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Abstract 
We suggest that the unusual events observed by the ANITA experiment ori-
ginate from axion particles traversing the Earth. Under the influence of the 
geomagnetic field, the axion may oscillate into a photon and vice-versa. To 
amplify the axion transition into photon, we consider that the phenomenon 
takes place at resonance, where the effective photon mass is equal to the axion 
mass. This requirement fixes the axion mass at 44 eV. An axion at this mass 
scale reproduces the cold dark matter scenario. If our interpretation prevails, 
with the help of axions we can establish an axion tomography of the Earth. 
 

Keywords 
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1. Introduction 

The Antarctic Impulsive Transient Antenna (ANITA) experiment has observed 
two air shower events with energy ~500 PeV emerging from the Earth with exit 
angles ~30˚ above the horizon [1] [2]. The steep arrival angle implies that the 
candidate particle propagates a distance inside the Earth of the order of the 
Earth’s radius RE (6371 km). 

One might think the neutrino lies at the origin of the ANITA unusual events. 
The neutrinos interact with the nucleons through the weak charged current, re-
sulting in absorption, and the weak neutral current, which implies a redistribu-
tion of the neutrino energy. For a detailed analysis see [3], where a Mellin trans-
form of the neutrino transport equation provides the shadowing factor of ultra-
high high energy neutrinos. The neutrino-nucleon cross-section rises with ener-
gy and at energies above a few TeV, the Earth is becoming opaque to neutrinos. 
The option of a τ lepton decay, generated from a τ neutrino, is disfavored also 
when we take into consideration the SM cross-sections [1]. We are engaged then 
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to search for a solution next or beyond the Standard Model. In the present work, 
we examine the prospect that the axion particle might serve this purpose. 

2. The Axion Proposal 

Let us recall that the raison d’être of the axion particle is the strong CP problem. 
The QCD Lagrangian respects all symmetries (P, C, CP…). At low energies, the 
non-linear nature of the theory introduces a non-trivial vacuum which violates 
the CP symmetry. The CP-violating term is parameterized by θ and experimen-
tal bounds indicate that θ < 10−9. This is a very small number, and the smallness 
of this parameter creates what is known as the strong CP problem. An elegant 
solution has been offered by Peccei-Quinn [4]. A global U(1)PQ symmetry is in-
troduced, the spontaneous breaking of which provides the cancellation of the 
θ-term. As a byproduct, we obtain the axion field, the Nambu-Goldstone boson 
of the broken U(1)PQ symmetry. There are extensive reviews covering the theo-
retical aspects and the experimental searches for the axion [5] [6] [7]. 

A general feature of the axion is its two-photon coupling 

1
4aL gaF F gaE B

γγ

µν
µν= − = ⋅

 

                   (1) 

where a is the axion field, ( )F F µν
µν

  the (dual) electromagnetic field strength 
tensor and g the photon-axion coupling constant. Accordingly, in the presence 
of a magnetic field B



, a photon may oscillate into an axion and vice-versa. A 
prototype experiment in the search for solar axions is the CAST experiment, 
which set the limit g < 10−10 GeV−1 [8] [9]. The CAST experiment involves a 
magnetic field B = 9 T and a magnetized region L = 9.3 m. Therefore, the rele-
vant scale (BL)2 is (BL)2 ≈ 7000 T2m2. Our proposal involves Earth’s magnetic 
field, a magnetic dipole with a mean value 5

0 3 10 TB −≈ ×  on the Earth’s sur-
face. The weakness of the geomagnetic field B is compensated by the larger L 
value, of the order of Earth’s radius RE. Therefore, in our case, the scale is (BL)2 
≈ 36,100 T2m2. This increased value allows a higher accuracy and the exploration 
of a new range of g and ma (coupling constant and axion mass respectively) [10] 
[11]. 

3. Calculation and Results 

Consider a travelling photon of energy E and let us define as z-axis the direction 
of photon’s propagation. The polarization of the photon A



 lies then at the x-y 
plane. The photon is moving in the presence of the geomagnetic field B



. The 
component of B



 parallel to the direction of motion does not induce pho-
ton-axion mixing. Following Equation (1), the transverse magnetic field B



Τ  
couples to AII , the photon polarization parallel to B



Τ  and decouples from 
A⊥ , the photon polarization orthogonal to B



Τ . The photon-axion mixing is 
governed by the following equation: 

( ) 0z

A
E i

a
ϑ

 
− + = 

 
M II                      (2) 
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The 2-dimensional matrix M is 
2

2
2 2

2 2
a

m gB
E

mgB
E

γ 
− 
 =
 

− 
 

M
T

T

                       (3) 

For a photon, moving in a medium with number density of electrons Ne, the 
effective photon mass mγ is given by 

2 4 e

e

N
m

mγ
απ

=                          (4) 

Assuming that Earth’s material contains an equal number of protons and 
neutrons, we obtain the estimate [12] [13] 

( )~ 2e NN mρ                         (5) 

Therefore 

2 2

e N

m
m mγ

α ρπ
=                          (6) 

The density of the Earth as a function of the distance is rather well known and 
very close to the two-density model description, in which the core and the man-
tle each have a separate and constant energy [14]. We take the core of the Earth 
to be a sphere whose radius is R2 = 3490 km and whose constant density is 11.0 
g/cm3. The mantle, a spherically symmetric shell of constant density 4.4 g/cm3, 
surrounds the core and extends out to RE = 6371 km. For a nadir angle ~60˚, our 
particle crosses the Earth at a distance 5517 km far from the center, traversing a 
distance of 6371 km within the Earth. Moving entirely within the mantle, ρ = 4.4 
g/cm3 and the effective photon mass is mγ ~44 eV. 

Matrix M is diagonalized through the angle Θ with 

2 2

2
tan 2

a

gB E
m mγ

Θ =
−

T                        (8) 

Defining 

( )22 2 2 2 2
1 21 4

2 aD m m g B E
E γ
 = − +  T                 (9) 

sin 2
gB
D

Θ = T                         (10) 

we obtain for the probability that an axion converts into a photon after travelling 
a distance s 

( ) 2 2sin 2 sin
2

DsP a   γ→ = Θ                   (11) 

A resonance phenomenon occurs, offering the maximum probability, when 

am mγ=                           (12) 

We gather that the most favorable value for the axion mass is ma ~44 eV. Pro-
ceeding along these lines we obtain that at resonance and for values of 1Ds   
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( ) 2 2 21
4

P a g B sγ→ = T                      (13) 

Putting the appropriate numbers (g = 10−10 GeV−1, B = 3 × 10−5 T, s = RE) we 
obtain 

( ) 1610P α γ −→ = .                      (14) 

4. Conclusions 

Let us summarize our findings. We suggest that highly energetic axions traverse 
the Earth and they are becoming photons under the influence of the geomagnet-
ic field. These photons create the showers observed by ANITA. The photon po-
larization is parallel to the geomagnetic field in the Antarctica and therefore we 
expect a strongly horizontally polarized (Hpol) signal. Indeed this is observed by 
the ANITA experiments [1] [2]. The proposed mechanism suggests a mass scale 
for the axion at 44 eV. The physical properties of the QCD axion are to large ex-
tent determined by the scale fa of the PQ symmetry breaking, similar to how the 
low energy pion interactions are fixed by the pion decay constant fπ. Next to 
QCD interactions, we should include the electroweak interactions and also the 
gravitational interactions [15]. Thus, the obtained mass scale of 44 eV is not un-
natural. A proposed experiment [16] is dedicated to explore axions in a mass 
range around several eV. What is most interesting is that our axion can solve al-
so the dark matter issue. Cosmological N-body simulations with dark matter in-
dicate that an axion with a mass around a hundred eV will provide power spec-
tra almost indistinguishable from ΛCDM [17] [18]. Thus two problems disap-
pear with a single suggestion. 

One might wonder what the origin of these energetic axions is. We can im-
agine that the inverse phenomenon takes place at gigantic extragalactic scale. 
VHE photons in the presence of magnetic fields at their source suffer conversion 
into axions, thus avoiding absorption by γγ collisions on the extragalactic back-
ground light. Through this mechanism, we obtain a spectrum of “hard” axions 
[19]. These axions may reach our planet. If our model prevails, then these axions 
crossing the Earth may be useful in order to establish an axion tomography of 
the Earth. Notice that a neutrino tomography of the Earth has been already 
achieved [12] [13] [20]. On the other hand, a fraction of these axions may be 
converted into photons in the Milky Way. These VHE photons should be of 
prime interest to the CTA experiment [21]. A multimessenger exploration of 
space and particle physics is opened. 

There are other proposals to address the unusual ANITA events. It has been 
suggested that an axion pulse is transformed into an electromagnetic pulse in 
Earth’s ionosphere [22]. Subsequently, the down-going radio wave is reflected in 
the Antarctic ice, giving rise to the peculiar events. In another direction, a su-
persymmetric interpretation has been advanced to explain the ANITA events 
[23]. Clearly, we need more data to unravel the underlying mechanism. 

Note Added: Our work was followed by the findings of the XENON1T expe-
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riment (https://arxiv.org/pdf/2006.09721.pdf) reporting an excess of events, at-
tributed most probably to axions. 
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Abstract 
The Standard Model of Particle Physics treats four fields—the gravitational, 
electromagnetic, weak and strong fields. These fields are assumed to converge 
to a single field at the big bang, but the theory has failed to produce this con-
vergence. Our theory proposes one primordial field and analyzes the evolu-
tion of this field. The key assumption is that only the primordial field ex-
ists—if any change is to occur, it must be based upon self-interaction, as there 
is nothing other than the field itself to interact with. This can be formalized as 
the Principle of Self-interaction and the consequences explored. I show that 
this leads to the linearized Einstein field equations and discuss the key onto-
logical implications of the theory. 
 

Keywords 
Self-Interaction, Principles of Physics, Electromagnetism, Gravitomagnetism, 
“Weak Field” Approximation, Kasner Metric, Iterated Solutions, Gauge Theory 
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1. Introduction 

Newton, in his analysis of gravity, concluded that it made no sense to imagine a 
truly empty vacuum with nothing in it; something must be there, to transmit 
force from one place to another. This “something” is the gravitational field. Later 
Einstein reached the same conclusion [1]: “there is no such thing as an empty 
space, i.e., a space without a field. Spacetime does not claim existence on its own, 
but only as a structural quality of the field… there exists no space ‘empty of 
field’”. Einstein thus conceived of physical reality as a field. 

The concept of field evolved from Faraday to Maxwell to Hertz [2]; then Hea-
viside [3] extended Newton’s gravitation field in analogy with the electromag-
netic field. Einstein’s nonlinear gravity can be linearized to produce Heaviside’s 
equations and the gravitational waves implied by these equations have been de-
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tected [4]. Contributors to quantum field theory assigned a gauge theory to 
every fundamental particle such that Feynman incorporated gravity as the 31st 
field [5]. Eventually, Susskind [6] claimed the equivalent of up to 500 fields ac-
count for the multiverse. 

The current status of gravitational field theory is marked by two questions. 
The Standard Model poses that electromagnetic, gravitomagnetic, weak and 
strong fields converge at the big bang, yet this convergence fails without super-
symmetry, which has effectively been eliminated at the LHC [7]. This suggests 
new approaches be explored. The other question, posed by Will and Poisson [8], 
concerns the “unreasonable effectiveness” of the weak field approximation. This 
paper directly addresses this question. 

The plan of this paper is as follows: 
Section 1, the Introduction, traces the history of fields in physics and dis-

cusses the failure of convergence to a primordial field. 
Section 2, the Principle of Self-interaction, introduces the concept of primor-

dial field as the original entity that existed or came into existence “in the begin-
ning”. As nothing else existed, any physical interaction could only be with the 
primordial field itself. Based on this formulation of physics, I propose a “change 
operator”, acting on the field and represent the change as the field acting on it-
self. This yields the self-interaction equation. I then solve this equation for a sca-
lar aspect of the field and interpret this scalar as time, in which case the solution 
has a frequency property. I then consider a vector field aspect and formulate a 
vector equation. 

Section 3 treats “contact with Newton’s equation” as a means of linking the 
symbolic formulation of self-interaction to physical reality. We find that New-
ton’s equation of gravity can be derived from the self-interaction equation, and 
compare the primordial self-interaction to the interaction between separate entities. 

Section 4 introduces Hestenes’ Geometric Calculus as the most appropriate 
mathematical formalism for physics, based on the fact that every geometric al-
gebra entity has both an algebraic interpretation and a geometric interpretation. 
In addition, Geometric Calculus deals with multi-vectors composed of different 
types of entities. For example, we found a scalar solution and a vector solution to 
the self-interaction equation; therefore we combine both solutions into a mul-
ti-vector representation. The geometric product of two vectors is introduced as 
the fundamental operation and the dual operator, i, is also introduced. The 
self-interaction equation is redefined in the Geometric Calculus formalism. 

Section 5 expands the redefined self-interaction equation in terms of the 
fundamental constituents introduced in section 4, and then the expansion of the 
equation is regrouped in terms of “like terms” appearing on each side of the eq-
uation. This process yields four equations which are presented in terms of the 
fundamental constituents. 

Section 6 interprets the four equations, derived in section 5, in terms of the 
associated physics; the result is a set of equations known as the “weak field equa-
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tions” of general relativity. 
Section 7 derives the gravitomagnetic wave equations and discusses the recent 

detection of gravitomagnetic waves. 
Section 8 discusses momentum in the primordial field and describes how 

terms that would seem to cancel mathematically can exist if separated in space. 
The addition of these terms completes the linearized field equations first derived 
by Heaviside and later derived from Einstein’s general relativistic nonlinear field 
equations. 

Section 9 discusses the fact that it has been impossible to successfully apply 
adjunct linear “Lorenz condition” stipulation to Einstein’s “generally covariant” 
formulation of general relativity. The Geometric Calculus is used to formulate the 
gravitomagnetic gauge field equations and to derive the Lorenz gauge condition. 

Section 10 presents the key finding of the theory of gravity based on the Prin-
ciple of Self-interaction: the fact that “field strength” does not appear in this 
theory. That distinguishes our linear gravitomagnetic field equations from the 
equivalent field equations derived from general relativity. Relativists assume that 
these equations apply only for “weak” gravitational fields, whereas our theory is 
“strength-independent”, and applies for all strengths. 

Section 11 discusses the fact that Einstein’s nonlinear field equations can be 
derived iteratively from the linearized field equations we have derived from our 
theory of the self-interacting primordial field. 

Section 12 presents conclusions and reiterates the “strength-independent” 
nature of the self-interaction solution, enabling a physical interpretation of the 
Kasner metric solution of Einstein’s equations. Other applications will be treated 
in future papers. We summarize by emphasizing that self-interaction theory of 
gravity presents a novel reinterpretation of gravity that addresses current confu-
sions associated with the success of the post-Newtonian approach to relativity. 

2. The Principle of Self-Interaction 

Perhaps the simplest assumption upon which to base a universe is that the un-
iverse either existed, or came into existence, as a primordial entity. That is, “in 
the beginning” this primordial entity, and nothing else, existed. If nothing else 
existed, there was nothing to interact with the primordial entity except itself. To 
be specific we call this entity a physical field. 

Our physics tools are generally designed to relate changes in one physical ent-
ity to another entity. For example the basic equation 

f s∇ =                            (1) 

relates change (represented by operator ∇ , undefined) in a field (represented 
by f, undefined) to a source s. If our primordial field is represented by f, and 
change is represented by mathematical operator ∇ , then s does not exist apart 
from f. And change must have occurred if the primordial field evolved to the 
current state of our universe. Today, changes occur when things “interact with 
each other”, but, if nothing else existed to interact with the primordial field, any 
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interaction could only be the field interacting with itself, and we denote this by 
ff. So change based on self-interaction is described by the equation 

f ff∇ =                            (2) 

This fundamental Principle of Self-interaction describes changes in the pri-
mordial field f as it interacts with itself. 

In the following, we assume minimal knowledge of physics, while at the same 
time we assume knowledge of logic and mathematics, as necessary. As we cannot 
model the universe based only on two symbols ∇  and f, we assume some as-
pect or property p of the field and ask how the field changes with respect to this 
aspect. In other words p∇ = ∂ ∂  where ( )f f p= . The self-interaction equa-
tion becomes: 

( ) ( ) ( )f p f p f p
p
∂

=
∂

.                     (3) 

This fundamental equation has solution, 1f p−= − . 

( ) ( )( )1 1 1p p p
p

− − −∂
− = − −

∂
( )2 2p p− −⇒ − − = +             (4) 

This implies a scalar property or aspect of the primordial universe. The most 
fundamental scalar in physics is almost certainly time t, therefore we initially 
identify p t=  and ( ) 1f t t= − . The field appears to have a frequency aspect 
and we postpone interpretation of the −  sign. Parameter t is cosmological time, 
the same time everywhere in the universe. It represents a distance (duration in 
time) from a beginning to the present state. To find a 3-space vector solution to 

f ff∇ =  we promote ∇  and f to ∇


 and f


 for parameter { }, ,r x y z=
 . The 

self-interaction equation becomes 

f ff∇ =
 


.                           (5) 

This combination is not well defined in vector calculus, so we expand the 
meaning of the change operation to project change onto the field, and use the 
inner product or dot product to represent self-interaction: 

f f f∇⋅ = ⋅
  



.                         (6) 

Physical fields have energy density proportional to the square of the fields; 
2

E f f fρ = ⋅ =
 

. For unity speed of light ( 1c = ) we have mass equivalent densi-
ty m Eρ ρ=  and we find Ef ρ∇ ⋅ =




. 

3. Contact with Newton’s Gravity 

Einstein’s general relativity field equations are unphysical differential geometry 
equations unless, and until, they make contact with Newton’s equation; we apply 
the same criterion to the primordial field equation. Specifically, we write 

G G G∇⋅ = ⋅
  

.                         (7) 

If we assume that f


 is gravitational field G


, we recall that, unlike the elec-
tromagnetic field, the gravitational field energy is negative, as it is necessary to 
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add energy to free a body captured in a gravity well. Thus energy density Eρ  is 
negative and (for 1c = ) m Eρ ρ=  and the self-interaction equation becomes 

mG ρ∇ ⋅ = −


.                         (8) 

If Newton’s gravitational constant 1g = , this is seen to be Newton’s equation 
of the gravitational field. Therefore our primordial field is tentatively identified 
as the gravitational field. Although it may be assumed that gravity is sourced by 
mass, Calabi [9] asked: “Could there be gravity in our universe even if space is 
vacuum totally devoid of matter?” His answer, that curvature makes gravity 
without matter possible, establishes a feasible identification of the primordial 
field. Let us return to the self-interaction Equation (7). Danforth first showed, 
[10] circa 2007, that this equation has solution 

( ) 2

1 rG r
r r

= ≡








 such that 2

1
EG G

r
ρ⋅ = =

 

             (9) 

We compare this with Newton’s force law 

2 3 N
gmm rF gmm m G

r r
′

′ ′= − = − ≡




                (10) 

describing the force of gravity on test mass m′  a distance r from the source of 
the field, m. Let us use unit test mass 1m′ =  and keep 1g =  and set  

( )3
N mG F m m r r rρ′= = =
 

  . Although we have suppressed the display of m′  
and g, these constants enter into any dimensional check, so that if Newton’s gra-
vitational constant has units 3 2g l mt=  we find  

3

2 3 21N
l m l lG g r

mt l t
ρ= = =



, which correctly has dimensions of acceleration. 

In the following, we set Newton’s gravitational constant 1g = . This scalar 
dimensional constant is always present and has dimensions 3 2g l mt=  whether 
we display it or suppress its display. Similarly, we let test mass 1m′ =  retaining 
the result shown in Equation (10): NF m G′=



. Thus: 

Newtonian: 3N
gmrG
r

=




                    (11) 

Primordial: 2

grG
r

=




                     (12) 

If the forces are identical these two equations imply m r= . We choose the 
origin of the gravitational system ( )0,0,0  to be the center-of-mass and consid-
er the test mass m′  to be located at ( ) ( ), , , ,r x y z r θ φ= ≡

 . In Newtonian prob-
lems, the mass m is located at the origin and m′  at r . 

We see that the gravitational field derived from Newton’s force law has de-
pendence 3~NG r r



  while the solution of the primordial field self-interaction 
Equation (9) has dependence 2~G r r



 . How can we explain this difference? 
The difference between the gravitational acceleration due to fixed mass m, 

distance r from the test mass m′ , and a primordial field G


 tested at the same 
point (see Figure 1) is as follows: for mass m all of the mass contributes to the  
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Figure 1. Mass m at r . 

 
field G



 at r . For the primordial field, assumed spherically symmetric, Birk-
hoff’s Shell theorem [11] implies that only the mass density inside the sphere of 
radius r (centered on the origin at the “center of mass”) contributes to the field 
at the test point. Mass m inside the sphere is (modulo 4π/3) 

( ) ( )3 3 3
2

1m r r G G r r
r

ρ  = = ⋅ = = 
 

 

.              (13) 

This is the result implied by Equations (11) and (12). Thus the Newtonian 
force on the test mass at r , due to mass m inside the sphere, is 

( )3 3 2N
F gmr grr grG G r
m r r r

= = ⇒ = =
′



  



,              (14) 

and self-interaction of primordial field at r  is correctly given by the self-inter- 
action equation. In order to derive this result, we modified equation f ff∇ =

 


 
by specializing in the inner product represented by “ ⋅ ”. We next generalize our 
tool-set to solve the unmodified equation. 

4. Geometric Calculus 

Our goal is to create a physical model, or a physical theory of reality, based on 
minimal knowledge of physics at the time of creation and on the most effective 
mathematics. As our world has both logical relationships and shapes, the only 
mathematical field in which every mathematical term has both an algebraic and 
a geometric interpretation is Hestenes’ geometric calculus [12], with its funda-
mental theorem on a smooth m-dimensional manifold M with boundary M∂ : 

1d dm m

M m

x F x F−

∂

∂ =∫ ∫                      (15) 

This theorem is compatible with and contains Gauss’s theorem, Stokes theo-
rem, Green’s theorem, and the Cauchy integral formula, in coordinate-free for-
malism [13]. The type of geometric algebra entities in a (3 + 1)D universe are 
scalar, vector, bivector, and trivector or pseudo-scalar. The fundamental geome-
tric algebra operation, the geometric product of two vectors u  and v , is: 

uv u v u v= ⋅ + ∧
    

.                      (16) 

The geometric product of two vectors yields a multi-vector consisting of inner 
product u v⋅  , which is a scalar projecting one vector into the other, and outer 
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product u v∧
 

, which is a bivector, a directed area representing the rotation of 
u  into v . The scalar product is identical to the vector dot product. The bivec-
tor can be related to the vector cross product as seen in Figure 2. 

u v iu v∧ = ×
   

                        (17) 

Bivector u v∧
 

 is a directed area with no defined shape, while u v× 

 is an 
axial vector, which is not included as a vector in vector analysis, but which is 
required to represent magnetic fields. The term i is the dual operator that trans-
forms cross-product into wedge, as shown, or vice versa: u v iu v× = − ∧

   

. An 
axial vector can be envisioned as a vector cross product, but its rotational aspect 
can be represented as a bivector. The negative sign associated with 1t−−  is in-
terpreted to mean left-handed circulation of the local field with rotational fre-
quency 1~ t− . 

In geometric calculus, as in vector calculus, the derivative operator ∇


 is 
viewed as a vector. Therefore the geometric product of ∇



 with field f


 is as 
follows 

f f f∇ = ∇⋅ +∇ ∧
  
  

.  gradient = divergence + curl       (18) 

This relation gradient = divergence + curl is not true in any other mathemati-
cal formalism. 

Scalar derivative t∂  operating on scalar function ( )f t  yields ( ) 1f t t−= −  
for self-interaction equation ( ) ( ) ( )t f t f t f t∂ = , while a primordial field with 
aspects of distance in time and space leads to a directional field f



. If these as-
pects are separable with respect to time and space, we resolve our field into two 
primary subfields, ( )G r



 and ( )C t


 and express the primordial field 

f G iC= +
 

                         (19) 

where ( )G r


 is a vector and ( )C t


 is a bivector formed by the dual operator i 
operating on the ( )C t



 field vector. The nature of 1~G r −


  and the nature of 
1~C t−−



, where the ~ symbol implies proportionality; scalar constants may be 
required to match experimental measurement of ( )G r



 and ( )C t


. The over-
bar denotes a multivector. If ∇



 is the vector derivative with respect to space, 
and t∂  is the scalar derivative with respect to time, then for changes in space 
and time, we generalize change operator ∇  to include both derivatives, and 
field f  to include both subfields: 

 

 
Figure 2. (a) Wedge product; (b) Cross product. 
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( )( ) ( )( )tf ff G iC G iC G iC∇ = ⇒ ∇+ ∂ + = + +
     

.         (20) 

5. Expansion of Primordial Field Equation 

( )( ) ( )( )t G iC G iC G iC∇+ ∂ + = + +
     

              (21a) 

First we multiply out all terms, noting that the dual operator i commutes with 
all vectors. 

t tG G i C i C GG iGC iCG CC∇ + ∂ + ∇ + ∂ = + + −
            

         (21b) 

Next we expand the geometric products on both sides and then group like 
terms. 

t tG i G G i C C i C

G G iG G iG C G C iC G C G C C iC C

∇⋅ + ∇× + ∂ + ∇ ⋅ −∇× + ∂

= ⋅ + × + ⋅ − × + ⋅ − × − ⋅ − ×

        

               

    (21c) 

Observing that a curl of a vector with itself is identically zero we delete terms 
G G×
 

 and C C×
 

. We also note that 0G C C G× + × =
   

. The remaining terms 
should be grouped by like terms. 

t tG i G G i C C i C G G iG C iC G C C∇⋅ + ∇× + ∂ + ∇ ⋅ −∇× + ∂ = ⋅ + ⋅ + ⋅ − ⋅
                

  (21d) 

First we group scalars; next scalars multiplied by the dual operator, then vector 
terms and finally vectors multiplied by i. This expansion of the self-interaction 
equation yields four equations: 

G G G C C∇⋅ = ⋅ − ⋅
    

                     (22a) 

2i C i G C∇⋅ = ⋅
  

                      (22b) 

0tG C∂ −∇× =
 

                      (22c) 

0ti G i C∇× + ∂ =
 

                     (22d) 

These equations derive from the self-interaction of the primordial field ac-
cording to our Self-interaction Principle, based on the simplest assumptions. 
They are quite explicit, yet to proceed further we need to make use of what more 
we know of physical reality. For example, we know that physical fields are real 
and have energy. Ohanian and Ruffini state: [14] “The gravitational field may be 
regarded as the material medium sought by Newton; the field is material because 
it possesses an energy density.” For example, energy-momentum density of the 
electromagnetic fields E



 and B


 are given by 2 2E B E B+ + ×
 

. Therefore we 
assume that G G⋅

 

 and C C⋅
 

 represent energy density, and G C×
 

 represents 
momentum density. We know that energy has mass equivalence such that ener-
gy density 2

E mcρ ρ= ; if 1c =  then E mρ ρ= . Additionally, we know that 
Einstein’s general relativity field equations are simply differential geometry until 
they make contact with real physics in the form of Newton’s equation. Therefore 
we conclude that we too must again make contact with Newton’s equation. 

6. Interpretation of Primordial Field Equation 

When we apply our knowledge to the first scalar Equation (22a), we interpret 
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G


 as the gravitational field and G G⋅
 

 as the self-energy density of the gravita-
tional field. Ignoring the complication of C C⋅

 

 we have G ρ∇ ⋅ =


. Calling on 
additional information, we know that gravitational energy is negative since we 
must apply positive energy to a body captured in a gravitational field in order for 
it to escape the field, hence the mass density ~ G Gρ − ⋅

 

 and we obtain: 

G ρ∇ ⋅ = −


 Newton’s gravitational equation          (23a) 

This implies that C C⋅
 

 has positive energy so that equivalent mass density 
C C− ⋅
 

 in Equation (22a) contributes correctly to Newton’s equation. It has re-
cently been shown that rotational energy in molecules is equivalent to mass [15], 
therefore the circulational energy of the C-field yields the appropriate sign. In 
other words, we have derived Newton’s equation of the gravitational field from 
our Principle of Self-interaction as required. 

Our next interpretation also relies on analogy with the electromagnetic field, 
where 0E B⋅ =

 

, since the fields are orthogonal to each other. Obviously, our 
C-field is the gravitomagnetic field, sometimes called cogravitation [16]. Exis-
tence of this field was positively established circa 2011 by the Gravity Probe B 
experiment [17]. If we assume that 0G C⋅ =

 

 then Equation (22b) becomes 

0C∇⋅ =


.                        (23b) 

Again analogous to 0B∇⋅ =
 

, this implies that no gravitomagnetic “pole” ex-
ists and also that the gravitomagnetic field can be derived from a gauge equation 
C A= ∇×
 

 since 0A∇⋅∇× ≡
 

. 
We obtained terms C G− ×

 

 and G C− ×
 

. When we add these and note that 
G C C G× = − ×
   

 we initially assume that these terms cancel. We will revisit these 
terms later. Until then we have: 

tC G∇× = ∂
 

                        (23c) 

By now it’s obvious from the electromagnetic analogy that the last equation is 

tG C∇× = −∂
 

                       (23d) 

Grouping these for convenience we obtain: 

,

0,

G

C

ρ∇ ⋅ = −

∇ ⋅ =





   t

t

G C

C G

∇× = −∂

∇× = +∂

 

 

                  (24) 

These equations, derived from the Self-interaction Principle, were derived by 
Oliver Heaviside in 1893, and later from Einstein’s relativistic field equations, as 
the “weak field equations”. 

7. Gravitational Wave Equations 

The Maxwell-like field equations invite the following procedure, based on the 
vector identity: 

( ) ( ) 2V V V∇× ∇× = ∇ ∇⋅ −∇
      

,                 (25) 

where the last term can be written ( )V−∇ ⋅ ∇
  

. The first term on the right va-
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nishes at all times for V C=


 since 0C∇⋅ ≡


. For no mass density 0ρ = , and 
for minimal field density 0ρ ≈ , we have 0G∇⋅ ≈



, leaving the relation  

( ) 2V V∇× ∇× = −∇
   

. Substitute first G


 and then C


 into this identity. 

( ) ( )
2

2
2

C GG G C
t t t

 ∂ ∂ ∂
∇× ∇× = −∇ ⇒∇× − = − ∇× ⇒ − 

∂ ∂ ∂ 

 

     

     (26a) 

( ) ( )
2

2
2

G CC C G
t t t

 ∂ ∂ ∂
∇× ∇× = −∇ ⇒∇× + = + ∇× ⇒ − 

∂ ∂ ∂ 

 

     

     (26b) 

Summarizing, we have obtained the wave equations 
2

2
2 0GG

t
∂

−∇ + =
∂





 and 
2

2
2 0CC

t
∂

−∇ + =
∂





             (27) 

Dimensional analysis indicates that a velocity-squared term is needed, so we 
assume 1v =  and include the symbolic speed in the equation. 

2 2
2 2

2 2 2 2

1 10, 0G CG C
v t v t

∂ ∂
−∇ + = −∇ + =

∂ ∂

 

 

             (28) 

The 2017 [18] detection of inspiralling neutron stars established that the speed 
of light in an absolute frame, defined by the Cosmic Microwave Background, is 
the same as the speed of propagation of gravity through the same frame which is 
pervaded by gravity. Will [19] analyzes the connection between gravity and 
speed of light by correlating electromagnetic parameters ,µ ε  with Newton’s 
gravitational constant g in terms of THεµ  formalism of Lightman and Lee. We 
have: 

( ) ( ) ( )1 2
1 2

1 22
2

0 0

1 1 4
4

gc g g c c
g c µε

ε µ
ε µ

−
−−−   − − = ⇒ = = =           π 

π


 (29) 

Since it is now known that velocity v  in Equations (28) is equal to the 
speed of light we observe that the Principle of Self-interaction predicts gravita-
tional waves. 

8. Momentum in the Primordial Field 

We now revisit the two terms appearing in the expansion of the Self-interaction 
Equation (21c) which we deleted based on 0G C C G× + × =

   

. We did so due to 
antisymmetry G C C G× = − ×

   

. However since E B×
 

 is the momentum energy 
density of the electromagnetic field; we interpret C G− ×

 

 as the momentum 
energy density of the gravitomagnetic field. The energy density has equivalent 
mass density, and momentum density implies that energy is moving with veloc-
ity v . Hence we rewrite C G− ×

 

 as vρ−   and obtain the complete set of Hea-
viside equations: 

,

0,

G

C

ρ∇ ⋅ = −

∇ ⋅ =




    t

t

G C

C v Gρ

∇× = −∂

∇× = − + ∂

 

 



                (30) 

This requires some physical explanation. First, we note that G C×
 

 cancels 
C G×
 

 if they are the same vectors. Based on the significance of the gravitational  
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Figure 3. Inspiraling stars. 

 
waves detected from in-spiraling neutron stars, we re-examine this interpreta-
tion. Obviously, observed from Earth, the momentum expressed by G C×

 

 is 
( ) ( )G r C t×
 



 as symbolized in Figure 3. 
But imagine that the earth is positioned at the far side of the inspiraling 

stars. In this case, the momentum vector observed would be ( ) ( )G r C t− ×
 



 and 
would have the opposite apparent circulation, changing the sign of the momen-
tum term. The position of Earth is arbitrary, and physics tells us that the inspi-
raling stars produced gravitational radiation in both directions, so we conclude 
that, instead of canceling, both momentum terms exist, and that is why we in-
clude the vρ   term in Equation (30). Finally, we generalized from the velocity 
v c=  of the gravitational radiation to encompass subluminal momentum den-
sity with v c< . Physical reasoning causes us to restore the terms that we origi-
nally canceled for mathematical reasons. 

9. Gauge Field Equations 

We anticipate problems with energy-momentum tensors in general relativity; 
unambiguous gauge fields simply cannot be defined, therefore we will reformu-
late our field Equation (21) by defining G G C Cρ = ⋅ − ⋅

   

 and ~p v G Cρ= ×
 

   
where mass density current p  (momentum density) is the analog of the elec-
tromagnetic charge density current j



. The source multivector becomes  
( )1p p vρ ρ= + ≡ +

   and the reformulated multivector field equation becomes: 

( )t f p∇+ ∂ =


.                       (31) 

As we have seen, this structure supports the wave operator: 

( )2 2
t

µ
µ∂ ∂ = ∇ −∂ .                      (32) 

The following, modeled after Arthur [20] is motivated by Kauffmann’s [21] 
statement that: 

“There is no way to successfully apply adjunct linear “Lorenz condition” sti-
pulation to the Einstein equation when it is presented in the customary “gen-
erally covariant” form: 

( )28G g c Tµν µνπ= − .                    (33) 

Let us multiply Equation (31) by operator ( )t∇−∂


 to obtain the sourceless 

wave equation on the left-hand side and the term ( )( )t pρ∇ −∂ +


  on the right,  
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and recall that the scalar and vector potentials of electromagnetism give rise to 
scalar wave equations with ρ  and j



 as multivector source j jρ= +


. Ar-
thur suggests that we find a single wave equation relating the four momentum 
A  to j . Our analogy replaces current density j



 by momentum density p  
to obtain 

( )2 2
t A p∇ −∂ =                        (34) 

which, using Equation (31), we rewrite as 

( )( ) ( )t t tA f∇+ ∂ ∇ −∂ = ∇ + ∂
  

                 (35) 

This allows us to factor ( )t∇+ ∂


 from each side to obtain 

( )tf A f ′= ∇ − ∂ +


                      (36) 

where f ′  is any solution of the homogeneous (source free) Equation (28); 

( ) 0t f ′∇ + ∂ =


. For simplicity, we choose 0f ′ = , and recall that ( )2 2
t∇ −∂  is 

a scalar. Therefore, if we multiply A  by a scalar in Equation (34), we see that, 
since the multivector p  is a scalar plus a vector, and A  must have the same 
form as p , we must write a multivector 

A Aφ= − +


                         (37) 

which is analogous to the electromagnetic gauge field four-vector. Next expand 
Equation (36): 

( ) ( )( )t tf A Aφ= ∇ −∂ = ∇ −∂ − +
 

                (38) 

t tG iC A A Aφ φ+ = −∇ +∇ ⋅ +∇ ∧ + ∂ − ∂
      

 
As always, each type of term must satisfy the equation separately; so, matching 

scalar, vector, and bivector terms, we obtain the following equations: 

0 t Aφ= ∂ +∇ ⋅


 

tG Aφ= −∇ −∂
 

                       (39) 

iC A C A= ∇∧ ⇔ = ∇×
    

 
Since the field f  has no scalar terms, we set the scalar terms to zero. From 

Newton’s theory, we have ~ m rφ , thus the gravitational field agrees with New-
ton plus a gauge term. The last Equation (39c) follows from (23b) 0C∇⋅ =



. A 
dimensional analysis performed almost anywhere along the way will suggest that 
the gauge field A



 has dimensions of velocity ~A v


 . In analogy with electro-
magnetic theory, the product of charge q with gauge field A



 yields electro-
magnetic momentum qp qA=





, therefore our analogous product of mass with 
gauge field yields gravitomagnetic gauge field momentum mp mA mv= ≡



  . Since 
this is the momentum in gravitomagnetism, we assume our assignment A v⇒



  
is correct. We check this by examining term t A−∂



 in Equation (39), where we 
find that the term represents an acceleration t v∂

  that is dimensionally com-
patible with gravitational acceleration G



. 
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Finally, scalar Equation (39a) is dimensionally correct, since ~ ~xA
x t t
∂ ∂ ∂

∇ ⋅
∂ ∂ ∂



.  

But most significantly, this equation, in electromagnetic field theory is the Lo-
renz condition, and thus we consider this the gravitomagnetic Lorenz condition 
that is missing in general relativity. Great effort has been expended in relativity 
to establish an adjunct stipulation of the Lorenz condition 0Aµ

µ∂ = . Kauff-
mann substitutes this into the “poster child” of gauge imposition in electro-
magnetic theory, A A jµ ν ν µ ν

µ µ∂ ∂ − ∂ ∂ = , and simplifies the relation to 

A jµ ν ν
µ∂ ∂ = .                        (40) 

This “stipulation” is equivalent to Equation (34), suggesting that our approach 
has been correct. In summary, the much desired gravitomagnetic Lorenz gauge 
condition that is still missing from general relativity is obtained rather directly 
from the Principle of Self-interaction. 

10. Consequences of the Self-Interaction Principle 

The key factor concerning our derivation of the Heaviside-Einstein equations 
(30) is the fact that “field strength” never enters the equation. Our description of 
the field as “primordial” implies field strengths associated with the big bang, in 
strong contrast to the century old perception of weak field approximation. The 
Self-Interaction Principle replaces the “weak field approximation” with the 
“all-field equations”—the equations hold for all finite strengths of the gravita-
tional field. That is the key lesson to be learned from this theory. 

Will observes that “most of our understanding of gravitational radiation has 
come from approximations to Einstein’s equations.” And Padmanabhan analyz-
es a Lagrangian for the two body problem in the post-Newtonian approximation 
and finds that the perihelion precession per orbit “miraculously matches with 
the corresponding expression for a test body in the Schwarzschild metric. No 
simple reason for this conclusion is known and it is an issue worth thinking 
about”. 

The self-interaction theory contradicts this prevailing view by applying to any 
gravitational field, regardless of strength. It addresses Will’s statement that “we 
have no good understanding of why this approximation to general relativity 
should be so effective.” Will reviews binary pulsars and inspiralling compact bi-
naries, including black holes, and the surprising fact that the approximate calcu-
lations agree with those of numerical relativity for very strong fields. He notes no 
obvious reason to expect weak field equations to work for inspiralling black 
holes, but they do. 

The Self-Interaction Principle provides the reason. It is “strength-independent”; 
it never makes assumptions about “weak field” approximation. 

11. The Equivalence of Linear and Nonlinear  
Formulation of Gravitation 

The mass-energy density approach of field theory is equivalent to Einstein’s me-
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tric-based theory of curved space-time. Although Einstein’s metric-based general 
relativity is by far the most familiar theory of gravity, a number of approaches 
have formulated gravity as a gauge theory. In 1954, Gupta constructed a theory 
in which the “source” couples to the massless spin-2 field hµν  as the ener-
gy-momentum tensor, including the energy momentum of the hµν  field itself. 
The coupling induces a cubic term in the Lagrangian, resulting in a correspond-
ing cubic term 3T µν  in the energy momentum tensor, which is then included in 
the source [22]. This in turn generates a quartic term 4T µν , and so on. This 
considers the stress-energy carried by the linearized gravitational field, hµν  and 
iteratively corrects for it and then corrects the corrections. This alternate way to 
derive general relativity has been developed and explored by Gupta (1954), 
Kraichnan (1955), Thirring (1961), Feynman (1963) Weinberg (1965) and Deser 
(1970). 

The most significant aspect of the gauge approach is that, per Feynman [23]: 
“this iterative procedure generates an infinite series that can be summed to yield 
the full nonlinear Einstein equation.” Similarly, Misner, Thorne and Wheeler 
[24]: “Just as one can ‘descend’ from general relativity to linearized theory by li-
nearizing about flat space time so can one ‘bootstrap’ one’s way back up from li-
nearized theory to general relativity…”. The two formalisms are equivalent. 

Although linear equations are transformable into non-linear via iterative 
analysis, the nonlinear equations did not just “snap into being”. As Padmanab-
han noted, it is necessary to know beforehand that the final field equations have 
to match with those in Einstein’s theory, in order to introduce the extra assump-
tions to obtain it, but these extra assumptions are essentially equivalent to the 
result we’re attempting to derive! So Einstein’s equations did not just fall out of 
an analysis of gravity; or even the Equivalence Principle; many issues still have 
yet to be resolved. One simply cannot obtain an expression for the ener-
gy-momentum tensor for the spin-2 field that is unique and gauge invariant; in-
stead one can obtain a large class of non-unique theories. This has resulted in 
numerous “Einstein-like” theories, a number of which are finally being elimi-
nated by the real gravitational wave data that is increasingly being detected. 

Ohanian and Ruffini observe that “almost all of the result that had been the 
subject of experimental investigation can be described by the linear approxima-
tion … the deflection of light, the time delay of light, gravitational time dilation, 
gravitational lensing, and gravitational radiation emerge from the linear ap-
proximation.” Recently Will [25] derived a new contribution to Mercury’s peri-
helion advance, based in part on interaction between Mercury’s motion and the 
gravitomagnetic field of moving planets; a contribution 100 times larger than the 
second-post-Newtonian contribution. 

Poisson and Will [26] begin their development of post-Newtonian theory by 
postulating a form of the metric and ask “which guiding principle can be in-
voked to justify the choices made…? The answer is simply that no such principle 
exists…” The central theme of their book is “the physics of weak gravitational 
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fields.” A reason for this approach is that “no exact solution to Einstein’s equa-
tion has ever been found that describes a simple double-star system and orbital 
motion.” Thus the focus on weak field approximation is utilitarian of necessity, 
as they conclude that “Almost no physically useful exact solutions of the theory 
(of general relativity) are known.” Yet “we have no good understanding of why 
this approximation to general relativity should be so effective,” since “neutron 
stars…have very strong internal gravity”. 

In contrast, the Self-Interaction Principle makes no field strength assumption, 
other than the implicit assumption that the strength of the field at the big bang is 
included in the theory. 

12. Conclusions 

Despite equivalence of the linear formalism to Einstein’s nonlinear form, the 
“weak field approximation” terminology has misled physicists to believe that real 
gravitation is described by space-time curvature corresponding to the nonlinear 
formalism, although Feynman, Padmanabhan, Weinberg, and others insist that 
curved spacetime is not a necessary conception of gravity. 

Familiarity with the Schwarzschild and Kerr metrics convince many that the 
“proper” theory of gravity is general relativity. Nevertheless, these metric solu-
tions are static; they represent a geometric solution that does not evolve over 
time, given a fixed mass, M. For a dynamic space-time, an exact metric solution 
to Einstein’s field equations has existed for over 90 years, yet its interpretation 
has been “obscure and questionable”. This Kasner metric has recently been in-
terpreted [27] in terms of self-interaction equations, and a meaningful physical 
theory derived. 

We have worked from the assumption that our universe evolved from a single 
primordial field. The corresponding Principle of Self-interaction produces the 
known gravitomagnetic field equations; however, in contrast with the “weak field 
approximation” assumption, a self-interacting field remains self-interacting—it 
does not become non-self-interacting due simply to a physicist’s deleting nonli-
near terms for ease of solution. Therefore the most significant aspect of the de-
rivation of the gravitational field equations from the self-interaction principle is 
that there is absolutely no mention of field strength. Derivation from the Prin-
ciple of Self-interaction instead yields all-strength-field-equations of the gravita-
tional field. 

The space-time curvature aspect of gravity is based on an approximate equi-
valence principle that holds only at a mathematical point. On the other hand, 
there is another assumed equivalence that some find remarkable; Ohanian and 
Ruffini state: 

“That the exact nonlinear equations are implied by the linear equations… is 
a remarkable feature of Einstein’s theory.” 

We restate this as follows: 
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That Einstein’s exact nonlinear equations are implied by our linear equa-
tions… is a remarkable feature of the Principle of Self-interaction. 

This offers a new ontological understanding of physical reality. 
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Abstract 
In many interesting physical examples, the partition function is divergent, as 
first pointed out in 1924 by Fermi (for the hydrogen-atom case). Thus, the 
usual toolbox of statistical mechanics becomes unavailable, notwithstanding the 
well-known fact that the pertinent system may appear to be in a thermal steady 
state. We tackle and overcome these difficulties hereby appeal to firmly estab-
lished but not too well-known mathematical recipes and obtain finite values for 
a typical divergent partition function, that of a Brownian particle in an external 
field. This allows not only for calculating thermodynamic observables of inter-
est, but for also instantiating other kinds of statistical mechanics’ novelties. 
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1. Introduction 

In many interesting physical examples, the partition function is divergent [1] [2] 
[3] [4]. Thus, the usual toolbox of statistical mechanics becomes unavailable, 
notwithstanding the well-known fact that the pertinent system may appear to be 
in a thermal steady state (see, for instance [5] [6] [7] [8] [9]) and references 
therein]. Our goal here is to deal with a specific divergent partition function, and 
obtain a finite value for it. This permits to compute new observables of interest 
and also to develop some hopefully new statistical mechanics’ insights. 

2. The Central Issue 
2.1. Partition Function 

We will consider here the partition function for Brownian motion in an external 
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field, given by [4] 

0
21e d ,

U

x x
β∞
+

−∞

= ∫                        (2.1) 

with ( )1 Bk Tβ =  and Bk  = Boltzmann’s constant. Change now variables to 
21y x= + . Taking advantage now of well-known features of Schwartz’ theory of 

distributions [10], we can recast the integral that defines   in the fashion 

( ) ( )
0 01 1

12 2
1

1 1

1 e d lim 1 e d ,
U U
y yy y y y y

β β
ν

ν

∞ ∞
− −−

→
= − ≡ −∫ ∫          (2.2) 

and remember that the limit of an integral equals the integral of the limit. We 
consult then the Table of Ref. [11] and find that our current integral is a special 
case of the more general one 

( ) ( )11 1e d 1 , 1 ;1 , .x

u

W x x u x B u
u

β
µν µ ν βµ ν µ φ µ ν ν

∞
−− + −  = − = − − − − − 

 ∫    (2.3) 

Here B is the well-known beta function and φ  the confluent hypergeometric 
function, that reads, appealing to the Gamma function Γ , 

( ) ( ) ( )1 1 .B µ ν µ ν= Γ − − Γ Γ −                 (2.4) 

Comparing integrals, we see at this stage that the right hand side of (2.2) will 
coincide with W in (2.3) by setting 

1 2; 1; 1,uµ ν= = =                     (2.5) 

so that these special values are to be inserted in 

( ) ( ) ( ) 11 1 1 ;1 , .W u
u

µ ν βµ ν µ ν φ µ ν ν+ −  = Γ − − Γ Γ − − − −      
     (2.6) 

Note also that 

( ) ( ); 22 1 .1 2Γ = Γ − = −π π                 (2.7) 

We have a ( )0Γ  in a denominator now. This induces us to appeal once again to 
[11] to employ the useful relation 

( ) ( )
0

lim ; ; 1;2; ,s z z
γ

φ α γ αφ α
→

= +                 (2.8) 

so that we can finally arrive at the result 

0 0
1 ;2; ,
2

U Uβ φ β = 


π 


                    (2.9) 

our desired finite form. We see that we arrive at   via a straightforward path. 
The essential step here is that of consulting an appropriate table of integrals and 
performing adequate manipulations. Note that at very low temperatures quan-
tum effects raise their head and our treatment becomes invalid. Below it will be 
shown that one also encounters problems or exceedingly high temperatures. We 
have found a finite partition function for our Brownian problem and proceed to 
calculate with it, below, important quantifiers of statistical mechanics. 
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2.2. Units for Our Graphs 

We find it convenient to plot our thermal quantities versus 0By k T U=  in the 
range 0 1y≤ ≤ . Given the smallness of Bk , this encompasses an immense 
T-range, since Bk  is of the order of 10−23 in its appropriate units. In particular, 
we plot the logarithm of the partition function in Figure 1. We appreciate the 
fact that it converges to a definite value as T grows. 

3. Other Thermal Quantities 
3.1. Mean Energy 

One has 

ln ,
β

∂
= −

∂


                        (3.1) 

so that 
2
0

0 0 0
1 1 3;2; ;3; .

2 4 2
U

U U U
β

φ β φ β
    = − +    

  
π


π

 



       (3.2) 

Note that at very low temperatures quantum effects raise their head and our 
classical treatment becomes invalid. 

3.2. Entropy   

We have 

( )ln
,Bk T Z

S
T

∂
=

∂
                      (3.3) 

so that 
2
0

0 0 0 0 0
1 1 3ln ;2; ;2; ;3; ,
2 2 4 2

U
U U U U U

βββ φ β φ β φ β
       = − +              

π
π π





 (3.4) 

 

 
Figure 1. Logarithm of the partition function in appropriate units (see text). 
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that is plotted in Figure 2. Note that at very low temperatures, quantum effects 
raise their head and our treatment becomes invalid. This is evident whenever S 
becomes negative at low T. A new effect is observed at very large T. Whenever 

2210T ≥ , the treatment becomes invalid as well. Such high-T outcome is typical 
of classical self-gravitating systems [12] [13] [14]. 

3.3. Specific Heat   

One defines it as 

,
T
β

β
∂

= −
∂


                        (3.5) 

so that 

2
0

0 0 02

2 2
0 0

0 0

2 2 3
0 0

0 0

1 1 3;2; ;3;
2 4 2

1 3;2; ;3;
2 4 2

1 3 5;3; ;4; ,
2 2 8 2

U
U U U

Z

U U
U U

T T

U U
U U

T T

β
φ β φ β

β β
φ β φ β

β β
φ β φ β

    = − +    
    

    × +    

π
π

π π



π π

   
    + +    

    





       (3.6) 

depicted in Figure 3. Note that at very low temperatures, quantum effects raise 
their head and our treatment becomes invalid. Thus, the third thermodynamics’ 
law is violated here. Interestingly enough there is a Schottky anomaly. This is an 
effect typical of solid-state physics: the specific heat at low temperature exhibits a 
peak. When T is high, the specific heat decreases. A new effect is observed at 
very large T. The specific heat becomes negative. Such outcome is typical of clas-
sical self-gravitating systems [12] [13] [15]. 

 

 

Figure 2. Entropy in appropriate units. Negative values at low T reflect on quantum ef-
fects that need to be considered. Those at high 2210T ≥  are discussed in the text. 
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Figure 3. Specific heat in appropriate units. The third thermodynamics’ law is violated 
here because our treatment is classical. A Schottky effect is clearly visible (see text). 

4. Moment Generating Functions 

We pass to the moment generating function for our extant probability distribu-
tion function (PDF) ( )f x  [consult (2.1)] 

( )
0
21e ,

U

x
f x

β

+

=


                       (4.1) 

where   is given by (2.1). In the naive traditional treatment, these moments 
diverge. The mean value for 2 1nx + , ( )1,2,3,n =   vanishes by parity. That of 

2nx  becomes 
0
22 2 11 e d .

U
n n xx x x

β∞
+

−∞

= ∫                    (4.2) 

Appeal again to the variables change 21y x= +  and face 

( )
01

2 2

1

1 1 e d ,
U

nn yx y y
β∞

−= −∫                  (4.3) 

so that, proceeding in a fashion similar to that above we find 

2 0
0

1 1 1 ;2; ,
2 2 2

n U
x n n n U

β
φ β     = Γ − + Γ + −     

     
        (4.4) 

Thus, we get for the moment generating function ( )1 t  

( ) ( )
2

0
1 0

0

1 1 1 ;2; .
2 ! 2 2 2

n

n

U tt n n n U
n

β
φ β

∞

=

     = Γ − Γ + −     
     

∑


     (4.5) 

As particular cases, we obtain the values 

2 0
0

1 ;2; ,
2

U
x U

β
φ β = − − 
 

π


                (4.6) 
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and 

4 0
0

3 ;2; .
2

U
x U

β
φ β = −

π


 
                 (4.7) 

The first one is plotted in Figure 4. We encounter again here the high tem-
perature effect already reported in [2] [12] [13] (and references therein) and in 
precedent graphs: a high temperature upper bound, beyond which our treatment 
becomes invalid. Such bound manifests itself in making negative these types of 
expectation values at temperatures of the order of 1022 Kelvin. For reference, 100 
seconds after the Big Bang it is estimated that the temperature is of a billion 
K-degrees, and 0.0001 seconds after the Big Bang it is of about T = 1013 K [16]. 

5. Fisher Information Measure (FIM) 

Given a continuous probability distribution function (PDF) ( )f x  with  
x∈∆ ⊂   and ( )d 1f x x

∆
=∫ , its associated Shannon Entropy   is, as we 

saw above, 

( ) ( )ln df f f x
∆

= −∫                     (5.1) 

a quantifier of global nature that it is not very sensitive to strong changes in the 
distribution that may take place in a small-sized region. This is not the case for 
Fisher’s Information Measure (FIM)   [17] [18], which constitutes a quan-
tifier of the gradient content of ( )f x , being accordingly quite sensitive even to 
small localized perturbations. One writes 

( ) ( )
( ) ( )2 2

d d1  d 4
d d
f x x

F f x
f x x x

ψ

∆ ∆

   
= =   

   
∫ ∫            (5.2) 

FIM can be interpreted in variegated fashions. 1) As a quantifier of the ability  
 

 

Figure 4. 2x  values in appropriate units (see text). The unphysical negative values 

emerge at temperatures higher than 1022 Kelvin. 
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to estimate a parameter. 2) As the amount of information that can be extracted 
from a set of measurements. 3) A quantifier of the state of disorder of a system 
or phenomenon [18], and finally, at more recent times 4) As a strict measure of 
order [19] [20] [21]. In the above definition of FIM the division by ( )f x  is not 
desirable if ( ) 0f x →  at certain x-values. We bypass this issue by working 
with a real probability amplitudes ( ) ( )2f x xψ=  [17] [18], which is a simpler 
form (no divisors), while showing that   simply measures the gradient con-
tent of ( )xψ . The gradient operator significantly influences the contribution of 
minute local f-changes in FIM’s values. Thus, this quantifier is called a local 
measure [18]. 

For the f of (3.5) one has 

( )
0
20

2

2

1
1

0

2 dee d ,
d

U
U x
xf x

x

β
β∞ +
+

 
 =  
 
 

∫


                (5.3) 

or 

( )
( )

0
2

2 2 2
0 1

220

8
e d .

1

U

xU xf x
x

ββ ∞
+=

+
∫


               (5.4) 

Changing variables in the fashion 21y x= +  we get 

( ) ( )
02 2 1

20 2

1

4
1 e d ,

U
yU

f y y y
ββ ∞

−= −∫


              (5.5) 

that after evaluation yields for the Fisher information measure the value 

( ) 02 ,f Uβ=                        (5.6) 

clearly a very large positive number, given the smallness of the Boltzmann con-
stant entering the denominator. Let us look for the Cramer-Rao (CR) product 

( ) 2

f
f x 

  
 , that is always 1≥  [18]. The CR relation has been linked to the 

Heisenberg uncertainty relation (HUR) for the D-dimensional quantum central 
problem [22]. Still further, Frieden has shown that all UHRs can be derived from 
the CR relation [18]. 

We need a value for 2x , that we take from (4.4). The Cramer-Rao product 
2x   is then 

( )
2 2

2 0
0

2 1 ;2; .
2

U
f x U

β
φ β = − − 


π





             (5.7) 

The CR product is plotted in Figure 5. We see that it is indeed 1≥  till we 
reach a very high temperature, of the order of 1022 Kelvin, at which our proba-
bility distribution no longer makes sense. We have already encountered above 
this effect, in connection with 2x -graph, the entropy, and the specific heat. 

6. Conclusions 

In deceptively simple fashion, we have regularized the partition function for 
Brownian functions moving in an external potential, thus solving a very old  
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Figure 5. The product of 2x  times Fisher’s information measure (Cramer-Rao) (in 

appropriate units). The well-known associated bound is seen to be violated for tempera-
tures higher than 1022 Kelvin (see text). 

 
problem. Some other special cases were already treated by the present authors. 
One is that of the Z-expression in the case of Newton’s gravity [12], where the 
divergences are of a different nature from the ones here discussed. A second case 
is that of Fermi’s problem, cited in the Introduction [23]. Our treatment displays 
two noticeable features. 
• Being of a classical nature, it fails at very low temperatures, where quantum 

effects become predominant. 
• At extremely high temperatures, of the order of 1022 Kelvin, we face a T-upper 

bound. This fact has already been reported, in another context, by Refs. [12] 
[13]. Our partition function is saying to us that the system can not exist at 
such high temperatures. 

Summing up: We were here tackling partition function’ divergences, a physi-
cally-motivated mathematical problem, that we indeed solved. As for applica-
tions, the most we can say at this stage is that we have at our disposal a new ca-
nonical probability distribution. Can one use the concomitant partition function 
Z in a concrete problem? To answer this question, more research is needed. We 
guess that with this Z some density distribution might be constructed that could 
describe a quasi-stationary solution in some suitable scenario. 
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Abstract 
Motivated by developing a simple model to calculate the diffusion coefficient 
in moderate friction region, a simplified model is proposed to deal with the 
diffusion of Brownian particles in a periodic potential. Where the internal 
noise is a Gaussian white noise, and the basic cell of the periodic potential is 
composed of a parabolic potential linked with a harmonic potential. When 
the particles cross the joint point of the potential, a time coarse-graining 
scheme is used to obtain a simple analytical expression of the probability dis-
tribution. The particles drift and diffuse from the first barrier to the second 
barrier, the passing probability over the second barrier corresponding to the 
escape rate becomes decrease serves as the long-jump probability. The theo-
retical result is confirmed by numerical simulation results. The approach can 
be extended to color noise case. 
 

Keywords 
Diffusion Coefficient, Periodic Potential, Brownian Motion 

 

1. Introduction 

The diffusion of Brownian particles in a spatially periodic potential is a topic of 
great interest in many scientific areas of physics, chemistry, and biology [1] [2] 
[3]. Much effort has been devoted to the study of Brownian motion in periodic 
potentials. The diffusion coefficient has been investigated through numerical, 
simulation, and analytic approaches. 

The matrix-continued-fraction method was employed to investigate the 
Brownian motion in one and two-dimensional periodic potentials. The diffusion 
coefficient was obtained through numerical calculation of the dynamic structure 
factor [4] [5] [6] [7]. Some characteristics of the diffusion coefficient were found, 
such as the resonant diffusion in one-dimensional periodic potential due to the 
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interplay between two oscillatory motions [4], the anomalous dependence of the 
diffusion coefficient on the friction D σγ −∝  with 1σ <  in a coupled two- 
dimensional potential [5]. It is found that the coupling between two degrees of 
freedom always reduces the multiple-jump probability and then lowers the dif-
fusion coefficient [6]. The diffusion-path approximation and quasi-2D approxi-
mation were examined by numerical results [7]. The former strongly overesti-
mates the diffusion coefficient at large couplings, and the latter always gives ra-
ther good results. 

Many diffusion features of Brownian particles in a periodic potential have 
been revealed by numerical simulations. For nonseparable and anisotropic po-
tentials, molecular dynamics simulation found that the diffusion coefficient 
presents different dependence on friction in low friction regime as compared 
with separable potentials, which is directly related to the occurrence of long 
jumps [8]. For two-dimensional periodic or random potentials, superdiffusion, 
large-step diffusion, normal diffusion, and subdiffusion were observed through 
Langevin simulations [9]. These rich varieties of behaviors emerge naturally from 
an ordinary Langevin equation for a system described by ordinary canonical 
Maxwell-Boltzmann statistics, without injecting special assumptions such as Levy 
flights or special memory effects into models of surface diffusion. The Langevin 
simulation results show that the diffusion coefficient behaves as D σγ −∝  with 
0 1 3σ< <  in a two-dimensional periodic potential due to the coupling be-
tween the x and y degrees of freedom [10]. 

Some analytical approaches have been developed to study the diffusion of 
Brownian particles in a periodic potential. By expanding the distribution func-
tion into suitable eigenfunctions, a general method was given in Ref. [11] to cal-
culate the distribution and correlation function of the diffusive motion of par-
ticles in a one-dimensional periodic potential. The one-dimensional diffusion in 
potentials which have a finite number of jumps in their value and in their deriv-
ative was investigated. The jump conditions of the eigenfunctions of the corres-
ponding Fokker-Planck-operator were derived and applied to a periodic poten-
tial [12]. The modified PGH theory [13] is applied to the motion of a particle 
moving on a periodic potential influenced by friction and Gaussian thermal 
noise [14], a uniform expression for the diffusion coefficient valid for any fric-
tion value was derived, and the finite barrier corrections were also taken into 
account. A semiclassical theory for the diffusion of a particle moving on a peri-
odic potential was presented in Ref. [15]. The analytical expressions for the dif-
fusion coefficient and and hopping length distribution are valid for memory 
friction and any value of friction. Two kinds of approximate schemes, the qua-
si-2D approximation and the effective potential approach were employed to 
calculate the two-dimensional diffusion rate constant of a particle driven by a 
white or colored noise [16]. The theoretical result is qualitatively in agreement 
with the numerical result. Kramers theory was used to derive simple expressions 
for the hopping distribution in multidimensional activated surface diffusion 
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[17]. The derived expressions are valid on condition that the average energy loss 
of the particle as it goes from one barrier to the next is of the order of Bk T  or 
more. 

Although some analytical methods have been developed, simple and exact 
method is still deserve explored. Combine the physical picture of diffusion and 
the random walk model, a model to calculate the diffusion coefficient in the 
turnover region of damping is proposed in the present work. The proposed me-
thod provides a simple and exact approach to calculate the diffusion coefficient. 
Based on this approach, the diffusion of Brownian particles in the usual cosine 
periodic potential can be deal with by resort to the perturbation theory. The 
theoretical results for the applied periodic potential are confirmed by Langevin 
simulation results. 

2. A Simplified Model for Calculation of Diffusion Coefficient 

We consider a Brownian particle moving in a periodic potential with a basic cell 
composed of a parabolic potential barrier linked smoothly with a harmonic po-
tential well, which is subjected to a Gaussian white noise. The equation of mo-
tion of the particle reads 

( )1 1,   ,Vx v v v t
m x m

γ ξ∂
= = − − +

∂
                   (1) 

where m is the mass of the Brownian particle, γ  is the damping coefficient, 
and ( )V x  is the periodic potential, its basic cell is given by 

( ) ( )

( )

2 2

22
0

22

1 , region I;
2

1 2 , region II;
2

1 4 , region III.
2

b b

b b

V m x

V x m x

V m x

ω

ω

ω

 −

= −



− −

              (2) 

The three parts in a basic cell of the piecewise potential are connected 
smoothly at 1 2,c cx x x=  (Figure 1), bV  is the height of the potential barrier, 

1 1cx = , 2 3cx = , 1bV = , 0 1ω = , 1bω = , and 1m =  are taken in the present 
work. Such a potential can serve as a zero-order approximation of a cosine peri-
odic potential. The Gaussian white noise obeys the fluctuation-dissipation theo-
rem: ( ) ( ) ( )2 Bt t m k T t tξ ξ γ δ′ ′= − , Bk  is the Boltzmann constant and T the 
temperature. 

The probability density function in every potential barrier or potential well 
can be obtained exactly. However, the exact form of probability density after sev-
eral step jumps is a high dimension integration due to the particle passes through 
the joint points with stochastic times. The problem is in essence a complex nonli-
near one. To simplify the calculation, we construct a time coarse-grain model: the 
particle passes the joint point 1cx  with mean passage time of the corresponding 
potential barrier region. The initial velocity of the particle starting diffusion 
from the barrier top is set to the average velocity calculated by the Kramers for-
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mula. We label the first potential barrier, the first potential well, and the second 
potential barrier as region I, II, and III, respectively, as shown in Figure 1. The 
transition probability density and probability density in the region I for an initial 
δ  distribution of the probability density reads [18] 

( ) 2 2
1 0 0 1 1 1 1, , ; , ,0 exp ,W x v t x v N x v xvα β γ = − − −            (3) 

where 

( ) ( ) ( )1 1 1 2
1 11 1 22 1 12 1 1 1

1 2

1
1, , , 42 1 2

2
1 .t t t Nα σ β σ γ σ α β γ− − −  = = = = − π

   (4) 

The expressions of the second order moments ijσ  can be found in Ref. [18]. 
The equivalent probability density of the particle at 1cx  is obtained by concen-
trating all probabilities the particle appearing in region I with 0x >  on this 
point at the mean first passage time 1t  according to the coarse-grain approxi-
mation, that is 

( ) ( ) ( )2
01 1 20 1 1 1, , exp ,cW x v t N b v v x xδ = − − −              (5) 

with ( )1 1 1 1 1 1, 2cb v xβ γ β= = − , and 20 11 2N β= π . The mean first passage 
time 1t  is given by 

( )1
1 1 0 00 0

2
1 1

1 10 2
11 1 1

d d d , , ; , ,0

d erf
44

c

t t x vW x v t x v

Nt xγ
α

βα β γ

∞

∞

∞

=

 
 = −
 − 

π



∫ ∫ ∫

∫
             (6) 

The total probability for the particle appearing in region I for 0x >  has been 
normalized as 1. The transition probability density [18] in region II is given by 

( )
( ) ( ) ( )( )( )

2 1 1 1

2 2
2 2 2 2 2 2 2 2

, , ; , ,

exp .

cP x v t x v t

N x x v v x x v vα β γ′ ′ ′ ′= − − − − − − −
       (7) 

 

 
Figure 1. The potential profile. 1 2, ,c cx x   are the joint points of parabolic barriers and 
harmonic potential wells. 
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where 

( ) ( ) ( )
2 11 1 12 1 2 21 1 22 1

1 1 1
2 11 2 22 2 12

1/22
2 2 2 2

, ,

, ,1 2 ,
1 4

1 2

,
2

c cx G x G v v G x G v

t t t

N

α σ β σ γ σ

α β γ
π

− − −

′ ′= + = +

= = =

 = − 

             (8) 

all of these quantities are defined in region II. The probability density in region 
II is then obtained 

( ) ( ) ( )

( ) ( ) ( )( )( )
2 1 1 01 1 1 1 1 1 1

2 2
0 2 2 2 2 2 2 2 2

2

, , d d , , , , ; , ,

exp ,

W x v t v x W x v t P x v t x v t

N N a x x b v v c x x v v
D

∞ ∞

−∞ −∞
=

= − − − − − − −
π

∫ ∫
    (9) 

where 

( ) ( )

( ) ( )

( ) ( ) ( )

2 11 1 12 1 2 21 1 22 1
2 2

2 1 2 12 2 22 2 12 22

2 2
1 2 2 2 2 22 2 1

2
2

2 2
1 2 2 2 2 12 2 1

2
2

2
1 2 2 2 2 12 2 1 22 2 1

2
2

, ,

,

4 4
,

4

4 4
,

4

4 2 4
.

4

x G x G v v G x G v

D b G G G G

b G t t
a

D

b G t t
b

D

b G t t G t t
c

D

α β γ

α α β γ

β α β γ

γ α β γ

= + = +

= + + +

+ − −
=

+ − −
=

− − − −
=

         (10) 

The transition probability density in region III is given by 

( )
( ) ( ) ( )( )( )

3 2 2 2

2 2
3 3 3 3 3 3 3 3

, , ; , ,

exp .

cP x v t x v t

N x x v v x x v vα β γ′ ′ ′ ′= − − − − − − −
      (11) 

Where 

( ) ( ) ( )
( )( )

3 11 2 12 2 3 21 2 22 2
1 1 1

2 11 2 22 2 12

2

1 2

, ,

, , ,

1 2 et ,

1 2

d

c cx G x G v v G x G v

t t t

N

α σ β σ γ σ

σ

− − −

′ ′= + =

π

+

= = =

=

            (12) 

All these quantities are defined in region III. The probability density in region 
III is expressed as 

( ) ( ) ( )
1

3 2 2 2 2 2 2 2 3 2 2 2, , d d , , , , ; , , .
t

c ct
W x v t t v v W x v t P x v t x v t

∞

−∞
= ∫ ∫      (13) 

The escape probability at time t crossing over the second barrier top is 

( ) ( )30
d d , , ,eP t x vW x v t

∞ ∞

−∞
= ∫ ∫                   (14) 

Performing the Gaussian integrations over x and v, the escape probability can 
be expressed as 

( )

( ) ( ) ( )( )

1

2
3

2 2 2 0 2 3 3
2 3

2 2
2 2 2 2 2 2 2 2 2 2

1d d erfc
2 4

exp .

t
e t

c c

P t t v v N N x
D

a x x b v v c x x v v

γ
α

β
∞

−∞

 
′ = − −

  
 × − − − − − − − 

π
∫ ∫

   (15) 
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In random walk model, the diffusion coefficient is expressed as [19] [20] 

( )22 ,n
n

D k l k nd P= = ∑                    (16) 

where d is the spatial periodic of the potential, nP  is the probability of n-step 
jumps, and k is the Kramers rate calculated by the Kramers formula in spatial 
diffusion regime, which is still valid for damping out of spatial diffusion regime 
due to the parabolic potential barrier. When the center of the probability packet 
moves toward to the second barrier, the passing probability over the barrier top  

increases rapidly at almost a constant rate d
d

e
e

P
k

t
= , as shown by the numerical  

results. When the center of the probability packet moves back to the potential 
well, the passing probability over the second potential barrier only increases due 
to diffusion and then becomes slow. We take the critical probability cP  that the 
increase of ( )eP t  as a function of time from rapid to slow as the long jump 
probability (more than one step). Thereafter the process in the first basic cell is 
repeated periodically, which is a part of our simplified model. The probabilities 
for n-step jumps is then given by 

( )( )1 1 1, 2,n
n c cP P P n−= − =                    (17) 

such a geometric progression jump probability distribution is a good approxima-
tion for several step jumps, as shown by simulation results (see Fig. 6 of Ref. [8]). 

3. Comparison with Langevin Simulation Results 

To check the accuracy of the diffusion coefficient obtained by the simplified model,  
 

 
Figure 2. The diffusion coefficient as a function of damping. Where the potential barrier 
height 1bV = , the spatial periodic 4d = . (a) for 0.2T = , (b) for 0.3T = , and (c) for 

0.4T = . 
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we simulate the Langevin Equations (1) by second order Runge-Kutta algorithm. 
The number of test particles and the time step are taken as 53 10N = ×  and 

32 10t −∆ = × , respectively. As shown in Figure 2, the theoretical results match 
the simulation results well in moderate friction region. Such a region is common 
in surface diffusion problem. The maximal error for applied parameters is less 
than 6% until lower reduced potential barrier height 2.5b BV k T = . The mod-
erate friction region is called the turnover region in escape theory, which is not 
covered by the original Kramers escape theory. The calculation of escape rate (a 
factor of diffusion coefficient, see Eq. (16)) and diffusion coefficient in this re-
gion is lack of a simple method. 

4. Conclusion 

A simple model is proposed to calculate the diffusion coefficient for Brownian 
particles moving in a periodic potential. The basic cell of the periodic potential is 
composed of a parabolic potential barrier linked with a harmonic potential well 
smoothly, which can serve as a zero-order approximation of a cosine periodic 
potential. Further theoretical results for the common cosine periodic potential 
can be obtained by perturbation theory. The theoretical result for the applied 
potential is confirmed by the simulation result in moderate friction region, which is 
an often encountered region in surface diffusion problem. The proposed ap-
proach can be generalized conveniently to color noise case. 
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Abstract 
A Lemaître transformation is set up for the free fall in the interior of a stellar 
object using the frame of the interior Schwarzschild solution. The metric is 
calculated in comoving coordinates and field strengths are derived for this 
metric. 
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1. Introduction 

In this short note, we supplement investigations of an earlier paper [1] on free 
fall inside a non-rotating stellar object, which is described by the interior Schwarz-
schild solution. In the above mentioned paper, we had set up a Lorentz trans-
formation that describes the physics of an observer who is moving in free fall 
through a tube bored through the center of the star. We assign a matrix to this Lo-
rentz transformation that describes a coordinate transformation with which the 
metric of the interior Schwarzschild solution can be brought into a form that cor-
responds to Lemaître’s relation for free fall in the exterior Schwarzschild field. 

We also discuss the form parameter of the metrics in Schwarzschild static 
coordinates and Lemaître coordinates, and derive the field quantities from te-
trads corresponding to the metric in Lemaître form. 

2. Free Fall Inside a Star 

We started with the metric of the Schwarzschild interior solution 

22 2 2 2 2 2 2 2
2

2

1 1d d d sin d 3cos cos d
41

gs r r r t
r

ϑ ϑ ϕ η η = + + − − 
−

R

   (2.1) 
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in the form given by Flamm [2]. The lapse function of the metric is 

1 3cos cos
2T ga η η = −  .                   (2.2) 

Here, r is the radial coordinate, η  is the polar angle of a cap of a sphere with 
radius R , representing geometrically the interior Schwarzschild solution. gη  
is the polar angle at the boundary surface separating the interior solution from 
the exterior solution. 

From 
2 2 1T Tv a+ =                          (2.3) 

we deduced the velocity of free fall 

( )211 3cos cos
4T gv η η= − − −                 (2.4) 

and with 1
T Taα −=  the assigned Lorentz factor 

2
3cos cosT

g

α
η η

=
−

.                    (2.5) 

Finally, we obtain the Lorentz transformation 
1 1 4 4
1' 4 ' 1' 4 ', , ,T T T T T TL L i v L i v Lα α α α= = − = =           (2.6) 

operating in the [1,4]-slice of the model. We use the original Minkowski nota-
tion with 

( )4x i c t= . 

At the boundary one has gη η=  and thus 

2

1 1sin ,
cos 1

g g
T g T g

g T

v
v

η α
η

= − = =
−

. 

The cap of the sphere provides the relations 

2

2sin , cos 1 rr η η= = −R
R

.                 (2.7) 

From Flamm’s paper [2] we read 2ρ = R , where 
32 ,

2
r rr

M M
ρ = =R

 
is the curvature radius of the Schwarzschild parabola and the radius of a cap of a 
sphere. Thus, we have sin 2M rη = . Finally, we obtain at the boundary 

2 1,
21

g g
T T

g

g

Mv
r M

r

α= − =
−

 
the values for an observer freely falling in the exterior field having reached the 
boundary. 

Thus, using for the velocity the expression 
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( )
2

2

3

1 2 21 3 1 1
4T

g g

M Mrv r
r r

 
 = − − − − −
 
 

           (2.8) 

we are prepared for a drawing. We note that at the center of the star ( )0r =  
the velocity of the freely falling observer would reach the velocity of light for 

min 2.25gr M= . We call this the inner horizon of the Schwarzschild model. This is 
the minimal extension of a star of mass M in geometrical units. We extended the 
problem for an object freely falling from an arbitrary position outside of the star 
[3] [4]. This is depicted in Figure 1. 

The surface of the stellar object is indicated by the dashed lines. One can rec-
ognize the smooth transition of the velocities from the exterior region to the in-
terior region. The pressure of the star would be infinitely high at the inner hori-
zon min 2.25r M= . Hence, it is evident that one has to accept that mingr r> . 
Since min 2r M>  a formation of a black hole is not possible with the frame of 
the complete Schwarzschild model. In [5] we have shown that a collapsing star 
can reach the inner horizon only asymptotically, i.e., after an infinitely long 
time. 

3. The Lemaître Transformation 

The fact that the free fall velocity of an object in the exterior field can be easily 
prolongated into the interior raises the question whether a coordinate transfor-
mation changes the interior metric into a form which has the structure of the 
exterior Lemaître metric can be found. Since the problem can be reduced to the 
[1,4]-slice of the model, it is sufficient to read from the interior metric (2.1) the 
bein-vectors 

241 1 4
1 4 22 1 4

2

1 1 , , 1 cos ,
cos

1
I T I T

re e a e a e
r

α η α
η

= = = = = = − = =

−
R

R

. (3.1) 

With the Lorentz transformation (2.6), we are able to transform the beine into 
the freely falling system with ' 'm m m

i m ie L e= , still using the static coordinate system  
 

 
Figure 1. Free fall through the interior of a stellar object. 
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(i). We try to diagonalize the bein system with an additional coordinate trans-
formation: 

' '
' '

m m m i
i m i ie L e= Λ ,                       (3.2) 

1 1 4 2 2 4 2
1' 4 ' 1' 1'

1' 1' 4 ' 4 '
1 4 1 1

, , ,

, , , 1

T T I T T I T T T

T I
T T I

T

v a i v a i v

i i v a
v

α α α α
α α

α

Λ = − Λ = − Λ = − Λ =

Λ = − Λ = − Λ = − Λ =
.    (3.3) 

Indeed, we obtain 

4 '1' 1' 4 '
1' 4 ' 1' 4 '

1, 1, , 1T
T

e v e e e
v

= − = = − = ,            (3.4) 

recalling that Tv  is pointing inwards and thus is a negative quantity. 
It is easy to show that 

' ' '
[ | ] [ '| '] | ' | '0, 0 ,j j j j j j
i k i k i i i ix xΛ = Λ = ⇒ Λ = Λ = ,         (3.5) 

proving that the new Lemaître coordinates are holonomic. Restricting ourselves 
to the [1,4]-slice of the model, we obtain for the line element 

2 2 2 2d d ' d 'Ts v r t= − ,                     (3.6) 

using comoving coordinates { }', 'r t . Evidently, taking Tv  at the boundary the 
line element (3.6) coincides with the well-known Lemaître line element of the 
exterior solution. Comparing it with the line element in the non-comoving 
coordinates in the canonical form given by (2.1), we recognize that the form pa-
rameter is 1k =  for the static line element and 0k =  for the freely falling 
coordinate system. We recall that k is misleadingly called curvature parameter 
by cosmologists and 0k =  is believed to describe a globally flat geometry. Once 
more, we convince ourselves that 0k =  indicates a locally flat system, i.e., a 
system being in free fall. More on this topic one could be found in our papers [6] 
[7]. 

In addition, we read from (3.6) that the time 't  is the same for all observers 
at any point during the free fall. The coordinate time coincides with the proper 
time and is the universal time for all freely falling observers. 

Since the lapse function is 4 '4 ' 1g = , one cannot draw gravitational forces from 
the metric of the freely falling system. This is just what we expect from Einstein’s 
elevator principle [6]. We calculate the Ricci-rotation coefficients from the com-
oving bein system (3.4). At first we obtain 

( )1'1' 1'
4 ' 1'4 ' 1' |4 ' |1 |11'|4 '

1 1' T T T T T T
T T

U A e e v i v v i v
v v

α α= = − = = − = − . 

For further processing one derives from Equation (2.7) the relations  
d cos dr η η= R , ( )1d 1 cos d dx rη η= = R  and finally 

|1
1η =
R

. 

Differentiating (2.4) one arrives at 
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|1
1 1 sin
2

T
T

T

av
v

η= −
R

 

and lastly we get with 1T Taα =  the tidal force 

'
sin 1' 0,0,0,

2m
T

U i
v
η 

=  
 R

.                  (3.7) 

Once again using (2.4) one obtains with sing
T gv η= −  and 2gρ = R  

'' 0,0,0,g
m

g

iU
ρ

  = − 
  

,                    (3.8) 

the corresponding expression for the free fall in the exterior field at the boun-
dary. We note that we could also apply the inhomogeneous transformation law 
of the Ricci-rotation coefficients to transform the force of gravity [1] into (3.7). 
For 0η = , i.e., at the center of the star one has '' 0mU = . 

This investigation is not merely an academic exercise. Benish [8] has treated the 
question whether the theoretically discussed process of free fall in the interior could 
be supported by an experiment. He proposed a torsion balance, similar to the one 
used in the Cavendish experiment. Two massive spheres can move through greater 
spheres on approximately radial orbits and thus could perform an oscillatory mo-
tion. The velocity of this motion could be detected on the axis of the suspension by 
optical devices. The design proposed by Benish is shown in Figure 2. 

 

 
Figure 2. Experiment proposed by Benish. 

4. Conclusion 

We investigated the free fall through a non-rotating stellar object. We found that 
the velocity of free fall in the exterior Schwarzschild field is smoothly prolon-
gated into the interior. According to Einstein’s elevator principle no gravitation-
al forces can be detected by a freely falling observer, but tidal forces act on him. 
We found a transformation from non-comoving coordinates to comoving coor-
dinates and a metric in Lemaître form. The form parameters of the metrics change 
from 1k =  to 0k =  by this transformation, demonstrating that 0k =  is an in-
dicator for free fall. 
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Abstract 
In this paper, we have declined the formalism of the method of the Modified 
Atomic Orbital Theory (MAOT) applied to the calculations of energies of 
doubly excited states 2snp, 3snp, and 4snp Helium-like systems. Then we also 
applied the variational procedure of the Modified Atomic Orbital Theory to 
the computations of total energies, excitation energies of doubly-excited states 
2snp, 3snp, 4snp types of Helium-like systems. The results obtained in this 
work are in good agreement with the experimental and theoretical values 
available. 
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1. Introduction 

Much theoretical research has revealed that the helium atom exhibits a strong 
electron-electron correlation. Since the early experiment by Madden and Codl-
ing [1], Madden and Ederer [2], and theoretical explanation by Cooper et al. [3], 
doubly-excited states of helium-like atoms have been the target of a number of 
theoretical approaches. The increasing interest of physicists in these studies over 
the years is connected with the understanding of collisional and radiational 
processes which take place in hot astrophysical and laboratory plasma [4]. The 
greatest attention has been concentrated on the study of doubly-excited states 
[5]. Some of these doubly-excited states in two-electron systems have been iden-

How to cite this paper: Diallo, A., Sakho, 
I., Badiane, J.K., Ba, M.D. and Tine, M. 
(2021) Variational Calculation of the 
Doubly-Excited States Nsnp of He-Like 
Ions via the Modified Atomic Orbitals 
Theory. Journal of Modern Physics, 12, 
105-121. 
https://doi.org/10.4236/jmp.2021.122011 
 
Received: August 6, 2020 
Accepted: January 24, 2021 
Published: January 27, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2021.122011
https://www.scirp.org/
https://doi.org/10.4236/jmp.2021.122011
http://creativecommons.org/licenses/by/4.0/


A. Diallo et al. 
 

 

DOI: 10.4236/jmp.2021.122011 106 Journal of Modern Physics 
 

tified in the solar flare [6] and in the solar corona [7] and revealed experimen-
tally by the studies of double Rydberg resonances in negative ions of rare gases 
[8] [9]. The investigations of the intrashell S states of two-electron systems are 
advanced and due to the group theoretical method [10] [11] which allowed in-
trashell states to be approximately classified and some of these properties were 
studied [12] [13]. 

So, most atomic spectra can be treated in term of singly excitation of singly or 
mixed configurations [14] [15]. After Herrick and Sinanoglu [11], higher-energy 
Rydberg envelopes contain doubly-excited states which are generally labelled in 
the usual spectroscopic notation ( ) 2 1, SNl nl Lπ+′  with , 1,n N N= +  . In these 
notations, N and n denote respectively the principal quantum numbers of the 
inner and the outer electron, l and l’ are respectively orbital quantum numbers, S 
the total spin, L the total angular momentum and π the parity of the system. 

Various methods have been performed to understand electron-electron cor-
relation effects in doubly ( ) 2 1, SNl nl Lπ+′  excited states of He-like systems. Al-
though many accurate data have been tabulated for these doubly excited states, 
the methods used require in general, complexity in the Variationnal procedure 
along with the use of computational codes. 

Many theoretical studies have been done on doubly-excited states ( ) 2 1, SNl nl Lπ+′ . 
Among these methods, we have the theoretical and experimental methods 
[16]-[23]. The variational method of time-independent perturbation from Ray 
and Mukherjee was applied for the calculation of the total energies of the 2s2, 2p2 
and 3d2 states of He, Li+, Be2+, and B3+ [24]. Sakho used the semi-empirical pro-
cedure of the Screening Constant by Unit Nuclear Chargemethod (SCUNC) to 
calculate the energies of doubly excited states (Nsnp) 1Po helium-like systems 
[25]. 

In all these ab initio methods, energies of ( ) 2 1, SNl nl Lπ+′  doubly-excited 
states of He isoelectronic sequence can’t be expressed in an analytical formula. 
In addition, most of these preceding methods require large basis-set calculations 
involving a fair amount of mathematics complexity. 

The Modified Atomic Orbital Theory is a purely theoretical method initiated 
by Sakho [26]. This theory stems from Slater’s orbital theory [27]. This theory 
(MAOT) has been known for its simplicity, as it is a very suitable calculation 
method that has yielded enormous results from simple semi-empirical formulas 
without resorting to a computer program in solving resonant photoionization 
problems. It was subsequently that Sakho [25] studied the resonance energies of 
the Rydberg series of 2s22p4 (1D2) ns, nd, 2s22p4 (1S0) ns, nd, and 2s22p5 (3P2) 
states from of the metastable 2s22p5 (2P1/2) state and the ground 2s22p5 (2P3/2) 
state of the Ne+ ion. Thus the variational principle, which is a purely theoretical 
method, takes advantage of the principle of variation. This variational method is 
a computational technique to provide approximate solutions to solving the 
Schrödinger equation. In the following, after a brief review of Slater’s orbital 
theory, we apply for the first time the variational procedure of the Modified 
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Atomic Orbitals Theory to the calculations of total energies, excitation energies 
of doubly excited 2snp, 3snp, 4snp states of types helium-like systems. This pro-
cedure consists of determining the variational parameter α  and the screening 
constant σ , from the construction of a correlated wave function. 

2. Theory 
2.1. Brief Description of the Modified Atomic Orbitals Theory 

In the context of the Modified Atomic Orbitals Theory (MAOT), the total ener-
gy of a ( )ν  —given orbital is expressed as Rydberg units [28]. 

( )
( ) 2

2

Z
E

σ
ν

ν

−  = −


 .                     (1) 

For the ( ) 2 1, SNl nl Lπ+′  doubly excited states, the total energy of an atomic 
system of many M electrons is expressed as follows 

( ) 22 1

2
1

S
M i

i i

Z L
E

πσ

ν

+

=

 − = −∑ .                   (2) 

2.2. Construction of the Wave Function 

In the construction of the correlated wave function, a product of hydrogen-type 
wave functions is performed in which variational parameters are introduced. 
Thus, in the case of atomic systems, these criteria are generally determined by 
the screen effects exerted by the electrons on each other by the spin-orbit inte-
raction, etc. 

The hydrogen wave functions for , , ln l m  states are radial and have the 
same shape. They are non-normed and it’s obtained from the radial coordinates 
(r) and an exponential factor. 

So for different states, we get: 
For 4s (l = 0): 

( ) 0

3
2 32

42 3
4,0 2 3

0 0 0 0

24 31 e
96 4 8 192

Z r
aZ Z Z ZR r r r r

a a a a

×
−

×   ×
= × × − × + × − × ×   × × ×   

  (3) 

For 4p (l = 1): 

( ) 0

3
2 32

42 3
4,1 2 3

0 0 0 0

5 1 1 e
4 8016 2

Z r
aZ Z Z ZR r r r r

a a a a

×
−

×  
= × × × − × × + × × ×  

   
   (4) 

For 3s (l = 0): 

( ) 0

3
22

32
3,0 2

0 0 0

1 2 21 e
3 273 3

Z r
az Z ZR r r r

a a a

 ×
−  × 



π

 
= × × − × × + × × ×  

   
     (5) 

For 3p (l = 1): 

( ) 0

3
22

32
3,1 2

0 0 0

2 2 e
627

Z r
aZ Z ZR r r r

a a a

 ×
−  × 

  ×
= × × × − × ×  

×× π    
       (6) 
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For 2s (l = 0): 

( ) 0

3
2

2
2,0

0 0

2 1 e
24 2

Z r
aZ ZR r r

a a

 ×
−  ×    

= × × − × ×   ×   π×
         (7) 

For 2p (l = 1): 

( ) 0

3
2

2
2,1

0 0

1 e
4 2

Z r
aZ ZR r r

a a

 ×
−  ×    

= × × × ×   
×    π

           (8) 

To build the wave functions of ( ) 2 1, SNl nl Lπ+′  type, the product of the radial 
portions Rn,l(r) is produced while considering the electrons (1) and (2) heliumo-
id systems, whose radial coordinates are respectively r1 and r2. As part of the in-
dependent particle model where electronic correlation phenomena are neg-
lected, (Coulombian repulsion, spin-orbit interaction, etc.), the product of the 
functions is given as follows: 

For the function 2s2p: 

1

02
1

0

2s 1 e
2

Z r
aZ r

a

 ×
−  ×  

= − × × × 
 and 

2

02
2

0

2p e
Z r

aZ r
a

 ×
−  ×  

= × × 
 

 

( )
1 2

0 02 2
1 2

0 0

2s2p 1 e e
2

Z Zr r
a aZ Zr r

a a

− × − ×
× ×    

Ψ = − × × × × ×    ×     
      (9) 

For the function 3s3p: 

1
0

2
32

1 12
0 0

2 23s 1 e
3 27

Z r
aZ Zr r

a a

 
− ×  × 

 × ×
= − × + × 

× × 
 and 

2
0

2
32

2 22
0 0

3p e
6

Z r
aZ Zr r

a a

 
− ×  × 

 
= × − × × 

× 
 

( )

1 2
0 0

2 2
2 2

1 1 2 22 2
0 00 0

3 3

2 23s3p 1
3 27 6

e e
Z Zr r
a a

Z Z Z Zr r r r
a aa a

   
− × − ×      × ×   

    × ×
Ψ = − × + × × − ×     × × ×   

× ×

    (10) 

For the function 4s4p: 

1

0
2 3

42 3
2 3

0 0 0

34s 1 e
4 8 192

Z r
aZ Z Zr r r

a a a

 ×
−  × 

 ×
= − × + × − × × 

× × ×   
2

0
2 3

42 3
2 3

0 0 0

1 14p e
4 80

Z r
aZ Z Zr r r

a a a

 ×
−  × 

 
= × − × × + × × × 
   

( )

1 2

0 0

2 3
2 3

1 1 12 3
0 0 0

2 3
4 42 3

2 2 22 3
0 0 0

34s4p 1
4 8 192

1 1 e e
4 80

Z r Z r
a a

Z Z Zr r r
a a a

Z Z Zr r r
a a a

   × ×
− −      × ×   

  ×
Ψ = − × + × − ×  × × × 

 
× × − × × + × × × ×  

  (11) 
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Taking into account the phenomena of electron-electron correlation effects 
occurring in He-like systems, the nuclear charge of the exponential factor is 
substituted in favor of the effective charge Z*, and in atomic unit, the Bohr ra-
dius a0 = 1. 

So these functions become: 
For the wave function 2snp: 

( )
( )

*
1 2

1 2
0 0

2snp 1 e
2

Z r r
nZ Zr r

a a
− +    

Ψ = − × × × ×     ×    
         (12) 

For the wave function 3snp: 

( )
( )

*
1 2

2 2
2 2

1 1 2 22 2
0 0 0

2 23snp 1 e
3 27 6

Z r r
n

o

Z Z Z Zr r r r
a aa a

− +    × ×
Ψ = − × + × × − × ×     × × ×    

  (13) 

For the wave function 4snp: 

( )

( )
*

1 2

2 3
2 3

1 1 12 3
0 0 0

2 3
2 3

2 2 22 3
0 0 0

34snp 1
4 8 192

1 1 e
4 80

Z r r
n

Z Z Zr r r
a a a

Z Z Zr r r
a a a

− +

 ×
Ψ = − × + × − ×  × × × 

 
× × − × × + × × ×  

     (14) 

where the effective charge number Z* is given by: 

( )* ,
1

Nl nl
Z Z

Z
σ ′ 

= − 
 

                    (15) 

With ( ),Nl nlσ ′  the screen constant relating to these states. 

2.3. Determining the Screen Constant 

To determine the screen constant, we start from the relation: 

( ) ( )
( ) ( )
( ) ( )

H
E H

α α
α α

α α

Ψ Ψ
= =

Ψ Ψ
               (16) 

And Hamiltonian of the helium isoelectronic series in given by (in atomic 
units): 

1 2
1 2 12

1 1 1
2 2

Z ZH
r r r

= − ∆ − ∆ − − +                  (17) 

The average value of this expression (17), while using the closure relation re-
flecting the fact that the 1 2,r r  kets are continuous bases in the state space of 
the two electrons: 

3 3
1 2 1 2 1 2d d , , 1lr r r r r r =∫∫                     (18) 

From this relation we can from (21): 

( ) ( ) ( )
( ) ( )

3 3
1 2 1 2 1 2

3 3
1 2 1 2 1 2

d d , ,

ˆd d , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ × Ψ

= Ψ Ψ

∫∫
∫∫

           (19) 
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The development of (19) gives: 

( ) ( ) ( )
( ) ( )

3 3 *
1 2 1 2 1 2

3 3 *
1 2 1 2 1 2

d d , , , ,

ˆd d , , , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ ×Ψ

= Ψ Ψ

∫∫
∫∫

             (20) 

The normalization constant denoted N is given by: 

( ) ( ) ( )3 3 *
1 2 1 2 1 2

ˆd d , , , ,NE r r r r H r rα α α= Ψ Ψ∫∫            (21) 

And from this relation (24), we obtain: 

( ) 23 3
1 2 1 2d d , ,N r r r r α= ∫∫                    (22) 

To facilitate the development of these expressions, we made a change of varia-
ble of some parameters of the Equation (20). It was later that we posed in ellip-
tical coordinates: 

( ) ( )1 2 1 2 12; ;s r r t r r u r= + = − =                  (23) 

And the element of elementary volume gives: 

( )3 3 2 2 2
1 2d d d 2 d d dr r s t u s t uτ π= = −                (24) 

Applying these changes of variables in Equation (23) the preceding expression 
of the normalization constant denoted N is in elliptic coordinate: 

( ) ( )

( ) ( )

2 2 2
2 2

0 0 0

2 2 2 2 2 2 2

d d d 2

4

s u

NE s u t u s t
s t u u

s u t t s u Zsu s t
s t

α
∞   ∂Ψ ∂Ψ ∂Ψ ∂Ψ        = − × + + +         ∂ ∂ ∂ ∂         

∂Ψ ∂Ψ    × − + − −Ψ − +    ∂ ∂  

∫ ∫ ∫
  (25) 

Since we did not take into account the Coulomb repulsion, so: 0
u

∂Ψ
=

∂
. 

The normalization constant becomes: 

( ) ( )
2 2

2 2 2 2 2

0 0 0

d d d 4
s u

NE s u t u s t Zsu s t
s t

α
∞   ∂Ψ ∂Ψ      = − × + −Ψ − +       ∂ ∂      
∫ ∫ ∫  (26) 

To determine the values of the screen constant σ  and the variational para-
meter α , we start from this equation, which is the sum of three integral data as 
follows: 

( ) ( ) ( ) ( )1 2 3NE E E Eα α α α= + +                 (27) 

The development of this expression (27) makes it possible to obtain the value 
of σ  and α  by the formula: 

( )d
0

d
i

i

E α
α

=                          (28) 

The expressions corresponding to ( )1E α , ( )2E α , and ( )3E α , are: 

( ) ( )
2

2 2
1

0 0 0

d d d
s u

E s u t u s t
s

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫               (29) 
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( ) ( )
2

2 2
2

0 0 0

d d d
s u

E s u t u s t
t

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫               (30) 

( ) 2 2 2
3

0 0 0

d d d 4
s u

E s u t Zsu s tα
∞

 = − − + Ψ ∫ ∫ ∫              (31) 

The normalization constant is as follows: 

( )2 2 2

0 0 0

d d d
s u

N s u t u s t
∞

= − ×Ψ∫ ∫ ∫                  (32) 

With these changes of variables, the correlated wave functions of the states 
2snp, 3snp, and 4snp become: 

( ) ( ) ( )( )12s2p 4 e
8

ss t s z t z α−Ψ = − × − × × + × − ×           (33) 

( ) ( ) ( ) (
)

2 2 2

2 2

13s3p 12 2
1296

18 18 54 e s

z s t s z t z s z s t z

s z t z t z α−

Ψ = × × − × × − × − × × + × × ×

− × × + × − × × + ×

 (34) 

( ) ( ) ((
) (

))

2 2 2

2 2 3 3 2 3 2 2

2 3 2 3 3

2 2

14s4p 2 40
983040

40 320 3 48

3 96 576

48 576 1536 e s

z s t s z s t z s z

t z t z s z s t z s z

s t z s t z s z t z

t z t z α−

Ψ = − × × − × × − × × × − × ×

+ × + × × + × × + × × × − × ×

+ × × × − × × × + × × + ×

− × × + × × − ×

 (35) 

3. Results and Discussions 

In this part, the procedure consists of determining the final expressions of ener-
gies, the value of the variational parameter α , and the screen constant σ . 
Since the calculations used are very complex, and require a lot of changes of va-
riables, with matrices to be manipulated, we have found it necessary to make a 
first call to a computer program with the software matlab. In this program, we 
first defined the parameter s, t, u, α, and z of Equation (23), the expression of the 
derivative as a function of each parameter, and the square of its derivatives. In a 
second step, the expressions of (E1, E2, E3 and N) of the Equations (29)-(32), as 
well as their factorials were defined and detailed expression by expression. Then, 
to simplify some parameters, a matrix calculation was carried out in this pro-
gram, and relations between these matrices were made to obtain a simple ex-
pression of the Equation (27) in order to apply the formula of the Equation (28) 
to have the approximate values of the screen constant σ  and the variational 
parameter α . 

3.1. Expression of the Total Energies 

In the case of the variational calculation of the Modified Atomic Orbital theory 
(MAOT, the expression of the total energy of the doubly-excited states (Nsnp) of 
an orbital is given by the formula (in Rydberg): 
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( )
( )( ) ( )( )2 2

2 2

s p
s p

Z n Z n
E N n

N n
σ σ   − −

   = − −
   
   

          (36) 

With N n≠  and ( ) ( )s pn nσ σ= . 
In some cases, a corrective factor may be added to this expression to obtain 

results that are closer to those found in the literature consulted. 
Thus the expressions of the states 2snp, 3snp, and 4snp are detailed as follows: 

• For the state 2snp: 

( )
( )( ) ( )( )2 2

2 2

s p
2s2p

Z n Z n
E

N n
σ σ   − −

   = − −
   
   

          (37) 

With ( ) ( )ns npσ σ=  and N n= . 
• For the state 3snp: 

( )
( )( ) ( )( )2 2

2 2

s p
3s3p

Z n Z n
E

N n
σ σ   − −

   = − −
   
   

           (38) 

With ( ) ( )s pn nσ σ=  et N n= . 
• For the state 4snp: 

( )
( )( ) ( )( )2 2

2 2

s p
4s4p

Z n Z n
E

N n
σ σ   − −

   = − −
   
   

           (39) 

With ( ) ( )s pn nσ σ=  and N n= . 

3.2. Expression of the Variational Parameter α 

The determination of the variational parameter α comes from the expression 
(28) with: 

( )
3

1

i
i

i

E
E

N
α

=

 =  
 

∑                        (40) 

Thus the calculation program is presented in the Appendix, and the varia-
tional parameter α  of the states 2s2p, 3s3p and 4s4p is given as follows: 

( ),
1

Nl nln l l Z
n Z

σ
α

′ ′+ +
= − 

 
                 (41) 

For the state 2s2p: 

( )2
3 1 12s2p 1
2 2

Z
Z

α  ≈ − × 
 

                   (42) 

With ( )2s2p 0.5σ = . 
For the state 3s3p: 

( )3
4 3 13s3p 1
3 12

Z
Z

α  ≈ − × 
 

                  (43) 

With ( )3s3p 0.25σ = . 
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For the state 4s4p: 

( )4
5 3 14s4p 1
4 7

Z
Z

α  ≈ − × 
 

                   (44) 

With ( )4s4p 0.428σ = . 

3.3. Results and Discussion 

In this work, the results obtained are compared with those found in the theoret-
ical and experimental literature. We have calculated the total energies of the 
states (3snp 1Po), (2snp 1Po), (4snp 1Po) as well as the excitation energies of the 
states (3snp 1Po), (2snp 1Po), (4snp 1Po). For the states (3snp 1Po) the total ener-
gies are given in Rydberg and in eV, shown in Table 1 (1 eV = 13.605698 Ryd) 
shown in Table 2. For the (2snp 1Po), (4snp 1Po) states, their results are given in 
eV and represented in Table 3 and Table 4 respectively. Equations (37), (38), 
(39) have been used for the calculation of its total states energies (3snp 1Po), 
(2snp 1Po), (4snp 1Po) respectively. About excitations energies, we have taken the 
energies of the ground state given by Frankowski and Pekeris [29]. These ener-
gies are given in ua (1 ua = 2 Rydberg) their values are given as follows: He 
(−2.90372), Li+ (−7.27991), Be2+ (−13.65556), Be3+ (−22.03097). 

In Tables 1-4, we used the variational computation of the modified atomic 
orbitals theory (MAOT) of the energies doubly-excited states (3snp 1Po), (2snp 1Po), 
(4snp 1Po). We compared the results obtained with theoretical results for all of 
these states, and experimental results existing only for the (3s3p 1Po), (2s2p 1Po), 
helium (He) states of Kossmann et al. [17], (2s2p 1Po), lithium (Li+) from Diehl 
et al. [19], and (4s4p 1Po) from Woodru et al. [30]. The theoretical results to 
which we have compared our results are those of Sakho et al. [25], Ivanov and 
Safronova [15], Drake and Dalgarno [22], Ho [18], Biaye et al. [21], Bachau  

 
Table 1. The total energies of the doubly excited states of (Nsnp) 1Po helium-like systems (Z = 2 to 10) in 
Rydberg (1 Ryd = 13.60569 eV). 

States 
 Z 

 
2 3 4 5 6 7 8 9 10 

3s3p 1Po 

−Ep 0.68056 1.68056 3.12500 5.01389 7.34722 10.12500 13.34722 17.01389 21.12500 

−Es 0.66054 1.64784 3.07958 4.95577 7.27640 10.04147 13.25099 16.90496 21.00337 

−Ea 0.67140 1.659 40 3.09000 4.96600 7.28600 10.04800 13.25600 16.91000 21.00000 

−Eb 0.66268 1.67395 3.15417 5.10468 7.52607 10.41871 13.78253 17.61787 21.92494 

3s4p 1Po 

−Ep 0.53168 1.31293 2.44141 3.91710 5.74002 7.91016 10.42752 13.29210 16.50391 

−Es 0.53206 1.31269 2.44053 3.91561 5.73790 7.90742 10.42415 13.28811 16.49930 

−Ea 0.54240 1.31960 2.44400 3.91400 5.73000 7.89600 10.40800 13.26600 16.47200 

3s5p 1Po 
−Ep 0.46278 1.14278 2.12500 3.40944 4.99611 6.88500 9.07611 11.56944 14.36500 

−Es 0.47259 1.15756 2.14475 3.43416 5.02579 6.91965 9.11573 11.61403 14.41455 

P: Present results obtained from Equation (38); s: (Sakho et al., 2010) [26], a: (Bachau et al., 1991) [20]; b: (Biaye et al., 2005) 
[21]. 
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Table 2. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

States 
Z 

 2 3 4 5 6 7 8 9 10 

3s3p 1Po 

−Ep 9.26 22.87 42.52 68.22 99.96 137.76 181.60 231.49 287.42 

−Es 9.10 22.47 41.88 67.34 98.85 136.40 180.01 229.66 285.35 

−Eh 8.28 21.14 40.05 65.01 96.01 133.06 176.16 225.30 280.49 

−Ek 9.10 22.33 42.04 67.52 99.03     

−El 9.11 22.54 42.00 67.51      

−Ei 9.10         

3s4p 1Po 
−Ep 7.23 17.86 33.22 53.29 78.10 107.62 141.87 180.85 224.55 

−Es 7.66 18.42 33.90 54.10 79.03 108.68 143.06 182.16 225.98 

3s5p 1Po 
−Ep 6.30 15.55 28.91 46.39 67.98 93.68 123.49 157.41 195.45 

−Es 7.02 16.58 30.25 48.03 69.93 95.94 126.05 160.05 198.63 

P: Present results obtained from Equation (38); s: (Sakho et al., 2008) [25]; h: (Ivanov and Safronova, 1993) 
[16]; i: experimental results (Kossmann et al., 1988) [17]; k: (Wagué, 1987) [31]; l: (Lipsky et al., 1977) [32]. 

 
Table 3. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

States 
 Z 

 2 3 4 5 6 7 8 9 10 

2s2p 1Po 

−Ep 17.96 46.88 89.39 145.52 215.25 298.58 395.52 506.07 630.22 

−Es 18.88 47.76 90.24 146.34 216.03 299.33 396.24 506.76 630.88 

Eα 18.86 47.82 90.33 146.40 216.07 299.32 396.18 506.64 630.70 

−Eh 19.42 48.23 90.63 146.66 216.28 299.51 396.34 506.78 630.84 

−Ej 18.87 47.84 90.34 146.42 216.09 299.34 396.20 506.20 630.84 

−Ef,i 18.88i 47.78f        

2s3p 1Po 

−Ep 15.05 37.16 69.09 110.85 162.44 223.86 295.10 376.16 467.06 

−Es 15.95 38.23 70.34 112.28 164.04 225.63 297.05 378.29 469.36 

−Eh 15.95 37.99 69.86 111.55 163.07 224.41 295.59 376.58 467.41 

P: Present results obtained from Equation (37); s: (Sakho et al., 2008) [25]; a: (Ho, 1980) [18]; h: (Ivanov 
and Safronova, 1993) [16]; i: experimental results (Kossmann et al., 1988) [17]; f: Experimental data, (Diehl 
et al., 1999) [19]; j: (Drake and Dalgarno, 1971) [22]. 

 
et al. [20], Sakho et al. [26], Wagué [31], Lipsky et al. [32]. 

Thus in Table 1, Table 2, containing the states (3snp 1Po), we have calculated 
the total energies of doubly-excited states types (3snp 1Po) ranging from (Z = 2 to 
10) using Equation (38). 

The results found are in perfect agreement with those found in the theoretical 
and experimental literature consulted and quoted above. For the (3s3p 1Po) he-
lium (He) states, we compared our results with those obtained experimentally by 
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Kossman et al. [17], and the results obtained are in perfect agreement. 
In Table 3 and Table 4, containing the states (2snp 1Po), and (4s4p 1Po), we 

used the Equations ((37), (39)) respectively. Then we added to each of these eq-
uations a corrective factor to obtain results equivalent to those found in the 
theoretical and experimental. In Table 3, states (2snp 1Po), we calculated the to-
tal energies of doubly excited states of helium-like systems (Z = 2 to 10). Our 
results found are in good agreement with the theoretical results [16] [22] [25] 
and experimental [17] [19]. 

In Table 4, states (4s4p 1Po), we also calculated the total energies of doub-
ly-excited states of helium-like systems (Z = 2 to 10). The results found are in  

 
Table 4. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

State 
Z 

 2 3 4 5 6 7 8 9 10 

4s4p 1Po 

−Ep 5.24 12.91 23.98 38.46 56.33 77.61 102.29 130.37 161.85 

−Es 5.35 13.03 24.10 38.58 56.46 77.75 102.43 132.03 162.00 

Eα 5.29 12.95 24.01 38.46 56.31 77.56 102.43 130.27 161.72 

−Em 5.35         

P: Present results obtained from Equation (39); m: Experimental data, Woodruff and Samson (1982) [30]. 
 

Table 5. Excitation energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 5). Results given in eV (1 Ryd = 13.60569 eV; 1 ua = 2 Rydberg). 

States 

 Z 

 2 3 4 5 

2s2p 1Po 

Ep 61.05 151.22 282.19 453.98 

Es 60.13 150.34 281.35 453.15 

Ej 60.13    

Ef, i 60.13i 150.31f   

2s3p 1Po 
Ep 63.97 160.94 302.50 488.64 

Es 63.06 159.87 301.25 487.21 

3s3p 1Po 

Ep 69.75 175.23 329.07 531.28 

Es 69.91 175.63 330.54 532.15 

Ei 69.91    

3s4p 1Po 
Ep 71.78 180.23 338.37 546.20 

Es 71.35 179.68 337.69 545.39 

3s5p 1Po 
Ep 72.72 182.55 342.67 553.11 

Es 71.99 181.52 341.34 551.46 

4s4p 1Po 

Ep 73.78 185.19 347.60 561.04 

Es 73.66 185.07 347.49 560.91 

Em 73.66    
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perfect agreement with those found in the literature consulted. 
In Table 5, we presented the excitation energies of the doubly-excited states of 

(Nsnp 1Po) (N, n ≤ 5) types of helium and its assimilated ions. They are calcu-
lated from the energies of the ground state given by Frankowski and Pekeris 
[29]. The results found in this table are in perfect agreement with the results 
found by the other authors. 

4. Conclusion 

In a global way, we applied the variational procedure of the modified atomic or-
bitals theory for the computation of total energies and excitation senergies 
doubly-excited states of the atomic system with several electrons. In order to 
achieve our results, we used a matlab program for the first time to reduce the 
complexity of the calculations. This program allowed us to determine the ap-
proximate expressions of the variational parameter, and of the screen constant. 
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Appendix 
Appendix A: Calculation Procedure for the Determination of the 

Radial Wave Function 

The procedure for determining the radial wave function is given as follows: 

( ) ( )
( )

0

3
2 1

, 3
0 0

1 2

0

1 !2 2 2e
2 !

lzr
na l

n l n l

n lZ Zr ZrR r L
na na nan n l

−
+
+

 − −      =       
+         

     (A1) 

The associated Laguerre polynomials are linked to the Laguerre polynomials 
( )n lL r+  by the Rodrigue formula: 

( ) ( ) ( )d1
d

k
k
n nkL r L r

r
= −                     (A2) 

( ) ( )de e
d

n
r n r

n nL r r
r

−=                     (A3) 

For different values of n and l, the Laguerre polynomials are mutually ortho-
gonal, which then determines the orthogonality of the radial wave functions. 

Let’s give the example of the 4s wave function: 
For the state 4s we have: n = 4, l = 0 

( )( )2 1 1
4 4

2 2 d 2
d

l
n l

o o o

Zr Zr ZrL L L r
na na r na

+
+

     
= ⇒     

     
           (A4) 

And; 

( )
4

4 4

de e
d

r n rL r
r

−=                       (A5) 

By developing this expression, we get: 

( ) ( ) ( )
3 2
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( ) ( )2 3 4
4 24 96 72 16L r r r r r= − + − +               (A6) 

Then he comes: 

( ) ( )1 2 3
4 4

d 4 24 36 12
d

L L r r r r
r

= = − + × − × +            (A7) 

Which give, 
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  (A8) 

So the determination of the first part of the expression (A1) 
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For n = 4 and l = 0, we have: 
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 (A9) 
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Thus, starting from (A8) and (A10); 
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Simplifying by 24 we finally obtain the expression of the radial wave function 
4s as follows: 
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0 0 0 0

24 31 e
96 4 8 192

Z r
aZ Z Z ZR r r r

a a a a

×
−  

= − + −  
   

       (A12) 

By analogy the wave function 4p is given as follows: 

0

3
2 32

42 3
4,1 2 3

0 0 0 0

5 1 1 e
4 8016 2

Z r
aZ Z Z ZR r r r

a a a a

×
−  

= − +  
   

         (A13) 

Appendix B: Principle of Determining the Screen Constant 

To determine the screen constant, we start from the relation: 

( ) ( )
( ) ( )
( ) ( )

H
E H

α α
α α

α α

Ψ Ψ
= =

Ψ Ψ
               (B1) 
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And the Hamiltonian H (in atomic unit) is: 

1 2
1 2 12

1 1 1+
2 2

z zH
r r r

= − ∆ − ∆ − −                  (B2) 

The average value of this expression (B2), while using the closure relation re-
flecting the fact that the 1 2,r r  kets are continuous bases in the state space of 
the two electrons: 

3 3
1 2 1 2 1 2d d , , 1lr r r r r r =∫∫                    (B3) 

From this relation we can from (B3): 

( ) ( ) ( )
( ) ( )

3 3
1 2 1 2 1 2

3 3
1 2 1 2 1 2

d d , ,

ˆd d , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ × Ψ

= Ψ Ψ

∫∫
∫∫

           (B4) 

The development of (B4) gives: 

( ) ( ) ( )
( ) ( )

3 3 *
1 2 1 2 1 2

3 3 *
1 2 1 2 1 2

d d , , , ,

ˆd d , , , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ ×Ψ

= Ψ Ψ

∫∫
∫∫

             (B5) 

The normalization constant denoted N is given by: 

( ) ( ) ( )3 3 *
1 2 1 2 1 2

ˆd d , , , ,NE r r r r H r rα α α= Ψ Ψ∫∫            (B6) 

And from this relation (B6), we obtain: 

( ) 23 3
1 2 1 2d d , ,N r r r r α= ∫∫                    (B7) 

To facilitate the development of these expressions, we made a change of varia-
ble of some parameters of the Equation (B5). It was later that we posed in ellip-
tical coordinates: 

( ) ( )1 2 1 2 12; ;s r r t r r u r= + = − =                  (B8) 

And the element of elementary volume gives: 
We know that, 3 3

1 2d d dr rτ =  

( )3 3 2 2 2
1 2d d d 2 d d dr r s t u s t uτ π= = −                (B9) 

Applying these changes of variables in Equation (B7) the preceding expression 
of the normalization constant denoted N is in elliptic coordinate: 

( ) ( )

( ) ( )

2 2 2
2 2

0 0 0

2 2 2 2 2 2 2

d d d 2

4

s u

NE s u t u s t
s t u u

s s t t s u Zsu s t
s t

α
∞   ∂Ψ ∂Ψ ∂Ψ ∂Ψ        = − × + + +         ∂ ∂ ∂ ∂         

∂Ψ ∂Ψ    × − + − −Ψ − +    ∂ ∂  

∫ ∫ ∫
 (B10) 

Since we did not take into account the Coulomb repulsion, so: 0
u

∂Ψ
=

∂
 

The normalization constant becomes: 

( ) ( )
2 2

2 2 2 2 2

0 0 0

d d d 4
s u

NE s u t u s t Zsu s t
s t

α
∞   ∂Ψ ∂Ψ      = − × + −Ψ − +       ∂ ∂      
∫ ∫ ∫  (B11) 
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To determine the values of the screen constant σ  and the variational para-
meter α , we start from this equation, which is the sum of three integral data as 
follows: 

( ) ( ) ( ) ( )1 2 3NE E E Eα α α α= + +                (B12) 

The development of this expression (B12) makes it possible to obtain the val-
ue of σ  and α  by the formula: 

( )d
0

d
i

i

E α
α

=                         (B13) 

The expressions corresponding to ( )1E α , ( )2E α , and ( )3E α , are: 

( ) ( )
2

2 2
1

0 0 0

d d d
s u

E s u t u s t
s

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫              (B14) 

( ) ( )
2

2 2
2

0 0 0

d d d
s u

E s u t u s t
t

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫             (B15) 

( ) 2 2 2
3

0 0 0

d d d 4
s u

E s u t Zsu s tα
∞

 = − − + Ψ ∫ ∫ ∫             (B16) 

The normalization constant is as follows: 

( )2 2 2

0 0 0

d d d
s u

N s u t u s t
∞

= − ×Ψ∫ ∫ ∫                 (B17) 

With these changes of variables, we obtain the equations presented above in 
section (2.3): Equation (33; 34; 35). 
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