Blanc burst, which consisted of 
five events over several seconds, a series of pulses in two water Cerenkov detec-
tors were recorded independently, Kamiokande [24] in Japan, IMB [25] in the 
United States and also by the Baksan detector in Russia. In all, 24 neutrinos were 
captured. Given both bursts, 7.7 h had elapsed before the first light was observed 
[26] [27]. 

According to the basic theory of stellar collapse, there is an expected time de-
lay of approximately 3 h between the collapse of the core and the production of 
visible light at the surface of the star, due to the propagation of a shock wave 
through the stellar material. How come that the first neutrinos of the supernova 
1987A arrived 7.7 h before the first photons? The currently-accepted interpreta-
tion of this data is that the first burst of neutrinos must not have been associated 
with the supernova because there is no conventional explanation for how the 
neutrinos could have arrived at that time. In addition, the fact that the first burst 
of neutrinos was only detected by the Mont Blanc detector and not the other two 
detectors, which were assumed at the time to have higher sensitivities, further 
suggested that the first burst of neutrinos must have been an anomaly that was 
not associated with Supernova 1987A. This suggests that the first observation of 
the visible light from the supernova is compatible only with the second burst of 
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neutrinos that occurred about three h before, which corresponds to the time for 
any light produced inside the star to be prevented, due to the diffusion, from 
reaching immediately the surface. 

Nevertheless, we agree with some experts in the field who consider the origin 
of the first burst of neutrinos to be an open question because the probability of 
such an event having occurred at random has been estimated to be less than 10−4 
[28] [29]. The material used in the Mont Blanc detector was different from that 
used in the other two detectors and the expected sensitivity of detection for the 
kind of neutrinos in the first burst has been estimated to be a factor of 20 higher 
in the Mont Blanc detector than the other detectors, which is consistent with the 
observations [29]. 

4.2.1. Scenario of a Double Collapse 
The possibility was expressed that both the Mont Blanc detection and the later 
bursts recorded simultaneously in the United States and Japan, could have been 
genuine events linked to SN 1987A [28]. This would require the star to have col-
lapsed initially to a neutron star, releasing low-energy neutrinos picked up at 
Mont Blanc, but below the energy threshold on the IMB and Kamiokande de-
vices. A second collapse to a black hole would then explain the neutrino burst 
recorded by IMB and Kamiokande. At Mont Blanc, this burst may have been in-
distinguishable from the background noise [30] [31]. 

This scenario is not expected from the models which predict only a single 
neutrino burst from a collapsing star and which anticipate the first observation 
of visible light from the supernova approximately 3 h after the burst of neutri-
nos. It is the expected time delay between the collapse of the core and the pro-
duction of light at the surface of the star due to the propagation of a shock wave 
through the stellar material. The usual interpretation of this data is that the first 
burst of neutrinos must not have been associated with the supernova because 
there is no conventional explanation for how the neutrinos could have arrived at 
that time. Only the observed by IMB and Kamiokande 3 h fit with the conven-
tional models. 

4.2.2. The Theory of Neutrino Temporal Oscillation Justifies  
the Scenario of a Double Collapse 

The theory of neutrino temporal oscillation offers an adequate explanation for 
the possibility of a double collapse of the core and the observations associated 
with SN 1987A. According to this theory, the neutrino is moving in a longitu-
dinal wave, that is, the oscillatory motion of the neutrino is in the same direction 
that the wave is traveling. As mentioned earlier, the second of the neutrino be-
longs to the longitudinal wave, and is about one third (1/π) of the Newtonian 
second, which is linked to transverse wave. It means that the neutrino browses π 
times more length in a radial path than the photon in a transverse path. 

The two bursts of neutrinos from SN1987A were captured in longitudinal 
time, that is to say in the time associated with the longitudinal wave, while phy-
sicists believed to have captured them in transverse waves that are within the 
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transverse electromagnetic wave. This means that the 7.7 h between the first 
burst at Mont Blanc and the appearance of light are in longitudinal time, not in 
transverse time. 7.7 longitudinal h translate into 2.45 transverse h (7.7 h to/π = 
2.45 h t). These 2.45 h correspond to the time predicted from the standard mod-
els, that is to say the approximate 3 h for the light to occur on the surface. This is 
the anticipated collapse of the star into neutron star. 

It took 4.7 h between the second burst of neutrinos observed by Mont Blanc 
and the second burst of neutrinos observed by Kamiokande and IMB. These 
longitudinal 4.7 h are translated into transverse 1.5 h (4.7 h to/π = 1.5 h t). It 
means that the second burst of neutrinos, the one of the collapse of neutron star 
into black hole, starts 1.5 h after the first collapse. The second burst of neutrinos, 
4.7 h after the first burst, 3 h before the light, signaled the second collapse of the 
core. It should be associated to a second production of visible light characterized 
by the increase in its intensity roughly 4.7 h after the initial onset of the light. 

4.2.3. Confusion of Running Times 
In our view, the 3 h between the second burst of neutrinos observed by IMB and 
Kamiokande and the arrival of light were wrongly coupled with the 3 h for that 
the shock wave coming from the core of the supernova reaches the surface. Be-
cause the IMB and Kamiokande observations fitted well with theoretical predic-
tions based only on the transversal path of the photon, the general perception 
among astrophysicists was that the Mont Blanc burst was background noise, 
most probably caused by penetrating radiation from the surrounding rock, ex-
pected about once every three years from random fluctuations [22]. In addition, 
the detection of two distinct signals implies that the theory predicting only a sin-
gle neutrino burst from a collapsing star is not right and has suggested that the 
first burst of neutrinos must have been an anomaly that was not associated with 
Supernova 1987A [26]. 

The 2 bursts of neutrinos match the 2 collapses of the supernova. Thus, the 
arrival time of the first burst of neutrinos is consistent with the observed light 
curve [26], and the second collapse of the core would have produced an increase 
in the intensity of the visible light not long after the arrival of first photons. This 
is consistent with the observation that the light signal increased more rapidly 
than would have otherwise been expected during that time interval. The theory 
of neutrino temporal oscillation is hence in reasonable agreement with the expe-
rimental observations and it provides a possible explanation for the first burst of 
neutrinos which is inconsistent with the conventional model of the supernova. 

4.3. “Cosmological” Neutrinos 

Under the Big Bang Standard Model, in the early days of the universe, there were 
as many particles of matter as there was antimatter. They interacted, met, and 
annihilated each other to become photons which in turn disappeared to give rise 
to particle-antiparticle pairs. These photons, later weakened by the expansion of 
the universe and its cooling, could no longer give birth to particles and antipar-
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ticles. Nature having a preference for matter will ensure that for every billion 
particles and antiparticles that will annihilate to give 1 billion photons, only one 
particle of matter will remain, exactly the proportion that is observed in the cur-
rent universe. All the antimatter disappears [32]. 

But a species born out of the big bang resisted: cosmological neutrinos and 
their alter ego, the antineutrinos. Their interactions ceased before their energy, 
which had become too low, forced them to annihilate like other particles. There 
are now more than a billion neutrinos and as many antineutrinos for a single 
proton. The existence and the precise abundance of cosmological neutrinos are 
confirmed by the study of primordial nucleosynthesis, when a few minutes after 
the Big Bang the temperature of the universe has dropped below a few billion 
degrees and protons and neutrons have could combine to form helium nuclei. 

One can imagine that when the early universe was hot and dense, neutrinos 
were moving at the speed of light. In this state, they were not agglomerated un-
der the force of their own gravitational pull. However, after the universe had 
cooled down and crossed the energy threshold, the neutrinos would have be-
come relativistic, slowed down, and began to move with subluminal speeds. The 
three known types or “flavors” of neutrinos would therefore have acquired a low 
mass and the ability to transform from one flavor to another. This phenomenon, 
the oscillation of neutrinos, was discovered in the late 1990s. As a result, these 
neutrinos constitute a form of “dark” matter, that is, without significant interac-
tion with matter other than through the force of gravity. Even though at least 
two of the three types of neutrinos have low mass, and participate in the forma-
tion of large structures in the universe, their influence on this formation is neg-
ligible. Although their eventual mass is not well known due to their weak inte-
ractions with matter, oscillations of neutrinos indicate that the mass of all three 
types confers on them a contribution of at least 0.13% in the total energy budget 
of the universe, where dark matter accounts for about 25% [33]. Neutrinos from 
the big bang have an energy that is millions of times lower than that of solar 
neutrinos and their direct detection is perhaps an unattainable dream. 

4.3.1. “Sterile” Cosmological Neutrinos at the Speed of Light 
There would be, according to us, another “sterile” type of neutrino which would 
not have slowed down and continued moving at light-speeds after the universe 
cooled. It would not be able to switch leptonic flavors, like the three types of 
neutrino with mass (neutrino-electron, neutrino-muon, neutrino-tau), but it 
would be able to switch bosonic flavors with the photon and the graviton [34]. It 
would interact less with ordinary matter than the known flavors, which already 
had become very reluctant to do so after the cooling of the universe. 

This would not be the massive neutrino presaged by scientists who think that 
could explain the mismatch between observations of galaxy clusters and the 
cosmic microwave background (CMB) if neutrinos were more massive than is 
usually thought [35]. They suggest the possibility of discovering a right-handed 
neutrinos impervious to the weak force with a huge mass that does not rely on 
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the Higgs field, or to detect a heavy flavor that may emerge from a different me-
chanism altogether at the extremely high energies of grand unification [2]. “Ste-
rile” cosmological neutrino at the speed of light would be akin to the concept of 
massless neutrino of the original Standard Model. All along the expansion, al-
ways at light speed, the frequency of elusive sterile neutrinos decreases. The lost 
energy is transformed into mass, clustering along with the rest of the matter, 
making a larger contribution to the total density of the universe. Besides being a 
cosmic chameleon which can change bosonic identity, this neutrino would have 
the peculiarity to follow a longitudinal wave. Thus, if the age of the universe was 
around 5 billion transverse ly, that would be tantamount to more than 15 billion 
longitudinal ly (5 billion ly t × π). As known, in various ways, but based on elec-
tromagnetic waves, astrophysicists have established the age of the universe 
around fifteen billion ly. This would mean that there are neutrino waves that 
traveled radially over 45 billion ly, and that the linear radius of the universe 
would measure more than 45 billion ly ( 9 915 10 ly ~ 47 10 ly ot t× ×π = × ). 

We noticed that this last length had a link with an intriguing feature in the 
WMAP cosmic maps [36]: the early universe does not have a voice on the long 
wavelengths and does not sound like it would do if the space was apparently 
Euclidean and infinite. To explain, let’s say that CMB temperature fluctuations 
can be decomposed into a combination of spherical harmonics. The relative 
magnitude of each spherical harmonic sets the “power spectrum” containing a 
signature of the geometry of the universe and the conditions at the time of emis-
sion of radiation. The power spectrum exhibits a series of peaks when the dis-
tance is measured between the regions of the sky of small and medium dimen-
sions. In harmonic analysis of WMAP, these peaks are consistent with what is 
provided by the “Standard Model” for small angles. For separate regions of more 
than 60˚, there is a loss of power that is not consistent with the predictions of the 
Standard Model. WMAP observed a quadrupole (harmonic which corresponds 
to an observation angle of 90˚) seven times lower than what is expected with 
0.2% probability that this difference occurs by chance. The low value of the qua-
drupole means it lacks the very long wavelengths [37]. 

Some cosmologists have proposed to attribute this anomaly to undiscovered 
physical laws that have governed the early universe. Our explanation for this 
phenomenon, which seems geometric, hinges on a space model in which large 
angular scales contain the largest “voids” of which the size of the space imposes a 
maximum length at the longitudinal wavelength, whence the ~45 billion ly to. 

4.3.2. New “Bosonic” Flavors: Photonic Neutrino, Gravitonic Neutrino 
We envisage the existence of massless sterile neutrinos, without charge, at the 
speed of light, under the aspect of a family other than that of the leptons, pre-
ferably the bosons, which implies spin quantum numbers with integer values. 
There are no theoretical arguments which forbid the neutrinos to not have rest 
mass or to have transitions between various sorts of bosons. Although they re-
main without rest mass, they have an intrinsic mass (or motion mass) that al-
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lows them to oscillate. 
If we consider that the sterile neutrinos propagate at the speed of light, in 

space or in matter, nothing forbids them to change identities often, to oscillate 
between two types of bosonic neutrinos: photon and graviton. The oscillation 
requires the existence of diverse flavors of bosons-neutrinos and differences be-
tween the intrinsic masses of the flavors. These alterations are related to the fre-
quency of the oscillations, so that new oscillations measurements in the future 
could suggest how large the dissimilarities might be. Thus, photons and neutri-
nos-photons would have photon flavor, gravitons and neutrinos-graviton would 
have graviton flavor. The change from one flavor to another could provide a co-
herent explanation for the cosmological waves pattern (electromagnetic waves, 
gravitational waves, neutrino waves) [34]. 

5. Discussion 

We think that the controversial experiment of 2011, carried out over a short dis-
tance, would have established the existence of massless sterile neutrinos without 
charge at the speed of light. During these oscillations neutrinos have disappeared 
from view. What did they do during this short period of time where they were 
undetectable? 

Some scientists think that photon and neutrino invariably follow the same 
path, but that the speed of the neutrino is truly “superluminal”. Others have 
raised the possibility that the particle has taken a shortcut through space-time. 
It’s been a few decades that the scientific community is considering the existence 
of dimensions beyond the three that we perceive. To understand that, imagine 
that we lived on a sheet of paper two-dimensional, without that our senses reveal 
the third dimension of space. This sheet is bent and, to go from point A to point 
B, we are obliged to follow its curvature. While if we could take a third dimen-
sion, the path from A to B would be shorter. So if the neutrinos are experiencing 
one (or more) extra dimension to what we perceive, they were able to follow a 
shorter path than light. Hence the neutrinos apparently faster than light. 

According to the theory of “neutrino temporal oscillation”, neutrinos at the 
constant speed of light would follow a shortcut in the space-time of three spatial 
dimensions that we perceive. It is not the same thing as to take a shortcut in ex-
tra dimensions. Imagine that we lived in a tunnel in three dimensions, with our 
senses conditioned to always use the three dimensions of space. To move for-
ward from point A to point B, regardless of whether the tunnel is straight or 
curved, we are obliged to follow the rule of the three dimensions which wants 
that we move away simultaneously our legs to the left and to the right, bring 
them back, then make a small jump forward, and continue like this up to point 
B. While if one could just put one foot before the other in order to take only one 
dimension, the path would be shortened. Thus, contrary to light (photons), cer-
tain particles (neutrinos) would be able to go through one (or two) of the three 
spatial dimensions we perceive. Neutrinos would have traveled faster than the 
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photon, not because they are faster, but because they have taken a shortcut 
through one dimension among those we perceive. This shorter path of the world 
in three spatial dimensions is similar to a longitudinal wave. 

However, it appears that the most trivial explanation is that of massive neu-
trinos oscillations. This phenomenon would be deeply related to that of the dis-
appearance of neutrinos: we cannot see the neutrinos during the quantum oscil-
lations, because they move in metamorphosing at a speed under c, which re-
mains in the vagueness but gives the certainty of a mass, which does not infringe 
causality based on the radial arrow of time of special relativity. 

In strictly deterministic physics such a ghostly behaviour is as strange as the 
neutrino oscillations itself. It is legitimate to wonder if the currently accepted 
interpretation below the speed of light is really final and if behind the apparent 
rigor of retesting, some experiments do not conceal a part of the real profound 
nature of the neutrino. It is not only a question to challenge the statistical value 
of elegant and imprecise formalisms with which theorists of neutrinos juggle, 
but also to ask whether the interpretation being proposed for the 2011-2012 ex-
perience has reached finality and the bottom of things. Several observers have 
been led through the media to monitor the saga that led to the current interpre-
tation of the neutrino velocity under c. They were able to find some weak points, 
like the optical cable errors which have at first reduced the velocity of propaga-
tion of neutrino to that of light, and then that one promptly has put slightly less 
than the speed of light in a vacuum. It suggests a retest having been oriented by 
the formalism of the postulates of relativity that, perhaps, paradoxically, does not 
correspond to the physical reality. 

As currently formulated (see Section 3.1), the Standard Model has no explana-
tions for neutrino mass. The original Standard Model prohibited neutrinos from 
having rest masses. Three types of neutrinos have long been established and, 
though by quite indirect evidence, they seem to transform into each other. In 
1997-98, physicists have theorized that a neutrino must have mass by arguing 
that the mechanism of transformation does not allow for massless particles. The 
experiments concerned with oscillations did not make it possible to determine 
the absolute mass of each of the three types of neutrinos but to measure the dif-
ference between their masses. 

A particle’s total energy or mass-energy includes the particle’s rest mass and 
momentum. Determining what portion of a moving particle’s mass-energy 
comes from its rest mass and what portion is momentum turns out to be a thor-
ny problem with neutrinos. In fact, we should just say that neutrinos oscillate: 
They change from one flavor to another. And to do this there must be differenc-
es between the masses of the different flavors; these differences are related to the 
frequency of the oscillation, and so the new oscillation measurements begin to 
suggest how large the differences might be. Neutrino physicists have two ways of 
observing oscillations: by neutrino disappearance or by neutrino appearance. If 
they make a beam of neutrinos with a single flavor, then find that some of the 
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neutrinos in the beam have disappeared, they can guess that the neutrinos have 
“oscillated” into a flavor that the detector is not sensitive to. Appearance expe-
riments are more satisfying but much rarer: In this case, they detect a new neu-
trino flavor that was not produced by the original source. In both cases, the evi-
dence is most convincing if the number of neutrinos varies as a function of dis-
tance traveled and energy according to the prediction [4]. The basic strategy for 
measuring neutrino oscillations seems simple: Take a source of neutrinos, either 
natural or artificial, let the neutrinos propagate for a known distance, and then 
measure as much as you can about their energy and flavor. If the amount of a 
given flavor (as a function of energy and distance) turns out to be what is ex-
pected according to the quantum-mechanical prediction that arises from the os-
cillation hypothesis, we had a spontaneous change of flavor. 

In line with the transformist theory (see Section 3.1), two-thirds of the miss-
ing solar neutrinos would transform into muon neutrinos and tau neutrinos. 
Electron detectors can only pick up electron neutrinos, which would explain the 
deficit of solar neutrinos. The Sudbury Observatory detector in Ontario was de-
signed to detect some of the neutrinos produced by the Sun. It contains heavy 
water: in a molecule of heavy water the hydrogen atoms (1H1) of light water are 
replaced by deuterium atoms (1H2). In a tank of light water, all neutrinos, re-
gardless of their flavor (electron, muon or tau), can react with an electron and 
give off a flash of light. But only neutrinos-electrons can react with a deuterium 
atom, an element in heavy water, and give rise to two protons and an electron. 
Since the flash of light from this reaction is different from that of light water, 
physicists are able to determine the proportion of neutrinos-electrons that reach 
the Earth. Result: they enumerated a third of neutrinos-electrons and two thirds 
of neutrinos—muons and tau. For the theory of oscillation, this is direct proof of 
the transformation from one species to another. 

Since the reasoning is perfect, experts believe it must be done this way. The 
fact remains that believing and proving make two. Are we dealing with the ex-
pert who overheard the theorist who saw the experimenter who saw with cer-
tainty such a neutrino transforming into another type of neutrino? A shortage of 
neutrinos of some type from the atmosphere and the Sun was recorded com-
pared to what was expected by theory. All the experiments confirmed the phe-
nomenon, not only for the neutrinos detected of natural origin, but also for the 
neutrinos captured by the detectors which are produced by nuclear power plants 
in normal operation or those emitted by particle accelerators. To explain the 
deficit observed in the flow of neutrinos produced by nuclear power plants, the 
assumption has been made of the presence of a fourth type of neutrino, the “ste-
rile” neutrino, more massive than the three others and which would interact 
even less with ordinary matter. The major result of these experiments led to the 
conclusion that the enigma of the neutrino deficit stems from their oscillations 
and that this transformism can only be explained because they have mass. It is 
possible that it is wrong and we can see how. 
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But before, let’s mention that highly qualified people can develop a theory, 
with relentless rigor, mathematics provided, reasoning without flaw, and yet the 
whole thing is false because the basic premises, postulated without proven foun-
dation, turn out to be false. It is the same for a technological experiment; we can 
use advanced technicality, reduce uncertainties to a minimum, go through the 
stages with consistency, rigor and coordination, obtain an irreproachable result 
taking into account statistical uncertainties and systematic errors, and yet we can 
swim in error because of a conceptual error. 

The truth is that scientists are unable to measure the energy of a neutrino and 
to know how far it traveled. Not knowing where he finished in the cycle of oscil-
lations, they cannot calculate the relative proportions of the three flavors. Over 
large distances and long times, neutrinos oscillate so many time that they cannot 
keep track of the flavor mix it looks like a blur to them. Instead they take a “sta-
tistical average”, described by a so-called flavor propagation matrix. From this 
matrix, astronomers can deduce what an observed ratio must originally have 
been [10]. Precision is missing over long and short distances, which gives as 
much certainty for a rest mass as for an intrinsic mass. 

The whole system can turn out to be a lie because an alternative has been 
overlooked. Physicists failed to assume that the fluxes of muon and tau flavors 
could originate from the cosmos, that they could be cosmic neutrinos having a 
longitudinal wave as we saw in Section 4.1. According to the theory of temporal 
oscillation, the neutrino travel time is about a third of the photon travel time. 
The conceptual error is to believe that neutrino time is the same as photon time: 
this is why we perceive in a transverse second only one third of the predicted so-
lar neutrinos. The same applies to muon-neutrinos and tau-neutrinos. The deu-
terium detector captures only one third of the electron neutrinos because it can 
capture only these. The light water electron detector, capable of capturing all 
three types of neutrino, captures one-third of what is expected from solar neu-
trinos, and one-third of what is expected for each of the other two kinds of neu-
trinos that come not from the Sun but from space. Each type of neutrino con-
tributes one-third of the flux, hence all three-thirds. For the theory of neutrino 
temporal oscillation, it is the proof of the longitudinal (radial) wave which mul-
tiplies by three the ordinary flux. 

In short, there is a distinction to be made between the true flow of neutrinos, 
which we equate to “radialism”, and the false flow of neutrinos assimilated to 
“transformism”. Physicists consider that the photon and the neutrino follow the 
same path. In our opinion, they do not follow the same path: the neutrino fol-
lows a radial path while the photon follows a transverse path. The radial path is, 
linearly (radially) speaking, ~ pi (π) times longer than the transverse path; it is 
like the length of an unfolded circumference becoming a straight line. This radial 
path of the neutrino is that of the true flux of the neutrinos. With respect to the 
radial reference, we can say that a photon flux travels one diameter while a neu-
trino flux travels the length of three diameters. This radial path of the photon, 
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used indiscriminately for the neutrino, is that of the false flux of the neutrinos. 
Since physicists do not differentiate between true neutrino flux and false neutri-
no flux, and only use the latter, it is no surprise that they almost always get a 
deficit of about two thirds of solar electron neutrinos. 

6. Conclusions 

We surmise the existence of non-sterile and sterile neutrinos, very light, con-
form to the Standard Model (original model prohibited neutrinos from having 
rest masses), but with two novel features: they use a shorter radial path than the 
photon and have bosonic flavors. We name this phenomenon “neutrino tem-
poral oscillation”. It is an alternative to the hypothesis of neutrino oscillation. 
The latter gives a complicated explanation of the periodic disappearance of neu-
trinos by allowing the three flavors of neutrinos electronic, muonic and tauic, all 
supposed of different masses, to metamorphose from one flavor to another. The 
somewhat ad hoc change in flavor of neutrinos during their journey appears to be 
supported by theory and therefore has the assent of the majority of cosmologists. 

The measures of the observations of neutrinos and antineutrinos, based on the 
calculation of the probabilities of oscillation, bring into playing several parame-
ters: the differences in mass from one flavor to another (although we always ig-
nore the mass of the flavors, which seems paradoxical), the mixing angles be-
tween the different flavors and other complex numbers. They show more visible 
neutrinos that disappear than invisible ones that appear. These measures are 
quite indirect evidence of transgender metamorphoses during the journey. They 
quickly turned into conclusive evidence that can dispense with alternatives. Od-
dly, however, the observations show that in practice one can explain the detec-
tion of neutrinos by assuming that it is, on the one hand, transformist and, on 
the other hand, governed by longitudinal paths. This would not be so much a 
statistical error or a systematic error as a conceptual error. 

To reconcile theory and observation, the two options seem a priori equally 
admissible. However, the theory of neutrino temporal oscillation, which implies 
an intrinsic mass of particles, gives the periodic disappearance of neutrinos a more 
sensible and fact-compatible explanation. It does not use superluminal speed; nei-
ther do the membranes of the eleven-dimensional universe of M-theory, nor the 
strings of string theory. Its interpretation has the merit of revealing the longitu-
dinal wave which is sorely lacking in current physics while respecting the invi-
olability of the speed of light of special relativity in our four-dimensional un-
iverse. This imbalance, between the “neutrino oscillation” which transforms the 
flavors of neutrinos and the “neutrino temporal oscillation” which transforms 
the path of the neutrino over time, can evolve, and possibly even toggle. 
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Abstract 
The feasibility of a Lunar LIGO (Laser Interferometer Gravitational-Wave 
Observatory) was introduced in 1986 as part of NASA’s planned return to the 
Moon by the end of the last century. That return to the Moon mission was 
cancelled, but is once again planned as Artemis in 2024. In this paper, the 
feasibility of such a Lunar LIGO as part of NASA’s return there will be dis-
cussed for that program. Details of the physics of the original Lunar LIGO 
proposal as a potential portion of future lunar base astronomy and astro-
physics designs are presented. Results from NASA’s original planned return 
to the Moon to establish a gravitational wave observatory there are presented 
and discussed. 
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1. Introduction 

The conceptual design of NASA’s planned Lunar base was addressed at Stanford 
University in 1989 [1] [2] [3], with a Lunar LIGO (Laser Interferometer Gravita-
tional-Wave Observatory) first discussed in [3]. The present author organized 
the Stanford workshop and its focus on gravitational radiation, and pursued the 
Lunar LIGO concept for years thereafter [4]-[10] while serving as lead for phys-
ics and astrophysics mission development in the Solar System Exploration Divi-
sion at NASA’s Johnson Space Center. That lunar return effort continued until it 
was terminated for lack of funding in 1998. 

The subsequent work was presented in various ways [4]-[10] while the 
Earth-based LIGO concepts were undergoing initial development. The latter ob-
viously have come to marvelous fruition in the quarter century since, with the 
advent of Advanced LIGO and Advanced VIRGO systems [11] [12] [13] in the 
LIGO and LISA [14] Scientific Collaborations (LSC) established in 1997. In-
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cluded are their marvelous discoveries in Earth-based gravitational wave as-
tronomy, not to mention the discovery of gravitational waves per se [16]. 

The question presented here is the virtue of adding a Lunar LIGO to these con-
ceptual configurations [3]-[16], and how that can augment the Earth-based LIGO 
systems. The result is a superior gravitational wave measurement system for 
examining gravitational waves and their astrophysical sources in the solar sys-
tem and surrounding galaxies. This is not available using the Earth-based sys-
tems alone. 

2. Why Lunar LIGO? 

The preliminary proposal [8] [9] that the Earth-based multi-LIGO system can be 
augmented with a Lunar LIGO appears promising. It consists of emplacing a 
modest LIGO optical system on the Moon, proving to be a simple and advanta-
geous application in the vacuum environment of the lunar surface. Less seismic, 
gravity gradient, tidal, and acoustic noise will yield greater sensitivity at frequen-
cies between 0.25 and 3 Hz on the lunar surface. 

Emplacement can be accomplished using unmanned robotic landers such as 
the Artemis project or by any manned landing program. 

Mechanical decoupling from the Earth-based antennas will yield a method of 
noise filtering (coincidence with terrestrial antennas over their common fre-
quencies) and provide a significant sanity check on wave versus pulse events. 

Operating along with Earth-based antennas, it will provide a longer baseline 
for the localization of gravitational wave sources. This gives 50 times better an-
gular resolution than the Earth-based antennas alone. Also the lunar antenna 
will not be mechanically or geophysically coupled to the terrestrial antennas, 
thus providing a significant confidence or voting factor for detected events. 

The distance between the Earth and Moon provides a long parallax baseline 
with terrestrial antennas for locating the sources of a gravitational event. Given 
that the lunar vacuum eliminates the need for long evacuated tunnels, a minimal 
Fabry-Perot antenna could be placed on the Moon using three robotic landers, 
one containing the laser source, the beam splitter, the detector, recycle mirrors, 
cavity mirrors, and other optics. The other two landers would contain the end 
mirrors of the interferometer arms, and provide closure phase along the third 
leg. 

The lack of arm enclosures allows the arms to be extremely long, limited only 
by a lunar radius of 1738 km. Appropriate choice of landing sites could allow for 
longer arms by taking advantage of local topography. One can easily adjust the 
length of the arms by moving the landers containing the end mirrors [7]. The 
entire Moon can also be visualized as a gravitational detector itself [15] by con-
figuring it with an array of seismometers. 

The lunar environment will likewise provide significant advantages. It will 
eliminate the need to maintain a vacuum in the interferometer arms over the 
life-cycle of the antenna. This, coupled with the lack of construction costs 
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needed to enclose and pull a vacuum in the arms, should offset much or all of 
the cost of launch and delivery. Lesser surface gravity will prove better for me-
chanical isolation of optics [6]. 

Obviously, there are distinct advantages through which Lunar LIGO and LISA 
Pathfinder programs can mutually overlap and supplement one another. One 
might even begin by transporting other configurations to the lunar base to be-
come a lunar LIGO. 

An advanced, man-tended version of the Lunar LIGO would allow for even 
more flexibility (for instance Figure 1, adapted from [8]). Detectors and mirrors 
could be repaired and/or upgraded by the lunar base personnel. The antenna 
could be actively monitored and seismic data could be screened using gravime-
ters to aid in the data’s noise analysis. For instance, a large array of antennas 
could be built to allow for better spurious signal elimination by coincidence [7]. 
A large number of antennas would be easier to build and maintain on the Moon 
than on the Earth due to the lack of evacuated tunnels. 

3. Conclusions 

In conclusion, this investigation shows that a lunar-based Fabry-Perot gravita-
tional wave antenna would provide a valuable complement to Earth-based sys-
tems, both for conclusive first detection and for continued gravitational wave 
astronomy there. Furthermore, due to unique features of the lunar environment, 
the life-cycle costs could be competitive with Earth-based antennas. 

This investigation further shows that a lunar-based Fabry-Perot gravitational 
wave antenna would provide a valuable complement to the Earth-based systems, 
both for conclusive, first detection and for continued gravitational wave as-
tronomy. Furthermore, due to unique features of the lunar environment, the 
life-cycle costs could be competitive with Earth-based antenna systems. 

After decades of studying the elusive phenomena predicted by Einstein’s general  
 

 
Figure 1. Lunar LIGO using Artemis. 
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theory of relativity, gravitational radiation has been discovered [16]. It is impor-
tant that such research be continued, and one way to do so is to expand our no-
tions of the Moon to serve as another platform for enhancing these investiga-
tions. 

In closing, other proposals have also been developed, which include DECIGO, 
GLOC [15] [17] [18]. 

This very preliminary proposal that the Earth-based multi-LIGO system can 
be supplemented by a lunar LIGO system appears promising. 
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