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Abstract 
Equations of Flat Space Cosmology (FSC) are utilized to characterize the 
model’s scalar temporal behavior of dark energy. A table relating cosmic age, 
cosmological redshift, and the temporal FSC Hubble parameter value is 
created. The resulting graph of the log of the Hubble parameter as a function 
of cosmological (or galactic) redshift has a particularly interesting sinuous 
shape. This graph greatly resembles what ΛCDM proponents have been ex-
pecting for a scalar temporal behavior of dark energy. And yet, the FSC Rh = 
ct model expansion, by definition, neither decelerates nor accelerates. It may 
well be that apparent early cosmic deceleration and late cosmic acceleration 
both ultimately prove to be illusions produced by a constant-velocity, linear-
ly-expanding, FSC universe. Furthermore, as discussed herein, the FSC model 
would appear to strongly support Freedman et al. in the current Hubble ten-
sion debate, if approximately 14 Gyrs can be assumed to be the current cos-
mic age. 
 
Keywords 
Flat Space Cosmology, Dark Energy, Hubble Parameter, Galactic Redshift,  
Rh = ct Model 

 

1. Introduction and Background 

We are currently in a “golden age” of astronomy and cosmology. Astrophysical 
observations in the coming decade are expected to bring much greater resolution 
concerning the behavior and fundamental nature of dark matter and dark ener-
gy. These are two of the remaining great mysteries of the universe. 

With respect to the behavior of dark energy, the expansion history of our un-
iverse, going back to the earliest galaxies, should come into greater focus. If all 
goes well with these observations, we should be able to fill in many details with 
respect to the velocities of galactic separation going all the way back to the first 

How to cite this paper: Tatum, E.T. and 
Seshavatharam, U.V.S. (2020) How Flat 
Space Cosmology Models Dark Energy. 
Journal of Modern Physics, 11, 1493-1501.  
https://doi.org/10.4236/jmp.2020.1110091  
 
Received: September 3, 2020 
Accepted: October 10, 2020 
Published: October 13, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2020.1110091
https://www.scirp.org/
https://doi.org/10.4236/jmp.2020.1110091
http://creativecommons.org/licenses/by/4.0/


E. T. Tatum, U. V. S. Seshavatharam 
 

 

DOI: 10.4236/jmp.2020.1110091 1494 Journal of Modern Physics 
 

few hundred million years of cosmic expansion. We should then have a remark-
ably accurate “moving picture” computer simulation of the history of that por-
tion of the universe we can now observe.  

When astrophysicists concern themselves with the velocities of galactic sepa-
ration on scales greater than those of the local clusters held together by gravity 
and dark matter, they are studying the Hubble parameter and its tight correla-
tion with cosmological redshift. When the Hubble parameter is characterized as 
a “snapshot” of the universe at a particular point in cosmic time (at the present 
time, for instance), it can be referred to as the Hubble constant. On a global 
scale, making use of cosmic microwave background (CMB) observations, the 
2018 Planck Collaboration has arrived at a current Hubble constant H0 value of 
67.36 +/− 0.54 km∙s−1∙Mpc−1 [1].  

The ongoing temporal (i.e., “moving picture”) studies of the universe are ex-
pected to show that, over the great span of cosmic time, the Hubble parameter is, 
in fact, scalar in some way. The first evidence of this became apparent in 1998, 
with studies of Type Ia supernovae [2], which revealed the presence of dark 
energy. Thus, it became apparent that there is an unseen energy, presumably 
within the cosmic vacuum, which prevents gravitational deceleration of the ex-
panding universe. We now know that universal expansion, at present, is either 
occurring at constant velocity (as treated by Rh = ct cosmological models) or 
very slightly accelerating (as claimed by ΛCDM concordance model cosmolo-
gists). Both types of cosmological models are still viable at the present time [3]-[8]. 
Observations in the coming decade may well identify which model is superior. 

Flat Space Cosmology (FSC) is perhaps the most successful Rh = ct model to 
date [9]. It predicts a current Hubble parameter H0 value of 66.893 km∙s−1∙Mpc−1, 
fitting with the 2018 Planck Collaboration consensus. It also predicts the COBE 
CMB dT/T anisotropy ratio of 0.66 × 10−5. A book chapter summary of FSC is 
now freely available online [10]. In contrast to ΛCDM cosmology (which incor-
porates observations ad hoc but makes relatively few falsifiable predictions), the 
FSC equations provide for very specific predictions, which can falsify the model 
if proven wrong. Remarkably, to date, the FSC model has not been falsified. 

The purpose of the current report is to show how FSC models the temporal 
dark energy expansion of the universe. We show in great detail the scalar nature 
of the FSC Hubble parameter, so that it can be compared to the observations to 
be made in the coming decade. 

2. Methods 

Previously-published equations of FSC, relating cosmological (or galactic) red-
shift z, temporal cosmic temperature Tt, temporal cosmic radius Rt, the asso-
ciated temporal Hubble parameter Ht, the currently-observed Hubble parameter 
Ho, the currently-observed cosmic temperature To, and cosmic age t, are brought 
together in the Results section in order to derive the parameter values given in 
Table 1 and Figure 1. 
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3. Results 

The following two FSC equations are useful for deriving the model relationships 
between a given cosmological (or galactic) redshift z and the associated temporal 
Hubble parameter Ht: 

1/22

2 1t

o

Tz
T
 
 
 

≅ −                          (1) 

and  
2 22 71.027246639815497 10 K mt tT R × ⋅≅               (2) 

The first equation relates the redshift to the temporal cosmic temperature Tt 
and the currently-observed cosmic temperature To [11]. The second equation 
relates the temporal cosmic temperature Tt to the temporal cosmic radius Rt 
[12]. 

Recalling the FSC Hubble parameter definition (Ht = c/Rt), rearrangement 
and substitution gives: 

( )
2

2
0

2
2

71.02724663981 15497 10 K m
tT z H

c
 

+
× ⋅

≅  
 

          (3) 

To convert the Ht term from reciprocal seconds (s−1) to the conventional 
Hubble parameter units of km∙s−1∙Mpc−1, the left-hand term is multiplied by 
3.08567758 × 1019 km∙Mpc−1: 
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Rearrangement of terms gives: 

( ) ( )
2

2
0

27 2

19 1

1.027246639815497 10 K m
3.08567758 10  km Mpc

1 tz H
T c −

 
 + ≅
  × ⋅ 

× ⋅           (5) 

Using T0 = 2.72548 K, this simplifies to: 

( )2 1

0.014949183831548t

z
H

+
≅                     (6) 

The final useful equation relates cosmic time t (in Gyrs after the Planck 
epoch) to the current Hubble parameter H0 value of 66.893 km∙s−1∙Mpc−1, the 
temporal Hubble parameter Ht value, and the current FSC cosmic age of 14.617 
Gyrs: 

0
14.617

tH H
t

 ≅  
 

                       (7) 

Equations (5), (6) and (7) can then be used to create Table 1 and Figure 1. 
The last two z values given in Table 1 are two of the highest galactic redshifts 
observed to date. 
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Table 1. Cosmic age, Redshift z, Hubble parameter, Log10 Hubble parameter. 

Cosmic Age (Gyrs) Redshift z Ht (km∙s−1∙Mpc−1) Log10 (Ht) 

14.617 0.00 66.893 1.83 

14 0.21 69.84 1.84 

13.8 0.24 70.85 1.85 

13 0.35 75.21 1.88 

12 0.47 81.48 1.91 

11 0.57 88.89 1.95 

10 0.68 97.78 1.99 

9 0.79 108.64 2.04 

8 0.91 122.22 2.09 

7 1.04 139.68 2.15 

6 1.20 162.96 2.21 

5 1.39 195.55 2.29 

4 1.63 244.44 2.39 

3 1.97 325.92 2.51 

2 2.51 488.89 2.69 

1 3.69 977.77 2.99 

0.5 5.31 1955.55 3.29 

0.25 7.58 3911.1 3.59 

0.174 9.11 5618.51 3.75 

0.1179 11.09 8293.97 3.92 

 

 
Figure 1. Log10 (Ht) as a function of cosmological (or galactic) redshift z. 
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Notice the sinuous appearance of this graph. Its overall shape greatly resem-
bles what cosmologists have been expecting for a scalar temporal behavior of 
dark energy! 

4. Discussion 

Proponents of the ΛCDM concordance model of cosmology, and Rh = ct model 
cosmologists, are currently in a pitched battle to establish which model is more 
accurate with respect to observations and predictions. As documented in recent 
publications [13] [14], FSC is a realistic linear light-speed cosmic expansion 
model which can also be considered a modified Milne “empty universe” model. 
Following a sign convention which treats gravitationally-attracting matter ener-
gy density as positive and “repulsive gravity” vacuum energy density as negative, 
the FSC net global energy density is perpetually zero. Thus, the FSC cosmic 
model follows the “empty” line exactly between deceleration and acceleration in 
this Figure 2 open source graph [15] from the Supernova Cosmology Project. 
One can readily see that the observational error bars allow for BOTH models 
[i.e., the blue line of ΛCDM accelerating expansion, as well as the “empty” pink 
line corresponding to constant velocity expansion of the FSC Rh = ct model]. 
 

 
Figure 2. Observed magnitudes of type Ia supernovae vs redshift z. 
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Notice also that this graph correlates a redshift z value of 1.0 with a cosmic 
scale of 0.5 times the current scale. This is true for FSC as well as ΛCDM, al-
though the two models differ slightly with respect to the current cosmic age. 

In ΛCDM cosmology, the post-inflationary cosmological vacuum energy 
density is assumed to be a constant. This is not an absolute requirement of 
general relativity, so long as the vacuum energy density is scalar according to 

2 23 tH cΛ = . In the FSC quintessence model, this scalar relationship holds true 
and is equivalent to 23 tRΛ =  [16]. In FSC, the vacuum energy density declines 
in the forward time direction approximately 121 logs of 10 from the Planck scale 
epoch to the present. Thus, in contrast to ΛCDM cosmology, there is no “cos-
mological constant problem” in the FSC model.  

As speculated in the FSC book chapter summary, ongoing cosmological mat-
ter creation may be paired with a continual decline in the cosmological vacuum 
energy density, as a requirement for conservation of energy in such a finite iso-
lated expanding system. It should be remembered that the details of matter crea-
tion in all cosmological models are a mystery. In FSC, matter creation is an on-
going process, whereas ΛCDM cosmologists generally assume that all matter was 
created nearly instantaneously. However, as a result, a major difference between 
the two models is that only ΛCDM cosmology has a cosmological constant 
problem, based upon its embedded constant post-inflationary vacuum energy 
density assumption. 

As a consequence of the dark energy observations, in addition to their cos-
mological constant and instantaneous matter creation assumptions, ΛCDM 
cosmologists must now also assume certain features of the universal expansion. 
These features had not been required when it was once thought (i.e., before 
1998) that the cosmological vacuum energy density might actually be perpetually 
zero. They now require that universal expansion decelerated during the first half of 
the cosmic time span since the Big Bang, and then, almost imperceptibly, began to 
accelerate approximately 6 billion years ago. This becomes absolutely necessary if 
one requires a post-inflationary cosmological constant at the currently observed 
value of about 10−9 J∙m−3. Nevertheless, this deceleration-followed-by-acceleration 
scenario of universal expansion is clearly debatable, especially when one consid-
ers the observational statistical error bars in Figure 2.  

When one compares the relative luminosity and angular diameter distances 
between the two competing models, in the form of a ratio, it has recently been 
shown that the ΛCDM model contention of late cosmic acceleration could be an 
illusion produced by a Rh = ct universe [17].  

Further support that cosmic acceleration could be an illusion is clearly evident 
in Figure 1 of the current report. It is readily apparent that the FSC graph of the 
log of the Hubble parameter as a function of redshift z is sinuous in appearance. 
We see the following: an upward flexion curve out to a z value of about 1.0 (cor-
responding to the last 7.3 billion years of the FSC cosmic expansion); a roughly 
straight line segment for 1.0 < z < 1.7 (corresponding to 3.76 to 7.3 billion years 
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of cosmic age); and an opposite flexion curve for z values greater than about 1.7 
(corresponding to the first 3.76 billion years of the FSC cosmic expansion). The 
overall shape of the graph greatly resembles what ΛCDM proponents have been 
expecting for a scalar temporal behavior of dark energy. And yet, the FSC Rh = ct 
model expansion, by definition, neither decelerates nor accelerates! 

The upward curving portion of our Figure 1 graph out to a z value of about 
1.5, is already largely filled in by the accumulated Type Ia supernovae data [18]. 
Not yet known are the exact Hubble parameter values at the cosmic times when 
these supernovae exploded. Fortunately, the coming decade of observational 
studies should give us a better idea of the precise scalar nature of the Hubble pa-
rameter. 

Regardless, given the overall shape of our Figure 1 graph, it may well be that 
apparent early cosmic deceleration and late cosmic acceleration both ultimately 
prove to be illusions produced by a constant-velocity, linearly-expanding, FSC 
universe. 

Given the ongoing tension between different research teams considering what 
current near and deep space observations might be telling us about the H0 value 
as a snapshot in time, it is worth noting the following: 

The 2018 Planck Collaboration analysis of the CMB looked at 99.998 percent 
of the current radius of the universe. Their consensus H0 estimate of 67.36 
km∙s−1∙Mpc−1 appears, in FSC, to fit with a 14.6 Gyr old universe. According to 
Table 1, the Freedman, et al. H0 observation of 69.6 km∙s−1∙Mpc−1 [19] appears to 
be fitted nicely to a 14 Gyr estimated cosmic age. Whereas, the SHoES project H0 
observations of 74 - 77 km∙s−1∙Mpc−1 [20] appear to be ideally fitted to a 13 Gyr 
(or less) cosmic age. One need only consider the current 14.27 +/− 0.38 Gyr best 
age estimate of the HD 140283 “Methuselah star” [21] to judge which current H0 
estimate is the most likely outlier. 

5. Summary and Conclusion 

Equations of FSC have been utilized to characterize the model’s temporal beha-
vior of dark energy. A table relating cosmic age, cosmological redshift, and the 
temporal FSC Hubble parameter value has been created. The resulting graph of 
the log of the Hubble parameter as a function of cosmological (or galactic) red-
shift has a particularly interesting sinuous shape: an upward flexion curve out to 
a z value of about 1.0 (corresponding to the last 7.3 billion years of the FSC cos-
mic expansion); a roughly straight line segment for 1.0 < z < 1.7 (corresponding 
to 3.76 to 7.3 billion years of cosmic age); and an opposite flexion curve for z 
values greater than about 1.7 (corresponding to the first 3.76 billion years of the 
FSC cosmic expansion). The overall shape of the graph greatly resembles what 
ΛCDM proponents have been expecting for a scalar temporal behavior of dark 
energy. And yet, the FSC Rh = ct model expansion, by definition, neither decele-
rates nor accelerates. It may well be that apparent early cosmic deceleration and 
late cosmic acceleration both ultimately prove to be illusions produced by a con-
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stant-velocity, linearly-expanding, FSC universe.  
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Abstract 
The problem of calculating the energy spectrum of turbulent velocity pulsa-
tions in the case of homogeneous isotropic and stationary turbulence is con-
sidered. The domain of turbulent energy production is treated as “a black 
box” on which boundary the spectral energy flux is given. It is assumed that 
the spectrum is formatted due to intermodal interactions being local in the 
wave-number space that leads to a cascade mechanism of energy transfer 
along the wave-number spectrum and the possibility of using the renormali-
zation-group method related to the Markovian features of the process under 
consideration. The obtained formula for energy spectrum is valid in a wide 
wave-number range and at arbitrary values of fluid viscosity. It is shown that 
in functional formulation of the statistical theory of turbulence, the procedure 
of separating local intermodal interactions, which govern energy transfer 
(straining effect), and filtering out nonlocal interactions, which have no in-
fluence on energy transfer (sweeping effect), is directly described without 
providing additional arguments or conjectures commonly used in the renor-
malization-group analysis of turbulent spectra. 
 
Keywords 
Spectral Flux, Spectral Energy Density, Local and Nonlocal Interactions,  
Inertial Term, Renormalization-Group Invariance, Epsilon-Expansion  
Procedure 

 

1. Introduction 

The problem of calculating the energy distribution over wave-numbers of tur-
bulent fluid (spectral energy density) is a subject of numerous investigations. 
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Even within the framework of the simplest model of homogeneous isotropic and 
stationary turbulence, solving this problem is complicated by the fact that the 
Navier-Stokes equations, which describe a turbulent fluid, are nonlinear and for 
obtaining a closed set of equations for energy one needs to express the quantity 
of third-order statistical moment in terms of the second-order statistical mo-
ment with the help of one or other hypotheses of closing (as a survey see [1]) or 
to construct a solution in the form of perturbation theory series with subsequent 
term-by-term averaging the series obtained [2]. In the last case, the technique of 
Feynman diagrams is commonly applied. The specific feature of the system un-
der consideration consists in the fact that in a fully developed turbulence, a large 
number of various mode scales are excited and the effect of modes of all scales 
appears to be essential and has to be accounted for since a single act of inter-
modal interactions is only a link in a long cascade chain via the mechanism of 
energy transfer from the range of large-scale modes, where the turbulent energy 
of stochastic fluid velocity pulsations due to a development of instability of 
large-scale flows is produced, into the range of small-scale modes where the 
energy dissipates due to fluid viscosity. 

Somewhat different approach to finding the spectral energy density beyond 
the scope of explicit applying the Navier-Stokes equations was proposed by A. N. 
Kolmogorov [3] who postulated that the energy transfer along the wave-number 
spectrum goes due to nonlinear intermodal interactions between the modes of 
close scales, whereas the interaction between the modes of essentially distin-
guished scales is realized through the cascade sequence of acts relevant to in-
termodal interactions between modes of intermediate scales (the Richard-
son-Kolmogorov cascade); in other words, it has a place “a locality in the 
wave-number space” of intermodal interactions that form a cascade process of 
energy transfer over wave-number spectrum. The question of a locality nature 
was discussed in detail in the surveys devoted to application of the renormaliza-
tion-group method in turbulence theory [4] [5]. The locality relates to the fact 
that intermodal interaction between the modes with essentially different scales 
reduces to a primitive transfer of small-scale modes by large-scale ones without 
energy redistribution between modes (sweeping effect) [6]. In connection with 
this, when studying the spectrum form it arises the problem of selecting weak 
local interactions (dynamic interactions) forming the energy spectrum and act-
ing against the ground of strong nonlocal (kinematic) interactions [7]. In the 
author’s paper [8] it was claimed and argued the statement that in the turbulence 
theory with applying the RG-method [4] [5] use of the ε-expansion procedure, 
well-known in the theory of critical phenomena, is a way to select the local in-
termodal interactions and filtering out the effects of non-local (distant) interac-
tions. 

Kolmogorov proposed to divide the wave-number spectrum into three parts. 
1) The range of turbulent energy production in the domain of small wave 

numbers gk k<  where the energy of turbulent pulsations is generated due to 
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development of instability of large-scale flows. The energy production is simu-
lated by the action of an external random force that is similar to the Langevin 
force used in the theory of random processes. The energy production range lies 
beyond the scope of our analyses and in our model it will be treated as “a black 
box” when one knows nothing concerning the processes in the box and only 
knows conditions on its boundary (spherical surface of radius gk  in the 
wave-number space). As a boundary condition it is taken the spectral flux 
through the boundary surface ( )gW k , which is equal to the rate of energy 
pumping   received from the range gk k< . 

2) The inertial range is a domain of wave numbers where there is no energy 
production and the dissipation effects are negligible. In this range the spectral 
flux remains constant, and it goes the process of energy transfer from the range 
of small wave numbers into the range of large wave numbers via the cascade se-
quence of local intermodal interaction acts. In the case of high Reynolds num-
bers (very small fluid viscosity) the inertial range has a sufficiently long length. 
In the inertial range it takes a place the Kolmogorov formula for spectral energy 
density  

( ) 2 3 5 3 ,KE k C k −=                        (1.1) 

where KC  is the Kolmogorov constant. This formula has been obtained only 
on the basis of dimensionality arguments without reference to the Navier-Stokes 
equations. 

3) The dissipation range relates to the case when the Reynolds number is not 
high and dissipation effects are not neglectable. As the Reynolds number de-
creases (the fluid viscosity grows) the domain of inertial range existence tends to 
zero and the Kolmogorov formula appears to be inapplicable. Below we consider 
the problem of building the model that is true beyond the inertial range and ob-
tain the formula for spectral energy distribution ( )E k  with account for viscos-
ity that is valid for all wave-numbers with the exception of ones from the energy 
production range. 

2. The Problem of Calculating Energy Spectrum 

If the fluid viscosity is accounted for, the spectral flux will depend on wave 
number and due to the locality of intermodal interactions the spectral energy 
density ( )E k  will be determined by the value of spectral flux at given 
wave-number ( )W k . This fact has to be accounted for when applying the di-
mensionality arguments. As the result, the formula for ( )E k  may be written in 
the form of “generalized Kolmogorov formula”  

( ) ( ) ( )2 3 5 3E k C k W k k −=                    (2.1) 

Here ( )C k  is a dimensionless function of dimensionless variables ( ) ( )gW k W k , 

( )gC k , gk k  and ( ) ( ) 3 4H k W k kν= ; ν  is the fluid viscosity and gk  is 
the upper boundary of energy production range.  

Beyond the energy production range dk k>  the equation of energy balance 
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has the form  
( ) ( )2d

= 2
d

W k
k E k

k
ν−                       (2.2) 

that relates two unknown quantities ( )W k  and ( )E k . For solving the prob-
lem one may use the energy balance Equation (2.2) in combination with the 
“generalized Kolmogorov formula” (2.1), but in this case it remains one more 
unknown function ( )C k , which is a functional analog of the Kolmogorov con-
stant. Thus it arises the need to have one more equation followed from some ad-
ditional considerations or hypotheses. One of them was proposed by Kovazhny 
[9], whose conjecture appears to be equivalent to the statement ( ) constC k = . 
In this approximation Equation (2.2) gives  

( )
( ) ( ) ( )

3

4 3 4 3
1 31 ,

2
g

g g

C k
W k k k W k

ν 
 = + − =
  
 


 

( ) ( ) ( ) ( )
2

2 3 4 3 4 3 5 3
1 31

2
g

g g

C k
E k C k k k k

ν
−

 
 = + −
  




         (2.3) 

According to Equation (2.3) the spectral flux ( )W k  decreases as the 
wave-number grows, however, at a certain value of wave-number  

( )

3 4
1 3

4 3

21d g
g g

k k
C k kν

 
 = +
  

  

the flux becomes zero and at dk k>  it becomes negative whereas the spectral 
energy grows that corresponds to the transport of the energy produced by a cer-
tain fictitious source from small-scale flows to large-scale ones. This “nonphysi-
cal result” points out to the fact that the approximation ( ) ( )const gC k C k= =  
is unsatisfactory and needs for a refinement. In particular, in author’s paper [10] 
it was proposed to treat the result (2.3) as two first terms of the series expansion 
in fluid viscosity powers of exponent that reproduces the results obtained by Pao 
[11] (see also [12]). Below it will be shown that this proposal appears to be true. 

3. Cascade Mechanism of Turbulent Energy Transfer and  
Renormalization-Group Method 

The required additional equation, which allows one to find ( )C k , may be ob-
tained by taking into account the cascade mechanism of energy transfer by local 
in the wave-number space intermodal interactions. 

The locality of intermodal interaction acts, which are treated as links of cas-
cade chain, manifest itself in the fact that there is no a certain scale which stands 
out of another scales (the equal role in cascade chain of all links with given scale). 
In this case the characteristics of all links in cascade chain ( )W k  and ( )C k  
are defined only by the characteristics ( )0 0W W k= , ( )0 0C C k=  of the link 
with 0k k=  selected as initial one and are independent of how this link was 
formatted (the independence of a previous history). This means that the process 
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of energy transfer over wave-number spectrum is a Markovian process. If the 
energy transfer be a Markovian process, we will have  

( ) ( ) ( ) ( )0 0 0 0 0 0; , , , ; , ,W k W k W C k C k C k W C k= =  

And the dimensionality arguments enable one to represent the functions desired 
in the form of dimensionless functions of dimensionless variables 

( ) ( )( ) ( ) ( )( )0 1 0 0 0 0 2 0 0 0, , , , , ,W k W k k H k C C k C k k H k Cϕ ϕ= =  

( ) ( ) 3 4H k W k kν=                      (3.1) 

From Equation (3.1) it follows that the dimensionless functions ( )1,2 , ,x h cϕ  of 
dimensionless variables 0x k k= , ( )0h H k=  and 0c C=  obey the normaliza-
tion conditions  

( )1,2 1, , 1h cϕ =                         (3.2) 

The functions ( )1,2 , ,x h cϕ  possess a certain additional symmetry related to 
an ambiguity in a way of setting the boundary conditions that are reduced to a 
choice of a certain link with wave-number 0k  as an initial link in cascade chain 
and specifying the characteristics of this link, namely, 0W  and 0C ; in what 
follows the value 0k  will be referred to as the normalization point. 

If another link with the wave-number 1k k=  be taken as initial one and the 
values of parameters of this link ( )1 1W k W=  and ( )1 1C k c=  be given, the 
form of functions 1,2ϕ  remains unchanged; this means that the following rela-
tionships have to be satisfied  

( ) 0 1 1 1 1 1
0 1

, , , ,k kW k W h c W h c
k k

ϕ ϕ
   

= =   
  

 

( ) 2 1 2 1 1
0 1

, , , ,k kC k c h c c h c
k k

ϕ ϕ
   

= =   
  

              (3.3) 

Due to the presence of ambiguity in a choice of the value 0k  (unit of scale) it 
follows that the functions ( )1,2 , ,x h cϕ  are invariant with respect to the opera-
tion of scale transformation 0 1k k→  and relevant change (renormalization) of 
the parameters ( )0 1 1W W W k→ =  and ( )1 1c c C k→ = . 

The totality of above pointed operators of scale transformations in combina-
tion with renormalization of governing parameters obeys the group composition 
law, contains the operators of identical and inverse transformations, i.e. it made 
up a group called the renormalization group (RG-group), and the invariance of 
the function forms under RG-transformations referred to as RG-invariance. In a 
special case when RG-transformations and RG-invariance are related to change 
in putting initial or boundary conditions (our case) the term “functional 
self-similarity” is used [13]. 

Putting 1k k=  in Equation (3.3) and using the normalization condition (3.2)  

( ) ( )1 0 1 1 2 1 0, , , , , ,W W h c c c h c k kϕ α ϕ α α= = =           (3.4) 

we arrive at the functional RG equations  
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( ) ( ) ( ) ( ) ( )1
1,2 1,2 1,2 24

, ,
, , , , , , , , , ,

h h cxx h c h c x h c c h c
ϕ α

ϕ ϕ α ϕ ϕ α
α α
 

=  
 

   (3.5) 

here α  is an arbitrary dimensionless parameter. 
These equations are similar to the Kolmogorov-Chapman semi-group equa-

tions in the theory of Markovian random processes (the Einstein-Smolukhovsky 
equations in physics of Brownian motion). 

By differentiating the functional RG-equations with respect to α  and next 
putting 1α =  we obtain the RG-differential equations  

( ) ( ) ( ) ( ) ( )1,2 1,2 1 2 1,2, , , , 4 , , , 0r h c x h c x r h c h r h c c x h c
x h c

ϕ ϕ∂ ∂ ∂ + − + − + =   ∂ ∂ ∂ 
(3.6) 

here 

( ) ( )1,2
1,2

1

, ,
,

x

x h c
r h c

x
ϕ

=

∂
=

∂
                    (3.7) 

The functions 1,2r  are similar to the operators of infinitesimal transformations 
in the Lie theory of continuous groups. 

In terms of the functions 1,2ϕ  the balance energy Equation (2.2) takes the 
form  

( ) ( ) ( )1 1 3 1 3 2 3
1 2

, ,
2 , , , ,

x h c
ch x x h c x h c

x
ϕ

ϕ ϕ−∂
= −

∂
           (3.8) 

from which it follows  

( ) 1 3
1 , 2r h c ch−= −                        (3.9) 

However, the differential RG Equations (3.6) contain a new unknown quanti-
ty ( )2 ,r h c  determined by the function ( )C k  in the generalized Kolmogorov 
Equation (2.10). Knowledge of this function is necessary for solving the RG dif-
ferential equation. However, in our analyses it is enough to know this quantity in 
the lowest perturbation theory approximation, namely, the first-order term of a 
series expansion in the fluid viscosity. This is in agreement with the procedure of 
improving the perturbation theory by applying the RG method proposed by 
Bogoyubov and Shirkov in the quantum field theory [14]. 

To the zero-order approximation of perturbation theory it is assigned the case 
when ( ) constC k = , i.e. 2 1ϕ =  and 2 0r = , that reproduce the Kovazhny 
theory containing “nonphysical singularity”. The first-order approximation 
contains a term being proportional to fluid viscosity of first degree. An account 
for dimensionality arguments gives the following representation for the function 

( )2 , ,x h cϕ   

( ) ( )1 3 4 3
2 , , 1 1x h c ch xϕ µ −= + −  

where µ  is a certain dimensionless parameter calculated by using statistical 
solving the Navier-Stokes equations within the framework of perturbation 
theory [2] at given external random force. This lies beyond the scope of the 
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model under consideration. From that it follows ( ) ( )2 1, ,r h c r h cµ=  and we 
will analyze the relevant solution  

( ) ( )
( )3 1 3

1 3 4 3
1

1 3, , 1 1 ,
2

x h c ch x
µµϕ

−
−− = − − 

 
 

( ) ( )2 1, , , ,x h c x h cµϕ ϕ=                            (3.10) 

From Equation (3.10) one can see that in the range 0 1 3µ< <  the solution 
contains “nonphysical” singularity and the position of a singular point goes from 

dk  to infinity as µ  goes from zero to 1/3. Since the transition to 1 3µ →  is 
weakly defined, we consider this case separately by direct solving the differential 
RG Equation (3.6).  

The equation for ( )1ln , ,x h cϕ  can be written in the form  

( ) ( ) ( ) ( )1 2 1 14 , , ln , , ,x h r h c h r h c c x h c r h c
x h h c

ϕ ∂ ∂ ∂ ∂  − − + + = −  ∂ ∂ ∂ ∂  
 (3.11) 

From the easily verified identity  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1, , , , 3 , ,r h c h r h c c r h c r h c r h c r h c
h c
∂ ∂ + = − +   ∂ ∂ 

 

it follows that the expression in square brackets is zero when 2 1 3r r= . Thus 
one can seek for the solution to Equation (3.10) in the form  

( ) ( ) ( )1 1ln , , ,x h c r h c F xϕ =  

where the function ( )F x  obeys the equation  

( ) ( ) ( )
1

dd 41 0, 1 0, 1
d 3 d

x

F x
x F x F

x x
=

 + − + = = =  
 

that gives  

( ) ( )4 33 1
4

F x x= −  

As the result the formulas for spectral flux and spectral energy density take the 
forms  

( ) ( )4 3 4 3
1 3

3exp
2 g

cW k k kν = − − 
 




             (3.12) 

( ) ( )2 3 5 3 4 3 4 3
1 3

3exp
2 g

cE k c k k kν−  = − − 
 




          (3.13) 

Here we choose the wave-number gk , corresponding to the upper boundary 
of turbulent energy production range, as a normalization point, and use the no-
tation ( )gW k=  and ( )gc C k= . In particular case when 0gk =  the results 
(3.12)-(3.13) appear to be identical to formulas proposed by Pao [11] [12], who 
put forward the hypothesis on proportionality of energy density ( )E k  to spec-
tral flux ( )W k  without any argumentation. 

If the parameter µ  exceeds one third the spectral characteristics monotoni-
cally decrease as k tends to infinity and no singularities arise. In this case the 
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formulas for energy flux and spectral energy density take the forms 

( ) ( )
( )3 3 1

4 3 4 3
1 3

3
2 g

cW k k k
µν − −

 = − − 
 



             (3.14) 

( ) ( )
( ) ( )3 2 3 1

2 3 5 3 4 3 4 3
1 3

3
2 g

cE k c k k k
µ µν − + −

−  = − − 
 




         (3.15) 

4. Local and Nonlocal Interactions 

Our analysis is based on the statement that the energy spectrum is formed due to 
intermodal interactions being local in the wave-number space, and this enables 
one to tell about a cascade mechanism of energy transfer over wave-number 
spectrum and a Markovian character of the process. Precisely this property of 
the process gives a possibility to assume that the solution describing the cascade 
chain depends uniquely on numerical parameters of the link in the chain treated 
as initial one and is independent of the fact how this link was formatted (inde-
pendence on previous history). The property of independence on previous his-
tory of formatting the initial and boundary conditions (functional self-similarity) 
is an inherent one for differential equations that do not contain integral terms. 
Solutions to such equations possess the property of invariance with respect to 
the way of setting additional (initial and boundary) conditions. Namely, under 
the shift of the hyper-surface on which additional conditions are given and rele-
vant changing (renormalization) numerical parameters specifying additional 
conditions the solution remains to be unchanged. The balance energy Equation 
(2.2) relates to the class of such equations. 

However, in the statistical theory of turbulence, the chain of equations that 
relates statistical moments of various orders arises due to nonlinearity of the 
Navier-Stokes equation, and this relation necessary contains integral terms. In 
particular, the equation for the Fourier-transform of the second-order statistic 
moment of velocity field ( ),B k ω  has the form  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,L k B k T k D k G kω ω ω ω ω+ =           (4.1) 

where the second-rank tensor ( ),T k ω , also referred to as the inertial term, is 
expressed via the integral of the third-order statistical moment of turbulent ve-
locity pulsations (Equation (A.4) in Appendix). The inertial term describes the 
processes of momentum and energy redistribution due to mixing induced by 
velocity pulsations. The relevant intermodal interactions are obviously nonlocal, 
and the question of validity the form of balance energy Equation (2.2) and an 
ability to use various symmetry properties like the RG-invariance arises. Thus 
we arrive at the problem of filtering out these interactions. In the Yakhot-Orszag 
renormalization-group theory of turbulence [15], this problem is solved by using 
the ε-expansion procedure when one first calculates the quantity desired in the 
low-order approximation in ε near the point 0ε =  and next extends the result 
obtained into the point 4ε = . This procedure is similar to the t’Hooft-Veltman 
dimensional regularization method in quantum field theory. 
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An account for the effect of turbulent velocity pulsations leads to a correction 
to fluid viscosity (a turbulent viscosity), and as a result the representation for the 
Fourier-transform of reverse Green’s function takes the form  

( ) ( ) ( ) ( )
101 , , ,G k G k kω ω ω
−

−  = −Σ                 (4.2) 

( ) ( ) ( ) ( )
10 0 2, ,G k L k i kω ω ω ν
−

  = = − +   is the reverse Green function of the li-
near problem. (This equation can be rewritten in the form of Dyson’s equation 
well-known in quantum-field-theory  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,G k G k G k k G kω ω ω ω ω= + Σ  

where ( ),k ωΣ  is referred to as the self-energy operator.) 
Another result of account for a mixing by turbulent velocity pulsations con-

sists in appearance of effective random force which variance is written as  

( ) ( ) ( ) ( ) ( )0 1, , ,D k D k D kω ω ω= +                (4.3) 

Here ( ) ( )0 ,D k ω  is the variance of external random forces that simulate the 
emergence of stochasticity due to development of instability of large-scale flows 
and is similar to Langevin forces in the theory of random processes; the second 
summand ( ) ( )1 ,D k ω  arises due to account for transport phenomena produced 
by mixing processes. 

The quantity ( ),D k ω  enters into the equation for the second-order statistic 
moment of velocity field ( ),B k ω   

( ) ( ) ( ) ( ), , , ,B k G k D k G kω ω ω ω= − −              (4.4) 

first obtained by Schwinger [16] when building the theory of quantized fields 
beyond the scope of perturbation methods. The Schwinger approach is based on 
statistical description of quantized fields in terms of characteristic (generating) 
functional. In the statistical theory of turbulence this equation was obtained by 
Wyld [2] with the help of summing up the perturbation theory series and ap-
plying the technique of Feynman diagrams. 

In the space-time variables the inertial term ( )1,2T  contains the third-order 
statistical moment of velocity field (see Appendix, Equation (A4)) and the ques-
tion arises whether the Fourier-transform of inertial term will contain integral 
terms and how to close the set of equations by excluding the third-order statis-
tical moment. 

Within the framework of statistical description of turbulence in terms of cha-
racteristic (generating) functional it can be obtained the formula for inertial 
term  

( ) ( ) ( ) ( ) ( ) ( )1, , , , ,T k k B k G k D kω ω ω ω ω= −Σ −          (4.5) 

firstly pointed out in author’s paper [17]. It should be noted that this formula is 
an exact one since no approximations or additional conjectures were used in its 
derivation. 

The quantities Σ  and ( )1D  are defined by solving the Navier-Stokes equa-
tions, but these quantities can be excluded by using Equation (4.2) and Equation 
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(4.4) that gives  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,T k L k B k G k D kω ω ω ω ω= − +           (4.6) 

For the quantity ( ) ( ), d 2T k T k ω ω π= ∫  we obtain  

( ) ( ) ( ) ( ) ( )02T k k B k G k D kν= − +  

If to put ( ) ( )d dT k W k k= , we arrive at the balance energy equation that coin-
cides with Equation (2.2) beyond the energy production range. The above pre-
sented procedure is another way of excluding nonlocal intermodal interactions 
when building the theory of turbulent spectra. 

5. Conclusion 

The theory of spectral energy distribution is based on the Kolmogorov conjec-
ture that the energy spectrum is formatted by intermodal interactions being local 
in wave-number space. From this, it follows a cascade mechanism of energy 
transfer along the wave-number space, the Markovian properties of the process, 
as well as an ability to apply various similarity arguments such as the property of 
renormalization-group invariance (functional self-similarity). In this case, the 
problem of separating local intermodal interactions (straining effects) and fil-
tering out nonlocal ones (sweeping effects) arises. An account for mixing 
processes by turbulent velocity pulsations (swimming effects) reveals in the form 
of an addition ( )1D  to a variance of external random forces (turbulent random 
force) and addition Σ to viscous term in the Navier-Stokes equations (turbulent 
viscosity). In Section 4 it was shown that in the functional formulation of statis-
tical description of turbulence, these quantities prove to be excluded from the 
balance energy equation. As the result, the problem of selecting local intermodal 
interactions and filtering out nonlocal ones appears to be solved exactly without 
applying other methods such as the ε-RG (see more recent survey [18]). 
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Appendix. Basic Equations in Space-Time Variables 

To simplify the writing in formulas we will use digital notation for space-time 
variables and the index of vector components { }1 1 1, , 1r t α ≡  according to which 

( ) ( )1 11
, 1u r t uα ≡ . Also it will be implied the integration over space-time coordi-

nates and the summing over component indexes for coinciding digital numbers 
(the Einstein rule), i.e.  

( ) ( ) ( ) ( )1 1 1 1 1 11 1 , , d du v u r t v r t r t≡ ⋅∫  

The Navier-Stokes equations (NSE) with the presence of the external random 
force ( )1X  and the external regular force ( )1f   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 11,2 2 1| 2,3 2 3 1 1
2

L u V u u X f+ = +         (A.1) 

(for more details related to notation see [16]). 
Variance of external random force  

( ) ( ) ( ) ( )0 1, 2 1 2D X X=                   (A.2) 

The equation for ( ) ( ) ( )1,2 1 2B u u=   
( ) ( ) ( ) ( ) ( ) ( ) ( )0 91,1 1 ,2 1,2 1,1 1 ,2L B T G D′ ′ ′ ′+ =            (A.3) 

Inertial term  

( ) ( ) ( ) ( ) ( ) ( ) ( )11,2 1| 3,4 3,4,2 , 1,2,3 1 2 3
2

T V B B u u u= =      (A.4) 

Exact representation for inertial term  

( ) ( ) ( ) ( ) ( ) ( )11, 2 1,1 1 ,2 1,1 1 ,2T B G D′ ′ ′ ′= − Σ −            (A.5) 

The Schwinger-Wyld formula  

( ) ( ) ( ) ( )1,2 1,1 2,2 1 ,2B G G D′ ′ ′ ′=                (A.6) 

( )1,2D  is the variance of effective random forces. 
Another form of Equation (A.6)  

( ) ( ) ( ) ( )11,1 1 ,2 1,1 1 ,2B G G D−′ ′ ′ ′=               (A.7) 
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Abstract 
We propose a scheme for a switchable coupling between several Cooper-pair 
boxes in the charge regime. The switch is embodied in a SQUID element 
contained in the center conductor of a transmission-line resonator. Altering 
the flux bias through the SQUID allows for changing the effective resonator 
length. Thus the position of the nodes and anti-nodes of the relevant eigen-
modes changes and leads to a variable interaction strength between qubit and 
cavity vacuum field. For the coupled qubits the interaction is dispersive. An 
example for the application of this switch is the generation of multipartite 
entangled states for three and four charge qubits. Although used as a discrete 
switch in the present proposal, the combined system of SQUID module inte-
grated into the transmission line may be operated continuously as well. 
 
Keywords 
Switchable, Variable Interaction 

 

1. Introduction 

Quantum Optics on a chip represents an intriguing and promising pace on the 
way to a scalable Quantum Computer. In [1] and [2] the strong coupling of a 
single photon to a superconducting qubit using circuit quantum electrodynam-
ics has been demonstrated and their work was followed by other investigations 
in this field [3] [4] [5]. Some years ago, the construction of a reconfigurable 
quantum optical circuit on a chip and the control of entangled states with up to 
four photons were reported [6]. At the heart of this device is a simple heating 
element that changes the phase in one arm of an interferometer. In addition, 
there exist proposals for the design and fabrication of photonic quantum circuits 
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[7] as well as their characterization [8]. In [9] researchers report that on a single 
chip, sources of entangled photons are combined with optical elements that can 
perform complex manipulations of quantum signals. Other groups have realised 
quantum circuits using quantum dots and superconducting devices [10]. In this 
context, mesoscopic devices, such as the Cooper-pair box (CPB), appear to be 
promising candidates for building blocks in the hardware of a quantum com-
puter. The logic states of the qubit are formed by a large number of Cooper pairs 
and are distinguished by the number of excess Cooper pairs on the supercon-
ducting island which is connected to a superconducting reservoir by a Josephson 
junction. 

Exemplarily, more recent publications [11]-[16] demonstrate that the interest 
in superconducting qubits for quantum computation still remains a vivid area of 
research. 

Probably the most prominent advantage of mesoscopic systems, like the CPB 
or quantum dots, compared to atomic systems or photons is the fact that they 
can be fabricated and operated with standard present-day technology, and that 
their designs are scalable. In the fabrication process their properties can be cus-
tomized, and no extra effort has to be taken to keep their number and location 
fixed. On the other hand, due to their size they are more strongly exposed to 
noise and decoherence effects than their atomic or photonic counterparts. The 
time window available for preparation and coherent manipulation of states in 
the so-called circuit-QED setup was reported by Wallraff et al. [1] who measured 
a coherence time as long as 500 ns for a single CPB inside a cavity. Placing the 
CPB in a resonator is believed to screen part of the environmental effects. 
Therefore, this design is—apart from its importance due to the analogy with 
cavity QED—a prime candidate for the investigation of multi-qubit systems. 

In order to work with multi-qubit devices, e.g. for the realization of quan-
tum-information processing tasks, a tunable coupling is desirable. Lately, a 
high-fidelity quantum processor was built in the form of a two-dimensional ar-
ray of 54 transmon qubits [17]. In their experiment, each of these qubits is tuna-
bly coupled to four nearest neighbours, in a rectangular lattice. The authors 
claim to have demonstrated quantum supremacy experimentally. For CPBs, a 
variety of coupling ideas have been proposed (e.g., [18] [19] [20] [21] [22]). 
Circuit-QED offers an alternative possibility to couple the CPB via the cavity [1] 
[23]. In this article we propose a scheme for dispersive CPB coupling. The most 
important feature of our proposal is the fully controllable switch for inter-qubit 
coupling where no internal manipulations on the qubits themselves (such as 
changing the gate voltages on each of them simultaneously and synchronically) 
are needed to start and stop their interaction. This is achieved by controlling 
only one external parameter (the magnetic flux through the SQUID loop), in-
creasing the experimental feasibility and reducing possible sources for decohe-
rence. Our proposal is based on the setup of the Yale group [1]. The action of the 
switch makes use of vacuum modes only. 
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With the tunable coupling at hand, one may look for applications based on 
the manipulation of the interaction between the CPBs inside the cavity. A par-
ticularly interesting application is the preparation of multipartite entangled 
states. For example, one may seek to prepare multipartite states representing lo-
cally inequivalent classes of entanglement such as the GHZ and the W state [24]. 
In cavity QED with atoms there are several theoretical proposals for the genera-
tion of such states [25] [26], as well as for trapped ions [27]. In Ref. [28], GHZ 
states with up to six ions could be generated, while in Ref. [29], W states with up 
to eight ions have been created. There are other proposals for the generation of 
such states [30] [31] [32] [33] [34] as well as experimental realisations [35]-[42]. 
One aim of this work is to present a method of preparing similar states in circuit 
QED with Cooper pair boxes [43]. 

A similar proposal was made by Wallquist et al. [44], yet in our approach the 
bus is used indirectly to obtain effective qubit-qubit coupling, rather than di-
rectly with the bus. 

In order to support the experimental feasibility of our proposal, we exempla-
rily mention the work of Palacios et al. [45] and Sandberg et al. [46]. 

The outline of this paper is as follows. In Section 2 we explain the operation of 
the switch for turning on and off the interaction between the qubits. We then 
present a way to use this switch for the controlled generation of multipartite en-
tangled states of the qubits (Section 3). We conclude with a discussion of our 
results and possibilities to extend them in Section 4. 

2. Switchable Resonator 

2.1. Concept 

In our proposal, the resonator acts as the coupling device between the qubits. It 
can be used to control the coupling between an on position and an off position 
(discrete coupling switch). To this end the center conductor of the resonator 
contains a SQUID loop. The switch is realized by changing the effective length of 
the center conductor of the transmission line resonator (Figure 1) via changing 
the flux through the SQUID loop between integer and half integer number of 
flux quanta. 

The on position of the switch corresponds to the full length ( )0L  of the center 
conductor (cf. Figure 1). The CPBs are located where the electric field strength 
has a node (vanishing coupling between CPB and cavity mode, see Figure 1(a)). 
Note that we refer to the second eigenmode of the cavity 

( ) ( )( )0 0
2 2 v Lω π=                          (1) 

with the phase velocity 1v lc= , in close analogy with Ref. [1], with capacit-
ance per length c and inductance per length l. As the total current through a  

SQUID depends on the external flux Φ  applied to the ring, total cos eJ  ∝ Φ 
 

, 

for the on position of the switch the flux in the loop needs to be equal to an in-
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teger number of the flux quantum 0
h
e

Φ = . It has been shown that in super-

conducting rings the magnetic flux is quantised in the following manner 

2n
hn
e

Φ = ⋅ . The Josephson energy of the junctions in the SQUID device should 

be chosen large enough in order not to interrupt the resonator. 
If the switch is “off” (i.e., if the flux through the SQUID loop equals a half in-

teger number of flux quanta) the resonator is cut into left and right parts of 
length ( )1L  and ( )2L  respectively: charge cannot flow from the left to the right 
resonator (see Figure 1(b)). Note however that the electromagnetic field in the 
left resonator is still coupled capacitively to the rest of the transmission line 
(through the junction capacitances of the SQUID loop). The CPBs now couple 
to the second eigenmode of the left resonator as their position is chosen such 
that the electric field strength is large. In contrast to the setup in Ref. [1] the level 
splitting of the CPBs is not in resonance with the new eigenfrequency of the left 
resonator, rather we choose it to be slightly detuned. This causes the qubits to 
interact with the left cavity mode dispersively without exchanging excitations. 

Assuming dimensions in the cm range for the resonator length and ~2 μm for 
each CPB, an inter-CPB distance of ~100 μm should be sufficient to exclude di-
rect coupling between the CPBs and, on the other hand, facilitate equal coupling 
constants of the CPBs with the cavity mode [47]. 
 

 
Figure 1. Schematic layout showing three cooper pair boxes (black squares) in the trans-
mission line resonator and the corresponding field modes. (a) Switch in the on position, 

with SQUID loop closed. The effective resonator length equals the total length ( )0L  of 
the center conductor. The CPB are located at a node position of the ( )0

2ω  mode; (b) 
Switch in the off position. The Josephson coupling between left and right part of the cen-
ter conductor is zero. The new effective resonator length is close to ( )0 2L  (see text) and 
the resonance frequency is detuned from the CPBs’ level splitting. 
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Let us now consider the effect of the SQUID loop on the transmission line. In 
general, an infinitesimally short transmission line of length dx can be approx-
imated using the lumped component model depicted in Figure 2. 

In this model, the current I and the voltage U are generally functions of the 
time t and of the position x. The values l, c, r and g represent respectively the 
inductance, the capacitance, the resistance and the conductance per unit of 
length for the transmission line. Using Kirchoff’s voltage and current laws on the 
lumped model and assuming 0dx →  the following equations can be derived: 

I UgU c
x t
U IrI l
x t

∂ ∂ = +∂ ∂
∂ ∂ = +
 ∂ ∂

                        (2) 

By calculating the derivative with respect to x of the first equation and the 
time derivative of the second equation, the current flowing in the transmission 
line can be expressed by the following expression: 

( )
2 2

2 2

I I IgrI gl rc lc
tx t

∂ ∂ ∂
= + + +

∂∂ ∂
                  (3) 

In the specific case of a SQUID, the system will only work at very low temper-
ature. Under this condition, it is not false to consider the transmission line as 
lossless ( 0r =  and 0g = ). Equation (3) can be hence approximated as: 

2 2

2 2

i ilc
x t
∂ ∂

=
∂ ∂

                          (4) 

Let us consider the effect of the SQUID loop for the resonance frequencies of 
the transmission line more quantitatively. In an infinitesimal lumped-element 
circuit model for a transmission line (without SQUID element) the current I 
obeys the wave equation 

2 2

2 2

1 0I Il
c x t
∂ ∂

− =
∂ ∂

                        (5) 

with boundary conditions ( ) ( )( )00 0I x I x L= = = = . We assume that this wave 
equation is satisfied also with the switch in the on position. 

For the off position of the switch this equation is modified. While in the left 
and the right part of the transmission line Equation (5) remains unchanged, at  
 

 
Figure 2. Transmission line lumped model for an infinitesimally 
short line. 
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0x x=  the total capacitance C0 of the junctions in the loop (which can be as-
sumed to be point-like at the position 0x ) contributes another term that couples 
left and right resonator part: 

( )
2 2

02 2
0

1 1 0.I Il I x x
c Cx t

δ∂ ∂
− − − =

∂ ∂
                  (6) 

The resulting problem for the eigenmodes of this resonator is analogous to a 
quantum-mechanical particle of mass c/2 in a double-well potential (of lengths 

( )1L  and ( )2L ) separated by a δ-barrier of strength 01 C  at 0x x= . We choose 
( )1L , ( )2L  to differ by a few per cent in order to avoid the symmetry point 
( ) ( )1 2L L=  for which the solutions have peculiar properties. Moreover, this al-

lows us to arrange for the proper detunings of the various modes. We are inter-
ested in the case of weak coupling between the “potential wells”, that is, weak 
capacitive coupling ( )0

0C cL  between the parts of the center conductor. In 
this case the new eigenmodes differ only little from the modes of the unper-
turbed problem (that is, no coupling at all, 0 0C → ). To first order we obtain, 
e.g., for the second mode of the left resonator (cf. also Ref. [1]) 

( )
( ) ( )

1 0
2 1 1

2 1 .
Cv

L cL
ω π ≈ − 

 
                      (7) 

The first term in this expression represents the resonant solution (cf. Equation 
(1)), the second one accounts for the effect of detuning. Given the typical capa-
citance of a transmission line, the capacitance C0 may be on the order of several 
10−14 F to satisfy the weak-coupling condition. 

2.2. Quantitative Considerations 

In this section we briefly discuss the relevant modes for the two regimes of the 
switch and estimate possible errors. When the cavity mode is in resonance with 
the qubit frequency there is coupling between cavity and CPBs with coupling 
strength g which is proportional to the strength of the local electric field, i.e. the 
coupling with resonant modes vanishes at their nodes and is maximal at their 
antinodes. This coupling strength is modified in the case of detuning and results 
in an effective coupling strength ( )2 kk

i igλ = ∆  as will be shown in the follow-
ing paragraph. 

In the off regime for modes ( )1
iω  in the left resonator ( )1

i∆  is large (on the 
order of the cavity eigenfrequency) only except for the slightly detuned ( )1

2ω . 
The mode ( )2

2ω  (eigenmode of the right resonator) might leak into the left part 
if the disconnection is not perfect. However, not only is it also detuned (given 

1 2L L≠ ) but also decays its amplitude rapidly at the left side rendering the 
coupling to this mode a negligible quantity at the site of the CPBs. 

In the on regime the CPBs are sited at a node of the (also detuned) mode ( )0
2ω , 

so that the coupling vanishes. The mode with the smallest detuning with respect 
to the CPB eigenfrequency in this regime is ( )0

4ω . Its impact on the CPB may 
still be ignored as discussed in further detail below. 
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In order to realize a dispersive interaction of the CPBs with cavity mode ( )1
2ω , 

we require a detuning of, say ( ) ( )1 1 2
2 2 ~ 10δω ω − . The other resonator modes need 

to have much stronger detuning in order to reduce their coupling to the qubit, in 
particular for the on position of the switch. For example, we may choose 

( ) ( )1 00.54L L  and ( )1
0 0.05C cL   which yields ~10% red shift of the reson-

ance frequency ( )0
2ω  from the closest mode of the off switch and ~12% detun-

ing from the 4th mode of the full-length resonator. For coupling strengths in the 
MHz regime and frequencies on the order of 1010 Hz this detuning leads to an 
effective coupling strength 310 gλ −


 with respect to the coupling strength g in 

the resonant case. 
A CPB spacing of 100 mx∆ = µ  corresponds to one per cent of the cm di-

mensions of the resonator. Consequently, the amplitude of the mode ( )1
2ω  dif-

fers from its maximal value at position maxx  by a factor of around 10−4 at posi-
tions max 100 mx x= ± µ  and by a factor of 10−3 for 300 mx∆ = µ  for a resona-
tor length of 3 cm. 

In the following section we will show how to use this digital switch in order to 
generate multipartite entanglement between the qubits via the dispersive inte-
raction with the cavity mode. 

3. Generation of Multipartite Entangled States 

The starting configuration of the system cavity plus CPBs is the following: the 
flux through the ring configuration is 0Φ = . The state of the cavity field is as-
sumed to be the vacuum state 

0
0 f  where the first subscript stands for “field” 

and the second denotes the cavity eigenmode of the resonator with length ( )0L . 
In the interaction picture the system is described by the Tavis-Cummings 

Hamiltonian [48], the N-atom generalized Jaynes-Cummings Hamiltonian [49]: 

( )†
0 0

1,2,3
e ei t i t

j j
j

H g a aδ δσ σ− − +

=

= +∑                  (8) 

containing the bosonic creation (annihilation) operators †a  ( a ) for a photon 
in the cavity mode, the creation (annihilation) operators †

jσ  ( jσ ) for an exci-
tation of the jth Cooper pair box, the detuning δ  and the coupling strength 

0g  between the dipole moment of each CPB and the electric field. In the inter-
est of legibility we use 0g  instead of ( )0

2g . The three CPBs are assembled at a 
position where the electric field strength of the relevant cavity eigenmode va-
nishes. Consequently, there is (approximately) no interaction beyond the free 
evolution ( 0 0g  ). Due to this condition a well-defined initial state can be pre-
pared that does not exchange excitations with the cavity field. 

Suppose now the flux through the SQUID is suddenly changed by half a flux 
quantum. The effective resonator length changes to the smaller ( )1L  with the 
new eigenmode in its vacuum state 0 f L

. The new resonator frequency ( )1
2ω  

is detuned from the CPB resonance and the coupling strength Lg  (again in-
stead of ( )1

2g ) still being near its maximal value. Denoting the detuning between 
cavity mode and each CPB by ∆  and the creation (annihilation) operators for 
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the cavity mode b by †b  (b), the new Tavis-Cummings Hamiltonian can be 
written in the interaction picture as 

( )†

1,2,3
e e .i t i t

L j j
j

H g b bσ σ− ∆ − ∆ +

=

= +∑                  (9) 

The corresponding time-evolution operator ( ) ( )0, 0U t U t t= =  is given up 
to second order by 

( ) ( ) ( ) ( )20 0 0

11 d d d .
t t tiU t t H t t H t t H t

′
′ ′ ′ ′ ′′ ′′≈ − −∫ ∫ ∫

 

          (10) 

We use this expansion to derive the effective Hamiltonian for large detuning, 
i.e., Lg∆ , where no energy exchange between the CPB system and the cavity 
is possible. The first-order term gives 

( ) ( ) ( )

( ) ( )

1

0

†

1,2,3

d

e 1 e 1 ,

t

i t i tL
j j

j

iU t t H t

g b bσ σ− ∆ − ∆ +

=

′ ′= −

 = − − − ∆

∫

∑


 

and the second-order term 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2
2 0 0

2 3 3
† †

0
1 1

1 d d

d e e e 1 e 1 .

t t

t i t i t i t i tL
j j j j

j k

U t t H t t H t

ig t b b b bσ σ σ σ

′

′ ′ ′ ′− ∆ − ∆ + − ∆ − ∆ +

= =

′ ′ ′′ ′′= −

′= − + − − −
∆

∫ ∫

∑ ∑∫



 

Note that after carrying out the above product of sums the subsequent inte-
gration will yield additional prefactors of order 1 ∆  for all terms except for 
those which involve the product of complex conjugate exponentials. With this in 
mind it is easy to see that 

( ) ( ) ( )

( )(

)

†

2 3
2 † †

1

2
† †

1 2 1 3 2 1

, 1

2 3 1 3 2 3 2

1 .

L
j j j j

j

L

b b

igU t b b bb t

ig b b bb

t

σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

− + + −

=

− + − + − +

 = = 

− + + − + −

= − − +
∆

− − + + +
∆

 + + + +  ∆ 

∑





 

Here and in the following 1 3σ σ− + , e.g., is shorthand for 1 2 31σ σ− +⊗ ⊗ . Keep-
ing only terms linear in time we arrive at 

( ) ( )

( )

2 3
† †

1

2 3 1 3 1 2 1 3 2 3 2 1

eff

,0 1

exp .

L
j j j j

j

giU t bb b b

t

i H t

σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ

+ − − +

=

− + − + + − + − + − + −

  
≈ − −  ∆  


+ + + + + + 


 ≈ −  

∑





 

with the effective Hamiltonian in the interaction picture 
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( ) (

)

2
† †

eff 2 3 1 3
1,2,3

:

1 2 1 3 2 3 2 1 .

L
j j j j

j

gH bb b b

λ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

+ − − + − + − +

=

=

+ − + − + − + −

  
= − + +  ∆  


+ + + + 



∑




 

Consider now the case when the cavity is in its vacuum state. Then the above 
Hamiltonian reduces to 

( )eff 2 3 1 3 1 2 1 3 2 3 2 1
1,2,3

,j j
j

H e eλ σ σ σ σ σ σ σ σ σ σ σ σ− + − + + − + − + − + −

=

 
= + + + + + + 

 
∑

 

since † †0 0 , 0 0f f fL L L
bb b b= = . 

This shows that there is an effective interaction between the qubits even 
though no excitation is transferred from the qubits to the cavity mode. Next we 
want to show how to use such interactions in order to generate three-qubit and 
four-qubit entangled states. To this end, one has to solve the Schrödinger equa-
tion for this Hamiltonian. In the following, applying the conventional nomen-
clature for qubits let 1 j  denote the excited state of the jth CPB je  since no 
field Fock states are needed anymore and confusion is thus avoided. States which 
initially are computational basis states can be divided into three classes with the 
corresponding time evolution: 

1) only one CPB is in state 1 , e.g., ( )0 100ψ = : 

( ) ( )
3 3

1
e 2 e 1100 010 001 .

3 3

i t i t

t
λ λ

ψ
− −+ −

= + +  

2) only one CPB is in state 0 , e.g. ( )0 110ψ = : 

( ) ( ) ( )( )3 3
2

1 e e 2 110 e 1 011 101 .
3

i t i t i tt λ λ λψ − − − = + + − +   

3) all CPBs are in the same state, i.e. ( )3 000tψ =  or ( )3 111tψ = . 
With the coupling switched off, the state of the CPB system only acquires a 

phase factor (we assume that, in principle, such states can be prepared). Now the 
dispersive coupling is switched on suddenly. By starting from the state of the  

first type and adjusting the interaction time such that 2
9

τ
λ

=
π  the state of the 

CPB system evolves into a W state of the form 

( ) ( )

( )

( )

2 3 2 3

1

6 5 6

5 6 2 3

e 2 e 1100 010 001
3 3

1 e 100 e 010 001
3

1e e 100 010 001 .
3

i i

i i

i i

ψ τ
− −

− −

π π

π π

π π−

+ −
= + +

 = + + 

 = + + 

 

For a detuning Δ ~ 100 MHz and a coupling strength gL ~ 15 MHz, the time 
required to generate this W state is τ ~ 300 ns. 

This is an example of the general N-qubit W state with arbitrary phases: 
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(
)

31 2
1 e 1000 0 e 0100 0 e 0010 0

e 0000 1 .N

ii i
N

i

W
N

θθ θ

θ

= + + +

+

   



 

The concurrences between any two qubits of the above state are all equal to 
2/N and do not depend on the phases [50]. 

By extending this method to four qubits it is also possible to generate a 
three-CPB W state with equal phases: Starting from one CPB in the excited state 
and the remaining three CPBs in the ground state ( )4 0 1000tψ = =  the dis-
persive interaction leads to a state 

( ) ( ) ( )4 1 21000 0100 0010 0001t c t c tψ = +  + +           (11) 

with the probability amplitudes 

( ) ( ) ( )3 2 3 2
1

3 1 3 1e e
2 3 2 3

i t i tc t λ λ− − ++ −
= +  

( ) ( ) ( )3 2 3 2
2

1 e e .
2 3

i t i tc t λ λ− + − = − 
 

 

Detection of the first qubit in the state 0  then gives the desired W state for 
the remaining three CPBs: 

( ) 1 0 100 010 001
3

W t = ⊗  + +                (12) 

where the common phase factor has been discarded. 
We emphasize that there is no need for a specific interaction time in order to 

create this superposition state. The trade-off, however, is in the necessity to per-
form a read-out on the first qubit and the probabilistic nature of the preparation 
procedure. 

As a final example we mention the generation of GHZ-like states for four qu-
bits. By choosing the initial state ( )5 0 1100tψ = =  the time evolution with 
the interaction switched on results in 

( ) ( ) ( ) ( )5 1 2 31100 0011 1010 1001 0110 0101t C t C t C tψ = + +  + + +    

with probability amplitudes 

( ) 4 2
1

1 1 1e e
6 3 2

i t i tC t λ λ−= + +  

( ) 4 2
2

1 1 1e e
6 3 2

i t i tC t λ λ−= + −  

( ) 4 2
3

1 1e e
6 6

i t i tC t λ λ−= −  

Noting that ( )3 0C τ =  for the choice 3τ λ= π  one can prepare a state be-
longing to the GHZ-class [24] [26] [51] of the form 

( ) ( ) ( )5
1 3 1 1100 3 3 0011
4

i iψ τ  = + + −            (13) 

as desired. 
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4. Conclusions 

We have presented a theoretical proposal to implement a switch for controlled 
dispersive coupling of several Cooper pair boxes in a transmission line resonator. 
The coupling can be turned on and off by changing the flux through a SQUID 
loop integrated into the center conductor of the resonator. Here a few additional 
remarks are due regarding the practical realization of this idea. 

First, we have discussed the switch as a digital device between an “on” and an 
“off” position. The latter position is, strictly speaking, only an “almost off” posi-
tion with a much smaller coupling 0 Lg g  compared to the “on” case. This is 
due to the structure of the effective coupling constant 2

Lg ∆ : due to the pres-
ence of the other modes (far off resonance) there is always a residual coupling. 
As we have mentioned in Section 2, a difference of at least one order of magni-
tude is realistic. This sets a limit for the idle periods of the setup: if this limit is 
exceeded, the time evolution of the (almost) uncoupled CPB system is not pro-
portional to the identity (apart from a phase factor), but a more general uncon-
trolled many-qubit gate. 

Secondly, the switching operation is not limited to the digital mode. In prin-
ciple, the resonator modes constitute continuous functions of the flux Φ through 
the SQUID loop. As the discussion in Section 2 shows, one may view the action 
of the loop also as a control of the boundary conditions for the electromagnetic 
field in the transmission line (see also a related proposal [52]). A detailed analy-
sis needs to take into account Josephson inductance LJ of the SQUID loop that 
depends on the (flux-dependent) Josephson energy ( )JE Φ  as ( )1J JL E∝ Φ  
in parallel to the capacitance C0, and will be carried out elsewhere. 

Apart from the advantages of the switch (e.g., no simultaneous switching of 
CPB controls) that contribute to reducing noise, the presence of the SQUID loop 
introduces also new decoherence sources: the Josephson junctions of the loop 
(which are subject to dielectric losses [53]) and flux noise. 

Finally, we have discussed the application of this coupling scheme for the 
generation of multi-qubit entanglement between the CPBs. We have emphasized 
the principle of the idea, and we have not considered a detailed setup which 
should include also the methods for state preparation and measurements. In 
particular, we have shown how W states for three qubits and GHZ states for four 
qubits can be obtained. The protocols are surprisingly simple and, apart from 
state preparation and measurements, do not require complicated sequences of 
operations and can be realized in a single shot. Thus one may conclude that the 
setup provides an interesting starting point for various multi-qubit applications 
based on circuit-QED. 
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Abstract 
Multiple emulsions are of great therapeutic interest especially in the adminis-
tration of medicines which can be inactivated by digestive enzymes; moreover 
the researches of formulation not being often easy, a control of the different 
phases physicochemical parameters would be of great interest in rapid for-
mulations and at low cost. When formulating emulsions, the preliminary 
tests, also known as formulation tests, constitute a step which can be long and 
expensive because of the quantity of reagents that can be used. A rigorous 
methodology could thus be of great interest, which is at the aim of our study 
which consists of evaluating the physico-chemical parameters of different 
phases used to make thus multiple emulsions. In our study, physico-chemical 
parameters such as conductivity, pH, density, viscosity, and surface tension 
have been studied by direct measurement using equipment and also by means 
of suitable mounting. The results showed that the pH and the surface tension 
have an important role in the prediction of the stability of emulsions, these 
latter must be of the same order of magnitude. For all phases conductivity 
does not have too much interest apart from helping to determine the type of 
the emulsion. 
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Physico-Chemical Parameters 

 

1. Introduction 

Emulsions are thermodynamically unstable systems; they are mixtures of two 
immiscible phases to be dispersed one within the other. The main goal is to keep 
this dispersion stable for a long time. In practice, according to Salager, “formu-
lators of emulsions have experienced the unpleasant occurrence of the lack of 
reproduction of the physical properties (type, stability, viscosity) of an emulsion 
formulated with identical raw materials following the same rigorously definitive 
experimental protocol” [1] [2] [3]. Based on this assertion, we have studied the 
physical parameters which allow us to find information that is relevant for ob-
taining emulsions with good stability and which would be carried out within a 
rational time. 

With regard to emulsions in general, many studies have been carried out on 
the various techniques which improve their quality and stability. These tech-
niques are based on compositional, formulation and process variables [4] [5] [6] 
[7]. Concerning the formulation and composition variables, the type of surfac-
tant, the HLB, and also the proportions of the various constituents were studied. 

2. Material 
2.1. Reagents 

For the formulation of multiple emulsion, a mixture of Span® 80/Tween® 80 
which HLB can vary from 4.3 to 15 is used as surfactant for oil in water emul-
sion, the surfactant used for water in oil emulsion is Montane® 481 VG 
(M481VG) (HLB 4.5). 

The oily or lipophilic phase used was peanut oil and the hydrophilic one con-
sisted of Phosphate buffer Saline (PBS) pH 7.2; mixed with Carboxymethylcel-
lulose (CMC). 

2.2. Equipment 

Equipment used consisted of: 
• pH meter Schott Geräte CG820 
• Conductimeter Schott Geräte CG820 
• Magnetic stirrer fisher scientific 
• Precision balance Ohaus explorer  
• Surface tension meter Dognon-Abribat model PROLABO 

3. Methods 

For both the lipophilic and the hydrophilic phase, the physico-chemical para-
meters as pH, conductivity, surface tension and viscosity are studied through the 
above cited apparatus. To measure the viscosity, the method used consisted to 
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form a drop of dispersed phase in the dispersing phase and in measuring the 
speed of migration of the drop thus formed, the device is shown in Figure 1. 
 

 
Figure 1. Viscosity measuring device [6]. 

 
The following Equation (1), determines the viscosity obtained using the li-

miting velocity reached by a moving particle in a viscous medium: 

( )drop medium 2
drop

limit

2
 

9
g r

v
ρ ρ

η
−

= ⋅ ⋅
⋅

                    (1) 

η = viscosity, ρ = density, v = velocity of the formed drop, r = radius of the 
formed drop, g = gravity acceleration. 

It was also studied the changes of the contact angles by observing the behavior 
of two superposed and not mixed phases [8]. 

The hydrophilic phase was mixed with 1% of CMC and with the emulsifiers 
constituted by the span 80/tween 80 pair at 10%. The proportion of the mixture 
of Span® 80/Tween® 80 which gave different HLB is indicated in Table 1. 
 
Table 1. Proportions of span 80/tween 80 emulsion for HLB ranging from 7 to 14. 

Span 80 Tween 80 HLB 

74.77% 25.23% 7 

65.42% 34.58% 8 

46.73% 53.27% 10 

28.04% 71.96% 12 

9.35% 90.65% 14 

 
The HLBs vary from 7 to 14 and are intended for the production of O/W 

emulsions. 
Concerning the surfactant Montane® 481 VG (M481VG) used to prepare W/O 

emulsion his HLB is fixe (4.5) and the proportion used is noted in Table 2.  
 
Table 2. Proportions of M481VG used for W/O emulsion. 

Sample Composition (%) 

M1 5 

M2 6 

M3 7 

M4 8 

M5 10 
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4. Results 

4.1. Hydrophilic Phase 

The hydrophilic phase consists essentially of 1% CMC solution for which the pH 
measurement gave a value of 6.8, therefore slightly acidic. For the conductivity, 
its measurement gave a value of 17 mS/cm for the 1% CMC solution and 18 
mS/cm for the 2% solution. 

The surface tension determined by the immersion blade method gave a value 
of 38.50 mN/m. 

For the hydrophilic phase with 1% CMC mixed with the emulsifiers consti-
tuted of the span 80/tween 80 pair at 10%, the results of the measurements of the 
pH, conductivity and surface tension are listed in Table 3. 

 
Table 3. Physico-chemical parameters of the CMC solution containing 10% span 
80/tween 80 mixture. 

HLB pH Conductivity (mS/cm) Surf. Tens. (mN/m) 

7 5.25 0.91 30.656 

8 5.13 0.96 31.392 

10 4.9 1.01 29.675 

12 4.81 1.02 30.961 

14 4.66 1.15 31.147 

 
It is noted a decrease in pH corresponding to an increase in the degree of 

acidity, a slight increase in conductivity and small fluctuations in the surface 
tension between 29 and 31 mN/m. 

4.2. Lipophilic Phase 

The results of pH measurements of the lipophilic phase, in which the propor-
tions of emulsifying agent vary from 0% to 8%, are shown in Table 4. 
 
Table 4. pH measurements of the lipophilic phase. 

Proportions pH 

0% 2.78 

2% 3.8 

4% 3.5 

6% 4.3 

8% 4.5 

 
An acidic pH is observed for all lipophilic phases, we noted an increase with 

the proportions of surface-active agent constituted by M481VG. 
For different concentrations of montane 481 VG we also measured the surface 

tension which results are shown in Figure 2. 
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Figure 2. The surface tension variation curve of lipophil-
ic phase as a function of montane 481 VG concentration. 

 

These results show that montane 481 VG increases surface tension instead of 
decreasing it, this is justified in so far as we have emulsions in which it is the 
most dense phase that must be introduced in the least dense phase, this explains 
the need to increase the density of the latter to avoid the sedimentation of the 
internal phase due to the action of gravity [8] [9]. 

These changes in interfacial tension are also visible when the two solutions are 
superposed. A decrease in the contact angle of the oil phase with the wall of the 
beaker is thus observed as shown in Figure 3 following the Equation (2) 

2 cosF Rsπ θ= ⋅                          (2) 

s = surface tension coefficient, R = droplet radius, q = contact angle. 
There is also a beginning of penetration of the oil phase into the aqueous one, 

which indicates a decrease in the interfacial tension. 
 

 
Figure 3. Variation of the contact angle of the lipophilic phase 
before (16˚) and after (90˚) addition of the surfactant [8]. 

 

For the measurement of the density, the results are given in Figure 4. 
 

 
Figure 4. Variation of the density as function of concen-
tration of montane 481VG. 
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A maximal density is noted at the concentration of 6% of M481VG in the li-
pophilic phase. 

The results of the viscosity measurements, obtained by the immersion drop 
method identical to the ball drop method, are shown in Figure 5. 

 

 
Figure 5. Variation of the sedimentation rate as a func-
tion of montane 481VG concentration. 

5. Discussion 

The emulsions intended to do are W/O/W emulsions type [8] [9]. For the reali-
zation we used three types of surfactants that allowed varying the hydrophil-
ic/lipophilic balance. These surfactants are, tween 80 and span 80, but also mon-
tane 481VG. 

Data from the literature have shown that emulsifiers for water-in-oil emul-
sions must have an HLB between 1 and 6, hence the use of the montane 481VG 
which has HLB equal to 4.5, and for oil-in-water emulsions the HLB must be 
between 7 and 14 hence the use of span 80 tween 80 couple [3] [10]. 

The study of the physico-chemical parameters such as pH, conductivity and 
surface tension allowed seeing the variations of these properties as function of 
HLB especially with regard to the external hydrophilic phase. Since the goal was 
the formulation of multiple emulsions, the stability of the latter depends more 
on the external aqueous phase. For the latter, composition was of the utmost 
importance. Thus, as for the internal aqueous phase for which the pH is slightly 
acid in order of 6.8, the acidic pH is also observed for the external aqueous 
phase, which decreases as the HLB increases. The pH of the external hydrophilic 
phase to which we obtained a stable emulsion (HLB 8) of the order of 5.13 is 
quite close to that of the lipophilic phase with 6% emulsifier having a pH of 4.3. 
This acidity of the pH of the two phases is a stability indicator because an iden-
tical zeta potential can be observed around the droplets, which may be at the 
origin of a force of electrostatic repulsions between the droplets [11] [12] [13]. 

We also noted that the HLB of span/tween 80 torque giving stable emulsions 
are the same as those found by ANKURMAN [14]. 

The most interesting parameter we have studied is the surface tension at the 
interface of two liquids. Indeed, the main objective in the formulation of the 
emulsions is to reduce the interfacial tension. Therefore, if the surface tension of 
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the aqueous phase oscillates between 29 and 30 mN/m, that of the oily phase in-
creases in proportion to the M481VG concentration and varies from 29 to 38 
mN/m. Thus, superficial tensions observed are practically the same order of 
magnitude. It is also noted that the surface tension of the aqueous phase has de-
creased by almost half. We have tried to materialize that drop in the interfacial 
tension by measuring the contact angle of the aqueous phase. This shows an in-
crease of the contact angle which has passed from 16˚ before addition of the 
surfactant to 90˚ after addition of 6% of surfactant. This makes the analysis of 
the evolution of the surface tension of two liquids a good indicator in the predic-
tion of stability [15]. Besides pH and interfacial tension, the viscosity measure-
ment can also give information about the feasibility of the emulsions. Indeed, by 
observing the curve of variation of the viscosity by means of the sedimentation 
rate of a drop of dispersed phase, it is observed that this velocity decreases and 
tends to stabilize around a value which, in regard to our emulsions, is 6%. 

6. Conclusions 

The study of the physico-chemical parameters such as pH, conductivity, surface 
tension… allowed seeing the variations of these properties as function of HLB 
especially with regard to the external hydrophilic phase. Since the goal was the 
formulation of multiple emulsions, the stability of the latter depends more on 
the external aqueous phase. For the latter, composition was of the utmost im-
portance. 

When making emulsions, the preliminary tests, also known as formulation 
tests, constitute a step which can be long and expensive because of the quantity 
of reagents that can be used. A good methodology could therefore be of great 
interest. Thus the results of the study showed that the pH and the interfacial ten-
sion have an important role in the prediction of stability of emulsion; the inter-
facial tension of the two phases must be of the same order of magnitude. The 
measurement of the conductivity does not have too much interest apart from 
helping to determine the type of the emulsion. 
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Abstract 
The paper presents a circular scale of time—and its diagrams—which can be 
successfully applied in calculating the Schrödinger perturbation energy of a 
non-degenerate quantum state. This seems to be done in a more simple way 
than with the aid of any other of the perturbation approaches of a similar 
kind. As an example of the theory suitable to comparison is considered the 
Feynman diagrammatic method based on a straight-linear scale of time which 
represents a much more complicated formalism than the present one. All di-
agrams of the approach outlined in the paper can obtain as their counterparts 
the algebraic formulae which can be easily extended to an arbitrary Schrödinger 
perturbation order. The calculations and results descending from the pertur-
bation orders N between N = 1 and N = 7 are reported in detail. 
 
Keywords 
Circular Scale of Time, Schrödinger Perturbation Energy in Non-Relativistic 
Quantum Mechanics, Non-Degenerate Quantum States 

 

1. Introduction 

What is time? My answer is that it is a parameter which allows us to distinguish 
a later event from an earlier one; this distinction seems to be a fundamental 
property of time. On the other hand, according to Springer’s “Physikalisches 
Handwörterbuch” [1], time is defined as an independent variable of classical 
mechanics. One is suggested to add here the adjective “non-relativistic” to the 
notion of mechanics, because the relativity—in its special picture—makes any 
time interval dependent on such parameters as the body velocity and light veloc-
ity. Evidently in the general relativity the dependence of time is still more ex-
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tended, for example due to the presence of the mass of the body [2]. 
In science an important problem of time became to couple its behaviour with 

some other physical properties than those given by classical mechanics. Perhaps 
the best known example is here the entropy and its connections with time. In 
brief we need the parameters, or effects, which can be examined parallelly with 
time, though they do not necessarily represent an explicit dependence on the 
time variable. 

In the present case such example of the time connected with physics is given 
by a quantum perturbation effect. We assume that at some time moment—more 
or less accurately known—some time-independent perturbation to a quantum 
system is applied. For a ground state in the absence of the perturbation effect the 
notion of a stationary state implies an infinite duration of that state. Usually we 
are unable to follow in detail the history of a system changed by the perturbation, 
but—according to Schrödinger—we know the end of the state history equivalent 
to the end of the perturbation process: this is a new stationary state having a new 
eigenenergy, different than possessed by the system state before the perturbation 
was applied. 

Our aim is to present the time dependence of the perturbation history—and 
its results—in a possibly transparent way. 

2. Quantum-Mechanical Characteristics of the Schrödinger 
Perturbation Process 

In fact the original characteristics of the perturbation process done by Schrödinger 
[3] did not involve the idea, or a variable, of time. Also in more modern treat-
ments of the Schrödinger perturbation theory—see e.g. [4]—the time does not 
enter the calculations. 

In fact when the Hamiltonian operator 0Ĥ  of an unperturbed quantum 
problem is given, the main idea is to calculate the eigenenergies ( )0E  and ei-
genfunctions ( )0ψ  satisfying the eigenequation 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0ˆ .H E=r rψ ψ                     (1) 

The ( )0E  are constant energy terms and ( ) ( )0 rψ  are eigenfunctions depen-
dent solely on the position vector parameter r . In principle there can exist an 
infinite set of ( ) ( )0 rψ  and ( )0E . 

Let the perturbed problem be due to introduction of the so-called small per-
turbation potential 

( )per perV V= r                          (2) 

which is dependent only on the position variable r . By assuming—for the sake 
of simplicity—that the unperturbed problem is a non-degenerate one, we look 
now for the solution of the perturbed eigenequation 

( ) ( ) ( ) ( ) ( )0per per per per per perˆ ˆH H V E = + = r r r rψ ψ ψ          (3) 

where 
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( )per perandE rψ                        (4) 

are the sets of the energy eigenvalues and eigenfunctions calculated respectively 
to some chosen perturbation potential (2). 

The idea of Schrödinger and his followers became—instead of solving (3)—to 
calculate the perturbed quantities (4) in terms of the sets of unperturbed ( )0

nE  
and ( ) ( )0

n rψ  belonging to various solutions n. If we limit the calculations to the 
energy problem alone, the perturbed term for energy can be represented by a se-
ries of terms belonging to different perturbation orders N, where N varies ac-
cording to the sequence of the integer numbers 

max1,2,3,4, , .N N=                        (5) 

The order N can be referred to the perturbation energy perE  and perturba-
tion wave function ( )per rψ  of a non-degenerate quantum state by the formulae 
(see e.g. [4]): 

( ) max
max

0per 2 3
1 2 3

N
NE E E E E E= + ∆ + ∆ + ∆ + + ∆λ λ λ λ         (5a) 

whereas 
( ) ( ) ( ) ( ) ( )maxmax0 1 2 3per 2 3 .NN= + ∆ + ∆ + ∆ + + ∆ψ ψ λ ψ λ ψ λ ψ λ ψ      (5b) 

The both series, (5a) and (5b), are expressed in terms of the powers of a para-
meter λ . These powers of λ  represent in (5a) the order given in (5) of the 
energy correction NE∆  and in (5b) the order of the wave function correction 

( )N∆ψ , respectively. 
The number maxN  denotes a maximal value of N applied in some practical 

calculation. In effect, for a convergent perturbation method and maxN  suffi-
ciently large, the accuracy of results for the perturbed energy is expected to in-
crease with the increase of a chosen maxN . In many occasions—in order to get a 
good approximation of the perturbed energy perE —there is necessary to calcu-
late a series of terms due to a large maxN : 

( ) ( ) ( ) ( )0 1 2 3per .E E E E E= + ∆ + ∆ + ∆ +                  (6) 

Here we have put λ = 1 in (5a) and the term ( )0E —entering also (5a)—labels 
the energy of an unperturbed state. The superscript entering ΔE represents the 
energy contribution due to the energy contribution to (6) due to the perturba-
tion order N. 

The subscript n which labels the index of the quantum state submitted to per-
turbation has been omitted in (5a), (5b) and (6) for the sake of brevity. Also, for 
the same reason, maxN  entering further calculations will be replaced simply by 
N. 

The main—and a rather fundamental problem of the Schrödinger theory—is 
that the number and complication of the perturbation terms which are necessary 
for calculating any 

( )NE∆                              (7) 

entering (6) increases rapidly with N; an increase of the number of terms neces-
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sary to obtain (7) is represented by the formula [5] [6] 

( )
( )

2 2 !
! 1 !N

N
S

N N
−

=
−

                         (8) 

and detailed values of SN are given in Table 1. But simultaneously—to the best of 
my knowledge—no systematic rule was provided to build up the set of individu-
al terms entering (8), and this task becomes a much complicated one for large N. 

In effect the calculation of terms (7) suitable for large N becomes a difficult 
task already at the stage of their construction. But a removal of this complication 
provides us not only with a simplicity necessary to solve the calculational prob-
lem. In fact, the importance of the perturbation methods in general can be con-
sidered as a decreasing obstacle in view of the development of the computational 
machinery and its technique applied to solve the physical problems. The point of 
importance is that an essential simplification can be attained due to the intro-
duction of the time parameter into the perturbation theory. This introduction 
provides us with a suitable arrangement of the time points on the scale labelling 
the contact events of the perturbation potential with an originally unperturbed 
quantum system. The details of this idea and its use in the Schrödinger method 
are presented below. 

3. Perturbation Order and a Suitable Scale of Time 

Not only in the everyday life, but in physics too, we are accustomed to applying a 
straight-linear scale of time according to which each of the later events does 
happen after an earlier one. Topologically the scale does assume the shape of an 
infinite straight line on which a distance of some chosen earlier point to an actual 
point of time increases systematically with the time variable; see Figure 1. This 
 
Table 1. The SN numbers from formula (8) and Feynman’s P(N) numbers of formula (9) 
(see [8]) calculated for different N. 

Perturbation order N ( )S N  ( )P N  

1 1 1 

2 1 1 

3 2 2 

4 5 6 

5 14 24 

6 42 120 

7 132 720 

8 429 5040 

9 1430 40,320 

10 4862 362,880 

11 16,796 3,628,800 

12 58,786 39,916,800 
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Figure 1. The straight-linear (progressive) scale of time. The point 
b.e. represents the present situation: b is the beginning point of the 
future (on the right), the point e is the end point of the past (on the 
left). An access is solely from point 1 to 2; no access is from 2 to 1. 

 
situation does not change also in the case when—according to the Feynman’s 
idea—the terms of the Schrodinger perturbation theory are sought to be plotted 
along the scale with the aim to calculate the necessary diagrams of energy [7] [8]. 
These diagrams can be classified also according to the perturbation order N, 
however, in order to get a contribution of energy ( )NE∆  given in (7) the num-
ber of diagrams should be not that presented in (8) but becomes 

( ) ( )1 !P N N= −                          (9) 

Only for very small N we have 
( ) ( ) ,P N S N=                         (10) 

but for 1N   the inequality 
( ) ( )P N S N                         (11) 

evidently does exist giving for example for 20N =  the ratio 

( ) ( ) 820 : 20 0.7 10 ,P S ≅ ×                     (12) 

The formulae (11) and (12) imply that in order to get—in average—a single 
Schrödinger component term for the perturbation energy of a non-degenerate 
quantum state—a large, or even very large, number of results due to the Feyn-
man energy diagrams should be first calculated, next suitably combined. Such a 
difficulty does not apply to the calculations based on a circular scale developed 
in the present paper. 

4. Perturbation Process along a Circular Scale of Time and 
Its Energy Terms 

We assume that the perturbation process is a set of successive collisions of the 
perturbation potential (2) with an unperturbed quantum system. The collision 
events are extended along a topological circle characteristic for a given order N 
of the perturbation potential; in the next step the collisions are labelled by sepa-
rate time points whose number is equal to N. Therefore the number of the time 
points on the scale increases gradually with the increase of N; see Figure 2 and 
Figure 3. 

A characteristic feature is that the set of the time points present on the scale 
characteristic for a given N is sufficient to represent all SN perturbation terms 
given in (8); moreover we obtain a one-to-one correspondence between the in-
dividual diagrams obtained with the aid of the scale and the Schrödinger energy 
terms entering the perturbation order N; see [9] [10] [11]. This goal can be at-
tained on condition the following rules concerning formation of supplementary 
diagrams characteristic for any N are satisfied: 
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Figure 2. Time scale for the perturbation order N = 1. 
Only one time point (beginning-end = b.e.) is present 
on the scale. 

 

 
Figure 3. Time scale for the perturbation order N = 2. 
Beyond the beginning-end (b.e.) point there is only 
one other point 1 on the scale. 

 
1) one of the time points on each scale is considered as the beginning-end 

point of that scale and this point cannot be submitted to contractions with the 
other time points present on that scale; 

2) the lines created in result of contractions of the time points on the scale 
should not cross; 

3) any other contraction of the time points than that satisfying the rules 1) and 
2) should not be taken into account. 

In effect, beyond the time loops indicated in Figure 1 and Figure 3 also other 
loops of time can be created; they correspond to N > 2 and are discussed below. 
In the terminology applied henceforth the time loop having the beginning-end 
point on it is called the main loop of time; it is a single loop on any diagram. The 
other loops of time, called the side loops, are due to contraction, or contractions, 
of the time points; see Section 6. 

A general look on the time-point contractions and their applications is given 
in Section 10. 

5. Energy Terms Belonging to N = 1 and N = 2 

Evidently—according to the rules 1) and 2) given above—no contraction as well 
as no side loop can be created for N = 1 and N = 2. The first contraction of the 
time points is possible for N = 3 between the points 1 and 2 represented by the 
formula 

1 2: 1: 2.t t =                           (13) 

In this case, beyond a non-contracted diagram for N = 3 presented in Figure 4, 
we obtain a new diagram connected with (13); see Figure 5. In effect we obtain 
for N = 3 the number of two diagrams: that of Figure 4 and that of Figure 5. 
This is in accordance with the formula (8) from which we have 

3 2.S =                             (14) 
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Figure 4. Time scale for the perturbation order N = 3. 
Beyond the beginning-end (b.e.) point, there are two 
other points, 1 and 2, on the scale. 

 

 
Figure 5. Contraction of the time points 1 and 2 present 
on the scale representing the perturbation order N = 3 
creates a side loop of time on the scale similar to the 
time loop characteristic for N = 1; see Figure 2. 

 
It is easy to check that 

1 2 1S S= =                           (15) 

which imply only single diagrams present for N = 1 and N = 2 in Figure 1 and 
Figure 3 respectively. Let us consider now the energy terms associated with the 
obtained diagrams. 

The perturbation energy connected with N = 1 is represented by 
per

1E V n V n∆ = =                      (16) 

which is a single matrix element. 
On the other hand, for N = 2 a summation process over the running states p 

different than n is involved: 

( ) ( )

per per

2 0 0
.

p n n p

n V p p V n
E VPV

E E≠

∆ = =
−

∑              (17) 

The symbols V are connected with the matrix elements in the numerator, sym-
bol P refers to a single energy difference in the denominator. 

6. Contractions of the Time Points on the Scale Provide us 
with the Side Loops of Time; Perturbation Orders N = 3 
and N = 4 

For N = 3 we have three time points on the scale: 1, 2, and 3. Let 3 be the begin-
ning-end point, so the points 1 and 2 can be submitted to contraction: 

1 2: 1: 2;t t =                          (18) 

no contraction with point 3 can be applied. Since S3 = 2 we have two Schrödin-
ger terms for N = 3. The first one corresponds to the lack of contractions on the 
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scale; see Figure 4. This gives the energy term 

( ) ( )( ) ( ) ( )( )
per per per

0 0 0 0
p q n p n q

n V p p V q q V n
VPVPV

E E E E
=

− −
∑∑          (19) 

where p n≠  and q n≠ . On the other side, the contraction (18) (see Figure 5) 
gives the energy term 

2VP V V−                          (20) 

which is a product of 

( ) ( )( )
per per

2
20 0p n

n p

n V p p V n
VP V

E E≠

=
−

∑                 (21) 

and V  which is the term given in (16). The product (20) is taken with a mi-
nus sign. 

It has to be noted that the power of the energy term in the denominator in (21) 
is equal to the power of P on the left of (21). The minus sign in (20) is dictated 
by the even number of the bracket terms present in the product in (20); an odd 
number of the bracket terms presenting an energy term leads to a plus sign for 
that term; see (16), (17) and (19). 

The term V  in (20) represents a contribution due to a side loop of time 
created by contraction (18); see Figure 5. Because of a difference of the time 
point indices 2 and 1 entering (18) which is equal to 

2 1 1,− =                            (22) 

the side loop created by contraction (18) contributes the term 

1V E= ∆                           (23) 

entering as a multiplier in (20). In effect the total perturbation energy of N = 3 is 
equal to a sum: 

2
3 1E VPVPV VP V E∆ = − ∆                   (24) 

because of (23) taken into account in (20). 
The energy belonging to the order N = 4 (see Figure 6) can be considered in a 

similar way. If the beginning-end point on the scale is labelled by 4, we have 
three time points 

1 2 31, 2, 3,t t t= = =                       (25) 

 

 
Figure 6. Time scale for the perturbation order N = 4. 
Beyond the beginning-end (b.e.) point, three other 
points (1, 2 and 3) are present on the scale. 
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which are suitable to contractions. Without any time contraction the contribu-
tion to energy is represented by the term 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
per per per per

0 0 0 0 0 0
p q r n p n q n r

n V p p V q q V r r V n
VPVPVPV

E E E E E E
=

− − −
∑∑∑    (26) 

where , ,p q r n≠ . Next come contractions of the points in (25): 

1 2: 1: 2,t t =                          (27) 

1 3: 1: 3,t t =                          (28) 

2 3: 2 : 3,t t =                          (29) 

1 2 3: : 1: 2 : 3.t t t =                        (30) 

The contractions presented in (27)-(30) give respectively the energy terms: 

( ) ( )( ) ( ) ( )( )
per per per

2
20 0 0 0p q

n p n q

n V p p V q q V n
VP VPV V V

E E E E
− = −

− −
∑∑      (31) 

where ,p q n≠  and 1V E= ∆  [contraction 1:2], 

( ) ( )( ) ( ) ( )

per per per per
2

2 0 00 0p q n qn p

n V p p V n n V q q V n
VP V VPV

E EE E
− = −

−−
∑ ∑   (32) 

where ,p q n≠  and 2VPV E= ∆  because of (17) [contraction 1:3], 

( ) ( )( ) ( ) ( )( )
per per per

2
20 0 0 0p q

n p n q

n V p p V q q V n
VPVP V V V

E E E E
− = −

− −
∑∑      (33) 

where ,p q n≠  and 1V E= ∆  [contraction 2:3], 

( )
( ) ( )( )

( )
per per

2 23
30 0p

n p

n V p p V n
VP V V V

E E
=

−
∑            (34) 

where p n≠  and ( ) ( )2 2
1V E= ∆  [contraction 1:2:3]. Let us note that the 

sum of powers of P in any energy term is equal to 1 3N − = , and the sum of 
powers of V within the brackets of each energy term is N = 4. 

Together with the energy term (26) we obtain from (31)-(34) 

( )
4

2 4 2 ! 6! 5
3!4! 3!4!

S
× −

= = =                     (35) 

energy terms for N = 4. The perturbation energy belonging to N = 4 is equal to a 
sum of five terms given in (26) and (31)-(34): 

( )

2 2
4 1 2

22 3
1 1 .

E VPVPVPV VP VPV E VP V E

VPVP V E VP V E

∆ = − ∆ − ∆

− ∆ + ∆
          (36) 

Evidently the fourth term on the right of (36) is equal to the second term be-
cause of symmetry. 

The rule defining the sign of the perturbation terms is very simple: for an odd 
number of terms entering the product giving a perturbation term the sign of 
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product is positive; an even number of terms entering a similar product giving a 
perturbation term makes this term to have a negative sign. 

7. Energy of the Perturbation Orders N = 5 and N = 6 

The time scales corresponding to above N are presented in Figure 7 and Figure 8. 
Here the recurrence procedure can be useful to apply, so for N = 5 we take 

first into account the perturbation terms of the order N lower than 5, and for N 
= 6 the terms of the order lower than 6, respectively. 

In this way the first five terms belonging to the order N = 5 can be obtained 
from S4 = 5 terms of Section 6 by introducing the time point 4 as a free point 
different than the beginning-end point of time. This makes any bracket contri-
bution due to the main loop of time entering ΔE4 [see (36)] changed by an in-
crease equal to PV put at the end of the bracket term. The first 5 energy terms 
belonging to ΔE5 are: 

( )

2 2
1 2

22 3
1 1 .

VPVPVPVPV VP VPVPV E VP VPV E

VPVP VPV E VP VPV E

− ∆ − ∆

− ∆ + ∆
         (37) 

The first term in (37) is a modification of the term (26), the remaining four 
energy terms in (37) are due to suitable modifications of the terms entering (36). 

Further contributions to ΔE5 are due to the fact that in the case of N = 5 the 
new time point 4 can be submitted also to contractions. They begin with point 1 
and the other points between 1 and 4: 

1: 4, 1: 2 : 4, 1:3: 4, 1: 2 :3: 4.                   (38) 

The contractions in (38) together with the side loops created by them give the 
following energy terms: 

( )32 3 3 4
3 1 2 2 1 1, , , .VP V E VP V E E VP V E E VP V E− ∆ ∆ ∆ ∆ ∆ − ∆     (39) 

 

 
Figure 7. Time scale for the perturbation order N = 5. 
Beyond the beginning-end (b.e.) point, four other 
points (1, 2, 3 and 4) are present on the scale. 

 

 
Figure 8. Time scale for the perturbation order N = 6. 
Beyond the beginning-end (b.e.) point, five other 
points (1, 2, 3, 4 and 5) are present on the scale. 
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Since ΔE3 present in the first term in (39) gives two Schrödinger perturbation 
terms, the set of terms in (39) represents the next S4 = 5 perturbation terms of 
energy belonging to N = 5. The index 4 of S4 refers to a maximal number 4 of the 
time points entering contractions (38). 

In a further step contraction of the time points 2 and 3 with point 4 have to be 
considered. They are 

2 : 4, 2 : 3 : 4,                          (40) 

which give respectively two perturbation energy terms: 

( )22 3
2 1, .VPVP V E VPVP V E− ∆ ∆                (41) 

The last set of the energy perturbation terms belonging to N = 5 is given by a 
single contraction 

3 : 4.                             (42) 

In this case the time points 1 and 2 present before point 3 can be either free, or 
contracted together. For 1 and 2 free the contraction in (42) gives the perturba-
tion term 

2
1.VPVPVP V E− ∆                       (43) 

On the other hand, the contraction 1:2 combined with that in (42) gives the per-
turbation term 

( )22 2
11: 2 3 : 4 .VP VP V E→ ∆                  (44) 

In effect we obtain from (37), (39), (41), (43) and (44) a sum of 

( )
5

2 5 2 ! 8! 14
4!5! 4!5!

S
× −

= = =                   (45) 

perturbation terms belonging to N = 5, if we note that ΔE3 in (39) combines two 
Schrödinger perturbation terms. 

A full perturbation energy of the order N = 5 becomes a sum of S5 terms en-
tering the formulae quoted before (45): 

( )

( )

( )

( )

2 2
5 1 2

22 3 2
1 1 3

33 3 4
1 2 2 1 1

22 3
2 1

22 2 2
1 1 .

E VPVPVPVPV VP VPVPV E VP VPV E

VPVP VPV E VP VPV E VP V E

VP V E E VP V E E VP V E

VPVP V E VPVP V E

VPVPVP V E VP VP V E

∆ = − ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ − ∆

− ∆ + ∆

− ∆ + ∆

      (46) 

Again, because of the presence of ΔE3, the sixth term on the right of (46) 
represents two Schrödinger perturbation terms. Evidently—because of symme-
try—some terms entering (46), for example the second term and one-by-last 
term on the right, become equal. 

The calculation of ΔE6 being the energy of the perturbation order N = 6 is 
much similar. The first 14 terms are obtainable from the energy expression (46) 
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representing ΔE5 due to the fact of supplying the time point 5 as a free point for 
the case of N = 6. The corresponding part of the perturbation energy ΔE6 comes 
by adding the PV term at the end of any bracket term in ΔE5 which is due to the 
main loop of time. On the basis of (46) we obtain the following contribution of 
S5 = 14 energy terms entering ΔE6: 

( )

( )

( )

( )

2 2
1 2

22 3 2
1 1 3

33 3 4
1 2 2 1 1

22 3 2
2 1 1

22 2
1 .

VPVPVPVPVPV VP VPVPVPV E VP VPVPV E

VPVP VPVPV E VP VPVPV E VP VPV E

VP VPV E E VP VPV E E VP VPV E

VPVP VPV E VPVP VPV E VPVPVP VPV E

VP VP VPV E

− ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ − ∆

− ∆ + ∆ − ∆

+ ∆

    (47) 

In the next step we take into account that the time point 5 for N = 6 can con-
tract with point 1 and all points between 1 and 5. This gives the following con-
tractions and the energy terms corresponding to them: 

2
41: 5 VP V E→ − ∆  (5)               (48) 

3
1 31: 2 :5 VP V E E→ ∆ ∆  (2)               (49) 

( )23
21:3:5 VP V E→ ∆  (1)               (50) 

3
3 11: 4 :5 VP V E E→ ∆ ∆  (2)               (51) 

( )24
1 21: 2 :3:5 VP V E E→− ∆ ∆  (1)               (52) 

4
1 2 11: 2 : 4 :5 VP V E E E→− ∆ ∆ ∆  (1)               (53) 

( )24
2 11:3: 4 :5 VP V E E→− ∆ ∆  (1)               (54) 

( )45
11: 2 :3: 4 :5 VP V E→ ∆  (1)               (55) 

In the brackets at the end of each row is given the number of Schrödinger 
energy terms connected with the considered row. This means that (48)-(55) give 
next S5 = 14 Schrödinger perturbation terms. Here 5 is a maximal number of 
points entering contractions listed in the above formulas. The other time con-
tractions are: 

2
32 : 5 VPVP V E→ − ∆  (2)                (56) 

3
1 22 :3:5 VPVP V E E→ ∆ ∆  (1)                (57) 

3
2 12 : 4 :5 VPVP V E E→ ∆ ∆  (1)                (58) 

( )34
12 :3: 4 :5 VPVP V E→− ∆  (1)                (59) 

with the time point 1 left free giving 5 perturbation terms because the index 4 
due to presence of contraction points gives S4 = 5. 

But both points 1 and 2 can be left free combining with contractions 
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2
23 : 5 ,VPVPVPVP V E→ − ∆                   (60) 

( )23
13 : 4 : 5 .VPVPVPVP V E→ ∆                  (61) 

Another situation is obtained when 1 and 2 contract together, in this case we 
obtain in place of (60) and (61) the energy terms combined with 1:2, so 

2 2
1 21: 2 3 : 5 ,VP VP V E E→ ∆ ∆                (60a) 

( )32 3
11: 2 3 : 4 : 5 .VP VP V E→ − ∆               (61a) 

In effect from the formulae (60) to (61a) we obtain next 4 perturbation terms 
belonging to ΔE6. 

Finally a single contraction 

4 : 5                            (62) 

can combine either with the free points 

1, 2, 3                           (63) 

giving one energy term 
2

1,VPVPVPVP V E− ∆                    (64) 

or with contractions of 1, 2, and 3, viz. 

( )22 2
11: 2 4 : 5 ,VP VPVP V E→ ∆               (65) 

2 2
2 11: 3 4 : 5 ,VP VP V E E→ ∆ ∆                (66) 

( )33 2
11: 2 : 3 4 : 5 ,VP VP V E→ − ∆               (67) 

( )22 2
12 : 3 4 : 5 ,VPVP VP V E→ ∆               (68) 

which give together four energy terms presented in the second step of (65)-(68). 
In effect the number of the perturbation terms belonging to N = 6 obtained 

from (47), (48)-(55), (56)-(59), (60)-(61a), and (62)-(68) becomes: 

614 14 5 4 1 4 42 S+ + + + + = =                  (69) 

which is the expected result; see Table 1. A full perturbation energy of the order 
N = 6 is equal to a sum of the terms belonging to expressions listed above equa-
tion (69); see (47)-(61a) and (64)-(68). 

8. Perturbation Energy Belonging to N = 7 

This is the most complicated case considered in the present paper. The first S6 = 
42 terms are those connected with N = 6 because the time point 6 is now a free 
point of time on the scale; see Figure 9 and a list of terms below (69). The energy 
terms can be constructed by substituting the product 

PV  

at the end of any main bracket expression entering the energy term belonging to 
N = 6 obtained in Section 6: 
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Figure 9. Time scale for the perturbation order N = 7. 
Beyond the beginning-end (b.e.) point, six other 
points (1, 2, 3, 4, 5 and 6) are present on the scale. 

 

( )

( )

( )

( )

2 2
1 2

22 3 2
1 1 3

33 3 4
1 2 2 1 1

22 3 2
2 1 1

22 2 2
1 4

VPVPVPVPVPVPV VP VPVPVPVPV E VP VPVPVPV E

VP VPVPVPV E VP VPVPVPV E VP VPVPV E

VP VPVPV E E VP VPVPV E E VP VPVPV E

VPVP VPVPV E VPVP VPVPV E VPVPVP VPVPV E

VP VP VPVPV E VP VPV E V

− ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ − ∆ + 3
1 3P VPV E E∆ ∆

 

( ) ( )

( ) ( )

( ) ( )

2 23 3 4
2 3 1 1 2

2 44 4 5
1 2 1 2 1 1

2 3 3
3 1 2 2 1

3 24 2 3
1 2 1

VP VPV E VP VPV E E VP VPV E E

VP VPV E E E VP VPV E E VP VPV E

VPVP VPV E VPVP VPV E E VPVP VPV E E

VPVP VPV E VPVPVP VPV E VPVPVP VPV E

+ ∆ + ∆ ∆ − ∆ ∆

− ∆ ∆ ∆ − ∆ ∆ + ∆

− ∆ + ∆ ∆ + ∆ ∆

− ∆ − ∆ + ∆

 

( )

( ) ( )

( )

32 2 2 3 2
1 2 1 1

2 32 2 2 2 3 2
1 2 1 1

22 2
1 .

VP VP VPV E E VP VP VPV E VPVPVPVP VPV E

VP VPVP VPV E VP VP VPV E E VP VP VPV E

VPVP VP VPV E

+ ∆ ∆ − ∆ − ∆

+ ∆ + ∆ ∆ − ∆

+ ∆

 (70) 

The next S6 = 42 energy terms come from contractions of point 6 with point 1 
and the points between 1 and 6: 

2
51: 6 VP V E→ − ∆  (14)             (71) 

3
1 41: 2 : 6 VP V E E→ ∆ ∆  (5)              (72) 

3
2 31:3: 6 VP V E E→ ∆ ∆  (2)              (73) 

3
3 21: 4 : 6 VP V E E→ ∆ ∆  (2)              (74) 

3
4 11:5 : 6 VP V E E→ ∆ ∆  (5)              (75) 

( )24
1 31: 2 :3: 6 VP V E E→− ∆ ∆  (2)              (76) 

( )24
1 21: 2 : 4 : 6 VP V E E→− ∆ ∆  (1)              (77) 

4
1 3 11: 2 :5 : 6 VP V E E E→− ∆ ∆ ∆  (2)              (78) 

4
2 1 21:3: 4 : 6 VP V E E E→− ∆ ∆ ∆  (1)              (79) 

( )24
2 11:3:5 : 6 VP V E E→− ∆ ∆  (1)              (80) 

( )24
3 11: 4 :5 : 6 VP V E E→− ∆ ∆  (2)              (81) 

https://doi.org/10.4236/jmp.2020.1110095


S. Olszewski 
 

 

DOI: 10.4236/jmp.2020.1110095 1550 Journal of Modern Physics 
 

( )35
1 21: 2 :3: 4 : 6 VP V E E→ ∆ ∆  (1)              (82) 

( )25
1 2 11: 2 :3:5 : 6 VP V E E E→ ∆ ∆ ∆  (1)              (83) 

( )25
1 2 11: 2 : 4 :5 : 6 VP V E E E→ ∆ ∆ ∆  (1)              (84) 

( )35
2 11:3: 4 :5 : 6 VP V E E→ ∆ ∆  (1)              (85) 

( )56
11: 2 :3: 4 :5 : 6 VP V E→− ∆  (1)              (86) 

which give also a set of S6 = 42 perturbation terms: 

14 5 2 2 5 2 1 2 1 1 2 1 1 1 1 1 42+ + + + + + + + + + + + + + + =         (87) 

because a maximum of 6 points coupled together. Here (87) is a sum of the 
number of the perturbation terms indicated in brackets at the end of each row in 
(71)-(86). 

The next contractions of the time points give S5 = 14 terms because of a 
maximal number of 5 points entering contractions: 

2
42 : 6 VPVP V E→ − ∆  (5)              (88) 

3
1 32 :3: 6 VPVP V E E→ ∆ ∆  (2)              (89) 

( )23
22 : 4 : 6 VPVP V E→ ∆  (1)              (90) 

3
3 12 :5 : 6 VPVP V E E→ ∆ ∆  (2)              (91) 

( )24
1 22 :3: 4 : 6 VPVP V E E→− ∆ ∆  (1)              (92) 

4
1 2 12 :3:5 : 6 VPVP V E E E→− ∆ ∆ ∆  (1)              (93) 

( )24
2 12 : 4 :5 : 6 VPVP V E E→− ∆ ∆  (1)              (94) 

( )45
12 :3: 4 :5 : 6 VPVP V E→ ∆  (1)              (95) 

Next come S4 = 5 energy terms due to contractions 
2

33 : 6 VPVPVP V E→ − ∆  (2)              (96) 

3
1 23 : 4 : 6 VPVPVP V E E→ ∆ ∆  (1)              (97) 

3
2 13 :5 : 6 VPVPVP V E E→ ∆ ∆  (1)              (98) 

( )34
13 : 4 :5 : 6 VPVPVP V E→− ∆  (1)              (99) 

which do exist with free time points 1 and 2 on the scale giving the energy terms 
presented above. But also we can have contractions combined with 1:2 giving 
other S4 = 5 energy terms: 

2 2
1 31: 2 3: 6 VP VP V E E→ ∆ ∆  (2)            (100) 

( )22 3
1 21: 2 3: 4 : 6 VP VP V E E→− ∆ ∆  (1)            (101) 

2 3
1 2 11: 2 3:5 : 6 VP VP V E E E→− ∆ ∆ ∆  (1)            (102) 
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( )42 4
11: 2 3: 4 :5 : 6 VP VP V E→ ∆  (1)            (103) 

Let us note that each ΔE3 in (96) and (100) gives S3 = 2 terms. 
Another set of contractions involving point 6 represents 

2
24 : 6 VPVPVPVP V E→ − ∆                         (104) 

( )23
14 : 5 : 6 VPVPVPVP V E→ ∆                      (105) 

on condition the time points 1, 2, and 3 are left free. But (104) and (105) can be 
combined also with contractions of the points 1, 2, and 3 giving 

2 2
1 21: 2 4 : 6 ,VP VPVP V E E→ ∆ ∆                   (106) 

( )32 3
11: 2 4 : 5 : 6 ,VP VPVP V E→ − ∆                (107) 

( )22 2
21: 3 4 : 6 ,VP VP V E→ ∆                      (108) 

( )22 3
2 11: 3 4 : 5 : 6 ,VP VP V E E→ − ∆ ∆               (109) 

( )23 2
1 21: 2 : 3 4 : 6 ,VP VP V E E→ − ∆ ∆               (110) 

( )43 3
11: 2 : 3 4 : 5 : 6 ,VP VP V E→ ∆                  (111) 

2 2
1 22 : 3 4 : 6 ,VPVP VP V E E→ ∆ ∆                   (112) 

( )32 3
12 : 3 4 : 5 : 6 .VPVP VP V E→ − ∆                (113) 

In effect the number of terms due to (104)-(113) is equal to 2S4 = 10 because the 
points 1, 2 and 3 can combine in S4 = 5 ways. 

The last set of contractions containing point 6 is represented by 5:6. When a 
combination of 5:6 with the set of free time points 1, 2, 3, and 4 is considered we 
obtain 

2
15 : 6 VPVPVPVPVP V E→− ∆  (1)          (114) 

The remaining combinations with 5:6 are due to contractions between points 1, 
2, 3 and 4: 

( )22 2
11: 2 5 : 6 VP VPVPVP V E→ ∆  (1)          (115) 

2 2
2 11:3 5 : 6 VP VPVP V E E→ ∆ ∆  (1)          (116) 

2 2
3 11: 4 5 : 6 VP VP V E E→ ∆ ∆  (2)          (117) 

( )33 2
11: 2 :3 5 : 6 VP VPVP V E→− ∆  (1)          (118) 

3 2
1 2 11: 2 : 4 5 : 6 VP VP V E E E→− ∆ ∆ ∆  (1)          (119) 

( )23 2
2 11:3: 4 5 : 6 VP VP V E E→− ∆ ∆  (1)          (120) 

( )44 2
11: 2 :3: 4 5 : 6 VP VP V E→ ∆  (1)          (121) 

( )32 2 2
11: 2 3: 4 5 : 6 VP VP VP V E→− ∆   (1)          (122) 
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( )22 2
12 :3 5 : 6 VPVP VPVP V E→ ∆  (1)          (123) 

2 2
2 12 : 4 5 : 6 VPVP VP V E E→ ∆ ∆  (1)          (124) 

( )33 2
12 :3: 4 5 : 6 VPVP VP V E→− ∆  (1)          (125) 

( )22 2
13 : 4 5 : 6 VPVPVP VP V E→ ∆  (1)          (126) 

The total number of energy terms due to (114)-(126) is S5 = 14 which is the 
number of combinations due to presence of the 4 free time points, see (8) and 
Table 1. 

In total we obtain for N = 7 the S6 = 42 energy terms collected in (70), next 
also S6 = 42 energy terms collected in (87). Another set of terms is given in the 
formulae from (88) to (95) which provide us with 

5 2 1 2 1 1 1 1 14+ + + + + + + =                   (127) 

terms. The next 2S8 = 10 perturbation terms are given by the formulae (96)-(99) 
and (100)-(103), but also 10 terms are provided by (104)-(113). Finally contrac-
tion 5:6 gives from (114) to (126) the energy terms whose number is 

51 1 1 2 1 1 1 1 1 1 1 1 1 14 .S+ + + + + + + + + + + + = =           (128) 

This makes a total number of kinds of the energy perturbation terms belonging 
to N = 7 equal to: 

742 42 14 10 10 14 132 S+ + + + + = =                (129) 

which is not only in accordance with the formula (8), but satisfies also the for-
mula: 

1 6 2 5 3 4 4 3 5 2 6 1 7 .S S S S S S S S S S S S S+ + + + + =            (130) 

The result in (130) is a special case of a general formula which holds for calcu-
lating SN: 

1 1 2 2 3 3 3 3 2 2 1 1.N N N N N N NS S S S S S S S S S S S S− − − − − −= + + + + + +     (131) 

9. General Characteristics of the Energy Perturbation Terms 

In general the terms of the Schrödinger perturbation energy which originate 
from a non-degenerate quantum state are represented by the products of the 
contribution due to the main loop of time and contributions due to the side loops. 
This second kind of contributions is equal to definite perturbation energies 

( )NE ′∆                           (132) 

of the order N' smaller than the examined order N. The formulae of the kind of 
(132) which are due to the side loops of time provide an important simplifica-
tion of the perturbed energy calculations. 

The side loops originate from contractions of the time points on the main 
loop characteristic for a given perturbation order N. In effect the order N' cha-
racteristic for any expression (132) is equal to a difference of the indices 
representing the time points entering contraction. There can exist also multiple 
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contractions giving products 
( ) ( ) ( )N N NE E E′ ′′ ′′′∆ ∆ ∆                      (133) 

where , , ,N N N′ ′′ ′′′
  are defined by the difference between the time point in-

dices participating successively in a multiple contraction. 
One point on the main loop, which is the beginning-end point of the scale, is 

excluded from contractions. Respectively, for each N does exist only one energy 
term which is given solely by the main loop of time; this loop of time has no 
contractions and the corresponding energy term does not involve the contribu-
tions of the side loops. 

The kind of energy contributions due to the main loop is in general different 
than that given in (132) or (133). In the absence of contractions the main loop 
gives a single energy term equal to 

VPVPVP PVPV                      (134) 

in which the number of V is equal to the perturbation order N and number of P 
amounts N − 1. In effect any time point on the scale—excepting the begin-
ning-end point—has its own P, and the number of terms V is equal to the num-
ber of distances separating the neighbouring time points on the scale. 

The contractions change the power exponents of P entering (134) which are 
all equal to 1 in (134) into the exponents 

1.>τ                            (135) 

The number τ is equal to the number of the time points participating in contrac-
tion, therefore τ becomes equal to the number of the side loops created by con-
traction increased by one. So for one side loop present in a given time point 

1 1,= +τ                          (135a) 

for two side loops present in the same point 

1 2,= +τ                         (135b) 

etc. In effect the number of P terms which remain on the main loop of time and 
have the exponents represented by (135) is equal to the number of the time con-
tractions present on the scale. 

An important feature is that some P entering (134) can be shifted to the side 
loops. This situation holds in case when the differences between the time-point 
indices entering contraction are larger than 1. For example the contraction be-
tween the points 1 and 3 shifts the point 2—and its P term—to a side loop. This 
is an expected result if we note that , , ,N N N′ ′′ ′′′

  in (132) or (133) can be 
larger than unity. 

Nevertheless the sum of the power exponents of P present along the 
scale—those which remain on the main loop as well as those which are shifted to 
the side loop or loops—should remain unchanged. In effect any perturbation 
term belonging to a given N has the same number N − 1 of the P terms and 
number N of the V terms, because the total number of V terms in the main loop 
and side loops remains constant. All SN terms give different diagrams along the 
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time scale plotted for a given N, but the computational results due to several di-
agrams can be equal which is the effect of the diagram symmetry. 

10. General View on Contractions of the Time Points on the 
Time Scales and Their Application 

The way of calculating the Schrödinger perturbation energy—called sometimes 
also the Rayleigh-Schrödinger perturbation series—presented in the paper is ra-
ther different than procedures applied in the former approaches; see e.g. [12]. In 
fact the terms entering the series can be obtained mainly from an analysis of the 
geometry of the time-point patterns present on the scale, and by applying the 
rules connecting that geometry with the time-independent matrix elements en-
tering the Schrödinger wave mechanics, than by proceeding according to any of 
the developed wave-mechanical perturbation formalisms. 

A basic property concerns the importance of contraction points of time en-
tering the applied time scale and their origin. At the first step—i.e. in the ab-
sence of contractions—the scale giving the perturbation energy of order N is as-
sumed to have N separate time points on it, and one of these points is the begin-
ning-end point of the scale. Evidently for N = 1 there is present only the begin-
ning-end point. We assume that this point cannot be submitted to contractions 
in case of any N. Therefore an increase of the perturbation order to N = 2 gives 
the scale which has two points on it: one is the beginning-end point and the 
second point is allowed which remains free. 

A substantial difference in the calculation scheme begins with N = 3. In this 
case there exist outside the beginning-end point two other points which (a) can 
be left separated each from other, but also (b) can be contracted together. What 
does it mean from the point of view of the scale geometry and the calculations? 
The case (a) represents two separate points of time any of which gives its own 
contribution to the perturbation energy term belonging to N = 3. According to 
Section 6 the energy term supplied by these both points together becomes 

.VPVPV                           (136) 

So what is the effect of contraction of two points on the scale upon the per-
turbation energy? Geometrically it means that contraction of point 1 with point 
2 labelled by the symbol 

1: 2                             (137) 

produces two different scales of time. The first one is the scale containing the be-
ginning-end point of the original loop of time. The time parameters t1 and t2 label-
ling the perturbation events on that loop become equal, so an alternative formula 
to (137) is  

1 2 .t t=                            (137a) 

This means that there is no possibility to have a time point between t1 and t2 on 
the main loop of time. But contraction represented by (137a) implies creation of 
a supplementary loop of time for which the situation given in (137a) represents 
the beginning-end point of time. This supplementary loop, called also a side 
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loop, is independent of the original (main) loop of time. The side loop has no 
time points on it excepting the beginning-end point (137a). Such loop is identic-
al with the main loop of time for N = 1; see Figure 2. 

In effect of creation of the new loop of time, a new—i.e. the second—perturbation 
term of energy is obtained for the perturbation order N = 3 beyond the term given 
in (136). This is a product of two bracket terms, viz. 

2 2
1.VP V V VP V E− = − ∆                   (138) 

The first bracket term is given in (21), the second term is simply the perturba-
tion energy of order one (N = 1); see (16). 

For N > 3, say for N = 4, the free time points on the main loop can be t1, t2 and 
t3, whereas the point t4 is assumed to represent the beginning-end point on the 
loop; see Figure 6. In this case—beyond contractions between the neighbouring 
time points like (137) and (137a)—the contraction between the non-neighbouring 
time points 

1 3t t=                           (139) 

or 

1: 3                           (139a) 

is also possible. This contraction implies that the point t2 which originally is 
placed between t1 and t3 should be shifted to a side loop. This side loop has its 
beginning-end point given by contraction (139) or (139a), but one free time 
point, namely t2, does remain on the loop. In effect the side loop becomes iden-
tical to that for N = 2; see Figure 3. The perturbation energy due to contraction 
(139) is therefore equal to product 

2 2
2 .VP V VPV VP V E− = − ∆                (140) 

For the first bracket term in (140) see (21), for the second bracket term—see (17). 
The minus sign in (138) and (140) is dictated by the even number of the bracket 
terms entering product. 

In Table 2 we summarize the data on the time points and their contractions 
which give the energy terms belonging to the perturbation orders from N = 1 to 
N = 6. 

11. Conclusions 

The history of investigations on time is probably as old as the history of science. 
In the Newtonian formulation of mechanics, the time interval is independent of 
any other physical parameter; in the theory of relativity, the dependence of the 
time interval is mainly due to the speed of the observed change. 

But in many cases, including the problem considered in the present paper, the 
influence of the speed effect—or other physical parameters—on the time inter-
vals can be neglected. The kind of approach proposed here is different than the 
Newtonian-like, namely an insight into time given by Leibniz [13] [14] [15] 
seems to be here of importance. 
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Table 2. Number of the time points on the main loop of time and symbols of contraction 
points giving the side loops for the perturbation orders from N = 1 to N = 6. The second 
component entering the last column is equal to the contractions number of the time 
points (see the 3rd column). 

N 
Number of the time 
points on the main 

loop of time 
Contractions of the time points 

Total number of the 
perturbation terms  

SN (see Table 1) 

1 1 + 0 no contractions 1 

2 1 + 1 no contractions 1 

3 1 + 2 1: 2  1 1 2+ =  

4 1 + 3 1: 2 , 1: 3 , 2 : 3 , 1 4 5+ =  

  1: 2 : 3   

5 1 + 4 1: 2 , 1: 3 , 1: 4 , 1 13 14+ =  

  2 : 3 , 2 : 4 , 3: 4 ,  

  1: 2 3: 4 , 1: 2 : 3 ,  

  1: 2 : 4 , 1: 3 : 4 , 1: 4 2 : 3 ,  

  1: 2 : 3 : 4 , 2 : 3 : 4   

6 1 + 5 1: 2 , 1: 3 , 1: 4 , 1: 5 , 2 : 3 , 1 41 42+ =  

  2 : 4 , 2 : 5 , 3: 4 , 3: 5 , 4 : 5 ,  

  1: 2 : 3 , 1: 2 : 4 , 1: 2 : 5 ,  

  1: 3 : 4 , 1: 3 : 5 , 1: 4 : 5 ,  

  2 : 3 : 4 , 2 : 3 : 5 , 2 : 4 : 5 ,  

  3: 4 : 5 , 1: 2 : 3 : 4 , 1: 2 : 3 : 5 ,  

  1: 2 : 4 : 5 , 1: 3 : 4 : 5 , 2 : 3 : 4 : 5 ,  

  1: 2 : 3 : 4 : 5 , 1: 2 : 3 4 : 5 , 1: 2 3: 5 , 1: 2 4 : 5 ,  

  1: 2 3: 4 : 5 , 1: 2 3: 4 , 1: 3 4 : 5 , 2 : 3 4 : 5 ,  

  1: 4 2 : 3 , 1: 5 2 : 4 , 1: 4 : 5 2 : 3 , 1: 5 2 : 3 ,  

  1: 5 3: 4 , 1: 5 2 : 3 : 4 , 1: 2 : 5 3: 4 , 2 : 5 3: 4   

 
Leibniz idea was that time is represented by a sequence of events which appear 

successively in a definite order. A knowledge of the sizes of time intervals be-
tween the separate events become then of not much use, since the main point 
concerns an arrangement of the events along a proper scale of time. 

In the present paper the problem of the shape of the time scale and its physical 
verification has been attached to the Schrödinger perturbation theory. Physically 
this means that the history of a perturbed quantum state—done by a potential 
independent of time—becomes of importance. This history has a non-relativistic 
background, for it refers to a general applicability of the non-relativistic 
Schrödinger equation in the quantum physics. 
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In principle the perturbation theory—linked also with the Schrödinger’s au-
thorship [3]—provides us with a method how solutions known for a simple 
problem can provide us with an approximate knowledge of more complicated 
Schrödinger’s solutions. A difficulty was that a tedious procedure had to be ap-
plied in order to extract to calculations the separate kinds of energy terms be-
longing to a large perturbation order N. This difficulty could be much reduced 
when the time scale of a circular character composed of the N collision time 
points of a quantum system with the perturbation potential Vper is assumed for 
each N. 

The number of the allowed time-point arrangements on the scale provides us 
precisely with the SN perturbation energy terms characteristic for a given N. In 
effect the perturbation terms should not be derived with the aid of a usually te-
dious iterative procedure connected with solving the perturbed Schrödinger eq-
uation, but can be readily obtained by analyzing the contractions to which the 
time points are submitted along the scale. 

It should be noted that agreement of the results for SN, as well as the energy 
perturbation terms for a given N, obtained in the present theory with those cal-
culated by the Schrödinger formalism is not proved in general but has been 
demonstrated in the paper for the perturbation orders beginning from N = 1 to 
N = 7. 

No time intervals or continuous time variables are considered in the paper. 
The calculations are based on definite sets of the discrete time points 
representing the collisions of an unperturbed non-degenerate quantum system 
with a time-independent perturbation potential.  
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The original online version of this article (Miyashita, T. (2020) Empirical Equa-
tion for the Gravitational Constant with a Reasonable Temperature. Journal of 
Modern Physics, 11, 1180-1192. https://dx.doi.org/10.4236/jmp.2020.118074) 
unfortunately contains the very important mistakes. The calculated tempera-
ture was 2.7195 K, which is similar to the temperature of the cosmic micro-
wave background 2.7254 K.  

 

2.1. Our Empirical Equation 

Our empirical equation is quoted from Wikipedia.  
https://en.wikipedia.org/wiki/Proton 

91kg
2

2

p

p

Gm
kTλ × =                          (1) 

G: gravitational constant, 6.6743 × 10−11 (m3∙kg−1∙s−2) 
mp: the rest mass of a proton, 1.6726 × 10−27 (kg) 
rp: charge radius, 8.41 × 10−16 (m) (We must not use this value.) 
lp: Compton wavelength 1.321409 × 10−16 (m) 
k: Boltzmann constant, 1.380649 × 10−23 (J/K) 
T: temperature (K) 
1 kg: the standard mass (kg) 
The temperature calculated using this formula was 2.71953 K, which is similar 

to the temperature of the cosmic microwave background of 2.72548 K. We must 
use the half of Compton wavelength. The proton consists of three quarks. Then, 
we must consider 9/2 kT and not 3 kT. But the main theory can be unchanged.  
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Abstract 
Problem: The mechanisms whereby force operates are poorly understood at 
the fundamental level. Purpose: This paper proposes a mechanism for how a 
particle detects the field gradient, and how it moves therein. Approach: A 
non-local hidden-variable (NLHV) theory is used, specifically the Cordus 
NLHV theory. Findings: The operation of force is proposed to occur from 
the interaction between the energisation sequence of the particle, with the 
field gradient, resulting in discrete displacement motions of the particle. Spe-
cifically the particle sub-structures sweep through a volume of space during 
their energisation cycle. This locus is warped by the incoming field, hence 
preferentially displacing the particle along the gradient. Originality: The 
novel contribution of this work is providing a candidate mechanism for how 
a particle detects and moves in a field gradient. 
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1. Introduction 

The operation of force is something taken for granted. It is intuitively accepted 
that a particle moves in the gradient of a field. However given that a particle is 
also assumed to be a zero-dimensional (0-D) point, it is unclear how such a par-
ticle would detect the direction or gradient of the field.  

A common, though simplistic, explanation is by analogy to a small sphere 
(e.g. a marble) on an inclined plane in a gravitational situation: it will naturally 
roll downhill. However this analogy does not extend to a 0-D point. For the 
marble, the line of action of the centre of mass is offset from the contact point 
with the surface, so a moment arises to roll the ball downwards. For a 0-D point 
there cannot be a moment arm, hence the analogy fails. If a particle did have 
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volume, either by a volumetrically dispersed aggregation of other 0-D particles 
(the quantum mechanics premise), or because fundamental particles had volume 
(the premise of hidden variable theories), it is unclear how that volume might 
help the particle detect the field direction in real situations outside of the analogy.  

The slope analogy represents the field as continuous. Another explanation 
might be attempted by assuming it is discrete, i.e. mediated by the exchange of 
gauge bosons. In that case it is easier to understand that there may be more in-
coming gauge bosons on one side of a test particle than on the other, and that 
this underlies the field gradient. However what such theories fail to explain is the 
direction of force. What is the mechanism that causes opposite electrical charges 
to attract, and similar to repel? How does an incoming gauge boson cause 
movement of the 0-D test particle?  

Hence there is an underlying ontological problem with describing how field 
force interactions occur at the level of fundamental particles. This paper propos-
es a mechanism for how a particle detects the field gradient, and how it moves 
therein.  

2. Context 

The explanation was developed from a non-local hidden-variable (NLHV) 
theory, specifically the Cordus theory. All NLHV theories propose that funda-
mental particles have sub-structure, though differ greatly in what they propose 
for those structures. In the case of the Cordus theory the proposal is for an open 
string-like structure. The structure was inferred by applying design principles to 
the photon behaviour of the double-slit device, and thereby determining what 
set of physical features would be sufficient to explain the observations [1]. The 
outcome was a particle with two reactive ends connected by a fibril. The fibril is 
inert relative to other particles and provides the coordination between the two 
ends. This design intrinsically accommodates non-local behaviour. The reactive 
ends are periodically energized at the de Broglie frequency, during which they 
emit discrete forces into space in three orthogonal emission directions, see Fig-
ure 1. These directions are denoted r, a, and t in the figure [2] [3]. The particle 
interacts with other particles only at its reactive ends. The discrete forces are 
joined into flux tubes. Since these propagate out into space, the space between 
particles therefore comprises a fabric of discrete forces [4]. 

The key conceptual point of departure is the proposal that a particle has two 
separate ends. In contrast, conventional theories have the particle being a zero 
dimensional point, or a distribution of substance around a central point. In the 
Cordus theory, there is nothing at the nominal central location of the particle. 
The idea of two reactive ends is conceptually close to a string theory interpreta-
tion, and the dipole concept of classical electromagnetism. Indeed the number of 
parameters required to define the Cordus particle structure is similar to the 
number of dimensions in some string theories [6]. The theory describes multiple 
physical phenomena, see Table 1.  
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Table 1. Phenomena for which the Cordus theory has an explanation. Adapted from [7]. 

Phenomenon explained Key concept Reference 

Wave-particle duality in the double slit device One reactive end passes through each slit. [1] 

Derivation of optical laws from a particle perspective 
Includes derivation of reflection and refraction laws,  

and Brewster’s Angle from particle basis. 
[1] 

Prediction of particle structures Electron, proton, neutron, neutrino species, photon. 
[5] [8] [9] [10] 

[11] 

Explanation of the decay processes and prediction  
of a deeper decay model 

Dependency identified on neutrino species loading. [9] [10] 

Explanation for the selective spin characteristics of  
neutrinos whereby the direction of spin is correlated  

with the matter-antimatter species 

Spin direction arises from reaction between incomplete  
discrete force emissions from the particle,  

and the background fabric. 
[10] 

Explanation for particle spin and derivation  
of the electron g factor g = 2 

Cordus particle structure naturally causes g = 2. [7] 

Explanation for the annihilation process 

Description of the discrete force changes involved in  
remanufacture of these particle identities. Includes a  

conceptual explanation of the difference between otho-  
and para-positronium decay rates (ortho and para  
refer to spin combinations of the bound electron  

and anti-electron/positron). 

[12] 

Provision of a mechanics for pair production 
Rearrangement of discrete forces changes  

the particle identity. 
[13] 

Explanation of process of photon emission 
Excess energy in the electron changes it span,  

which is opposed by bonding constraints. 
[3] [14] 

Synchronous interaction 
Synchronous interaction between discrete forces of different 

matter particles causes the strong nuclear force. 
[2] 

Predicted structure of atomic nuclei and explanation  
of stability for nuclides H to Ne 

Protons and neutrons are arranged in a nuclear polymer.  
The rules for this arrangement, and for the bridge neutrons,  
are inferred and are qualitatively consistent with observed  

stability/instability/non-existence of all nuclides in this range. 

[15] [16] 

Prediction of a mechanism for  
asymmetrical baryogenesis 

Predicts a decay path for remanufacture of the antielectron  
to the proton. This also solves the asymmetrical  

leptogenesis problem. 
[8] 

Origin of entropy 
Fabric increases the Irreversibility of geometric  

position of particle. 
[17] 

A theory for time as an emergent property of  
matter rather than a universal attribute 

Time arises from the interaction between the frequency  
of a particle and the local density of the fabric. 

[4] 

Nature of the vacuum and the cosmological horizon 
Vacuum comprises fabric of discrete forces from  

massy particles. 
[18] 

Origin of the finite speed of light 
Determined by fabric density, hence variable with epoch  

of universe and local distribution of mass. 
[19] 

Quantitative derivation of the relativistic  
Doppler and the Lorentz factor 

Derivation accomplished from a particle perspective.  
Identifies fabric density as a covert variable. 

[20] 
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Figure 1. The representation of the electron’s internal and external structures. It is pro-
posed that the particle has three orthogonal discrete forces, energised in turn at each 
reactive end. Adapted from [5]. 

3. Approach  

Prior work showed that the Lorentz, relativistic Doppler, and time dilation could 
be derived from first principles using the Cordus theory [20], but required the 
flux tube to be stretchable. This imposes a conceptual conundrum. How could 
discrete forces, which are required in the context of synchronous bonding [2] to 
be in a binary state of energisation, also be continuous as required in the general 
relativity context? The existence of this duality implies the potential existence of 
a deeper mechanics, once that could give either outcome depending on the 
perspective taken. The specific situation under examination was how the elec-
tro-magneto-gravitational fields operated, i.e. the long ranged interactions (ex-
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cluding the strong and weak).  
The approach used abductive reasoning. It started with the high-level beha-

viour, and applied inference to determine the possible deeper mechanics. Con-
ceptual propositions, or lemmas, were identified. These are indicated§. 

4. Results 
4.1. A Proposed General Mechanism for Force 

Consider test particle B, say an electron, in an electrostatic field set up by particle 
A. Each particle has two reactive ends, and for B these are denoted B1 and B2. See 
Figure 2. The location of interest is reactive end B1 which receives forces from A, 
and emits its own discrete forces.  
 

 
Figure 2. Discrete forces emitted by basal particle A, and intercepted by 
remote test particle B. Each particle has two reactive ends. 
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Emission of discrete forces occurs at the energisation frequency of the 
particle (§1) 

It is proposed that discrete forces are emitted from massy particles, and at 
each cycle of energisation a fresh discrete force is created and emitted. It follows 
that higher frequency particles, i.e. those that are in more energetic states, emit 
discrete forces more frequently. The corollary is that the magnitude of the force 
effect is proposed to be determined by the number of discrete forces received.  

Similar-charged particles interact via the transphasic synchronous inte-
raction, while opposite-charged particles interact via the cisphasic interac-
tion (§2) 

The theory predicts that bonds between proximal particles arise from syn-
chronisation of their discrete force emissions. This is called the synchronous in-
teraction [2] and has been applied to predict the structure of the atomic nucleus 
for multiple nuclides [15] [16], and also explains Pauli pair structures [7]. Fa-
vourable emission states have already been defined for this theory, see [2], and 
include assembly of opposite charge discrete forces and complete sets of discrete 
forces. There are two subtypes to the synchronous interaction, which are trans-
phasic and cisphasic. These are when reactive ends from different particles ener-
gise out- and in-phase respectively.  

This lemma extends the synchronous principle to ranged particles: it is pro-
posed that the same mechanism applies even if the particles are some distance 
apart, e.g. in the electrostatic force and ranged forces generally. If the emission of 
discrete forces of one particle favours the emissions of the other, then the par-
ticles move closer together. The direction of motion is along the gradient in a 
direction that favours increased compatibility or evades incompatibility (as the 
case may be). 

Force is caused by coercive displacement of reactive ends (§3) 
Under these assumptions, force at the deeper level is a process of discrete dis-

placements of reactive ends, under the coercive effect of incoming discrete 
forces. More specifically, force on test particle B is caused by incoming discrete 
forces interacting with the emission sequence of B’s discrete forces. This coerces 
the reactive end to re-energise in a different location. Those incoming discrete 
forces may be from other particle A or the fabric (many other particles) generally.  

The nature of the interference for B is the phase difference between its in-
tended emissions vs. the incoming emissions. This prescription causes the reac-
tive end of B to move its location in space, such that it more nearly synchronises 
its emissions in or out of phase (cis- or transphasic respectively) with the exter-
nal discrete forces. The process is one of the reactive end of B being drawn to, or 
evading, the discrete forces produced by distant particles.  

Such a motion is a finite displacement and occurs during the energisation 
cycle of the particle, hence we refer to it as a coerced discrete displacement. It is 
the particle’s response to the external discrete force. This has the effect that the 
reactive end energises at a different location to its natural preference, hence 

https://doi.org/10.4236/jmp.2020.1110097


D. J. Pons 
 

 

DOI: 10.4236/jmp.2020.1110097 1566 Journal of Modern Physics 
 

causing the position of the particle as a whole to change, and this effect is per-
ceived as force.  

The response depends on the bound state of B. For free particle B the free 
reactive end may move in response to the external discrete forces. For a partially 
bonded particle B, one reactive end is co-located with the reactive end of other 
particles, and hence B is constrained in span and frequency and this limits the 
available locations into which it can move. For particle B bonded at both reactive 
ends, there is no ability to move. If there is sufficient reaction force applied to 
the test particle, then it can be prevented from making this discrete displace-
ment. Instead the body as a whole responds to the external discrete forces. 
Hence a larger body is subject to the same effect of prescribed displacement, but 
in an aggregate manner. Thus the effect of prescribed displacement scales from 
the small to the macroscopic discoherent state. If the external discrete forces are 
sufficiently compelling, even full bonded particle A may be broken free from its 
assembly. This is consistent with the effect of ionising radiation.  

The displacement is not uniform or fixed, being instead determined by the 
relative strengths of the native vs. incoming discrete force emissions (hence also 
type and mass of test particle), and the degree of freedom or constraint on the 
test particle. The test particle makes a small displacement each time it 
de-energises, and hence the underlying response to the field is a series of discrete 
motions. As particles have high frequencies (de Broglie frequency), this process 
is apparently continuous at the macroscopic scale. Hence the explanation does 
not undermine classical continuous mechanics, but rather offers a deeper expla-
nation. Likewise the force bosons of quantum mechanics are re-explained as 
discrete forces. Quantum mechanics requires different bosons for each interac-
tion, whereas the Cordus theory proposes that different attributes of the discrete 
forces result in the different interactions. 

A field comprises sequential discrete forces (§4) 
A field is interpreted to comprise discrete forces, the action of which causes a 

particle to move in a rapid series of finite displacements in space. The perturbing 
external discrete force is of finite duration, hence the displacement per energisa-
tion cycle is also finite. For a particle B in a steady field, the next discrete force it 
encounters causes a displacement consistent with the previous one. Hence the 
particle in this situation shows a consistent direction of discrete displacements, 
hence a motion of increasing velocity, i.e. acceleration in response to the force 
field. Thus the effect of the force appears smooth and continuous at the macros-
copic level of examination, even though it is fundamentally discrete.  

Discrete forces are connected in flux tubes (§5) 
The sequence of discrete forces emitted by any one particle is proposed to be 

connected in a flux tube, this being a curvilinear assembly of discrete forces. The 
discrete force in the flux tube is a persistent structure even when not energised 
[20]. As a particle moves, so the next discrete force is emitted from a different 
position of the reactive end. Hence the direction of action of the following dis-
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crete force will be slightly different to that before it. Thus the flux tube is ex-
pected to have bends, for a moving emitter.  

The discrete force interactions are fundamentally unidirectional (§6) 
It is proposed that the displacement effect of a received discrete force, and 

hence the force interaction, is fundamentally unidirectional: when test particle B 
receives a discrete force, it reacts to it via the displacement effect. The emitting 
particle A is unaffected, unless it also receives a discrete force from B. This 
means that the process whereby A emits a discrete force does not commit A to a 
future interaction dependent on whether or not that discrete force is intercepted 
by B.  

This is an unorthodox premise since force is generally held to be reciprocal in 
action. Indeed in the type of situation in which the Earth is positioned, similar 
particles affect each other equally, and hence the bi-directional nature of force is 
recovered. Nonetheless in general the theory predicts unidirectional effects: dis-
crete forces from A unidirectionally affect B, and those from B affect A, but there 
is no fixed reciprocity or an exchange per se.  

Discrete forces are not consumed in the interactions (§7) 
Discrete forces are not consumed by interactions but continue to propa-

gate outward to affect yet other particles. In specific cases, the discrete force 
may be consumed, such as annihilation of matter-antimatter particles [12], 
and pair-production [13]. 

The capability to make discrete displacement of a reactive end is affected 
by its energisation state (§8) 

The discrete displacement of a reactive end is affected by its energisation state. 
A reactive end that is fully energised in one of its emission directions (r, a, t) is 
momentarily stationary in that direction, or would prefer to be so. At times of 
incomplete energisation the reactive end is mobile and most susceptible to being 
displaced by an incoming discrete force.  

The reactive end samples the discrete forces around it (§9) 
A reactive end experiences all the discrete forces passing through that region 

of space which it occupies in its migrations. The reactive end is transparent in 
that the external discrete forces intrude into the reactive end temporarily as they 
propagate. A particle is not solely affected by the fields (or in this case the dis-
crete forces) passing through its centre (or in this case its two reactive ends). In-
stead it is affected by discrete forces in the nearby locality of the reactive end. 
The incoming discrete forces occupy a volume of space during their transit. 
Consequently the reactive end has the ability to sense what is happening in the 
volume of space immediately around it, with an interaction between the external 
environment, discrete forces, and reactive end. This is non-local behaviour. 

Sampling of the environment provides the mechanism for the reactive 
end to determine the field gradient (§10) 

At intermediate stages of energisation the reactive end moves a small distance 
in reaction as it undertakes its own emissions. This results in a small-scale repe-
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titive displacement motion of the reactive end at the de Broglie frequency. This 
motion is in all three directions of space, which allows the reactive end to sweep 
through-and sample-a small volume of space. This is proposed as the mechan-
ism whereby it senses the gradient of the external field.  

The mechanism whereby the reaction end moves under the influence of an 
external field arises because the RE spends longer time in those regions of space 
where the density (or strength) of external discrete forces is more favourable 
(higher or lower depending on relative attributes of particles A and B). It prefe-
rentially energises there. Since energisation also means the RE is stationary, it 
dwells there longer, hence the mean position of the RE is changed.  

4.2. Mechanism for Force & Discrete Movement in an Imposed 
Field 

Above it was stated that force is caused by coercive displacement of reactive ends 
(§3), that the reactive end samples the discrete forces around it (§9), and that 
this provides the mechanism for the reactive end to determine the field gradient 
(§10). These conceptual propositions are now represented in a quantitative for-
mulation.  

Discrete force emissions take the form ( )2sin 2θ  (§11) 
Previous diagrams have shown the reactive ends as either energised or not, 

but this is simplistic. The strength of energisation, hence also of the emitted dis-
crete forces, evolves over time. The question is what the shape of this energisa-
tion function might be. We are required, for reasons of logical consistency with 
the Lorentz work [20], to see the reactive ends as producing a continuous flux 
tube, without breaks, so abrupt step-like functions are excluded. It is logical to 
assume it takes a sinusoidal function, and ranges between 1 and 0 over a cycle 
(discrete forces of massy particles do not change sign, though photons do). We 
also need to consider the second reactive end B2 and that the energy oscillates 
between the two—this is an established principle of the theory. This requires 
that the total energy is conserved at any one moment. A relationship that fits 
these criteria is ( )2sin 2θ  where θ is the phase angle of energisation, and this is  
marked as a lemma. 

Thus the potential energy U of a discrete force in a particular direction (say r) 
at reactive ends B1 and B2 is: 

1

2sin
2
B

BU θ
=                          (1a) 

2

2cos
2
B

BU θ
=                          (1b) 

Given also that there are three orthogonal discrete force emissions (r, a, t) and 
that the energisation sequence of these determines the matter-antimatter species 
[12], then the potential energy is partitioned into three components offset at 
thirds of the phase cycle:  

( )
1

2sin
2
B

BU r θ
=                         (2a) 
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( )
1

2sin 120
2
B

BU a θ = − 
 

                     (2b) 

( )
1

2sin 240
2
B

BU t θ = − 
 

                     (2c) 

See Figure 3 for a representation of these three phases. The discrete force 
emissions do not subtract energy from the particle. 

Thus the reactive end is never fully de-energised (except momentarily in one 
axis), and this is consistent with the expectations from the Lorentz derivation for 
a stretchable flux tube. This also means that the energy at the basal generator, i.e. 
the reactive end B1 has a circular function, see Figure 4. 

Thus the phased emission of discrete forces corresponds to a torsional energi-
sation that is carried out into space by the discrete forces. The remote particle B 
receives this torsional package of discrete forces, and assuming both A and B are 
matter particles, finds this conducive to its own emissions and moves closer 
along the field gradient.  

The process of emitting discrete forces causes the reactive end to move 
cyclically in the (r, a, t) directions (§12) 

It is proposed that the sinusoidal potential energy function of the discrete 
forces corresponds to a movement of the reactive end itself. The nature of the 
motion is inferred as follows. The discrete forces themselves are a type of poten-
tial displacement. Hence the displacement that underpins them is the square 
root of their potential energy function, hence a ( )sin 2θ  dependency. Howev-
er the motion must be cyclical, i.e. the reactive end must return to its original  
 

 
Figure 3. Energisation phases in the three orthogonal emission directions (r, a, t) follow a 
sin2 (θ/2) relation. 
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Figure 4. Resultant energy at the basal generator B1 due to a matter negative charge. The 
axes are (r, a, t). The larger black marker indicates the nominal origin (0, 0, 0), and the 
smaller black marker indicates the location for θ = 0. The chart is deliberately shown in-
complete to indicate the direction of rotation. 

 
position, and this requires positive and negative components to its motion, 
hence a ( )sin θ  function. Finally, the motion of the reactive end is inversely re-
lated to its energisation, being motionless when fully energised, hence a ( )cos θ  
relationship. This is shown for a single axis in Figure 5, and for all three axes in 
Figure 6. Thus the displacement of the reactive end may be inferred to be a cir-
cular locus around the nominal location of the reactive end.  

While the positional locus is circular in the absence of an imposed field, the 
reactive end expands its excursion when in a field. Assuming a field gradient ap-
plies and consider only the r direction. The amount of displacement from the 
locus is presumed to be determined by two factors. The first is the strength of 
the field, which for simplicity is assumed to be linear (which is approximately 
true far from the field origin) with gradient gradP  and strength centreP  at the 
nominal centre point of the reactive end. Thus one side of the positional locus 
experiences the field as slightly stronger than the other. The second factor is the 
mobility of the reactive end, which is inversely related to its energisation, hence 
to 2cos 2θ . The result is a non-linear distortion of the positional locus of the 
form: 

( ) ( ) ( )( ) 2cos
2moved grad centrer r P r P θθ θ θ= + +               (3) 
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Figure 5. The locus of motion of the reactive end follows a cos (θ) dependency for each 
axis, whereas the potential energy follows sin2 (θ/2). 

 

 
Figure 6. Circular locus of positon of the reactive end over a complete cycle of emission 
from both reactive ends, for an electron. Green shows the location locus, and red the 
energy. The vertical axis is the r direction. 
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An example of a distorted positional locus is shown in Figure 7(a). Even with 
a linear field the new locus is a non-linear distortion of the original circular 
track, i.e. the reactive end is sensitive to the spatial change in field strength. The 
progressive accumulation of displacement results in a distorted spiral locus with 
dwell regions of low progression, see Figure 7(b).  
 

 
(a) 

 
(b) 

Figure 7. (a) Distorted positional locus for a reactive end under the effect of a linear field 
in the r direction. The larger round symbols show the centre point of the locus, i.e. the 
nominal position of the reactive end. Values in the r direction are nominal; (b) Cumula-
tive locus of the reactive end. Values are nominal. 
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The significance is that the mean location of the reactive end changes under 
the effect of the field. This adjustment occurs in discrete intervals at each fre-
quency cycle while the reactive end is exposed to the field. Thus the following 
lemma is noted. 

The positional locus of a reactive end is distorted by the effect of field 
gradient (§13) 

While the above example is based on an electrostatic interaction, there does 
not appear to be impediment to generalise the principles to any of the ranged 
fields.  

5. Discussion  
5.1. Findings  

The novel contribution of this work is providing a candidate mechanism for how 
a particle detects and moves in a field gradient. The explanation accommodates 
the continuous vs. discrete duality of forces, as evidenced in the general relativity 
vs. quantum perspectives. Emitted discrete forces have a sinusoidal strength 
function. At the receiving particle, the mobility of the reactive end is inversely 
related to its energisation, so the interaction has dwell periods. The emitted field 
is continuous but the effect is discrete. 

It also answers another duality question: how can a flux tube be continuous if 
the forces it contains are discrete [20]? The answer is that the reactive end binary 
states of energised vs. de-energised are an approximation of a sinusoidal strength 
relationship for energisation. Furthermore, with emissions in three orthogonal 
directions, there is no point in time when the flux tube is completely 
de-energised, hence its continuity is preserved.  

5.2. Limitations and Future Research Opportunities 

The present work has elucidated a mechanism for force generally. This has been 
formulated in a discrete force function. It could be interesting to develop specific 
formulations for each of the three ranged interactions: electrostatic, magnetic, 
and gravitational. There may different formulations for the discrete force func-
tion that could also be acceptable. 

6. Conclusions 

Per this theory, the operation of force at a more fundamental level is proposed to 
occur via the following mechanisms. 

1) The reactive end moves in a cyclic locus in reaction to its own emission of 
discrete forces, hence sweeps through a volume of space during its energisation 
cycle. 

2) This motion provides a mechanism for the reactive end to sample the field 
gradient around it. 

3) The locus is warped by the discrete forces of the incoming field, hence pre-
ferentially displacing the reactive end along the gradient. The mechanism is that 
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the reactive end spends longer time in those regions of space where the density 
(or strength) of external discrete forces is more favourable, and this changes its 
mean position in space. This adjustment occurs in discrete intervals at each fre-
quency cycle while the reactive end is exposed to the field. 

4) The resulting direction of motion is along the gradient in a direction that 
favours increased compatibility or evades incompatibility between the discrete 
forces from the two particles. 

The underlying mechanism for force is therefore proposed to be a process of 
discrete displacements of reactive ends, under the coercive effect of incoming 
discrete forces from the field. 
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Abstract 
It is impossible that proving the internal energy change has the relations with 
volume and pressure. About the second law of thermodynamics, many mis-
takes of formulations need to be put right and modified, and many new con-
cepts are surveyed too. The equality and inequality on the ratios of internal 
energy change to temperature and work to temperature are discussed. The 
relation between the reversible paths and their realistic paths is also re-
searched. In an isothermal process, the internal energy change for the gases is 
equal to zero, but the internal energy change is not equal to zero for the phase 
transition or chemical reaction. The Clausius inequality can be derived from 
the equation calculating the internal energy change in mathematics; it is the 
new method proving the Clausius inequality. These change laws of thermo-
dynamics could be applied to the gravitational field and mechanical motion 
and so on. 
 
Keywords 
First Law of Thermodynamics, Clausius Inequality, Internal Energy Change, 
Chemical Reaction, Gravitational Field 

 

1. Introduction 

In text, the heat and work are taken as positive if the energy is supplied to the 
system and negative if the energy is lost out of the system. otherW  expresses the 
other work (also called the non-expansion work), and dp V−  indicates the 
pressure-volume work (namely the expansion work). 

According to the first law of thermodynamics [1] [2] [3], if the expansion work 
doesn’t exist, the internal energy change is equal to the non-expansion work in 
the adiabatic process. If any work doesn’t exist, the internal energy change is equal 
to the heat in a constant volume process (namely that d dVU C T= , where, CV is 
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the heat capacity at the constant volume). If the other work doesn’t exist in a 
constant pressure process, the internal energy change is equal to U H p V∆ =∆ − ∆  
(where, pH C T∆ = ∆ , pC  is the heat capacity at the constant pressure, ΔH is 
the enthalpy change at the constant pressure). In a process, the heat, work, and 
internal energy change can transfer each other, but the relation of heat, work, 
and internal energy change has to obey the energy conservation law namely the 
first law of thermodynamics.  

The difference on the ratios of work to temperature between a reversible 
process and its realistic process is no more than zero; simultaneously, the differ-
ence on the ratios of internal energy change to temperature between a reversible 
process and its realistic process is no less than zero. If the latent heat and chemi-
cal reactions do not exist, the internal energy change in an isothermal process 
will be zero [4]. In this paper, the new method proving the Clausius inequality 
will be investigated.  

Attentively, “d” and “δ” are total differential symbols to the state function and 
path function, respectively. “Δ” expresses the change of quantity value. “∫” is 
integral symbol. “∂” is partial differential symbol. The internal energy change is 
the state function. The heat and work are the path functions in many processes. 
The enthalpy change at the constant pressure is the state function too. 

2. New Concepts about the Ratios of Internal Energy Change 
to Temperature and Work to Temperature 

In a spontaneous or realistic process, according to the first law of thermody-
namics, we can obtain [4] [5] 

( ) ( )

( ) ( ) ( ) ( )

d df fr real
i i

res

f f f fr real r real
i i i i

res res

U A U B
T T
Q A Q B W A W B

T T T T

−

δ δ δ δ
= − + −

∫ ∫

∫ ∫ ∫ ∫
         (1) 

The criterion equation for a process is obeyed as the follows 
( ) ( )

0
f fr real

i i
res

Q A Q B
T T

δ δ
− ≥∫ ∫ .                   (2) 

In a spontaneous or realistic process, the following equations must be also 
obeyed 

( ) ( )
0

f fr real
i i

res

W A W B
T T

δ δ
− ≤∫ ∫ ,                  (3) 

( ) ( )d d
0

f fr real
i i

res

U A U B
T T

− ≥∫ ∫ .                  (4) 

where, the equality is usually for a reversible process, the inequality is for an ir-
reversible process. (B) and (A) express the realistic path and reversible path, re-
spectively. The realistic paths may include the reversible or irreversible paths.  

The friction does not exist in any reversible process. S∆  and 
( )f r

i

Q A
T

δ
∫  all 
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express the entropy change, that is, 
( )f r

i

Q A
S

T
δ

∆ = ∫ . 
( )f r

i

W A
T

δ
∫  is indicated 

with WS∆ , namely that 
( )f r

W i

W A
S

T
δ

∆ = ∫ . 
( )df r

i

U A
T∫  is expressed with 

US∆ , namely that 
( )df r

U i

U A
S

T
∆ = ∫ . In a process, Ti and Tf are the thermody-

namics temperature of system in the initial state and final state, respectively. T  
expresses the thermodynamics temperature of system transforms from Ti to Tf. 
Tres is the thermodynamics temperature of surroundings or reservoirs, and Tres 
can vary or influence the thermodynamics temperature of system except the 
adiabatic system. Of course, Tres is the same as T in any reversible process or 
constant temperature process. Tres is not always considered as a constant in a 
realistic process. Any spontaneous or realistic process has to obey the Clausius 
inequality [6] [7] [8].  

( ) ( )f fr real
g i i

res

Q A Q B
S

T T
δ δ

∆ = −∫ ∫ , where, ΔSg is called the entropy generation 

[9] [10] [11]. In a spontaneous or realistic process, we can gain 0gS∆ ≥ . In the 
adiabatic process, ΔSg is not equal to zero for an irreversible process.  

( ) ( ) ( )f fr real
W g i i

res

W A W B
S

T T
δ δ

∆ = −∫ ∫ , where, ( )W g
S∆  is defined as the ratio of 

work to temperature generation. In a spontaneous or realistic process, we have 
( ) 0W g

S∆ ≤ . If any work doesn’t exist, ( )W g
S∆  is equal to zero.  

( ) ( ) ( )d df fr real
U g i i

res

U A U B
S

T T
∆ = −∫ ∫ , where, ( )U g

S∆  is defined as the ratio of  

internal energy change to temperature generation. In a spontaneous or realistic 
process, we shall obtain ( ) 0U g

S∆ ≥ . In the isothermal process, ( )U g
S∆  is 

equal to zero. Equation (1) can be rewritten as ( ) ( )U g Wg g
S S S∆ = ∆ + ∆ . 

Certainly, the values of ΔSg, ( )W g
S∆ , and ( )U g

S∆  all will change into zero 
in the reversible process or equilibrium changeless state for the spontaneous or 
realistic processes. The ΔSg, ( )W g

S∆ , and ( )U g
S∆  are the path functions, not 

the state functions. According to Equations (1), (3), we know ( )g U g
S S∆ ≥ ∆ . 

( )f real
i

res

Q B
T

δ
∫  is the path functions called the entropy flow [12]. When the  

solids and liquids are cooled, it will release the heat and its temperature will fall, 
the entropy change is negative value which conforms to the Clausius inequality, 
it is very reasonable nature results, but the entropy generation is no less than 
zero in the processes, that is, 0gS∆ ≥ . In a process, ΔS is unable to be varied by 
the entropy flow or path or energy like work and heat, since it is the state func-
tions. The entropy generation could be changed from negative to positive by the 
entropy flow or path or energy. In the living things, the entropy generation in 
the glucose synthesized reaction will be changed from negative to positive. If 
there is not any energy supplied to system, the damage cells in the living things 
could not be repaired, and the life will end and die.  
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3. New Method Proving the Clausius Inequality 
The internal energy change has to be equal to zero for the ideal and real gases in 

any isothermal process, namely that, 0
T

U
V
∂  = ∂ 

 and 0
T

U
p

 ∂
= ∂ 

 (where, the  

subscript T indicates constant temperature). In the Rossini and Frandsen expe-
riment [4] [13], the high pressure gas slowly expands and enters the air through 
the valve and pipeline, the water heated by heater in trough will keep constant 
temperature, but the expansion gas is open will still do work to air, so the heat is 
unable to be accurately determined. Therefore, it is regretful that the Rossini and 
Frandsen experiment could not prove the internal energy change having a rela-
tion with the pressure and volume for the gas. In the Rossini and Frandsen expe-
riment, the pressure-volume work is equal to d

f

i
p V−∫ , which is approximately 

equal to p V− ∆  (where, p is the constant pressure). 
If the latent heat and chemical reactions do not exist, we can obtain [4] 

d dVU C T= .                          (5) 

The gases, solids and liquids all obey Equation (5). If the phase transition or 
chemical reactions exist in the constant temperature and constant pressure, the 
internal energy change will be given by 

VU Q∆ = , 

U H p V∆ = ∆ − ∆ . 

where, the enthalpy change is the latent heat or chemical reaction heat in the 
constant temperature and constant pressure. Therefore, the internal energy 
change is the state functions for the phase transition or chemical reactions. 

If the phase transition or chemical reactions does not exist for the closed sys-
tem, we can obtain d dotherU Q W p V= δ + δ −  and d d dV otherC T T S W p V= + δ − . 
Where, ( ) ( ) ( )dreal otherW B W B p V Bδ = δ − , ( ) ( )drealQ B T S Bδ =  (it is dependable,  

since ( ) ( )d realQ B
S B

T
δ

= , 
( ) ( )f fr real

i i

Q A Q B
S

T T
δ δ

= = ∆∫ ∫ ), ( ) ( )drQ A T S Aδ = ,  

( ) ( ) ( )dr otherW A W A p V Aδ = δ − , ( ) ( )d dp V A p V B≠ . Attentively, T is often 
not the constant in the isothermal irreversible path (B), but i f resT T T= = . T is 
the constant in the isothermal reversible path (A).  

Thereinafter, using Equation (4) will prove the Clausius inequality is abso-
lutely correct. 

According to Equation (5), we can prove Equation (4) is absolutely right in 

mathematics. When d 0T ≥ , we find resT T≤  and d d

res

T T
T T

≥ . If d 0T ≤ , we 

find resT T≥  and d d

res

T T
T T
− −

≤ , further, d d

res

T T
T T

≥ . Hence, d df f

i i
res

T T
T T

≥∫ ∫ . 

Thus, 
( ) ( )d df fr real

i i
res

U A U B
T T

≥∫ ∫ . 

If 0gS∆ ≥ , that is, 
( ) ( )

0
f fr real

i i
res

Q A Q B
T T

δ δ
− ≥∫ ∫ , on the basis of Equation (1), 
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we can obtain 

( ) ( ) ( ) ( )d df f f fr real r real
i i i i

res res

U A U B W A W B
T T T T

δ δ
− ≥ −∫ ∫ ∫ ∫ . 

In order to guarantee that above-mentioned inequality is absolutely right, ac-

cording to Equation (4), the value of 
( ) ( )f fr real

i i
res

W A W B
T T

δ δ
−∫ ∫  must be no 

more than zero (namely that 
( ) ( )

0
f fr real

i i
res

W A W B
T T

δ δ
− ≤∫ ∫ ). If  

( ) ( )
0

f fr real
i i

res

Q A Q B
T T

δ δ
− <∫ ∫ , we can obtain 

( ) ( ) ( ) ( )d df f f fr real r real
i i i i

res res

U A U B W A W B
T T T T

δ δ
− < −∫ ∫ ∫ ∫ . 

On the basis of Equation (4), we have 
( ) ( )

0
f fr real

i i
res

W A W B
T T

δ δ
− >∫ ∫ . 

If 
( ) ( )

0
f fr real

i i
res

W A W B
T T

δ δ
− >∫ ∫ , according to Equation (1), we can obtain 

( ) ( ) ( ) ( )d df f f fr real r real
i i i i

res res

U A U B Q A Q B
T T T T

δ δ
− > −∫ ∫ ∫ ∫ . 

In order to guarantee that aforesaid inequality is absolutely right, according to 

Equation (4), the value of 
( ) ( )f fr real

i i
res

Q A Q B
T T

δ δ
−∫ ∫  must be no more than zero 

(that is, 
( ) ( )

0
f fr real

i i
res

Q A Q B
T T

δ δ
− <∫ ∫ ). If 

( ) ( )
0

f fr real
i i

res

W A W B
T T

δ δ
− ≤∫ ∫ , we 

have 
( ) ( ) ( ) ( )d df f f fr real r real

i i i i
res res

U A U B Q A Q B
T T T T

δ δ
− ≤ −∫ ∫ ∫ ∫ . 

Consequently, according to Equation (4), we can find 

( ) ( )
0

f fr real
i i

res

Q A Q B
T T

δ δ
− ≥∫ ∫ . 

There are two results generated by Equation (4), but their conclusions are 
contrary. Which result should be selected? We need to eliminate a wrong answer 
from the next procedures. 

When any work doesn’t exist, we can gain 
( ) ( )

0
f fr real

i i
res

W A W B
T T

δ δ
− =∫ ∫ . 

According to Equation (1), we have 

( ) ( ) ( ) ( )d df f f fr real r real
i i i i

res res

U A U B Q A Q B
T T T T

δ δ
− = −∫ ∫ ∫ ∫ . 

Therefore, on the basis of Equation (4), we can get 

( ) ( )
0

f fr real
i i

res

Q A Q B
T T

δ δ
− ≥∫ ∫ . 

https://doi.org/10.4236/jmp.2020.1110098


C. S. Jin 
 

 

DOI: 10.4236/jmp.2020.1110098 1581 Journal of Modern Physics 
 

Furthermore, 

( ) ( ) ( ) ( )f f f fr real r real
i i i i

res res

Q A Q B W A W B
T T T T

δ δ δ δ
− ≥ −∫ ∫ ∫ ∫ .        (6) 

where,  expresses absolute value symbol of quantity. In the isothermal process, 

( ) ( )d d
0

f fr real
i i

res

U A U B
T T

− =∫ ∫ , we can gain 

( ) ( ) ( ) ( )
0

f f f fr real r real
i i i i

res res

Q A Q B W A W B
T T T T

δ δ δ δ
− + − =∫ ∫ ∫ ∫ . 

Accordingly, we can confirm 
( ) ( )

0
f fr real

i i
res

W A W B
T T

δ δ
− ≤∫ ∫ . 

The aforementioned results prove the Clausius inequality is right. These Equ-
ations (2)-(6) are all the results of nature option. The other methods proving the 
Clausius inequality see the references [14] [15].  

4. Results and Discussion 
4.1. Relation between the Reversible Paths and Its Realistic Paths 

in the Gases and Chemical Reactions 

In a spontaneous or realistic process, we would assume [4] 

( ) ( ) ( )real r pfQ B Q A Q B= + ,                   (7) 

( ) ( ) ( )real r pfW B W A W B= + .                   (8) 

where, ( )rQ A  and ( )rW A  do not contain ( )pfQ B  and ( )pfW B . Here, 
( )pfW B  can cause the temperature change. 

According to the first law of thermodynamics, in a process, the following equ-
ations are given by ( ) ( ) ( )r r rU A Q A W A∆ = + , ( ) ( ) ( )real real realU B Q B W B∆ = + , 
and ( ) ( )r realU A U B∆ = ∆ . Where, ( )rU A∆  and ( )realU B∆  are the internal 
energy change in a reversible path (A) and its realistic path (B), respectively. Be-
cause ( ) ( )r realU A U B∆ = ∆ , we can get 

( ) ( )pf pfQ B W B= −                       (9) 

Attentively, ( )rW A  and ( )realW B  can be calculated from p-V diagram for 
the gases (employing the gas equation of state or the state experiment datums). 
A reversible path and its irreversible path are distinction for the gases, otherwise, 

( )pfW B  will be equal to zero.  
In a reversible path (A) and its realistic path (B), the following equations have 

to be obeyed [5] [16], such as 

( ) ( )r realQ A Q B≥ ,                      (10) 

( ) ( )r realW A W B≤ ,                      (11) 

( ) ( ) 0pf pfQ B W B= − ≤ .                   (12) 

where, the equality is for the identical reversible paths (if any work doesn’t exist, 
the equality is also for the irreversible paths), the inequality is for other irrevers-
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ible paths. So that, the reversible path (A) and its realistic path (B) are not arbi-
trary. 

If the other work doesn’t exist for a chemical reaction, in an isothermal and 
constant volume process, we have TV VU Q∆ = . Where, TVU∆  is the internal 
energy change, QV is the chemical reaction heat at the constant volume, they are 
all the state function. In an isothermal and constant pressure process, we have 

TpU H p V∆ = ∆ − ∆ . Where, TpU∆  is the internal energy change, and ΔH is the 
chemical reaction heat at the constant pressure, they are all the state function. In 
the same temperature for a chemical reaction, we can find TV TpU U∆ = ∆ , so 
that, we have VQ H p V= ∆ − ∆ , where, p is the constant pressure. 

When the chemical reaction and other work all do not exist at the 
non-constant pressure, on the basis of Equations (3), (11), the gases in the closed 
system obey ( ) ( )d d

f f

i i
p V A p V B− ≤ −∫ ∫ . Where, ( ) ( )d

f
r i

W A p V A= −∫ , and 
( ) ( )d

f
real i

W B p V B= −∫ . 
If the chemical reactions exist and any work does not exist in the constant 

pressure and isothermal process, according to Equations (2), (10), we have 
( ) ( )d d

f f

i i
T S A T S B≥∫ ∫ . At the moment, even if any work does not exist, we still 

find ( ) ( ) 0pf pfQ B W B= − ≠ . This result indicates us the internal friction resis-
tance is existence namely that ( ) 0pfW B ≠  for the chemical reactions in the ir-
reversible path (B). 

In the constant pressure and isothermal process for the unclosed system, if the 
chemical reaction exists and the other work does not exist, according to Equa-
tions (2), (10), we still obtain ( ) ( )d d

f f

i i
T S A T S B≥∫ ∫ . We know  

( ) ( )p V A p V B− ∆ = − ∆ , ( ) ( )rW A p V A= − ∆ , and ( ) ( ) ( )real pfW B p V A W B= − ∆ + . 
On the basis of Equation (11), we have ( ) 0pfW B ≥ . According to Equations (2), 
(10), we can get 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

0
g r real pf realT S Q A Q B Q B T S A U W B

T S A U p V B T S A H G

∆ = − = − = ∆ −∆ +

= ∆ −∆ − ∆ = ∆ −∆ = −∆ ≥
 

thus, 0gT S∆ ≥  (where, T is the constant) or ( ) 0pfG Q B∆ = ≤ , which are cri-
terions without the other work in the constant pressure and isothermal chemical 
reactions. 

If the chemical reaction and other work all exist in the constant pressure and 
isothermal process, we have  

( ) ( ) ( ) ( ) ( )r r otherW A U Q A U T S A W A p V A= ∆ − = ∆ − ∆ = − ∆ , where,  

( ) ( ) ( )r otherW A W A p V A= − ∆ . Because H U p V∆ = ∆ + ∆  and G H T S∆ = ∆ − ∆  
(where, ΔG is free energy change. In the constant pressure and isothermal 
process, ΔG is the state function), the result is ( )otherW A G= ∆ . In the realistic 
process, we can find ( ) ( ) ( )real otherW B W B p V B= − ∆ , therefore,  

( ) ( ) ( ) ( )real real otherW B U Q B W B p V B= ∆ − = − ∆ , further,  

( ) ( )real otherQ B H W B= ∆ − . On the basis of Equations (2), (10), we can gain 

( ) ( ) ( ) ( ) ( ) 0g r real other otherT S Q A Q B T S A H W B W B G∆ = − = ∆ −∆ + = − ∆ ≥ , that 
is, 0gT S∆ ≥  (here, T is the constant), or ( )otherW B G≥ ∆  and  
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( ) ( )other otherW B W A≥ , which are criteria when the other work exists in the con-
stant pressure and isothermal chemical reactions (see Figure 1). 

4.2. Maxwell Relations and Joule-Thomson Throttling Experiment 

Maxwell [17] thought the thermodynamics functions obey the following rela-
tions, namely that 

S V

T p
V S
∂ ∂   = −   ∂ ∂   

, 

pS

T V
p S

 ∂ ∂ =   ∂ ∂  
, 

T V

S p
V T
∂ ∂   =   ∂ ∂   

, 

pT

S V
p T

 ∂ ∂ = −   ∂ ∂  
. 

They are all obtained by commutation relations, but these commutation rela-
tions are not always correct. Moreover, the both sides (namely that, the left side 
and right side) per Maxwell equality correspond to the different processes, their 
results for the gases are no-confidence. Simultaneously, the Maxwell relations 
are also not right for the unclosed system. Therefore, the Maxwell relations are 
not right and disobey the Clausius inequality. 

The formula d d dV
V

pU C T T p V
T

 ∂ = + −  ∂  
 [1] is error, and it disobeys the  

Clausius inequality. The van der Waals gas equation of state does not obey the 
thereinbefore conclusions, furthermore, it is an approximate equation, but its 
availability values could not be denied. 

The Joule-Thomson throttling experiment (the sketch sees Figure 2) [17] is 
an adiabatic process, so that, 0Q = , U W∆ = . Thereby 

 

 
Figure 1. The unclosed system paths of chemical reactions in the con-
stant pressure and isothermal process. 
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Figure 2. The Joule-Thomson throttling experiment. (a) is the 
initial state; (b) is the transition state; (c) is the final state. 

 
( ) ( ) ( )2 2 1 1 2 2 1 1 2 2 1 1d d 0 0W p V p V p V p V p V p V= − + = − − − − = − +∑ . 

Because the other work does not exist, hence, 0H∆ =  (where, ΔH is the en-
thalpy change). We know VU C T∆ = ∆ , thus, the temperature change is given 
by  

2 2 1 1

V

p V p VT
C

− +
∆ = .                      (13) 

So that, the average value of Joule-Thomson coefficient JTµ  is approximately 
equal to 

( )
2 2 1 1

2 1
JT

VH

p V p VT T
p p C p p

µ
  − +∂ ∆

= ≈ = ∂ ∆ − 
. 

The Joule-Thomson throttling experiment is an irreversible process, thereof, 

JTµ  is not the state function. The temperature in the chamber 1 will raise since 
the work is done by surroundings. The temperature in the chamber 2 will fall 
since the gas does work to surroundings. Therefore, the formula (13) calculating 
the temperature change in the Joule-Thomson throttling experiment is an ap-
proximate equation. 

4.3. Applying to the Earth Gravitational Field and Motional Body 

In the gravitational field, mgΔh is the gravitational potential energy change, m is 
the mass, g is the acceleration of gravity, Δh is the elevation change. In a process, 
the relations among the gravitational potential energy change, kinetic energy 
change, and internal energy change had been investigated [18] [19] [20]. Atten-
tively, the motion path in the reversible process is the same as the realistic 
process. According to the conservation law of energy, we can get 

0U Q W∆ − − = ,                        (14) 

d 0
f

r r kin ele bi
U Q mg h E E p V W∆ − + ∆ + ∆ + ∆ + − =∫ ,         (15) 

d 0
f

real real kin ele bi
U Q mg h E E p V W′ ′∆ − + ∆ + ∆ + ∆ + − =∫ .       (16) 

where, p is the pressure between system and surroundings (it isn’t internal pres-
sure [21]). eleE∆  and eleE′∆  are the electrical energy change in a reversible and 
realistic process, respectively. kinE∆  and kinE′∆  are the kinetic energy change 
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in a reversible and realistic process respectively. Attentively, the positive or neg-
ative sign for the electrical energy, kinetic energy, and gravitational potential 
energy are all against the corresponding work. The kinetic energy and gravita-
tional potential energy are called mechanical energy. For the motional body, Wb 
expresses the work done by the buoyancy or non-friction resistance. Wb does not 
belong to the mechanical work, electrical work, or friction work. It is obvious 
that the air buoyancy exists for the gravitational field in the irreversible process. 
Wb cannot cause the heat change directly, but it can influence the kinetic energy 
change. In a process, the absorbed heat is positive, the released heat is negative. 

If the obtained energy including heat and work with the mechanical work 
could not be repeatedly calculated for the motional body, but they should be able 
to transform into the kinetic energy. For the closed gas, the mechanical work 
with the pressure-volume work is unable to be repeatedly calculated. For in-
stance, the bullet and rocket could obtain the heat energy from the burned am-
munition and fuel, but the obtained heat need to avoid repeating calculation 
with the mechanical work in Equations (15), (16) (see Figure 3). In the para-
chute, Wb has to be considered. In the pipeline system of fluid, the mechanical 
work and pressure-volume work have to be all considered. 

Because mg h∆ , kinE∆ , eleE∆ , and Wb all do not belong to the heat, there-
fore, they all belong to the work, we can gain 

d
f

r kin ele bi
W mg h E E p V W= − ∆ −∆ −∆ − +∫ ,               (17) 

d
f

real kin ele bi
W mg h E E p V W′ ′= − ∆ − ∆ −∆ − +∫ .              (18) 

where, in a reversible process, ( )other kin ele bW A mg h E E W= − ∆ −∆ −∆ + . In a rea-
listic process, ( )other kin ele bW B mg h E E W′ ′= − ∆ − ∆ −∆ + . 

The conservation law of mechanical energy disobeys on the earth system ex-
cept the vacuum state. The equation of conservation law of mechanical energy is 
given by 0kinmg h E∆ + ∆ = . For a bulk condensed matter in the gravitational  
 

 
Figure 3. The processes of heat energy obtained from the burned ammu-
nition and fuel in the bullet and rocket. 
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field of earth, if the influence of heat, internal energy change, pressure-volume 
work, electrical energy change, and Wb can be neglected, on the basis of Equa-
tion (11), we have 0kinmg h E∆ + ∆ ≈ , realW  will be no less than zero, that is, 

0real kinW mg h E′= − ∆ − ∆ ≥  or 0kinmg h E′∆ + ∆ ≤ . If the bulk condensed matters 
are still namely that 0kinE′∆ = , we can obtain 0h∆ ≤ , namely that the bulk 
condensed matters such as the solid ball and rain will fall on earth’s surface. The 
process obeys Equation (3) too. 

For the particles and gases, the pressure-volume work, electrical energy change, 
and Wb can be all neglected in the unclosed earth atmosphere system. In alti-
tudes, the temperature is low and the internal energy change will decrease. If the 
heat effect is not considered, or the process absorbs the heat, Wr and Wreal will 
become negative, so that, 0real kinW mg h E′= − ∆ − ∆ ≤  or 0kinmg h E′∆ + ∆ ≥ . If 
the particles are motionless namely that 0kinE′∆ = , we find 0h∆ ≥  (namely 
that, the particles will raise on the open earth system), but the raising height will 
be limited according to Equation (3), where, Tres is less than T in the process.  

In the wind, the friction resistance is generally small, therefore, Wr is ap-
proximately equal to Wreal. According to Equation (3), if Wr and Wreal are nega-
tive, the wind can easily spontaneously blow from low temperature to high tem-
perature on the same altitude (if 0h∆ = , 0kinE′∆ ≥ ). In this process, if the in-
ternal energy change keeps constant, the absorbed heat mostly converts into the 
work. In the heat wave, if Wr and Wreal will easily become into positive, the heat 
wave will blow from high temperature to low temperature on the same altitude 
(but 0kinE′∆ ≤ ), the motional distances will be finite. 

If the temperature varies little for the heated He(II) superfluid, the internal 
energy change will be very small. Because Wr and Wreal are easily affected by the 
heat, Wr and Wreal will all be negative value. Consequently, on the basis of Equa-
tion (3), it is easily the He(II) superfluid spontaneously flow from low tempera-
ture to high temperature, then, the heat will mostly convert into the kinetic 
energy change. 

If the body could raise, the following equation will be obeyed besides Equation 
(3), and it is given by 

d 0
f

real real kin ele bi
mg h Q U E E p V W′ ′∆ = − ∆ − ∆ −∆ − + ≥∫ . 

5. Conclusions 

The Clausius inequality should be derived from Equation (4), the Carnot theo-
rem can be proven by Kelvin and Clausius formulations of the second law of 
thermodynamics which are inconvenient compared with Equations (2)-(6). The 
Carnot theorem can be proven by the Clausius inequality. 

In the equilibrium and changeless state, ΔU, Q, W, ΔS, ΔSW, ΔSU, ΔSg, 
( )W g

S∆ , and ( )U g
S∆  are all equal to zero. In a reversible process, ΔSg, 

( )W g
S∆ , and ( )U g

S∆  are all equal to zero, but ΔU, Qr, Wr, ΔS, ΔSW, and ΔSU 
could not be all equal to zero simultaneously. Obviously, the change of ( )U g

S∆  
will cause the temperature change. 
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In the isothermal process, Equation (4) is not the criterion. If any work 
doesn’t exist, Equation (3) is not the criterion. It is not surprising the He(II) su-
perfluid, particles, and gases disobey the conservation law of mechanical energy. 
The conservation law of mechanical energy is a bad conservation law. Equations 
(1)-(5), (10), (11) should be able to apply to a single particle or big object. The 
pressure-volume work of gases could be generated easily. In any case for a par-
ticle or big object, the friction work is all positive value, and the friction heat will 
be negative. The afore-mentioned function such as ΔSW and ΔSU are all the state 
function for the ideal gas in a reversible process. For the vacuum state, any irre-
versible process does not exist for the motional body. 

For the whole unclosed system, the expansion work for the chemical reactions 
in the constant pressure and isothermal process is not equal to d

f

i
p V−∫ , but it 

is equal to p V− ∆  in fact. The application scope of thermodynamics could not 
refuse the gravitational field and mechanical motion. 

Altogether, for the organisms, all the processes including the biological chem-
ical reactions obey the Clausius inequality. It is above comprehension that the 
organisms disobey the second law of thermodynamics. The sign of surroundings 
entropy is opposite to the system entropy, and the surroundings entropy is equal  

to negative value of the entropy flow (
( )f real

i
res

Q B
T

δ
∫ ). Therefore, the system  

entropy may be less than zero sometime in the isolated system, but the entropy 
generation has to be no less than zero in the isolated system. The principle of 
entropy increase is not always right in the isolated system and non-isolated sys-
tem. 

The organisms are a type of heat engine, but they are controlled by the bio-
logical chemical reactions, DNA, and RNA etc. (not mechanism). 

If assuming that the surroundings entropy or entropy flow are equal to zero, 
the entropy generation has to be equal to the entropy change. For the isolated 
system in a realistic path (B), the entropy change will become the entropy gener-
ation which is the non-state function except when ( ) 0realQ B = . So that, the 
principle of entropy increase is an error for many cases. A reversible path (A) 
may contain a few processes in its realistic path (B), and a realistic path (B) may 
contain a few processes in its reversible path (A) too. 
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Abstract 
The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic 
concordance model accounts for the radial expansion of the universe after the 
Big Bang. The model appears to be authoritative because it is based on the 
Einstein gravitational field equation. However, a thorough scrutiny of the 
underlying theory calls into question the suitability of the field equation, 
which states that the Einstein tensor µνG  is a constant multiple of the 

stress-energy tensor µνT  when they both are evaluated at the same 4D 

space-time point: 8 kµν µνπ=G T , where k is the gravitational constant. Not-

withstanding its venerable provenance, this equation is incorrect unless the 
cosmic pressure is p = 0; but then all that remains of the Einstein equation is 
the Poisson equation which models the Newtonian gravity field. This short-
coming is not resolved by adding the cosmological constant term to the field 
equation, 8 kµν µν µνπ+ Λ =G g T , as in the ΛCDM model, because then p = Λ, 

so the pressure is a universal constant, not a variable. Numerous studies sup-
port the concept of a linearly expanding universe in which gravitational 
forces and accelerations are negligible because the baryonic mass density of 
the universe is far below its critical density. We show that such a coasting un-
iverse model agrees with SNe Ia luminosity vs. redshift distances just as well 
or even better than the ΛCDM model, and that it does so without having to 
invoke dark matter or dark energy. Occam’s razor favors a coasting universe 
over the ΛCDM model. 
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1. Introduction 

The ΛCDM model is used to represent the expanding universe for the interpre-
tation 1) of type Ia supernovae (SNe Ia) brightness and redshift data, and 2), of 
measurements of anisotropies in the cosmic microwave background (CMB) 
spectrum of the early universe. The model conjectures the existence of dark 
matter and dark energy—a lot of both. With a felicitous balance of the two, an 
ostensibly credible model is derived. However, a ΛCDM model has drawbacks. 
Firstly, the existence of dark matter is an unverified hypothesis.1 There have 
been numerous experiments dedicated to finding dark matter here on Earth, in 
underground experiments [2] [3] and satellite detectors [4], as well as in the 
Large Hadron Collider [5]. Yet, there has been no unambiguous dark matter de-
tection [6], which, by induction [7], is evidence of absence. Moreover, aside 
from the ΛCDM model, there is no theoretical call for dark energy; nor has there 
even been an observational hint of its existence. Kang et al. [8] have recently 
challenged a key premise in the derivation of the ΛCDM model, and by ad-
dressing the problem with a different approach, we show that the model is ut-
terly untenable. We expand, revise and interpret the Einstein field equation to 
find a simple viable alternative to the ΛCDM model. 

2. Einstein Field Equation 

We use the standard nomenclature of GR (e.g., see Kenyon [9]), except k is the 
Newtonian gravitational constant and 1c =  is the speed of light. The Einstein 
field equation is  

8 ,kµν µνπ=G T                           (1) 

where µνG  is the Einstein tensor and µνT  is the stress-energy tensor of a per-
fect fluid,  

{ }{ }, , , ,p p pµν ρ=T                        (2) 

where { }{ } [ ]diag⋅ ⋅ ⋅ ⋅ ≡ ⋅⋅ ⋅ ⋅ , ρ  is the mass density, and p is the pressure (energy 
density). 

The line element, 2d d ds x xµ ν
µν= g , reduces for the weak isotropic cosmic 

field, to ([10], Eq. 10.84)  

( ) ( )2 2d 1 2 d 1 2 d d ,i j
ijs t x xφ φ δ= + − −                 (3) 

According to Einstein ([11], p. 84), µνG  “must be a differential tensor in the 

µνg  that is completely determined by the following three conditions:  
1) It may contain no differential coefficients of the µνg  higher than the 

second.  

 

 

1Dark matter had a sullied reputation from the nineteenth century, when astronomers searched 
fruitlessly for another sort of invisible matter—an intramercurial planet, Vulcan [1], that was 
thought to be responsible for otherwise unexplainable orbital perturbations of Mercury. As it turned 
out, what had been missing was not matter, but an authoritative theory: GR. So, is it now missing 
matter, or missing theory? 
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2) It must be linear in these second differential coefficients.  
3) Its divergence must vanish identically.” 
For the nonce, let ∂  represent any partial derivative operator ix

∂ , and let g 
represent any component of µνg . According to the first two conditions, each 
component of µνG  has the form ~g g φ φ∂ ∂ ∂ ∂  or ( )2 2~ 1 2g g φ φ∂ − ∂  (… or 
zero). Then, to the first power in φ , the only non-zero form of a µνG  compo-
nent is 2φ∂ . 

With 2
00 2G φ= ∂  and 00T ρ= , Equation (1) yields the Poisson equation. If 

any other µνG  component, say G11, is non-zero, then 2
11 00~ 2G Gφ∂ = ; 

therefore 11 ~T ρ , and 11 0G ≠  implies that ~p ρ . With such an equation of 
state, the fluid is relativistic, which is to say that the characteristic thermal speed 
of the fluid is close to c, which it generally is not. The only viable alternative is to 
set G11 and all other terms of µνG  except G00 equal to zero. But this requires 
that 0p = , which is not generally true. We overcome this dilemma by adding 
8 k pµνπ g  to the RHS of Equation (1). Then both sides of  

8 k pµν µν µν = π + G T g                      (4) 

remain generally covariant and, with this essential correction, Equation (4) be-
comes  

{ }{ } { }{ }22 ,0,0,0 8 ,0,0,0 ,kµν φ= ∂ = πG                (5) 

where pρ= + . This is the full Poisson equation,  

2 4 ,kφ∂ = π                           (6) 

which applies in all coordinate systems. It notably takes into account the gravita-
tional charge equivalence of mass density ρ  and energy density p [12];2 
adapted to this nicety, φ  is the Newtonian potential. 

In general, the density does not need to be uniform. We can approximate the 
mass of the universe with an assemblage of point masses and consider just one 
point mass at a time. Then the Poisson equation for the potential due to one 
point mass M is 2 kMφ∂ = , and the Einstein field equation is a linear superpo-
siition of Poisson equations. 

3. The Expanding Universe 

For a universe with vanishingly small  , the line element 3 reduces to  

2 2d d d d .i j
ijs t x xδ= −                        (7) 

Then 0µν =G  because this metric is independent of φ ; GR obviously does 
not apply. But what if this nearly empty universe expands according to Hubble’s 
law? Then  

022 2d d e d d ,H t i j
ijs t x xδ= −                      (8) 

 

 

2Using an arbitrary equation of state for a perfect fluid, Peebles ([11], Eq. 4.21) generalizes the RHS 
of Equation (6) to ( )4 4 3k k pρπ π→ +  instead of ( )4 4k k pρπ π→ + . 
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so that 2
03Hµν µν=G g , assuming that GR does apply.3 The Einstein field equa-

tion is 2
03 0H µν =g , so 0 0H = . Clearly GR does not apply in this case either. 

However, we can force GR to apply by replacing the Einstein tensor µνG  with 
its Lovelock [15] form bµν µν µν→ +G G g . Then the field equation is  

( )2
03 0.H b µν+ =g                          (9) 

But b is merely an invention that allows us to broaden the scope of the field equ-
ation by allowing for Hubble expansion; it has no significance of its own. In fact, 
the Hubble expansion is real, but it is independent of GR. 

Refashioned to try to accommodate Hubble expansion, Equation (5) becomes  

{ }{ } { }{ }22 ,0,0,0 8 ,0,0,0 ,b kµν µν µνφ+ = ∂ + Λ = πG g g          (10) 

where 2
03H bΛ = + , which is zero according to Equation (9). There is no real 

change from Equation (5), but we use this form of the equation in Section 5, 
where Λ—there designated as the cosmological constant—is regarded as a proxy 
for dark energy. 

4. The Coasting Universe 

Evidence for the existence of dark matter is not at all conclusive. It is not needed 
to explain the flat rotation curves of spiral galaxies nor the CMB simulations. 
Concerning the rotation curves, alternate explanations have been published by 
Milgrom [16] [17], Brownstein and Moffat [18], Mannheim and O’Brien [19], 
Verlinde [20], ourselves [21], and others. As far as the CMB data are concerned, 
they show a compatibility with the ΛCDM model, but not that an equivalent 
compatibility is impossible for other models [22] [23] [24] [25]. Therefore if 
there is no dark matter bρ≈ , the density of baryonic matter, whose value [26], 

28 3kg m3.6 10bρ
− −⋅≈ × , is two orders of magnitude smaller than the critical den-

sity, 2
03 8c H kρ = π , so the gravitational forces and accelerations are negligible. 

Kolb [27] proposed such a linearly coasting universe, which Sethi et al. [28] 
found to agree “surprisingly” well with SNe Ia observations. Subsequently many 
others [29]-[58] have confirmed the validity of a coasting fit, which we now cor-
roborate. The coasting universe expands without acceleration,  

( ) 01 .a t H t= +                          (11) 

For redshift z, the distance between a source (then) and observer at 0t =  (now) 
is  

( ) ( )0 ln 1 .r c H z= +                       (12) 

The distance modulus depends on the area, 24 fπ , of the wavefront at 0t = . 
For an open universe [59],  

 

 

3We derive this expression using L. Parker’s Mathematica [13] notebook, Curvature and the Einstein 
Equation [14], with only the following principal modifications:  
 

coord ={t, x, y, z}; 
g11 = −Exp [2 H0 t]; 
metric = {{1, 0, 0, 0}, {0, g11, 0, 0}, {0, 0, g11, 0}, {0, 0, 0, g11}} 
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( )
0 0

1sinh ln 1 1
2 1

c cf z z
H H z

 = + = + −    + 
             (13) 

is the luminosity distance. 
In Figure 1, we plot a set of high-confidence Union 2.1 data [60]. We used 

these data to estimate 1 1
0 68.22 1.00 km s MpcH − −= ± ⋅ ⋅  ( 2 576.45χ = ). It is the 

only parameter needed for calculating the superposed coasting curve. Because 
the number of degrees of freedom ν = 579 is large, the variable ( )2 2ξ χ ν ν= −  
is approximately normally distributed with unit variance. For our solution, 

0.075ξ = −  which, being a small value, substantiates the Union 2.1 observa-
tional error estimates as well as the coasting fit to the data.4 According to our 

0H , the age of the coasting universe is the Hubble time, 1
0 14.33 0.2 Gyr1H − = ± . 

This is gratifyingly close to the 14.46 ± 0.31 Gyr age of HD 140283, the oldest 
star for which a reliable age has been determined [62].  

5. The ΛCDM Model 

Equating the 00µν =  element pairs on both sides of Equation (10) gives  
22 8 ,kφ∂ + Λ = π                        (14) 

whereas equating any of the 11,22µν =  or 33 element pairs gives  

0.Λ =                            (15) 
 

 
Figure 1. Hubble diagram residuals for the linearly coasting model that best fits the Un-
ion 2.1 compilation set of 580 SNe Ia data points. 

 

 

4With a three parameter (H0, ρ, Λ) ΛCDM fit to the same Union 2.1 data, the Planck team [61] esti-
mates H0 = 70 km∙s−1∙Mpc−1, χ2 = 545.11, and ξ = −0.939, which we view per se as reasonable because 
the magnitude of ξ, although larger than ours, is less than one standard deviation. (A smaller χ2 is 
not necessarily better in a χ2 test: the best fit occurs when χ2 = ν.) The qualities of the SNe Ia fits 
(ours and the Planck team’s) are commensurate, but the team’s ΛCDM model depends on the exis-
tence of an untenable fiction: dark energy. 
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The ΛCDM model is based on Equation (14) (but while also implicitly ignoring 
Equation (15)). The first integral of Equation (14) is  

( )8d2 ,
d 3

k r
r
φ π −Λ
=


                     (16) 

which, by Newton’s second law of motion, is  

( )
2

2

d 8 .
6d

r r k
t

= πΛ −                       (17) 

With this choice, the ΛCDM scale factor for an expanding universe decelerates 
at first when 8 kπ > Λ , then later accelerates after 8 kΛ > π  ; the orthodox 
ΛCDM model does not expand at the same rate as the well substantiated linearly 
coasting universe that are discussed in Section 4. There is no way of formulating 
a linearly coasting universe with the ΛCDM model, so purported ΛCDM scale 
accelerations [60] [63]-[68] are then merely expected artifacts of the Equation 
(17) procrustean template. Anyway, according to Equation (9) of Section 3, and 
to the conventionally ignored Equation (15), the cosmological constant must be 
zero: the ΛCDM model should be rejected because it does not expand at all. 

6. Conclusions 

GR can be reconciled with a static universe by starting with the Einstein field 
equation (Equation (1)) if 0p = , or with the modified field equation (Equation 
(4)) if 0p ≥ . GR can also be reconciled with a uniformly expanding universe by 
replacing the Einstein tensor with its Lovelock form bµν µν µν→ +G G g . GR 
then turns out to be in full accord with the linear coasting universe determined 
from the collation of type Ia supernovae (SNe Ia) brightness and redshift da-
ta—without recourse to the existence of dark matter or dark energy. 

The ΛCDM model requires the existence of vast quantities of (attractive) dark 
matter and (repulsive) dark energy. They are the sources of fanciful opposing 
forces that mostly cancel each other out. We have shown why this model must 
be wrong: according to Equation (15), 0Λ = . There can be no dark energy in 
the context of the ΛCDM approach, so this broadly accepted model is incorrect. 
Whereas dark energy is implausible and unnecessary, dark matter is not im-
plausible and its need is unresolved. We recommend a linearly coasting un-
iverse—one that is consistent both with GR and with SNe Ia observations—as a 
viable ΛCDM alternative. 
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Abstract 
Problem: In principle there might be a single deeper mechanism underlying 
the fundamental interactions at both the extremely small scale of particles, 
and the large scale of gravitation. However it is unclear what form such a 
theory might take, as the obvious candidates have not yet been successful. 
Purpose: This work constructs a conceptual framework for the interactions 
from a non-local hidden-variable (NLHV) perspective, specifically the Cor-
dus NLHV theory. Findings: All the interactions can be attributed to the dis-
crete force emissions from the particle, more specifically from the different 
attributes thereof. Thus the electrostatic appears to arise from the direct li-
near effect of the discrete forces; magnetic from bending of the flux tube; gra-
vitation from handed energisation sequence; strong from the synchronisation 
of emissions; and weak from rearrangement of discrete force emissions hence 
remanufacturing of particle identity. Originality: An explanation is provided 
for all the interactions based on non-local hidden-variable theory. Apart from 
the concept of the discrete force, and its multiple attributes, no new particles 
or bosons are required. 
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1. Introduction 

The concept of force is well established in mechanics and the resulting principles 
of statics and dynamics extensively applied in science and engineering with great 
success. However, despite the precision and familiarity with force at the ma-
croscopic level, the fundamental physics of force are incompletely understood. 
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Furthermore there is no single coherent theory for all the fundamental interac-
tions. This paper proposes mechanisms for the deeper common causality be-
tween interactions. It approaches this from the perspective of a non-local hid-
den-variable (NLHV) theory [1] [2]. 

2. Existing Approaches 

The first problem is explaining how force arises. The effects of electrostatic, 
magnetic, and gravitational (EMG) forces are well represented by Newtonian 
and classical continuum mechanics. However these mechanics do not describe 
the underlying mechanisms of how force arises or operates. The same limitation 
applies for general relativity (GR). In quantum mechanics (QM) force is con-
ceptualised as occurring by the exchange of smaller particles, the gauge bosons. 
However there are many unexplained processes, such as how intrinsic properties 
are transferred between particles. Furthermore the bosons can only be detected 
as forces not individual particles.  

The second problem is the lack of a single coherent theory for explaining all the 
fundamental force interactions. The interactions—excluding hypothetical dark 
energy mechanisms—are the electrostatic, magnetic, gravitational, weak, and 
strong. The standard model of QM proposes that electromagnetism is carried by 
virtual photons, the strong interaction between quarks by the gluon, and the weak 
interaction (e.g. quark flavour-changing between left-handed fermions) by W and 
Z bosons. The strong nuclear force has a partial explanation in quantum chromo-
dynamics (QCD), but the theory is limited to quarks. It also has no explanation of 
nuclear structures at the level of nucleons and atomic nuclei. A coherent explana-
tion of gravitation is especially problematic from a particle perspective. In GR, 
gravity arises from the warping of space time, i.e. the effect is a geometric one [3]. 
Holographic theory provides an explanation for gravitation as an entropic force 
[4], but not for the deeper mechanisms or the other forces. It seems that any 
theory that explains gravitation does not explain all the other interactions. QM has 
attempted to explain gravitation by loop quantum gravity, but a solution is elusive. 
Alternatively, gravitons may be the boson for gravity, though this is speculative. 
Thus there is no accepted explanation within QM for gravitation. 

Existing efforts at unification have primarily attempted to extend quantum 
mechanics, on the expectation that a continuum physics like general relativity is 
unsuited to representing particle interactions. A second premise that has histor-
ically shaped the research is the belief that there ought to exist an undiscovered 
single progenitor force that, at sufficiently high energy density, forms the basis 
for all the other interactions. Unification is indeed available for the electrostatic 
and magnetic forces into the electromagnetic with the photon as the boson, and 
decay interactions (weak nuclear force) via electroweak unification. Models exist 
providing grand unified theories whereby the electromagnetic, weak, and strong 
forces might unite into an electronuclear force. However the predicted new par-
ticles have not been observed. Furthermore QCD is not integrated with electro-
weak theory, and gravitation has been especially problematic.  
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The elusiveness of solutions may indicate that the necessary physics is not ac-
cessible with the premises that underpin quantum mechanics. QM is premised 
on particles—and bosons being zero-dimensional (0-D) points with stochastic 
and intrinsic properties. If the interactions were to actually have a spatial com-
ponent, then 0-D points might be inherently unable to represent the mechan-
isms. Hence alternative theories of physics are also candidates, with their greater 
number of dimensions for their particles. These other theories may be broadly 
categorised into string theories, and hidden variable theories. Neither has been 
especially effective.  

String theory has been attempted as a route to a theory of all the interactions. 
However its lack of specificity has frustrated progress. Hidden variable theories 
take the premise of physical realism, that manifest attributes are carried by 
physical substructures to the particle, but they too have been mostly unsuccess-
ful. Of the NLHV theories, historically the de Broglie-Bohm has been the best 
known [5] [6], but has made no contribution to a holistic explanation of force 
interactions. Hence a unified theory of all interactions remains elusive, despite 
considerable effort.  

3. Method  

The purpose of this paper was to seek explanations for each of the interactions 
under the Cordus NLHV theory [1]. The earlier work of [7] and [8] provided the 
initial conceptual basis.  

The approach used abductive reasoning, which starts with the known obser-
vations and seeks to find the simplest mechanisms that will account for the 
phenomena consistent the existing premises. “Simple” in this context was inter-
preted as parsimonious and sufficient, while “Consistent” refers to system inte-
gration.  
• Parsimoniousness—New particle sub-structures should not be created for 

each new phenomenon (function) being included. This is conceptually simi-
lar to the need to avoid over-parameterisation and model degeneracy in 
quantitative modelling.  

• Sufficiency—The solution needs to be a sufficient match to the empirical 
phenomena. This corresponds to the function needs in the language of de-
sign, see also [9].  

• System integration—Any newly proposed particle substructures or concepts 
must be integrated into the rest of the theory. This is necessary for concep-
tual coherence. Where appropriate this is expected to result in reconsidera-
tion of parts of the theory that show conceptual discoherence.  

This approach was applied iteratively. The results present the final theory that 
emerged, not the intermediate work. The theory is constructed of lemmas, indi-
cated §, which are conceptual propositions that are valid within the wider Cor-
dus theory, even if unable to be immediately verified. The abductive reasoning 
process is represented diagrammatically in Figure 1. 
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Figure 1. Flowchart representing the abductive reasoning method as applied to this theory. 

 
We first present general principles for interactions, and then elaborate on the 

different sub-types of interaction. 

4. Results 

4.1. Context  

4.1.1. Structure of the Cordus Particle 
Like any NLHV theory, the Cordus theory proposes that particles are not zero 
dimensional points but instead have internal structures that provide the ob-
served functionality (charge, mass, spin, etc.). It makes specific predictions about 
the identity of these structures at the sub-particle level [1]. The key difference 
compared to other theories is that the particle is proposed to comprise two reac-
tive ends some short distance apart, connected by a fibril, see Figure 2. The fibril 
does not interact with other particles, instead the interaction occurs at the reac-
tive ends. The reactive ends are energised at the de Broglie frequency, at which 
time they emit discrete forces into space in each of three spatial directions (r, a, 
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and t, see Figure 2) [10] [11]. For massy particles the discrete forces are encap-
sulated into extended fibril structures that propagate into space—these are called 
flux tubes. The aggregation of these in space makes up a fabric of discrete forces 
[12].  

4.1.2. A Proposed General Mechanism for Force 
A general mechanism for force has been proposed within this theory [13]. The 
reactive end moves as it goes through its energisation cycle, and traces out a cyc-
lic locus in space. This locus is then distorted by the incoming discrete forces of 
the external field. As a consequence the mean position of the reactive end 
changes. This provides a mechanism whereby the reactive end is able to sample 
the spatial distribution of field around it, i.e. the gradient of the field, and move 
accordingly. The direction of motion adjustment is along the gradient in the di-
rection of greater compatibility of discrete force emissions. Generally this means  
 

 
Figure 2. The representation of the electron’s internal and external structures. It is pro-
posed that the particle has three orthogonal discrete forces, energised in turn at each 
reactive end. Reproduced from [13], being an adaption of [14] with permission. 
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the type of emissions, e.g. the phase energisation sequence (matter-antimatter), 
and direction of emission (charge). Hence force arises as “coerced displacement 
of the reactive end” [13].  

4.1.3. Geometric Properties of Flux Tubes Correspond to Interactions  
The flux tube has three geometric properties of linear strength (radial emis-
sions), curvature (bending), and twist (torsion). It is proposed that these geome-
tric properties provide the mechanisms for the electrostatic, magnetic, and gra-
vitational (EMG) force interactions respectively. This concept arises from [7] 
and [8], and is further elaborated below. A fourth attribute of the discrete forces 
(not so much of the flux tube) is the synchronisation of emission between two 
particles [10], and this is proposed as the mechanism for the strong interaction 
(see below). The weak (decay) interaction is proposed to have an altogether dif-
ferent cause (see below). 

The above are the general principles for how force operates within the Cordus 
theory. Next these principles are applied to offer explanations for the different 
interactions.  

4.2. Electrostatic Interaction 

Consider test particle B, say an electron, in an electrostatic field set up by basal 
particle A. Each particle has two reactive ends, and for B these are denoted B1 
and B2. See Figure 3. The location of interest is reactive end B1 which receives 
forces from A, and emits its own discrete forces.  

4.2.1. The Electrostatic Interaction arises from the Linear (Radial) 
Component of Discrete Forces (§1) 

The theory proposes that the electrostatic interaction arises from the direct linear 
action of the incoming discrete force on a remote particle. It applies in a direction 
along the line of the flux tube, and the effect is to move the remote particle B closer 
or further from the emitting particle A depending on the relative charge.  

The underling mechanism is proposed to be that the recipient reactive end at-
tempts to emit its own discrete forces, but is affected by the incoming discrete 
force. It may be enhanced or inhibited depending on the compatibility between 
the native and external discrete forces. This changes the position of the reactive 
end, with the displacement being along the axis of the fibril. A similar mechan-
ism for the spatial readjustment of the reactive end has been proposed for pho-
ton absorption and emission [15]. The direction of the discrete force is the basis 
for the sign of the electric charge. This is presumed to be the direction of action 
of the discrete forces within an outward travelling flux tube. Negative charge is 
assumed outwards—this is merely a sign convention.  

4.2.2. Explanation for Like-Charge Interaction 
Consider the interaction between two electrons, being a typical like-charge case. 
Electron A is the basal one and is nominally assumed to be fixed, while B is the 
remote test charge that reacts to A. Each electron has two reactive ends (1 and 2)  
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Figure 3. The electrostatic interaction arises from the direct linear 
action of discrete forces emitted by basal particle A. 

 
per this theory. The reactive end A1 of electron A emits discrete forces packages 
in a flux tube, which propagate out into space at the local speed of light and im-
pinge on reactive end B1 of remote test electron B.  

Consider now the energisation of dormant reactive end B1. As B1 begins to 
energise it encounters incoming discrete forces from A1 that are incompatible 
with its own emissions. Per lemma 1, this ranged interaction is transphasic, since 
the particles have like charge, and the synchronous interaction therefore oper-
ates to put the emissions π/2 out of phase. However B1 cannot delay its energisa-
tion indefinitely. This is because energisation state and frequency are determinants 
of particle identity and energy respectively [16] [17]. Consequently B1 has to adjust 
its location to move with those imposed forces, in the repulsive direction.  

If the remote charged body has physical depth, i.e. comprises many particles, 
then the incoming discrete forces apply displacements to the foremost parts of 
the body, then pass through and apply displacements to the deeper layers. Hence 
a charged macroscopic object feels the electrostatic effect and moves holistically. 
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4.2.3. Electric Field 
At the macroscopic scale of a negatively charged sphere, each of many electrons 
generates its own discrete forces and flux tubes. Macroscopic bodies tend not to 
exhibit quantum behaviours. The Cordus theory interprets such bodies as dis-
coherent assemblies of matter, wherein the particle spans are not aligned [2]. 
Hence a discoherent sea of electrons can be expected to generate flux tubes 
pointing in random directions. This is consistent with the observation of an 
electrostatic field that is smooth, continuous, and uniform in all directions. The 
theory predicts that the field will however be granular at the frequency of the 
charge emitters.  

The electrical force eBF  between two particles of charge qA and qB is:  

2 ˆA B
eB

q qK r
r

= −F                         (1) 

where r  is the radial separation, r̂  is the radial direction and K is a constant. 
A qualitative explanation for the form of this relationship follows. The reason for 
the product of charge (qAqB) is that charge determines the number of discrete 
forces involved: the amount of displacement coercion (hence force) experienced 
by particle B is determined by the strength qA of the incoming discrete forces, 
and the strength of its own response qB, hence a multiplicative relationship. The 
inverse square relationship 21 r  arises from the expansion of the discrete 
forces on a spherical front. This expansion occurs because the discrete forces are 
emitted in three orthogonal directions in surface shells at each energisation 
cycle.  

Irrespective of the relative orientation (spin) of A and B, there is always a 
component of B’s emissions that is radial to A, i.e. in the direction r̂ . The elec-
trostatic interaction may be simplified to only this component.  

Dissimilar charges attract even across the matter-antimatter species. This im-
plies that the energisation sequence—which differentiates the species—is imma-
terial for the electrostatic interaction.  

4.2.4. Electrostatic Shielding  
An electric field is known to be shieldable by a Faraday cage, whereas gravitation 
is not. The present theory predicts that discrete forces penetrate all matter, but 
in a Faraday cage the electric field only appears to be shielded, because electrons 
in the conductive cage material have sufficient mobility to move in response to 
the external field and set up a countering field.  

In contrast the photon can be shielded: it can be absorbed, by mechanisms 
identified in [15]. Applying this to interaction of electromagnetic radiation pho-
tons from an antenna or reflector, the present theory explains that the frequency 
and span of the photons is inversely related [1], which is consistent with the ob-
servation that the conducting elements of the antenna need to be closer spaced 
for higher frequency radiation. As the photon frequency rises still further, the 
required conductive loops are of the order of atomic spacing, i.e. the shield must 
be of a continuous material. For even greater frequencies the electrons cannot 
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encounter all the discrete forces in which case the photons pass straight through. 

4.3. Magnetic Interaction  

A test charge q moving with velocity V in a magnetic field Bm experiences a 
sideways force Fm that is perpendicular to both its direction of travel and the ex-
ternal magnetic field, i.e. excludes the magnetic field of the test charge itself):  

mF qV Bm= ×                           (2) 

This is explained as follows. 

4.3.1. Movement of the Basal Charge Bends the Flux Tube (§2) 
A flux tube is a directional propagation of discrete forces. It is proposed that this 
may be bent by movement of the basal emitting reactive end. Per Lemma 8, mo-
tion of a reactive end occurs in discrete displacements during its de-energised 
state. This results in emissions expanding from each progressive location of 
energisation. Consequently the flux tube, which is continuous, has kinks. The 
new curvature moves outward with the discrete forces at the local speed of light. 
If the speed of light was infinite, i.e. disturbances propagated instantly, then 
there would be no magnetic effect.  

4.3.2. The Magnetic Interaction Arises from Curvature of the Flux Tube 
(§3) 

Under these premises the magnetic interaction arises interpreted as the action of 
the incoming discrete forces in a recurved flux tube, causing a yaw adjustment in 
the velocity of a remote moving charged particle [7]. A remote test particle B 
moving with velocity VB receives at reactive end B1 the discrete forces and the 
re-curved flux tube emitted by A. This causes a coerced displacement of B1, 
which provides a yaw moment that changes the direction of motion of B to be 
more parallel or antiparallel (depending on the charge) to the velocity of A. See 
Figure 4. 

4.3.3. Coerced Displacement of a Remote Moving Charge  
How does a curved flux tube create the magnetic force on the moving remote 
test charge? If the remote test charge is stationary, then any curvature of the in-
coming discrete forces in their flux tube only re-orients the direction of the elec-
trostatic force, i.e. momentarily changes spin. Since the flux tube is recurved, this 
imposes a transient change in orientation that integrates to zero. However, if the 
test charge is also moving, and encounters a curved flux tube, then the magnetic 
interaction attempts to realign the locus of the moving test charge to the same 
handed direction of motion as the basal charge.  

When the discrete force in its flux tube reaches the remote moving test charge 
B, it upsets the geometric location for the reactive end B1 of the moving test 
charge. Whether it delays or advances that reactive end depends on the sign of 
the magnetic field, i.e. the relative direction of the velocity of B, and the relative 
charges. The discrete force pulse prevents B1 from advancing forward as far as it 
usually might during a frequency cycle, or it pushes it forward.  
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Figure 4. The magnetic interaction arises from the rotational action of the incoming dis-
crete forces in a recurved flux tube. 

 
The incoming discrete forces are not consumed but pass on outward to the 

other reactive end of the remote particle. The effect on B as a whole is additive 
rather than being negated, since the direction of the flux tube is reversed when it 
reaches its other reactive end. This sets up a yaw moment across the fibril of the 
remote particle, thereby adjusting the direction in which the remote charge is 
moving. 

4.3.4. Magnetic Fields 
Magnetic fields represent the motion of the charge (basal generator) that is emit-
ting the discrete forces. A remote moving charge changes direction to be more 
closely parallel (or antiparallel depending on charge sign) to the locus of the bas-
al charge [18]. The magnetic force mBF  in the radial direction r̂ , experienced 
by particle B of charge qB and velocity Bv  in a magnetic field created by particle 
A with qA and Av  is: 

0
24

A B
mB A B

q q
r

µ
π

= ×vF v                       (3) 
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where r  is the radial separation, and μ0 is a constant. A qualitative explanation 
for the form of this relationship follows. The reasons for the product of charge 
(qAqB) and the inverse square relationship 21 r  are as before. Having more 
charges q moving in the same direction does not increase the curvature but 
simply means that there are more discrete forces reaching the remote test 
charge, i.e. the effect simply scales for increase in either of the charges. The di-
rection of the magnetic field is perpendicular to the plane in which the curvature 
of flux tube occurs. The velocity dependency arises because the faster the basal 
charge moves Av  the greater the curvature of the flux tube. The greater the ve-
locity Bv  the greater the rate at which the kinks are encountered, hence a mul-
tiplicative relationship. The magnetism effect depends not simply on the speed 
of the charges, but also their relative directions. The effect depends on the com-
ponent of curvature that is apparent to B in its direction of motion, hence the 
cross product. Thus magnetism only works in remote particles that already have 
some degree of alignment of their locus with the velocity of the basal charge.  

It is proposed that the reason for the effect being right-handed is due to the 
way that reactive ends emit discrete forces in an energisation sequence (see Fig-
ure 2), and the dominance of the matter species. Each package of discrete forces 
has three orthogonal sub-forces and these are energised in a sequence. This se-
quence has been proposed as the distinguishing structural feature of the mat-
ter-antimatter species [19], the anti-electron structure [20], and the basis for an-
nihilation [21].  

A common illustration of magnetism depicts a moving charge being forced 
into a circular trajectory in the presence of a uniform magnetic field. Our expla-
nation is that when the magnetic field is large and uniform, then the transecting 
moving test charge is forced into a circular path which is the same motion as the 
large basal current required to make that magnetic field. In this case the mag-
netic field dominates the interaction, and the moving test charge tends to move 
into a circular or helical trajectory (its own back-reaction is miniscule). However 
the case of the uniform field obscures the important fact that creation of that 
uniform field requires charges to be moving in a circular path too. Uniform 
magnetic fields are therefore a special case. It is the interaction of two moving 
charged particles where the more interesting mechanics occurs. The geometri-
cally simplest form of magnetism, two particles affecting each other, is surpri-
singly complex. The moving test charge is not simply a passive participant, but 
also radiates its own discrete forces in their flux tube. If the basal charge is of 
similar size, it will be affected in turn by the magnetism of the test charge. For 
this and relativistic considerations see [22] and earlier work by [18]. We propose 
it can be qualitatively interpreted as one moving charge attempting to force 
another to conform to the same direction of motion: it is a type of alignment ef-
fect.  

If the test charge is not moving, then the effect of incoming magnetism is to 
align the remote test charge, which means interfering with its orientation (spin). 
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This is consistent with behaviour of permanent magnets and magnetic reson-
ance imaging. In both cases the spins of all the electrons in the macroscopic 
body tend towards alignment. Again this shows that magnetism is primarily an 
alignment effect.  

4.3.5. Permanent Magnets 
A permanent ferromagnet has a magnetic field, but no apparent electric field. 
The usual explanation is that that the electron and nucleon spins are aligned 
across a domain (region of atoms). The present theory explains this based on the 
orientation of the particle. It is proposed that the alignment of the span of elec-
trons and nucleons, i.e. spin, results in the discrete forces in their flux tubes 
pointing in the same direction along the axis of the magnetic poles, but ran-
domly orientated in the transverse directions. Hence the effect is summated 
along the axis, and neutralised laterally. The magnet does not appear to be 
charged or to emit an electric field because of the equal contribution of positive 
and negative charges. Nonetheless it emits discrete forces in their flux tube. The 
magnetic domains are proposed to be formed in the first instance because elec-
tron discrete forces extend to neighbouring atoms and encourage alignment of 
other electrons. We suggest that within the magnetic material the electrons 
themselves move, either through their unfilled orbitals, or as current flow within 
the sub-lattices of the material, and this generates curvature of the discrete forces 
in their flux tubes and thus magnetic fields.  

4.4. Gravitation 

4.4.1. The Gravitational Interaction Arises from Torsion of the Flux  
Tube, Which Arises from the Handedness of the Emission of  
Discrete Forces (§4) 

Up to here the discrete forces have been implied to be discrete, and represented 
diagrammatically as arrows. However this is a simplification of a deeper me-
chanics. They are instead believed to take the form ( )2sin 2θ  and to comprise 
emissions in three orthogonal directions (r, a, t) [13], see Equation (4). Thus the 
potential energy 

1BU  in the flux tube has three components offset at thirds of 
the phase angle Bθ :  

( )
1

2sin
2
B

BU r θ
=                        (4a) 

( )
1

2sin 120
2
B

BU a θ = − 
 

                    (4b) 

( )
1

2sin 240
2
B

BU t θ = − 
 

                    (4c) 

See Figure 5 for a representation of these three phases for a matter species 
(electron). This energisation sequence results in a torsional effect on remote par-
ticle B, which moves closer or further along the field gradient depending on the 
mutual compatibility. 
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Figure 5. Energisation phases in the three orthogonal emission directions (r, a, t) follow a 
sin2(θ/2) relation. This is for a matter particle (electron). Image from [13] with permission. 

4.4.2. Further Implications 
There are several implications. The first is that the reactive end is never fully 
de-energised. While any one discrete force does momentarily go to zero in 
strength, the reactive end as a whole maintains its energisation. This satisfies 
another part of the theory which showed that the Lorentz and relativistic Dopp-
ler could be derived on the premise of a stretchable flux tube [23].  

A second implication is that the potential energy function for reactive end B1 
has a circular function, and the reactive end moves in reaction to trace a small 
cyclic locus in space [13]. The locus is circular with normal [1, 1, 1] in the [r, a, 
t] directions. However when an external field is imposed, then the reactive end 
expands its excursion asymmetrically, and this moves its mean location. 

A third implication concerns the question of why the gravitational interaction 
between matter and matter is attractive when the electrostatic interaction repels 
like charges. The answer is that for the electrostatic the opportunity for greater 
coordination between particles arises if their directions of emissions (charge) are 
opposite, irrespective of the energisation sequence (species). In contrast for gra-
vitation the opportunity arises if the emissions have the same hand: receiving 
particle B is attracted to the transphasic interaction [13] whereby it energises 
within the null points in the incoming (r, a, t) emission. This it can only do if the 
energisation sequence is the same, which always arises for when both particles 
are matter species.  

4.4.3. Matter-Antimatter Gravitation  
In this theory the energisation sequence (r, a, t) vs. (a, r, t) determines the mat-
ter-antimatter species [19] [24]. Thus we predict that antimatter-antimatter gra-
vitation is attractive, and matter-antimatter repulsive. The reasoning follows. For 
the case of an anti-electron the energisation sequence is (a, r, t) and the charge is 
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inverted. The corresponding energy locus for the reactive end is shown in Fig-
ure 6 for the electron and antielectron. This shows that the rotation is opposite 
in direction for antimatter. It logically follows that the gravitational interaction 
between two antimatter particles would be attractive, and repulsive between 
matter and antimatter.  
 

 
(a) 

 
(b) 

Figure 6. Resultant energy at the basal generator B1 due to (a) matter negative charge 
(electron) from [13], and (b) antimatter positive charge (antielectron). The axes are (r, a, 
t). The larger black marker indicates the nominal origin (0, 0, 0), and the smaller black 
marker indicates the location for θ = 0. The locus is deliberately shown incomplete to in-
dicate the direction of rotation. 
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4.4.4. Gravitational Force 
The gravitational force gBF  in the radial direction r̂ , experienced by particle B 
of mass Bm  in a gravitational field created by particle A with Am  is conven-
tionally: 

2
A b

gB
m mG

r
=F                          (5) 

The reason for the product of charge ( A bm m ) is that that the effect is enhanced 
by more incoming discrete forces ( Am ) per lemma 1, and a greater frequency of 
response ( bm ) per lemma 8. The inverse square relationship 21 r  is because of 
the dilution of discrete forces across an expanding spherical shell, as before.  

4.5. Synchronous Interaction (Strong Nuclear Force) 

The equivalent of the strong nuclear force in the Cordus theory is the syn-
chronous interaction [10]. This interaction is between reactive ends from dif-
ferent particles, that are co-located. If their discrete force emissions are compati-
ble, then this locks the reactive ends together. As identified in Lemma 2 [13], the 
synchronous interaction has two subtypes, which are transphasic and cisphasic. 
The terms refer to the phase difference at synchronisation.  

The strongest form of compatibility is where the assembly provides a balanced 
and complete set of discrete force emissions in all three directions [25]. In this 
case the reactive ends energise simultaneously, and this is the cis-phasic subtype 
of the synchronous force. An example of the cis-phasic interaction is proposed 
in the bond between the proton and neutron in the atomic nucleus, see Figure 7. 

The other subtype of synchronous interaction is trans-phasic, where the reac-
tive ends from two separate particles energise out of phase. The type example of 
this is the Pauli electron pair [2], see Figure 8. 

Application of the synchronous principle is able to explain the structure of the 
atomic nucleus as a polymer of neutrons and protons. Rules for these bonds 
have been deduced, and these are sufficient to economically explain why any 
nuclide is stable, unstable, or non-existent. This has been demonstrated for H to 
Ne [25] [26] and the trends appear to hold up to at least Ar. 

Thus the nuclear force may be explained as a synchronisation of emissions 
between different reactive ends. The theory proposes that the strong force at the 
deeper quark level is likewise a synchronous interaction, though the internal 
structure of the proton and neutron have yet to be fully elucidated within this 
theory.  

4.6. Remanufacturing (Weak) Interaction 

Per QM the weak interaction mediates the nucleon beta decay and electron cap-
ture processes via exchange of W and Z bosons. From the Cordus theory the in-
terpretation is somewhat different, as the analysis [16] suggests the weak interac-
tions are part of a more general family of processes that change particle identity. 
From this perspective the weak bosons are merely transitional assemblies, rather  
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Figure 7. Key features of cis-phasic synchronous interaction as illustrated in the pro-
ton-neutron bond. Adapted from [10]. 
 

 
Figure 8. The Pauli pair of electrons uses the trans-phasic interaction to provide a degree 
of bonding. Adapted from [2]. 
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than particles that cause change in quarks. Hence they do not deserve to be 
called bosons or their process singled out as a fundamental interaction. Instead 
we propose a set of principles of discrete force manipulation for the remanufac-
turing processes generally.  

Particle identity, in the Cordus theory, arises from the characteristic pattern of 
discrete force emissions. Change these, and the particle identity is also changed. 
This process is called “remanufacturing” because the discrete forces are con-
served. The conventional term “decay” implies a degenerative, disorderly, or de-
structive process, which from the Cordus theory is quite the wrong way to think 
about these transformations. Consideration of the discrete forces and the rules 
for their transformation [16] shows that it is necessary for many processes to 
change the order of energisation sequence. The theory shows that the neutrino 
species achieve this by removing unwanted handedness from the assembly [17]. 
Note that in this theory the handedness is also proposed as the matter-antimatter 
species differentiator [17] [21]. This is a further reason to use “remanufacture” 
(manus = hand). All the remanufacturing processes use the synchronous interaction.  

The Cordus theory provides a unified equation for nucleon remanufacture: 

+ + = + +y izp n e v2                       (6) 

with particle identities and discrete force structures as follows: 
 

n  neutron ( )1 1
1 1n r a t⋅ ⋅  Shown for overt part. There is also  

a large covert component 

p  proton ( )1
1.1 1 1p r a t⋅ ⋅  ibid 

e  electron ( )1 1 1e r a t⋅ ⋅   

e  antielectron ( )1 1 1e r a t⋅ ⋅  positron 

v  neutrino ( )1 1
1 1v r a t⋅ ⋅   

v  antineutrino ( )1 1
1 1v r a t⋅ ⋅   

y  photon ( )y r a t⋅ ⋅  
↕denotes oscillating discrete force,  

extended and withdrawn 

z  discrete force complex 1.1
1.1x  x is one of the emission  

directions [r. a. t] 

2y  a pair of photons 1 1 1
1 1 1r a t ⋅ ⋅   With sufficient energy can also correspond 

to an electron-antielectron pair 

i  quantity, e.g. of photons   

 
Note that antimatter is shown with underscore in this notation. 
The equation works in both directions. Transfers of a particle across the 

equality result in inversion of the matter-antimatter species (hand). Rearrange-
ment of the equation gives β−, β+, and EC in the conventional forward direc-
tions, and predicts induced decays too [27]. 

From this perspective the emission/absorption of a photon is also a remanu-
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facturing process [15], as is pair production [28], and annihilation [21]. Fur-
thermore the asymmetrical baryogenesis and leptogensis problems have solu-
tions with the Cordus theory [24], with the genesis remanufacturing process in-
volving electron-antielectron pair production, with the antielectron remanufac-
tured (with the additional of further photon discrete force structures) into the 
proton: 

2e p+ ⇒ + +y z v8                        (7) 

with particle identities as above. This manufacturing process was derived from 
consideration of the discrete force structures. It simultaneously addresses baryo- 
and leptogenesis. Diagrammatically it is represented in Figure 9. 

In summary, the weak force is reconceptualised as a remanufacturing process. 
The W and Z bosons are denied causal identity as vectors of change, but instead 
proposed to be merely transitional assembly structures. This is consistent with 
their short lives and ranges. Consequently we propose that the weak is not a 
force interaction. Nonetheless it is a powerful mechanism because it gives rise to 
all observed matter. Furthermore, like all the other interactions, it is based on 
attributes of the discrete forces, though the aggregate thereof rather than indi-
vidual attributes.  
 

 
Figure 9. Asymmetrical genesis production stream. The discrete force rules predict a process whereby the antielectron from pair 
production is remanufactured into a proton, with two antineutrinos ejected in the waste stream. From [24]. 
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5. Discussion 
5.1. Findings  

The results offer a new way of categorising the interactions. Thus the synchron-
ous interaction becomes the mechanism for bonding coherent assemblies of 
matter, whereas the electro-magneto-gravitational interactions operate on dis-
coherent matter. These interactions are not continuous but in discrete force in-
crements. The remanufacturing interaction is somewhat different to the others, 
being less a force and more a large family of processes that change the internal 
assembly of multiple discrete forces and thereby change particle identity, though 
it too is synchronous in nature.  

We find against the conventional idea that unification might be found at 
higher energy levels. Instead energy is only a proxy variable. The energy in an 
interaction between particles depends on the number of discrete force involved 
(hence also mass), and the type of synchronisation of emissions (discoherent or 
synchronous). Thus there is an approximate increase of energy involved with the 
progression from the electro-magneto-gravitational forces, to the synchronous, 
and to the remanufacturing processes with the many discrete forces involved. 
However we propose it is not energy per se that provides the explanation for un-
ification.  

Furthermore the theory offers an information interpretation. The emitted 
discrete forces communicate to other particles in the universe at large, by 
broadcasting the identity and attributes of the emitting particle. These attributes 
include position, orientation, velocity, cis/trans-phasic partnership opportuni-
ties, etc. They are a type of information broadcast that consumes no energy, yet 
allows other remote particles to change their behaviour.  

5.2. Contrasts  

QM attributes the electrostatic interaction to the virtual photon gauge boson. 
The Cordus theory instead proposes that the interaction occurs via discrete 
forces. In the Cordus theory there is an important difference between the single 
pair of discrete forces emitted by a photon, and the three orthogonal ones emit-
ted by a massy particle [15]. The former continue to propagate outwards whe-
reas the latter are extended and then withdrawn. Hence we disfavour identifying 
the interaction with a virtual photon like structure.  

QM proposes that the strong force between quarks arises from the exchange 
of gluons, and the nuclear force arises from the residual force thereof. The QM 
concept of three colour charges has parallels with the three orthogonal charge 
emission directions of the Cordus theory, and the gluons with the discrete 
forces. However a key difference is that QM has different bosons for each inte-
raction, whereas the Cordus theory attributes the interactions to different func-
tional attributes of the same discrete forces throughout.  

The Cordus perspective of gravitation emerges as being similar to but also 
different from General relativity (GR). In GR, gravitation arises from the curva-
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ture of spacetime, and is not so much a force as a geometric interaction of the 
moving body with that curvature. GR does not explain what makes up space-
time. By comparison the Cordustheory proposes the vacuum is filled with a tan-
gle of discrete forces in their flux tube, which is called the fabric [29] [30]. Both 
perspectives agree that gravitation is an effect that a mass does to the whole un-
iverse. The relativistic Doppler and time dilation have also been derived from 
first principles using the Cordus theory [23], so there are areas of substantive 
alignment between the theories.  

Both QM and the Cordus theory agree that gravitation is quantised. The Cor-
dus theory offers a specific mechanism, via the discrete forces and their effect on 
the position of the reactive end. QM is unable to explain gravitation, and its 
closest approach is loop quantum gravity that proposes that the fabric consists of 
spin networks. A region of Cordus fabric contains multiple discrete forces in 
their flux tube, and conceptually these momentarily define small dynamic do-
mains: perhaps these correspond to spin networks. However from the Cordus 
perspective the underlying mechanism is force lines and force pulses. Loops in 
the fabric are not precluded, but are interpreted as secondary phenomena rather 
than the mechanism itself.  

5.3. Implications 

Of the main theoretical approaches to developing a new physics to unite the in-
teractions, quantum mechanics has been the dominant area of endeavour. While 
string theory is still an active area of research, it has seen less attention and been 
less successful in this area. The third branch, the NLHV sector, has been con-
ceptually unproductive and become obscure. Specific solutions for the hidden 
structure have seemed intractable or ridiculous. Nonetheless the NLHV ap-
proach has many positive attributes, as shown here, once the question of sub-
structure can be resolved. Demonstrating conceptually that the interactions may 
be unified in an NLHV theory opens up new lines of thinking. 

6. Conclusions 

The originality in this work is providing an explanation for all the interactions 
based on non-local hidden-variable theory. Under the assumptions of this 
theory, the interactions arise from different aspects of a single underlying me-
chanism, of the discrete force emissions.  

1) The electrostatic interaction results from the direct linear operation of the 
discrete forces.  

2) The magnetic interaction results from the bending of the flux tube con-
taining the discrete forces. 

3) Gravitation results from the handed sequence of the discrete force emis-
sion, a type of torsional effect. 

4) The strong interaction (and nuclear force) arises from the synchronisation 
of timing of discrete force emissions between reactive ends on different particles.  
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5) The weak (decay) interactions arise from the rearrangement of discrete 
force emissions, which results in remanufacturing of particle identity.  

Apart from the concept of the discrete force, and its multiple attributes, no 
new particles or bosons are required.  
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Abstract 
The purpose of this article is to establish a relation between two gravitational 
anomalies: one that has attracted part of the scientific community, the Allais 
effect that occurs during solar eclipse; the other, noticed but forgotten by the 
whole scientific community, the General Relativity’s residual arc of the cur-
vature of rays of light in the solar gravitational field during the same eclipse. 
There is a systematically observed deflection about 10% larger than the theo-
retical value of General Relativity, which coincides with the “eclipse effect” 
found by Maurice Allais, thrown aside because it upsets the established 
truths. These corresponding anomalies were never explained by any theories 
and turn out to be new gravitational physics. 
 
Keywords 
Allais Effect, Paraconical Pendulum, General Relativity, Eclipse Experience, 
Parallax, Arc Residue, Interferometry 

 

1. Introduction 

1.1. Preliminaries 

Based on the equivalence principle, Einstein revealed a deep relation of gravity 
to the geometry of spacetime. General Relativity (GR) has undergone an impres-
sive series of confirmations mostly regarding “strong” fields. But in “weak” fields 
where GR does not distinguish from the Newtonian limit, there are unexplained 
phenomena like galaxy rotation curves, the Pioneer anomaly. There is little di-
rect evidence that conventional theories of gravity are correct on large scales. 
Despite all the success of Newtonian gravity and GR on the scale of the solar 
system, data of unique precision collected for the last two decades by satel-
lite-based telescopes covering all frequencies and digital image processing gave a 
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number of results where these theories run into problems, such as the unex-
pected secular increase of the Astronomical Unit or the abnormal change in ac-
celeration for flybys of spacecraft. We emphasize the scientific aspect of peculiar 
movements exhibited by an anisotropic paraconical pendulum at the time of a 
solar eclipse in 1954. 

The aim of this article is to establish a relation between the abnormal devia-
tion of the pendulum (Allais effect) during this solar eclipse and the observed re-
sidual arc of the curvature of the rays of light in the solar gravitational field (GR) 
during the same eclipse. Both gravitational anomalies were never explained by 
GR or by any other theories and it raises question about their nature. Our ap-
proach is as follows. In Section 1, we describe the gravitational deflection of light 
by the Sun during solar eclipses insisting on the fact that many observations gave 
a deflection 10% larger than the theoretical value during eclipse experience. We 
present from the outset the Allais effect, first reported in 1954 by Maurice Allais, 
which is an anomalous precession of the plane of oscillation of a paraconical 
pendulum during a solar eclipse. In Section 2, we make a mathematical link be-
tween the unexpected turn that the pendulum took during the eclipse, changing 
its angle of rotation by 13.5˚, and the about 10% arc’s deviation observed during 
the same eclipse experience. Although it is not the task of this paper, we also 
speculate on modification of Einsteinian gravitational mechanics and a discus-
sion mentions briefly that these anomalies turn out to be new gravitational 
physics including “antigravity”. In Section 3, the fact that an exact agreement 
between theory and measurements has been obtained by radio interferometry, 
but has never been obtained by eclipse technique, indicating a genuine insuffi-
ciency of Einstein’s theory during eclipse. In Section 4, we discuss two manners 
to experiment the behaviour of the gravity: measure the angle of deflection of 
light and measure the delay time of signals. In Section 5, we show three possible 
cosmological consequences of the Allais effect linked to GR’s residual arc during 
total solar eclipse. Conclusion in Section 6: during the eclipse, the unexplained 
excess of arc of general relativity would be consistent with the abrupt deviation 
of the oscillation plane of the Allais pendulum; for these two phenomena, the 
currently accepted physical theories offer no explanation for this slight deviation 
from gravitational laws, which suggest a new physics. 

1.2. Many Observations Gave a Deflection 10% Larger Than the 
Theoretical Value of General Relativity during Eclipse  
Experience 

The first test of Einstein’s prediction was the apparent bending of light as it 
passes near a massive body [1]. This effect was conclusively observed during the 
solar eclipse of May 29, 1919, when the Sun was silhouetted against the Hyades 
star cluster, for which the positions were well known. It was mainly made 
through the initiative of the British astronomer Eddington. He was stationed on 
an island off the western coast of Africa and sent another group of British scien-
tists to Brazil. Their measurements of several of the stars in the cluster showed 
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that the light from these stars was indeed bent as it grazed the Sun. The result 
obtained by measuring the plates (1.98'' ± 0.12'' and 1.61'' ± 0.31'') confirmed 
almost the exact displacement of Einstein’s predictions [2]. 

GR predicts that locally straight lines that pass near the Sun are bent relatively 
to the straight lines that pass far from the Sun in completely empty space by an 
additional 0.875 arcsecond. Thus, the total deflection must be ~1.75 arcseconds. 
The apparent displacement of light results from the warping of space in the vi-
cinity of the massive object through which light travels. The light never changes 
course, but merely follows the curvature of space. Astronomers now refer to this 
displacement of light as gravitational lensing. But the Sun’s gravity is relatively 
weak compared with what’s out there in the depths of space. As a dramatic ex-
ample of gravitational lensing, the light from a quasar (a young, distant galaxy 
that emits prodigious amounts of radio energy) 8 billion light years away is bent 
round by the gravity of a closer galaxy that’s “only” 400 million light years dis-
tant from Earth. 

Although the eclipse results distinguished clearly among the possibilities of no 
deflection, the Newtonian deflection, and the Einsteinian deflection, their rela-
tively large experimental errors made it important to repeat the measurements. 
Since that time, measurements of the deflection of the light by the Sun, although 
they are difficult, have been made at a number of around 400 total eclipses with 
only modest improvement over previous eclipse measurements. The values were 
anywhere between three-quarters and one and one-half times the general relati-
vistic prediction: many observations gave a deflection 10% larger than the theo-
retical value. The deviation between theory and measurements is too high to be 
only due to errors of observation [2] [3]. 

Even if there is no doubt that GR is nearer the truth than the value obtained 
from Newtonian mechanics or any other theory so far proposed, even if radio 
interferometry now replaced the eclipse technique bringing an almost exact 
agreement between theory and measurements (which has never been obtained 
by eclipse technique), this deviation during eclipse indicates a genuine insuffi-
ciency of Einstein’s theory.  

1.3. Allais Effect; An Experience of Great Precision 

Professor Maurice Allais is a French physicist, winner of the 1988 Nobel Prize in 
Economics, winner of the 1959 Galabert Prize of the French Astronautical So-
ciety, and also a laureate of the United States Gravity Research Foundation due 
to his gravitational experiments. In the 1950s he undertook several experimental 
series in Paris which involved repeated determinations of the rate of precession 
of a paraconical pendulum which he had invented. Suspended via a small steel 
ball bearing, this pendulum with anisotropic support has this peculiarity to be 
able to raise abruptly the oscillation plane when there is a sudden disturbance. 7 
series of experiments succeeded one another: 32 days in June and July 1954; 9 in 
September 1954; 37 in November and December 1954; and in 1955, 7, 15, 30 and 
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17 days. He released his pendulum every 20 minutes—for more security, the 
pendulum was stopped vertically, then re-tautened—and recorded the azimuth 
every minute for 14 minutes. There were thus 72 series of experiments by 24 
hours without missing a data point. He detected various periodic anomalies in 
the motion of this pendulum by using elaborate statistical analysis. One of these 
experimental series happened to overlap with the eclipse of Sun of June 30th, 
1954 [4] [5] [6].  

During the eclipse, M. Allais put in evidence an unexpected disturbance of the 
effect of Foucault. At the exact onset of the eclipse, the plane of the oscillation 
got up abruptly of 4.5˚. 

Twenty minutes before the maximum of the eclipse, it reached 13.5˚ to de-
cline slowly until an abnormality of 1˚ at the end of the phenomenon. This un-
expected large scale excursion in the angular plane persisted throughout the 
length of the eclipse, a total of 2.5 hours of observations from eclipse start on 
Earth’s west limb to end on the east limb. Both before and after the eclipse, the 
pendulum experienced normal rotation, the Foucault effect, of 0.19˚/minute. M. 
Allais was not looking for any effect here [6].  

He got similar results when he later repeated the experiment to a much lesser 
degree during a solar eclipse on October 2, 1959 (the amount of the solar surface 
eclipsed in Paris was only 36.8% of the surface eclipsed in 1954). Like in the first 
case a well-defined anomaly was detected in the motion of the paraconical pen-
dulum: its plane of oscillation shifted abruptly. Both were partial eclipses in Par-
is, the point of observations. Currently accepted physical theory offers no expla-
nation whatsoever for this phenomenon. His finding raises new questions about 
the nature of such phenomena. 

Attempts to confirm Allais’s observations upon the behavior of a pendulum 
during a solar eclipse have met with varied results: some experiments have con-
firmed the presence of anomalies, while some yielded ambiguous results, and 
others detected nothing unusual. However none of these trials used a paraconi-
cal pendulum according to Allais’s design (hangs from a special joint that per-
mits free rotation around the vertical and it can track the Earth’s rotation); nor 
did the experimenters follow Allais’s operational procedures or ask his advice on 
design of the experiments.  

Most of this kind of experiments had been performed using other sorts of 
pendulums or with Foucault’s pendulum which gives spectacular effects. Even if 
they are close, there are essential differences between the Foucault pendulum 
and the paraconical pendulum with anisotropic support. The paraconical pen-
dulum is short, can turn on itself (capable of rolling in all directions upon a 
plane horizontal surface), was observed without discontinuity while Foucault 
pendulum is long, connected to the thread which supports it and has never been 
observed without discontinuity for the previous experiments. Although difficul-
ties are inherent to a short Allais pendulum, and its movement is a complex 
phenomenon, difficult to analyze, as long as the pendulum oscillation remains 
flat, the movement in azimuth of the pendulum oscillation plane is reduced to 
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the Foucault effect. The experiments of the paraconical pendulum with aniso-
tropic support include totally the Foucault effect. 

The deviation of the plane with regard to the plane corresponding to the Fou-
cault effect, at most twenty minutes before the maximum of the eclipse, entailed 
increases of angular speeds corresponding to the fast variations of azimuth ob-
served. In his book Anisotropie de l’Espace [7], who is dedicated to the analysis 
of the eclipse effect in a more general context, M Allais quotes: “we can finally 
notice that the fast variations of azimuth observed from 11:20 am to 12 am and 
from 12:20 am to 1 pm correspond to angular speeds of the order of 6.2 × 10−5 and 
7.9 × 10−5 radian per second which are respectively 1.13 and 1.43 times the Fou-
cault effect (that is 5.5 × 10−5 radian per second in the latitude of Saint-Germain’s 
laboratory). The strengths involved in the noticed disturbances are thus of the 
order of magnitude of those who intervene in the Foucault effect”.  

This deviation due to the eclipse is interpreted as a kind of antigravitation. 
While for other pendulums (without free support) the antigravity will manifest 
itself by a change in the direction of rotation of the plane of oscillation and a 
lower angular speed of rotation (such as the torsion pendulum of Saxl and Allen 
in 1970 [8] which leads to the same conclusions as M. Allais), it will manifest it-
self in the case of the paraconical pendulum by a greater angular speed within 
the framework of a deviated plane. 

The eclipse effect was again observed during the eclipse of the Sun on October 
2, 1959. Later, at the University of Jassy (Romania), during the eclipse of the Sun 
on February 15, 1961, a sudden deviation from the oscillation plane of a Fou-
cault pendulum was observed. The pendulum had oscillated in the same plane 
until the moment of the deflection. An experiment carried out in China during 
the 1973 eclipse seemed to confirm an Allais effect, but the experiment was not 
very conclusive because the protocol did not exclude many biases. Another ex-
periment concerning the eclipse effect was carried out in Mexico City during the 
eclipse of July 11, 1991. After the maximum of the eclipse, a decrease in the rota-
tional speed of the plane of oscillation was observed. During the total solar ec-
lipse of August 11, 1999, the Allais effect was studied in Bucharest, using two 
Foucault pendulums. On the occasion of the eclipse, NASA (National Aeronau-
tics and Space Administration) proposed a program to observe the effect. Several 
universities and laboratories around the world have participated in this program, 
coordinated by Dr. David Noever, but no in-depth analysis of the results was 
published. At the same time the phenomenon received the denomination of 
“Allais effect”. Observations in Zambia and Australia between 2001 and 2002 
also show anomalies. Eight gravimeters and two pendulums were deployed 
across six monitoring sites in China for the solar eclipse of July 22, 2009. Al-
though one of the scientists involved described in an interview having observed 
the Allais effect, no result has been published in any academic journal [5] [6]. 

Observations of the Allais effect are rare and rather contradictory, not only 
because of the rarity of such eclipses, but also because no rigorous experimental 
protocol has been followed. The sometimes ambiguous experimental results 
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mean that the veracity of the Allais effect remains controversial within the scien-
tific community. 

Regarding the experimental results for the eclipse experiment, let's say that 
since the total solar eclipse of May 29, 1919, proclaimed as the triumph of Eins-
tein’s theory, measurements of the deviation of light by the Sun were performed 
at a number of total eclipses. Although the measurements were difficult, the ef-
fect was very close to the predicted magnitude which is double the value ob-
tained from Newtonian mechanics. But exact agreement between theory and 
measurement has never been achieved. The average of the observations made 
during eight eclipses between 1919 and 1960 gives a figure of 1.97 for the devia-
tion. This figure, although considered to be one of the proofs of relativity, is 
higher than the number predicted by the calculation and in a proportion greater 
than the experimental errors. Several physicists seem to estimate that a deflec-
tion 10% greater than the theoretical value is due to observation errors. Rather, 
we think that this is a real insufficiency of Einstein’s theory, and the connection 
we have made between the Allais effect and the arc residue only strengthens our 
understanding. 

To establish a link between the Allais effect and the anomaly of the arc resi-
dues of General Relativity during total solar eclipses, we will not take into ac-
count the unexplained regularities of lunisolar periodicity discovered by M. Al-
lais to examine only the sudden and unpredictable disturbance that occurred 
during the solar eclipse of June 30, 1954, when the Moon interposing itself be-
tween the Earth and the Sun acted as a screen against gravity. We will perform 
the unorthodox calculation which follows by treating the paraconical pendulum 
as if it were a simple pendulum. 

2. Mathematical Treatment 
2.1. Gravitational Acceleration during the Disturbance Due to the 

Eclipse 

Let us take a simple pendulum in Paris (49˚N), which can be considered to be a 
point mass suspended from a string or rod of negligible mass, and suppose this 
resonant system with a single resonant frequency is with a free anisotropic sup-
port. For small amplitudes, the period of such a pendulum can be approximated 
by  

( )1/22πT l g=                           (1) 

(l: length; gravitational acceleration g in Paris is 9.8094 m/s2) [9]. The time of a 
complete revolution of the oscillation plane around the vertical is 

( ) ( )2π sin 24 sin 49 31.8 .T w h w hθ= = =               (2) 

As the oscillation plane got up of 13.5˚ (360˚ + 13.5˚ = 373.5˚) with the ec-
lipse, we apply the rule of three to find the time which would take the pendulum 
in Paris to make the complete rotation of the oscillation plane around the vertic-
al line. If 360˚ = 31.8 hours, 373.5˚ = 32.9925 h. The time would be prolonged of 
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32.9925 − 31.8 = 1.1925 h, or 71.55 mn. It would mean that with the anomaly 
due to the eclipse (increase of 13.5˚), the time in Paris would be 1.0375 times 
longer (32.9935/31.8). 

Considering that the length l of the formula (1) remains the same, the gravita-
tional acceleration due to the eclipse will be 

2 22
2Paris Paris Paris

2 2 2
Paris with anomaly Paris

4π4π 9.8094 9.4548 m/s
4π 1.0375 1.0375 1.0375

T g gl
T T

= = = = .      (3) 

We notice a decline of the gravitational acceleration: 9.4548 m/s2 instead of 
9.8094 m/s2 [9]. 

A decrease of the gravitational acceleration is equivalent to a longer range of 
the radius. We know that 9.8094 m/s2 apply to the Earth’s radius 6.3776 × 106 m  

( ) ( )1 21 2 24 25.98 10 kg 9.8094 m/sE ER GM g G= = × .          (4) 

Let us find the terrestrial radius equivalent to a gravitational acceleration of 
9.4548 m/s2:  

( ) ( )1 21 2 24 2 65.98 10 kg 9.4548m/s 6.49608 10 mE ER GM g G= = × = × .   (5) 

The radius is 118,481 m (6.49608 × 106 m − 6.3776 × 106 m). This implies, 
during the disturbance due to the eclipse, an addition of 118.481 km to the 
Earth’s radius, which gives a gravitational acceleration of 9.4548 m/s2 in Paris. 

2.2. Parallax 

The solar parallax in general is the difference in the apparent position of the Sun 
as seen from the Earth’s centre and a point one Earth radius away, i.e., the angle 
subtended at the Sun by the Earth’s mean radius. If the Sun is at the zenith (di-
rectly overhead) its parallax is 0. The parallax is at maximum when the Sun is 
seen on the horizon and it is called the horizontal parallax. Solar parallax is very 
important since it indicates the Sun’s distance from Earth. Foucault, after mak-
ing a more accurate measurement of the velocity of light, determined from the 
aberration of star light that the solar parallax must be about 8.80''. Michelson 
and Newcomb, using Foucault’s method, found a more accurate velocity of light, 
which when combined with a better aberration value, gave a solar parallax of 
8.80'' ± 0.01''. The value of 8.80'' for the average equatorial horizontal parallax 
was adopted in Paris in 1896 by the “Conférence internationale des étoiles fon-
damentales”. Simply put, the parallax of Sun is the angle ASE under which an 
observer at the centre of Sun would see the terrestrial radius (Figure 1) [10].  

We will suppose that during the eclipse the centre of the Sun is the theoretical 
apparent position of the star. We already know the distance Sun-Earth which is 
1.495 × 1011 m. S is the centre of Sun and the angle ASE is the horizontal solar 
parallax. Because this angle is so short, we can confuse, without sensible error, 
the Earth radius r with the arc AE of 8.80 arcseconds (or 8.80''), which is part of 
a circumference with centre the centre S of Sun and for radius the length d, av-
erage distance between the two centres. 

The length of arc AE, compared with the entire circumference, is given by the 
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proportion:  
6

6
11

Arc AE 8.80 6.3776 10 m 6.789 10
2π 2360 2π1.495 1

''
0 mS E

r
d Rπ

−

−

×
= = = = ×

×

       (6) 

The arc AE, or the parallax angle 8.80'', is equivalent to the Earth radius 
6.3376 × 106 m, and to a gravitational acceleration of 9.8094 m/s2 2

Tg GM R =  . 
For the gravitational acceleration of 9.4548 m/s2 at most of the disturbance of the 
eclipse, corresponding to a radius being 6.49608 × 106 m, we shall obtain the pa-
rallax angle 8.9634'' (if 6.3776 × 106 m = 8.80'' and 6.49608 × 106 m = x; x = 
8.9634''). The angle would vary of 0.1634'' (8.9634'' − 8.80''). 

If we reverse the parallax as if the Earth was the centre, and as if the radius of 
the Sun formed an arc length on the circumference having the distance 
Earth-Sun for radius, we find the same circumference with a tiny increase of the 
arc length (Figure 2). If we place 0.1634 arcsecond at the point p of minimum 
approach of the Sun, the minimal distance of approach d, slightly superior to the 
radius of the Sun, would be exceeded. The point p would pass at p', pushing 
away the straight line constituting the deviated trajectory of photons, so widen-
ing the angle which it makes with the not deviated trajectory of photons emitted 
by the distant star.  
 

 
Figure 1. Parallax of the Sun. (E: Earth; S: Sun; r: radius of the Earth; d: the distance of 
the centers of the two stars; angle ESA: parallax, i.e., the angle under which an observer, 
placed in the center of the Sun, would see the terrestrial radius. According to the value 
adopted by the International Conference of Fundamental Stars held in Paris in 1896, the 
average equatorial horizontal parallax of the Sun is 8".80). 
 

 
Figure 2. Parallax of the Earth during the solar eclipse where the Allais effect corresponds 
to the arc residue of General relativity. (E: Earth; S: Sun; R: real star with ray light; G: ap-
parent star in accordance with GR with 1.74 arcseconds for the calculated angle RpG of 
deviation of rays of light; A: real observations of apparent star during total solar eclipses 
with ~1.9'' for the observed angle Rp'A. The angular difference Gp'A coincides strangely 
with the brutal disturbance on the Allais pendulum during the total solar eclipse). 
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This tiny increase of the arc length from p to p', i.e. the angle Gp'A, constitutes 
a deviation about 10% of the theoretical value of the Relativity (if 1.7424'' = 
100%; 0.1634'' = 9.37%). We regard this as in satisfactory correspondence with 
the so-called residual arc, which have been tested by observations made at time 
of total eclipse on the apparent positions of stars whose light has passed close to 
the limb of the Sun [11]. 

2.3. Value Calculated by General Relativity 

The value calculated by the theory of relativity of the angle of deviation of light 
by the Sun is 

22 4 S SGM c Rα∆ = =                       (7) 

(G is the universal constant of gravitation; c is the speed of light; MS is the solar 
mass and RS is the Sun’s radius [12]).  

( )
( )

2 30 2 8

6

4 4 1.98 10 kg ~ 6.9535 10 m

8.4475 10 57 295 3600'' ~ 1.74 '4 '2

S SGM c R G c

rad−

× ×

= × × × =

=



      (8) 

2α indicates a deflection of light in the field of an attracting mass which is twice 
as great as would be calculated from the Newtonian theory for a particle travel-
ling with the velocity of light, which is a huge progress. The factor 2 finds its ori-
gin in the existence of a temporal and “spatial” curvature in the metrics of 
Schwarzschild which represents the spacetime around the Sun. It allows verify-
ing the existence of a deflection of light in passing through the gravitational field 
in the neighbourhood of the Sun, and to decide between Newtonian or Einstei-
nian theory [11]. 

2.4. Value Calculated by the Theory of Relativity by Considering 
the Allais Effect 

The value calculated by the theory of relativity does not foresee nor explain the 
supplementary residual hundredth of arcsecond which were part of several 
measurements during eclipse of the bending of starlight by the Sun. No more 
than it foresees and explains the Allais effect during the total solar eclipse of 
1954 when the Moon between Earth and Sun decreased the solar attraction. 

The reckoning (6) giving 0.1634 arcsecond starts from a sudden disturbance 
on the Allais pendulum due to the total eclipse which reveals a decline of gravi-
tational acceleration and consequently a length more remote from the terrestrial 
attractive centre. This added length, projected by means of the calculation of pa-
rallaxes on the circumference having for diameter the centres of the Sun and the 
Earth, is equivalent to the residual arc observed during experiments on the 
bending of light by gravity. Both observed phenomena, which arrive simulta-
neously only in eclipse time and are of the same magnitude, would be owed to 
the same cause: the antigravity provoked by the eclipse. 

If we take into account the Allais disturbance and the residual arc observed 
during a total eclipse of the Sun, it will be necessary from the theory of relativity 
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to consider that the point p of minimum approach of the Sun is widened to-
wards the outside and to add Δα, the residual arc ensuing from the antigravity, 
to the angle of deviation 2α. From an ad hoc point of view, purely observational, 
and only during eclipses, the Einsteinian formula could be: 

22 4 1.74 ''24 0.1634 ~ 1.9058'' '8 'S SGM c Rα α α+ ∆ = + ∆   = + = .     (9) 

The angle does not correspond any more to the value calculated by the Gener-
al theory of Relativity but rather to the average of the observations which gives a 
10% deviation wider than the theoretical value (1.74'' + (1.74'' × 10%) = ~1.916'') 
[13].  

Let us underline that most of the experiments of eclipse collected results fall-
ing between 1.6'' and 2.2''. Experimenters found results below 1.74'' (between 
1.74'' and 1.6''), as if there was a kind of overgravity similar to the Pioneer effect. 
In that case the equation would become 

22 4 1 4''.742S SGM c Rα α α α − ∆ =   − ∆ = − ∆            (10) 

Δα being a fragment of arc going from p towards the centre of the Sun, and 
which expresses a supplementary gravity due to the eclipse.  

The formula of the General Relativity during total eclipse could thus be:  

22 4 S SGM c Rα α α± =  ∆ ± ∆ .                  (11) 

The three ad hoc formulae (9) (10) (11), although in compliance with the ob-
servations, remain nevertheless profoundly deficient not to say erroneous. 

2.5. Discussion 

According to General Relativity, a light ray passing in the vicinity of a celestial 
body undergoes a deflection in the direction of the decreasing gravitational po-
tential, that is turned towards the celestial body itself, deflection of size 

22 4 S SGM c Rα = . We suppose that the speed of light, given by  

2d d d 0uv u vs g x x= = ,                      (12) 

equals 0, and that g44/2, who plays the gravitational potential role determining 
the movement of the material point in a gravitational field stipulated almost 
static, does not vary [14]. At ordinary times, without eclipse, the interferometric 
experiments practically validated this formula in which α and d are inversely 
proportional inside the point p (Figure 2 & Figure 3). With a more stressed 
curvature of light, the deflection angle α becomes wider as much as d, the mi-
nimal distance of approach of the centre of the Sun, gets closer to the length of 
the solar radius. It is the inverse for a lesser curvature. 

During a total eclipse, our reckoning from the gravitational disturbance pin 
down by the pendulum gives a distance d stretched out as well as a widened an-
gle 2α. They are proportional, what seems incomprehensible. By locating 0.1634 
arcsecond at p, the minimal distance of approach of the centre of the Sun d, 
slightly superior to the Sun radius RS, is surpassed. Point p placed at p', pushes  
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Figure 3. Deflection of a light ray in the vicinity of the Sun. (d is the minimum distance 
between the trajectory of the light ray and the centre of the Sun and is at a lightly upper 
distance than the Sun’s radius RS) 

 
away towards the outside the straight line forming the “deviated” trajectory of 
photons, so widening the angle which it makes with the “not deviated” trajectory 
of photons emitted by the distant star. This makes the formula inexplicable but 
the antigravity is implicit [13] [15]. 

Supposing that the pendulum got an excess of gravity, the calculation would 
have given a shorter distance d corresponding to a smaller angle 2α, that is going 
towards 1.6 arcseconds already observed during experiment of eclipse. Here also 
the distance d would be proportional to the angle 2α.  

It is clear that the size d observed during an eclipse is not the same as the 
theoretical value in normal time and is on average larger. We can suppose that 
the speed of light would not equal any more 0 (12) and that the gravitational po-
tential can vary [15]. With the Allais effect of the 1954 eclipse, a ray of light 
passing along a celestial body would suffer a deflection on the side of the in-
creasing gravitational potential, which is on the side opposed to the celestial 
body. The uvg  would have varied in an unexpected way. There would have 
been, in addition to a concavity turned toward the Sun, which means that light 
rays curve with regard to the system of coordinates, a tiny concavity turned to-
ward the outside, what indicates that starlight rays “straighten” [16]. It seems 
that from p pointing toward p' the curvature of the space around a big mass such 
the Sun decreases and that a particle (planet or photon) is solicited according to 
the Newtonian laws. As if the gravitational potential 2

S SGM R c=  acquired 
higher potential during eclipse. As if 2c  becoming 2v  indicated an antigravi-
ty, meaning a lighter mass MS and an increasing “decurve” beyond the point p. 

Certainly there is anomaly. The sudden proportionality between the angle α 
and the distance d during the eclipse means a fundamental change in the inter-
pretation of the expression 2

SGM c . The factor (2α + Δα) plays a role as essen-
tial as 2α in the tests of the General Relativity and can only emerge on a new 
conception of the gravity. 

2.6. Formula of GR Altered during Solar Eclipses with  
Antigravitational Potential 

According to General Relativity, light emitted from a source far away from the 
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Sun and passing near the Sun should be deflected by a theoretical ~1.74 arcse-
conds (7, 8), and the angle α is inversely proportional to d the minimal distance 
of approach of the centre of the Sun. 

Nevertheless, during total solar eclipse the observational angle is higher than 
the theoretical one and d should be longer if there a real link between the eclipse 
and the lower gravity detected on Earth by the pendulum. So, if α and d are 
higher, and the speed of lightstays the same, the solar mass should be higher. It 
seems impossible, unless there is an addition of a negative mass (−ΔMS) which 
would act apparently as a positive mass. With d higher, the trajectory of the ray 
of light is divergent outwards. Then the formula should be 

( )1 22 2 22 4 1obs S SGM v c c Rα    = +    
              (13) 

( ) ( )
( )

1 230 2 2

2 8

2 1.902 4 1.98 10 kg 1 57 .'' ' ''29578 60 60

6.9535 10 m

obs G v c

c

α  = = × + × ×  
 ÷ × 



 

( )1 22 21.90588 1.7424 1.09382461'' '' 1 v c= = +  

8~ 1.33 10 m/sv = × . 

The Moon plays the role of a negative mass inducing an antigravity. And 2v  
of ( )1 22 21 v c+  could be considered as an antigravitational potential. 

3. Eclipse and Radio Interferometry Measurements 

We see that the numbers show that the Allais anomaly is in connection with the 
observed additional residual arcseconds and that both anomalies arise during a 
total solar eclipse.  

Let us note on one hand that today the measure of these deflections is made 
by radio interferometry [1] [13] [16]. One of the advantages of this technique is 
that it can be made every year, by opposition to the measures of eclipse, which 
are sporadically taken and in inhospitable places. 

The development of the interferometric methods in radio astronomy allowed 
verifying in a very precise way the predictions of Einstein and to impose strong 
limits on the possible anomalies of the General Relativity. On the other hand, it 
is strange that since 1919, while the best observations made by Eddington in fa-
vour of the value predicted by the General Relativity agreed in approximately 
20% near, the measure of about four hundred stars during various eclipses did 
not allow to improve the precision of this method. The fact is that an exact 
agreement between theory and measurements has been obtained by radio inter-
ferometry but has never been obtained by eclipse technique [2]. The more effec-
tive measure with a precision of 0.05 of the bending of light made by radio in-
terferometry inclines scientists to conclude that the General Relativity’s value is 
confirmed, allows to release from eclipse experiences and end of story. 

We conclude, on the contrary, that it rather confirms that there is an essential 
and intrinsic difference between the measures observed during eclipse and those 
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without eclipse [13] [17] [18]. Our interpretation is that both anomalies result 
from the same phenomenon revealing an antigravity. The paraconical pendu-
lum, of which the oscillation plane is free to turn all sides at the same time, 
seems to indicate that the more the anomaly increases the degree of oscillating 
plane (with regard to the plane corresponding to the Foucault effect), the more 
the deviated plane escapes the gravitation. The pendulum, and thus the Earth, is 
“lightened”. Within the framework of the General Relativity, the excess of arc-
second would mean that there is “flatness”, or a geodesic more remote from the 
Sun than the theoretical geodesic. 

4. Two Manners to Experiment 

Others could attribute it to an excess of gravity similar to the Pioneer effect [19]. 
Although the observational experiments are difficult it is important to compare 
experiments with total eclipse with other without eclipse for consistency. Fortu-
nately, modern technology is available for such a comparison. The time delay 
can be measured as well as the arcseconds angles since the delay experienced by 
light passing a massive object is closely related to the deflection of starlight. Two 
manners thus offer to experiment to know if there is less or more gravity.  

4.1. Measure the Angle of Deflection of Light  

We could take the measure of light deflection near the Sun by using the radio 
interferometry on quasars. For some decades, the effect of deflection of the elec-
tromagnetic trajectories by a field of gravitation is determined by radio astro-
nomers by using quasars 3C273 and 3C279. Quasars are, by definition, the best 
sources of radio energy. The positions of these two very close radio sources are 
exactly known and well placed to verify the deflection of radio energy by the 
Sun. On October 8th every year the movement of the Earth in orbit brings the 
Sun in the line with 3C279, darkening it. According to the prediction of Einstein, 
3C279 disappears slightly later and reappears slightly earlier on the remote side 
from the Sun. The convenient position of 3C373 gives to radio astronomers a 
reference point to see how the apparent position of 3C279 is changed when it is 
on the edge of the Sun. Radio astronomers can see the separation angle with 
time, determine the deflection of light as a function of distance from the Sun and 
translate that into a deflection of a grazing ray. One can imagine that if ever such 
a heavenly coincidence could also coincide with a total solar eclipse, the photos 
taken by radio astronomers could be compared with those without eclipse. By 
careful analysis of the eclipses measurements they could see if there is in the sky 
an essential difference of the bending of light [1] [3] [17] [18]. 

4.2. Measure Signal Delay 

Currently the deflection of “light” is best measured using radio astronomy, since 
radio waves can be measured during the day without waiting for an eclipse of the 
Sun. Einstein predicts that light will be delayed instead of accelerated when 
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passing close to the Sun. By using the very precise radar techniques, we could 
measure the delay of the signals passing near the Sun during a total eclipse and 
to compare it with the delay obtained without eclipse. A radar impulse is sent 
from the Earth on a target of the solar system (a planet for example) which re-
flects this radio signal and sends it back on Earth. The measured round trip tra-
vel time of the radio wave has a slightly bigger value according to the General 
Relativity than according to Newton’s theory. The difference is so much greater 
as the signal passes closer of the Sun. The first experiments used radar echo on 
planets Venus or Mercury in superior conjunction with the Sun: the wave radio 
cross, in that case, the field of solar gravitation on the way out and on the way 
back. It was matching the predicted amount of relativist time delay. The experi-
ments have been repeated many times since, with increasing accuracy. This ef-
fect is now given by using a spacecraft behind the Sun instead of a star. Radar 
echo on space probes Mariner VI and VII who were placed on solar orbits af-
ter their observations of Mars, in 1969, gave delay observations which agree 
with Einstein within ~0.9 standard deviations. This was first done by Irwin 
Shapiro between 1966 and 1970 [19] [20] [21]. The duration of a radar signal 
during the eclipse should have shorter value than a delay observation without 
eclipse, and this shorter delay would go to the sense of an “antigravity”. An 
additional delay during eclipse would mean “overgravity” similar to the Pio-
neer effect.  

5. Possible Cosmological Consequences 

We assume that there is a relation between the Allais effect and the not resolute 
anomaly of residual arc during total solar eclipse. It is evident at this stage that it 
needs further investigations in order to dissipate the confusion between signifi-
cant gravitational anomaly and errors of observation, and determine if our cal-
culation is indeed genuine or facility artefact. It must be taken into consideration 
that if the effects of these anomalies are real and in coincident evidence [22] 
[23], it gives a new aspect of the Allais effect which could lead at least to three 
possible cosmological consequences:  

5.1. If the Allais Effect Is Real, Gravity Would Be Attractive and  
Repulsive  

GR, based on the equivalence principle, is in an extension of special relativity 
and Newtonian gravity, but even if it is full of elegance and simplicity it doesn’t 
mean that the theory is in agreement with recent observations (pioneer anomaly, 
anomaly of the astronomical unit, galaxy rotation curves, etc.) [24] [25]. If the 
Allais effect is real, gravitation could not be considered any more like a space-
time curvature or as only an attractive force. The element “antigravity” would 
put it to the rank of the other forces which have all an attractive and repulsive 
aspect. It would be then possible to describe gravity in the framework of quan-
tum field theory like the other fundamental forces. 
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5.2. The Allais Effect on Cosmological Scales Would Apply to the 
Gravitational Lenses and to the Distribution of Matter 

It is easy to imagine that if the Allais effect is applied to the light-bending effect 
measured during a total eclipse of the Sun, then there is overwhelming evidence 
that this effect exists on various scales where eclipses are associated with light 
following curved paths through space distorted by the presence of matter.  

According to GR, mass “warps” space-time to create gravitational fields and 
therefore bend light as a result. After this theory was confirmed in 1919 during a 
solar eclipse, Einstein realized that it was also possible for astronomical objects 
to bend light, and that under the correct conditions, one would observe multiple 
images of a single source, called a “gravitational lens” or sometimes a “gravita-
tional mirage”. It was not until 1979 that the first gravitational lens would be 
discovered. It became known as the “Twin Quasar” since it initially looked like 
two identical quasars. In the 1980s, astronomers realized that the combination of 
CCD imagers and computers would allow the brightness of millions of stars to 
be measured each night. Gravitational microlensing can provide information on 
comparatively small astronomical objects, such as Machos within our own ga-
laxy, or extrasolar planets. Strong and weak gravitational lensing of distant ga-
laxies by foreground clusters can probe the amount and distribution of mass, 
which is dominated by invisible dark matter. Aside from determining how much 
dark matter they contain, gravitational lensing can also be used to measure the 
expansion history of the Universe (its size as a function of time since the big 
bang), which is encoded in Hubble’s law [1] [26] [27]. 

Einstein’s GR demonstrates that a large mass can deform spacetime and bend 
the path of light. So, a very massive object, such as a cluster of galaxies can act as 
a gravitational lens (deflector). When light passes through the cluster from an 
object lying behind it, the light is bent and focused to produce an image or im-
ages of the source. Viewed from the observer (the Earth), the image may be 
magnified, distorted, or multiplied by the lens, depending upon the position of 
the source with respect to the lensing mass. So, let us suppose that a sufficiently 
visible or invisible massive object is moving between Earth and the deflector, or 
between the deflector and the source, would not there be an Allais effect?  

If the data could be compared, before, during and after, that the massive ob-
ject travels between us, the gravitational lens and the source, there could be an 
excessive residual arc of the optic angle due to the antigravity, a divergent angle 
showing itself by a little less brilliance than foreseen by the Relativity, different 
images. The Einstein effect, in times of eclipse, should have a slightly lower shift 
of the spectral lines towards the red (blueshift) than in times without eclipse. In 
case it would be an effect similar to the Pioneer effect (over gravity) we should 
have a slightly superior movement of the spectral lines towards the red than in a 
frame without eclipse.  

Because on the surface of celestial bodies reigns a field of very intense gravita-
tion and the movements of the lines are considerable, gravitational lensing for 
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the generalized Relativity is a powerful tool to estimate mass distribution on 
cosmological scales. But if the additional Allais effect is true, the mass distribu-
tion and the interpretation of gravity could be different. 

5.3. Eclipse Perturbation Instead of Tidal Friction; Main Witness 
Becomes Main Culprit 

Universal time and the length of day would be subject to variations not only be-
cause of the tides, atmospheric circulation, internal effects, but also because of 
the Allais eclipse effect. Modern research shows that the Earth’s rotation has 
slowed down by a fractional amount over the past 4000 years. The acceleration 
of the Moon’s orbit would be associated with the deceleration of the Earth’s ro-
tation. 

It is assumed that the Moon in its orbit experiences an outward accelerating 
effect caused by the friction of lunar and solar tides which slow the Earth’s rota-
tion. As the Earth rotates on its axis, it experiences the friction of the tides im-
posed by the gravitational pull of the Moon and, to a lesser extent, the Sun. This 
secular acceleration gradually transfers the angular momentum from the Earth 
to the Moon. As the Earth loses energy and slows down, the Moon gains this 
energy and its orbital period, as well as its distance from Earth, increases. Mea-
surements over the past 40 years indicate that the Moon's orbit is receding from 
Earth at a rate of 4 cm per year. 

It was on the basis of the Moon-Earth alignments at the time of the ancient 
eclipses that it was possible to conclude that—as a trend—the Earth’s rotation is 
slowing down. Because a number of ancient eclipses have been collected, con-
temporary researchers have been able to determine that the daylength in the past 
was somewhat shorter than the current daylength (86,400 seconds). It seems that 
during the previous 4000 years the length of the day has gradually grown longer, 
and it is inferred that the ever increasing length of the day could be attributed to 
the decelerated rotation of the Earth. The observed lengthening of daylight, a 
change in the rate of rotation of −0.0018 seconds/century, across four millennia 
is found to have accumulated in the end a total increase of +0.07 seconds. This 
increase in the current day length of +0.07 seconds over the ancient days of 4000 
years ago means that the rate of Earth’s rotation has slowed down by −0.0018 
seconds per century. While the indication that daylength has increased by a total 
of only 0.07 seconds over the past 4000 years may appear minimal, it is nonethe-
less significant; the accumulation of longer days, produced by a diminishing ro-
tation, causes, after millennia, a noticeable change [28] [29].  

It is thus assumed that the Moon in its orbit experiences an acceleration effect 
due to lunar and solar tides friction slowing down Earth’s spin. The wave of tide 
lifting waters of oceans, moves the other way around of the rotation of the Earth; 
so it produces a friction which slows down the rotation. At the same time, the 
Moon undergoes a counteraction to that of the tide and goes away constantly 
from the Earth. However things seem more complicated than supposed. The 
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vertical constituent of the force of Newton’s static theory produces only an in-
significant disturbance. The horizontal constituent of the force of the dynamic 
theory produces more impressive effects on the liquid masses but the influence 
of the oceanic friction can only be considered in the regions of weak depth and 
strong tides, what is the exception rather than the rule. Furthermore the atmos-
pheric tides in resonance with the present period of rotation tend to accelerate 
the rotation and to compensate for the braking due to the oceanic tides. Thus no 
absolute conclusion can be formulated and it would be possible that this theory 
contributes only very partially to the slowing down of the Earth [14] [30] [31]. 

Our suggestion is that the slowing rotation of the Earth, the increasing length 
of the day associated to the wider lunar orbit, are above all caused by eclipses in-
stead of tidal friction. In this respect we suggest to examine in depth the Allais 
eclipse effect [32]. It could reveal that mechanisms of “antigravity” could pro-
duce “cosmological leaps” and “cosmological leap seconds” (different from “leap 
seconds” filling the split between the Earth’s rotation second and the atomic 
clock second) and be so the main cause of the deceleration in the Earth’s spin 
rate and, simultaneously, of the receding of the Moon. The listed total solar ec-
lipses were always the only historic witnesses of the non-uniform change of rate 
of the rotation of Earth and of the day length. More than witness of the changes 
in Earth’s dynamical behaviour, we think that eclipse could be also considered as 
perpetrator if the eclipse records and the Allais effect were scientifically investi-
gated. Eclipse would have acted like a pyromaniac who, having lit a long series of 
fires, hurries to indicate every fire to the authorities who, in turn, use him as 
unique witness for the prosecution against possible suspects.  

6. Conclusions 

Does the relationship between the Allais effect and the higher displacement than 
predicted by GR of the positions of star images during solar eclipse a simple hy-
pothesis, or is it a consequence of the observation at the time of the total eclipse? 
We think that it is a consequence of the observational results at the time of the 
total eclipse and the measurements suggest that both anomalous phenomena 
have a common origin. Our approach to relating the two anomalies was first to 
calculate the gravitational acceleration in Paris during the disturbance caused by 
the total solar eclipse of June 30, 1954, starting from the plane of oscillation of 
the paraconical pendulum of M. Allais which rose 13.5 degrees. Then find the 
Earth’s radius equivalent to this abnormal gravitational acceleration. Using the 
average horizontal parallax of the Sun which is 8.80'' of arc, we find that the ab-
normal addition to the Earth’s radius during the eclipse is equivalent to a paral-
lax angle that would vary by 0.1634''. By reversing the parallax, we find the same 
circumference for the Sun with an excess of arc. It just so happens that 0.1634'' 
corresponds to the deviation of about 10%, that is to say to the arc residue veri-
fied during total eclipse experiments and which is beyond the experimental er-
rors. 
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Scientific history seems to want to repeat itself. When the GR predicted for 
the deflection of starlight just grazing the edge of the Sun an angular distance of 
1.74'', or two times the Newtonian prediction, the question of the precise value 
of the deviation became a matter of principle which had to allow choosing be-
tween both theories. The Relativity took it. Today, the Allais effect and the ano-
maly of residual arc during total solar eclipse persuade us that it is not the com-
plete story. The observed 1.97'' for the deviation is higher than the number pre-
dicted by the calculation and in a proportion superior to the experimental errors. 
And, as we tried to demonstrate, the unexplained arcseconds excess of these ex-
periments would be in concomitance and accordance with the abrupt deviation 
of the plane of oscillation of the Allais pendulum with regard to the plane cor-
responding to the Foucault effect. GR does not explain the anomaly of the arc 
residue during total eclipses, which suggests that it is conceptually incomplete 
and that some substantive work needs to be done. We do not hesitate to assert 
that these confirmed experiences and these collected figures call into question 
the interpretation of GR and once again question our conception of the Un-
iverse. 
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Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur
dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pel-
lentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Mauris ut leo. Cras viverra metus rhoncus
sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in,
pretium quis, viverra ac, nunc. Praesent eget
sem vel leo ultrices bibendum. Aenean fau-
cibus. Morbi dolor nulla, malesuada eu, pulv-
inar at, mollis ac, nulla. Curabitur auctor sem-
per nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagit-
tis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.
Nam dui ligula, fringilla a, euismod sodales,
sollicitudin vel, wisi. Morbi auctor lorem non
justo. Nam lacus libero, pretium at, lobortis
vitae, ultricies et, tellus. Donec aliquet, tor-
tor sed accumsan bibendum, erat ligula aliquet
magna, vitae ornare odio metus a mi. Morbi
ac orci et nisl hendrerit mollis. Suspendisse
ut massa. Cras nec ante. Pellentesque a nul-
la. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus.
Aliquam tincidunt urna. Nulla ullamcorper
vestibulum turpis. Pellentesque cursus luctus
mauris.
Nulla malesuada porttitor diam. Donec felis
erat, congue non, volutpat at, tincidunt tris-
tique, libero. Vivamus viverra fermentum felis.
Donec nonummy pellentesque ante. Phasellus
adipiscing semper elit. Proin fermentum mas-
sa ac quam. Sed diam turpis, molestie vitae,
placerat a, molestie nec, leo. Maecenas lacinia.
Nam ipsum ligula, eleifend at, accumsan nec,
suscipit a, ipsum. Morbi blandit ligula feu-
giat magna. Nunc eleifend consequat lorem.
Sed lacinia nulla vitae enim. Pellentesque t-
incidunt purus vel magna. Integer non en-
im. Praesent euismod nunc eu purus. Donec
bibendum quam in tellus. Nullam cursus pul-
vinar lectus. Donec et mi. Nam vulputate
metus eu enim. Vestibulum pellentesque felis
eu massa.
Quisque ullamcorper placerat ipsum. Cras
nibh. Morbi vel justo vitae lacus tincidun-
t ultrices. Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit. In hac habitasse
platea dictumst. Integer tempus convallis au-
gue. Etiam facilisis. Nunc elementum fermen-
tum wisi. Aenean placerat. Ut imperdiet, en-
im sed gravida sollicitudin, felis odio placerat
quam, ac pulvinar elit purus eget enim. Nunc
vitae tortor. Proin tempus nibh sit amet nisl.
Vivamus quis tortor vitae risus porta vehicula.
Fusce mauris. Vestibulum luctus nibh at lec-
tus. Sed bibendum, nulla a faucibus semper,
leo velit ultricies tellus, ac venenatis arcu wisi
vel nisl. Vestibulum diam. Aliquam pellen-
tesque, augue quis sagittis posuere, turpis la-
cus congue quam, in hendrerit risus eros eget
felis. Maecenas eget erat in sapien mattis port-
titor. Vestibulum porttitor. Nulla facilisi. Sed
a turpis eu lacus commodo facilisis. Morbi
fringilla, wisi in dignissim interdum, justo lec-
tus sagittis dui, et vehicula libero dui cursus
dui. Mauris tempor ligula sed lacus. Duis cur-
sus enim ut augue. Cras ac magna. Cras nulla.
Nulla egestas. Curabitur a leo. Quisque eges-
tas wisi eget nunc. Nam feugiat lacus vel est.
Curabitur consectetuer.
Suspendisse vel felis. Ut lorem lorem, inter-
dum eu, tincidunt sit amet, laoreet vitae, ar-
cu. Aenean faucibus pede eu ante. Praesent
enim elit, rutrum at, molestie non, nonummy
vel, nisl. Ut lectus eros, malesuada sit amet,
fermentum eu, sodales cursus, magna. Donec
eu purus. Quisque vehicula, urna sed ultricies
auctor, pede lorem egestas dui, et convallis elit
erat sed nulla. Donec luctus. Curabitur et
nunc. Aliquam dolor odio, commodo pretium,
ultricies non, pharetra in, velit. Integer arcu
est, nonummy in, fermentum faucibus, egestas
vel, odio.
Sed commodo posuere pede. Mauris ut est.
Ut quis purus. Sed ac odio. Sed vehicula hen-
drerit sem. Duis non odio. Morbi ut dui. Sed
accumsan risus eget odio. In hac habitasse
platea dictumst. Pellentesque non elit. Fusce
sed justo eu urna porta tincidunt. Mauris felis
odio, sollicitudin sed, volutpat a, ornare ac, er-
at. Morbi quis dolor. Donec pellentesque, er-
at ac sagittis semper, nunc dui lobortis purus,
quis congue purus metus ultricies tellus. Proin
et quam. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos hy-
menaeos. Praesent sapien turpis, fermentum
vel, eleifend faucibus, vehicula eu, lacus.
Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis eges-
tas. Donec odio elit, dictum in, hendrerit sit
amet, egestas sed, leo. Praesent feugiat sapi-
en aliquet odio. Integer vitae justo. Aliquam
vestibulum fringilla lorem. Sed neque lectus,
consectetuer at, consectetuer sed, eleifend ac,
lectus. Nulla facilisi. Pellentesque eget lec-
tus. Proin eu metus. Sed porttitor. In hac
habitasse platea dictumst. Suspendisse eu lec-
tus. Ut mi mi, lacinia sit amet, placerat et,
mollis vitae, dui. Sed ante tellus, tristique ut,
iaculis eu, malesuada ac, dui. Mauris nibh leo,
facilisis non, adipiscing quis, ultrices a, dui.
Morbi luctus, wisi viverra faucibus pretium,
nibh est placerat odio, nec commodo wisi enim
eget quam. Quisque libero justo, consectetuer
a, feugiat vitae, porttitor eu, libero. Sus-
pendisse sed mauris vitae elit sollicitudin male-
suada. Maecenas ultricies eros sit amet ante.
Ut venenatis velit. Maecenas sed mi eget dui
varius euismod. Phasellus aliquet volutpat o-
dio. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae;
Pellentesque sit amet pede ac sem eleifend con-
sectetuer. Nullam elementum, urna vel im-
perdiet sodales, elit ipsum pharetra ligula, ac
pretium ante justo a nulla. Curabitur tristique
arcu eu metus. Vestibulum lectus. Proin mau-
ris. Proin eu nunc eu urna hendrerit faucibus.
Aliquam auctor, pede consequat laoreet var-
ius, eros tellus scelerisque quam, pellentesque
hendrerit ipsum dolor sed augue. Nulla nec
lacus.
Suspendisse vitae elit. Aliquam arcu neque,
ornare in, ullamcorper quis, commodo eu,
libero. Fusce sagittis erat at erat tristique
mollis. Maecenas sapien libero, molestie et,
lobortis in, sodales eget, dui. Morbi ultrices
rutrum lorem. Nam elementum ullamcorper
leo. Morbi dui. Aliquam sagittis. Nunc plac-
erat. Pellentesque tristique sodales est. Mae-
cenas imperdiet lacinia velit. Cras non urna.
Morbi eros pede, suscipit ac, varius vel, eges-
tas non, eros. Praesent malesuada, diam id
pretium elementum, eros sem dictum tortor,
vel consectetuer odio sem sed wisi.
Sed feugiat. Cum sociis natoque penatibus
et magnis dis parturient montes, nascetur
ridiculus mus. Ut pellentesque augue sed ur-
na. Vestibulum diam eros, fringilla et, con-
sectetuer eu, nonummy id, sapien. Nullam at
lectus. In sagittis ultrices mauris. Curabitur
malesuada erat sit amet massa. Fusce blan-
dit. Aliquam erat volutpat. Aliquam euismod.
Aenean vel lectus. Nunc imperdiet justo nec
dolor.
Etiam euismod. Fusce facilisis lacinia dui.
Suspendisse potenti. In mi erat, cursus id,
nonummy sed, ullamcorper eget, sapien. Prae-
sent pretium, magna in eleifend egestas, pede
pede pretium lorem, quis consectetuer tortor
sapien facilisis magna. Mauris quis magna var-
ius nulla scelerisque imperdiet. Aliquam non
quam. Aliquam porttitor quam a lacus. Prae-
sent vel arcu ut tortor cursus volutpat. In vi-
tae pede quis diam bibendum placerat. Fusce
elementum convallis neque. Sed dolor orci,
scelerisque ac, dapibus nec, ultricies ut, mi.
Duis nec dui quis leo sagittis commodo.
Aliquam lectus. Vivamus leo. Quisque ornare
tellus ullamcorper nulla. Mauris porttitor
pharetra tortor. Sed fringilla justo sed mau-
ris. Mauris tellus. Sed non leo. Nullam el-
ementum, magna in cursus sodales, augue est
scelerisque sapien, venenatis congue nulla arcu
et pede. Ut suscipit enim vel sapien. Donec
congue. Maecenas urna mi, suscipit in, plac-
erat ut, vestibulum ut, massa. Fusce ultrices
nulla et nisl.
Etiam ac leo a risus tristique nonummy. Donec
dignissim tincidunt nulla. Vestibulum rhoncus
molestie odio. Sed lobortis, justo et pretium
lobortis, mauris turpis condimentum augue,
nec ultricies nibh arcu pretium enim. Nunc
purus neque, placerat id, imperdiet sed, pellen-
tesque nec, nisl. Vestibulum imperdiet neque
non sem accumsan laoreet. In hac habitasse
platea dictumst. Etiam condimentum facili-
sis libero. Suspendisse in elit quis nisl aliquam
dapibus. Pellentesque auctor sapien. Sed eges-
tas sapien nec lectus. Pellentesque vel dui vel
neque bibendum viverra. Aliquam porttitor
nisl nec pede. Proin mattis libero vel turpis.
Donec rutrum mauris et libero. Proin euismod
porta felis. Nam lobortis, metus quis elemen-
tum commodo, nunc lectus elementum mauris,
eget vulputate ligula tellus eu neque. Vivamus
eu dolor.
Nulla in ipsum. Praesent eros nulla, congue
vitae, euismod ut, commodo a, wisi. Pellen-
tesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Ae-
nean nonummy magna non leo. Sed felis erat,
ullamcorper in, dictum non, ultricies ut, lec-
tus. Proin vel arcu a odio lobortis euismod.
Vestibulum ante ipsum primis in faucibus orci
luctus et ultrices posuere cubilia Curae; Proin
ut est. Aliquam odio. Pellentesque massa
turpis, cursus eu, euismod nec, tempor congue,
nulla. Duis viverra gravida mauris. Cras tin-
cidunt. Curabitur eros ligula, varius ut, pulv-
inar in, cursus faucibus, augue.
Nulla mattis luctus nulla. Duis commodo
velit at leo. Aliquam vulputate magna et leo.
Nam vestibulum ullamcorper leo. Vestibulum
condimentum rutrum mauris. Donec id mau-
ris. Morbi molestie justo et pede. Vivamus
eget turpis sed nisl cursus tempor. Curabitur
mollis sapien condimentum nunc. In wisi nis-
l, malesuada at, dignissim sit amet, lobortis
in, odio. Aenean consequat arcu a ante. Pel-
lentesque porta elit sit amet orci. Etiam at
turpis nec elit ultricies imperdiet. Nulla fa-
cilisi. In hac habitasse platea dictumst. Sus-
pendisse viverra aliquam risus. Nullam pede
justo, molestie nonummy, scelerisque eu, facil-
isis vel, arcu.
Curabitur tellus magna, porttitor a, commo-
do a, commodo in, tortor. Donec interdum.
Praesent scelerisque. Maecenas posuere so-
dales odio. Vivamus metus lacus, varius quis,
imperdiet quis, rhoncus a, turpis. Etiam ligu-
la arcu, elementum a, venenatis quis, sollici-
tudin sed, metus. Donec nunc pede, tincidunt
in, venenatis vitae, faucibus vel, nibh. Pel-
lentesque wisi. Nullam malesuada. Morbi ut
tellus ut pede tincidunt porta. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. E-
tiam congue neque id dolor.
Donec et nisl at wisi luctus bibendum. Nam in-
terdum tellus ac libero. Sed sem justo, laoreet
vitae, fringilla at, adipiscing ut, nibh. Mae-
cenas non sem quis tortor eleifend fermentum.
Etiam id tortor ac mauris porta vulputate. In-
teger porta neque vitae massa. Maecenas tem-
pus libero a libero posuere dictum. Vestibu-
lum ante ipsum primis in faucibus orci luc-
tus et ultrices posuere cubilia Curae; Aenean
quis mauris sed elit commodo placerat. Class
aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos hymenaeos. Viva-
mus rhoncus tincidunt libero. Etiam elemen-
tum pretium justo. Vivamus est. Morbi a tel-
lus eget pede tristique commodo. Nulla nisl.
Vestibulum sed nisl eu sapien cursus rutrum.
Nulla non mauris vitae wisi posuere conval-
lis. Sed eu nulla nec eros scelerisque pharetra.
Nullam varius. Etiam dignissim elementum
metus. Vestibulum faucibus, metus sit amet
mattis rhoncus, sapien dui laoreet odio, nec
ultricies nibh augue a enim. Fusce in ligula.
Quisque at magna et nulla commodo conse-
quat. Proin accumsan imperdiet sem. Nunc
porta. Donec feugiat mi at justo. Phasellus
facilisis ipsum quis ante. In ac elit eget ipsum
pharetra faucibus. Maecenas viverra nulla in
massa.
Nulla ac nisl. Nullam urna nulla, ullamcorper
in, interdum sit amet, gravida ut, risus. Ae-
nean ac enim. In luctus. Phasellus eu quam
vitae turpis viverra pellentesque. Duis feugiat
felis ut enim. Phasellus pharetra, sem id port-
titor sodales, magna nunc aliquet nibh, nec b-
landit nisl mauris at pede. Suspendisse risus
risus, lobortis eget, semper at, imperdiet sit
amet, quam. Quisque scelerisque dapibus nib-
h. Nam enim. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Nunc ut metus.
Ut metus justo, auctor at, ultrices eu, sagittis
ut, purus. Aliquam aliquam.
Etiam pede massa, dapibus vitae, rhoncus
in, placerat posuere, odio. Vestibulum luc-
tus commodo lacus. Morbi lacus dui, tem-
por sed, euismod eget, condimentum at, tor-
tor. Phasellus aliquet odio ac lacus tempor
faucibus. Praesent sed sem. Praesent iac-
ulis. Cras rhoncus tellus sed justo ullamcor-
per sagittis. Donec quis orci. Sed ut tor-
tor quis tellus euismod tincidunt. Suspendisse
congue nisl eu elit. Aliquam tortor diam, tem-
pus id, tristique eget, sodales vel, nulla. Prae-
sent tellus mi, condimentum sed, viverra at,
consectetuer quis, lectus. In auctor vehicula
orci. Sed pede sapien, euismod in, suscipit in,
pharetra placerat, metus. Vivamus commodo
dui non odio. Donec et felis.
Etiam suscipit aliquam arcu. Aliquam sit amet
est ac purus bibendum congue. Sed in eros.
Morbi non orci. Pellentesque mattis lacini-
a elit. Fusce molestie velit in ligula. Nul-
lam et orci vitae nibh vulputate auctor. Ali-
quam eget purus. Nulla auctor wisi sed ipsum.
Morbi porttitor tellus ac enim. Fusce ornare.
Proin ipsum enim, tincidunt in, ornare vene-
natis, molestie a, augue. Donec vel pede in
lacus sagittis porta. Sed hendrerit ipsum quis
nisl. Suspendisse quis massa ac nibh pretium
cursus. Sed sodales. Nam eu neque quis pede
dignissim ornare. Maecenas eu purus ac urna
tincidunt congue.
Donec et nisl id sapien blandit mattis. Ae-
nean dictum odio sit amet risus. Morbi pu-
rus. Nulla a est sit amet purus venenatis iac-
ulis. Vivamus viverra purus vel magna. Donec
in justo sed odio malesuada dapibus. Nunc
ultrices aliquam nunc. Vivamus facilisis pel-
lentesque velit. Nulla nunc velit, vulputate
dapibus, vulputate id, mattis ac, justo. Nam
mattis elit dapibus purus. Quisque enim risus,
congue non, elementum ut, mattis quis, sem.
Quisque elit.
Maecenas non massa. Vestibulum pharetra
nulla at lorem. Duis quis quam id lacus
dapibus interdum. Nulla lorem. Donec ut
ante quis dolor bibendum condimentum. Eti-
am egestas tortor vitae lacus. Praesent cursus.
Mauris bibendum pede at elit. Morbi et felis a
lectus interdum facilisis. Sed suscipit gravida
turpis. Nulla at lectus. Vestibulum ante ip-
sum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Praesent nonummy luc-
tus nibh. Proin turpis nunc, congue eu, egestas
ut, fringilla at, tellus. In hac habitasse platea
dictumst.
Vivamus eu tellus sed tellus consequat suscipit.
Nam orci orci, malesuada id, gravida nec, ul-
tricies vitae, erat. Donec risus turpis, luctus sit
amet, interdum quis, porta sed, ipsum. Sus-
pendisse condimentum, tortor at egestas po-
suere, neque metus tempor orci, et tincidunt
urna nunc a purus. Sed facilisis blandit tellus.
Nunc risus sem, suscipit nec, eleifend quis, cur-
sus quis, libero. Curabitur et dolor. Sed vitae
sem. Cum sociis natoque penatibus et mag-
nis dis parturient montes, nascetur ridiculus
mus. Maecenas ante. Duis ullamcorper enim.
Donec tristique enim eu leo. Nullam molestie
elit eu dolor. Nullam bibendum, turpis vitae
tristique gravida, quam sapien tempor lectus,
quis pretium tellus purus ac quam. Nulla fa-
cilisi.
Duis aliquet dui in est. Donec eget est.
Nunc lectus odio, varius at, fermentum in, ac-
cumsan non, enim. Aliquam erat volutpat.
Proin sit amet nulla ut eros consectetuer cur-
sus. Phasellus dapibus aliquam justo. Nunc
laoreet. Donec consequat placerat magna.
Duis pretium tincidunt justo. Sed sollicitudin
vestibulum quam. Nam quis ligula. Vivamus
at metus. Etiam imperdiet imperdiet pede.
Aenean turpis. Fusce augue velit, scelerisque
sollicitudin, dictum vitae, tempor et, pede.
Donec wisi sapien, feugiat in, fermentum ut,
sollicitudin adipiscing, metus.
Donec vel nibh ut felis consectetuer laoreet.
Donec pede. Sed id quam id wisi laoreet sus-
cipit. Nulla lectus dolor, aliquam ac, fringilla
eget, mollis ut, orci. In pellentesque justo in
ligula. Maecenas turpis. Donec eleifend leo
at felis tincidunt consequat. Aenean turpis
metus, malesuada sed, condimentum sit amet,
auctor a, wisi. Pellentesque sapien elit, biben-
dum ac, posuere et, congue eu, felis. Vestibu-
lum mattis libero quis metus scelerisque ultri-
ces. Sed purus.
Donec molestie, magna ut luctus ultrices, tel-
lus arcu nonummy velit, sit amet pulvinar elit
justo et mauris. In pede. Maecenas euis-
mod elit eu erat. Aliquam augue wisi, facil-
isis congue, suscipit in, adipiscing et, ante. In
justo. Cras lobortis neque ac ipsum. Nunc
fermentum massa at ante. Donec orci tortor,
egestas sit amet, ultrices eget, venenatis eget,
mi. Maecenas vehicula leo semper est. Mauris
vel metus. Aliquam erat volutpat. In rhoncus
sapien ac tellus. Pellentesque ligula.
Cras dapibus, augue quis scelerisque ultricies,
felis dolor placerat sem, id porta velit odio eu
elit. Aenean interdum nibh sed wisi. Prae-
sent sollicitudin vulputate dui. Praesent iac-
ulis viverra augue. Quisque in libero. Aenean
gravida lorem vitae sem ullamcorper cursus.
Nunc adipiscing rutrum ante. Nunc ipsum
massa, faucibus sit amet, viverra vel, elemen-
tum semper, orci. Cras eros sem, vulputate et,
tincidunt id, ultrices eget, magna. Nulla varius
ornare odio. Donec accumsan mauris sit amet
augue. Sed ligula lacus, laoreet non, aliquam
sit amet, iaculis tempor, lorem. Suspendisse
eros. Nam porta, leo sed congue tempor, fe-
lis est ultrices eros, id mattis velit felis non
metus. Curabitur vitae elit non mauris var-
ius pretium. Aenean lacus sem, tincidunt ut,
consequat quis, porta vitae, turpis. Nullam
laoreet fermentum urna. Proin iaculis lectus.
Sed mattis, erat sit amet gravida malesuada,
elit augue egestas diam, tempus scelerisque
nunc nisl vitae libero. Sed consequat feugiat
massa. Nunc porta, eros in eleifend varius,
erat leo rutrum dui, non convallis lectus or-
ci ut nibh. Sed lorem massa, nonummy quis,
egestas id, condimentum at, nisl. Maecenas at
nibh. Aliquam et augue at nunc pellentesque
ullamcorper. Duis nisl nibh, laoreet suscipit,
convallis ut, rutrum id, enim. Phasellus odio.
Nulla nulla elit, molestie non, scelerisque at,
vestibulum eu, nulla. Ut odio nisl, facilisis id,
mollis et, scelerisque nec, enim. Aenean sem
leo, pellentesque sit amet, scelerisque sit amet,
vehicula pellentesque, sapien.
Sed consequat tellus et tortor. Ut tempor
laoreet quam. Nullam id wisi a libero tris-
tique semper. Nullam nisl massa, rutrum ut,
egestas semper, mollis id, leo. Nulla ac mas-
sa eu risus blandit mattis. Mauris ut nunc.
In hac habitasse platea dictumst. Aliquam
eget tortor. Quisque dapibus pede in erat.
Nunc enim. In dui nulla, commodo at, con-
sectetuer nec, malesuada nec, elit. Aliquam
ornare tellus eu urna. Sed nec metus. Cum
sociis natoque penatibus et magnis dis par-
turient montes, nascetur ridiculus mus. Pel-
lentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.
Phasellus id magna. Duis malesuada inter-
dum arcu. Integer metus. Morbi pulvinar pel-
lentesque mi. Suspendisse sed est eu magna
molestie egestas. Quisque mi lorem, pulvinar
eget, egestas quis, luctus at, ante. Proin auc-
tor vehicula purus. Fusce ac nisl aliquam ante
hendrerit pellentesque. Class aptent taciti so-
ciosqu ad litora torquent per conubia nostra,
per inceptos hymenaeos. Morbi wisi. Etiam
arcu mauris, facilisis sed, eleifend non, non-
ummy ut, pede. Cras ut lacus tempor metus
mollis placerat. Vivamus eu tortor vel metus
interdum malesuada.
Sed eleifend, eros sit amet faucibus elemen-
tum, urna sapien consectetuer mauris, quis
egestas leo justo non risus. Morbi non felis ac
libero vulputate fringilla. Mauris libero eros,
lacinia non, sodales quis, dapibus porttitor,
pede. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos hy-
menaeos. Morbi dapibus mauris condimentum
nulla. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus.
Etiam sit amet erat. Nulla varius. Etiam t-
incidunt dui vitae turpis. Donec leo. Morbi
vulputate convallis est. Integer aliquet. Pel-
lentesque aliquet sodales urna.
Nullam eleifend justo in nisl. In hac habitasse
platea dictumst. Morbi nonummy. Aliquam
ut felis. In velit leo, dictum vitae, posuere id,
vulputate nec, ante. Maecenas vitae pede nec
dui dignissim suscipit. Morbi magna. Vestibu-
lum id purus eget velit laoreet laoreet. Prae-
sent sed leo vel nibh convallis blandit. Ut
rutrum. Donec nibh. Donec interdum. Fusce
sed pede sit amet elit rhoncus ultrices. Nullam
at enim vitae pede vehicula iaculis.
Class aptent taciti sociosqu ad litora torquen-
t per conubia nostra, per inceptos hymenaeos.
Aenean nonummy turpis id odio. Integer eu-
ismod imperdiet turpis. Ut nec leo nec di-
am imperdiet lacinia. Etiam eget lacus eget
mi ultricies posuere. In placerat tristique tor-
tor. Sed porta vestibulum metus. Nulla ia-
culis sollicitudin pede. Fusce luctus tellus in
dolor. Curabitur auctor velit a sem. Mor-
bi sapien. Class aptent taciti sociosqu ad l-
itora torquent per conubia nostra, per incep-
tos hymenaeos. Donec adipiscing urna vehic-
ula nunc. Sed ornare leo in leo. In rhoncus
leo ut dui. Aenean dolor quam, volutpat nec,
fringilla id, consectetuer vel, pede.
Nulla malesuada risus ut urna. Aenean
pretium velit sit amet metus. Duis iaculis. In
hac habitasse platea dictumst. Nullam mo-
lestie turpis eget nisl. Duis a massa id pede
dapibus ultricies. Sed eu leo. In at mauris sit
amet tortor bibendum varius. Phasellus justo
risus, posuere in, sagittis ac, varius vel, tor-
tor. Quisque id enim. Phasellus consequat,
libero pretium nonummy fringilla, tortor lacus
vestibulum nunc, ut rhoncus ligula neque id
justo. Nullam accumsan euismod nunc. Proin
vitae ipsum ac metus dictum tempus. Nam ut
wisi. Quisque tortor felis, interdum ac, sodales
a, semper a, sem. Curabitur in velit sit amet
dui tristique sodales. Vivamus mauris pede,
lacinia eget, pellentesque quis, scelerisque eu,
est. Aliquam risus. Quisque bibendum pede
eu dolor.
Donec tempus neque vitae est. Aenean egestas
odio sed risus ullamcorper ullamcorper. Sed in
nulla a tortor tincidunt egestas. Nam sapien
tortor, elementum sit amet, aliquam in, port-
titor faucibus, enim. Nullam congue suscipit
nibh. Quisque convallis. Praesent arcu nibh,
vehicula eget, accumsan eu, tincidunt a, nibh.
Suspendisse vulputate, tortor quis adipiscing
viverra, lacus nibh dignissim tellus, eu suscipit
risus ante fringilla diam. Quisque a libero v-
el pede imperdiet aliquet. Pellentesque nunc
nibh, eleifend a, consequat consequat, hen-
drerit nec, diam. Sed urna. Maecenas laoreet
eleifend neque. Vivamus purus odio, eleifend
non, iaculis a, ultrices sit amet, urna. Mau-
ris faucibus odio vitae risus. In nisl. Praesent
purus. Integer iaculis, sem eu egestas lacinia,
lacus pede scelerisque augue, in ullamcorper
dolor eros ac lacus. Nunc in libero.
Fusce suscipit cursus sem. Vivamus risus mi,
egestas ac, imperdiet varius, faucibus quis,
leo. Aenean tincidunt. Donec suscipit. Cras
id justo quis nibh scelerisque dignissim. Ali-
quam sagittis elementum dolor. Aenean con-
sectetuer justo in pede. Curabitur ullamcorper
ligula nec orci. Aliquam purus turpis, aliquam
id, ornare vitae, porttitor non, wisi. Maecenas
luctus porta lorem. Donec vitae ligula eu ante
pretium varius. Proin tortor metus, convallis
et, hendrerit non, scelerisque in, urna. Cras
quis libero eu ligula bibendum tempor. Viva-
mus tellus quam, malesuada eu, tempus sed,
tempor sed, velit. Donec lacinia auctor libero.
Praesent sed neque id pede mollis rutrum.
Vestibulum iaculis risus. Pellentesque lacus.
Ut quis nunc sed odio malesuada egestas. Duis
a magna sit amet ligula tristique pretium. Ut
pharetra. Vestibulum imperdiet magna nec
wisi. Mauris convallis. Sed accumsan sollic-
itudin massa. Sed id enim. Nunc pede enim,
lacinia ut, pulvinar quis, suscipit semper, elit.
Cras accumsan erat vitae enim. Cras sollici-
tudin. Vestibulum rutrum blandit massa.
Sed gravida lectus ut purus. Morbi laoreet
magna. Pellentesque eu wisi. Proin turpis. In-
teger sollicitudin augue nec dui. Fusce lectus.
Vivamus faucibus nulla nec lacus. Integer di-
am. Pellentesque sodales, enim feugiat cursus
volutpat, sem mauris dignissim mauris, quis
consequat sem est fermentum ligula. Nullam
justo lectus, condimentum sit amet, posuere a,
fringilla mollis, felis. Morbi nulla nibh, pellen-
tesque at, nonummy eu, sollicitudin nec, ip-
sum. Cras neque. Nunc augue. Nullam vitae
quam id quam pulvinar blandit. Nunc sit amet
orci. Aliquam erat elit, pharetra nec, aliquet
a, gravida in, mi. Quisque urna enim, viverra
quis, suscipit quis, tincidunt ut, sapien. Cras
placerat consequat sem. Curabitur ac diam.
Curabitur diam tortor, mollis et, viverra ac,
tempus vel, metus.
Curabitur ac lorem. Vivamus non justo in
dui mattis posuere. Etiam accumsan ligula
id pede. Maecenas tincidunt diam nec velit.
Praesent convallis sapien ac est. Aliquam ul-
lamcorper euismod nulla. Integer mollis enim
vel tortor. Nulla sodales placerat nunc. Sed
tempus rutrum wisi. Duis accumsan gravi-
da purus. Nunc nunc. Etiam facilisis dui eu
sem. Vestibulum semper. Praesent eu eros.
Vestibulum tellus nisl, dapibus id, vestibulum
sit amet, placerat ac, mauris. Maecenas et elit
ut erat placerat dictum. Nam feugiat, turpis
et sodales volutpat, wisi quam rhoncus neque,
vitae aliquam ipsum sapien vel enim. Maece-
nas suscipit cursus mi.
Quisque consectetuer. In suscipit mauris a do-
lor pellentesque consectetuer. Mauris convallis
neque non erat. In lacinia. Pellentesque leo
eros, sagittis quis, fermentum quis, tincidun-
t ut, sapien. Maecenas sem. Curabitur eros
odio, interdum eu, feugiat eu, porta ac, nis-
l. Curabitur nunc. Etiam fermentum convallis
velit. Pellentesque laoreet lacus. Quisque sed
elit. Nam quis tellus. Aliquam tellus arcu,
adipiscing non, tincidunt eleifend, adipiscing
quis, augue. Vivamus elementum placerat en-
im. Suspendisse ut tortor. Integer faucibus
adipiscing felis. Aenean consectetuer mattis
lectus. Morbi malesuada faucibus dolor. Nam
lacus. Etiam arcu libero, malesuada vitae, ali-
quam vitae, blandit tristique, nisl.
Maecenas accumsan dapibus sapien. Duis
pretium iaculis arcu. Curabitur ut lacus. Ali-
quam vulputate. Suspendisse ut purus sed sem
tempor rhoncus. Ut quam dui, fringilla at, dic-
tum eget, ultricies quis, quam. Etiam sem est,
pharetra non, vulputate in, pretium at, ipsum.
Nunc semper sagittis orci. Sed scelerisque sus-
cipit diam. Ut volutpat, dolor at ullamcorp-
er tristique, eros purus mollis quam, sit amet
ornare ante nunc et enim.
Phasellus fringilla, metus id feugiat con-
sectetuer, lacus wisi ultrices tellus, quis lobor-
tis nibh lorem quis tortor. Donec egestas
ornare nulla. Mauris mi tellus, porta fau-
cibus, dictum vel, nonummy in, est. Ali-
quam erat volutpat. In tellus magna, port-
titor lacinia, molestie vitae, pellentesque eu,
justo. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos hy-
menaeos. Sed orci nibh, scelerisque sit amet,
suscipit sed, placerat vel, diam. Vestibulum
nonummy vulputate orci. Donec et velit ac ar-
cu interdum semper. Morbi pede orci, cursus
ac, elementum non, vehicula ut, lacus. Cras
volutpat. Nam vel wisi quis libero venenatis
placerat. Aenean sed odio. Quisque posuere
purus ac orci. Vivamus odio. Vivamus var-
ius, nulla sit amet semper viverra, odio mau-
ris consequat lacus, at vestibulum neque arcu
eu tortor. Donec iaculis tincidunt tellus. Ali-
quam erat volutpat. Curabitur magna lorem,
dignissim volutpat, viverra et, adipiscing nec,
dolor. Praesent lacus mauris, dapibus vitae,
sollicitudin sit amet, nonummy eget, ligula.
Cras egestas ipsum a nisl. Vivamus varius do-
lor ut dolor. Fusce vel enim. Pellentesque
accumsan ligula et eros. Cras id lacus non
tortor facilisis facilisis. Etiam nisl elit, cur-
sus sed, fringilla in, congue nec, urna. Cum
sociis natoque penatibus et magnis dis par-
turient montes, nascetur ridiculus mus. In-
teger at turpis. Cum sociis natoque penati-
bus et magnis dis parturient montes, nascetur
ridiculus mus. Duis fringilla, ligula sed porta
fringilla, ligula wisi commodo felis, ut adipisc-
ing felis dui in enim. Suspendisse malesuada
ultrices ante. Pellentesque scelerisque augue
sit amet urna. Nulla volutpat aliquet tortor.
Cras aliquam, tellus at aliquet pellentesque,
justo sapien commodo leo, id rhoncus sapien
quam at erat. Nulla commodo, wisi eget sol-
licitudin pretium, orci orci aliquam orci, ut
cursus turpis justo et lacus. Nulla vel tor-
tor. Quisque erat elit, viverra sit amet, sagittis
eget, porta sit amet, lacus.
In hac habitasse platea dictumst. Proin at est.
Curabitur tempus vulputate elit. Pellentesque
sem. Praesent eu sapien. Duis elit magna, ali-
quet at, tempus sed, vehicula non, enim. Mor-
bi viverra arcu nec purus. Vivamus fringilla,
enim et commodo malesuada, tortor metus el-
ementum ligula, nec aliquet est sapien ut lec-
tus. Aliquam mi. Ut nec elit. Fusce euismod
luctus tellus. Curabitur scelerisque. Nullam
purus. Nam ultricies accumsan magna. Morbi
pulvinar lorem sit amet ipsum. Donec ut jus-
to vitae nibh mollis congue. Fusce quis diam.
Praesent tempus eros ut quam.
Donec in nisl. Fusce vitae est. Vivamus ante
ante, mattis laoreet, posuere eget, congue vel,
nunc. Fusce sem. Nam vel orci eu eros viver-
ra luctus. Pellentesque sit amet augue. Nunc
sit amet ipsum et lacus varius nonummy. In-
teger rutrum sem eget wisi. Aenean eu sapien.
Quisque ornare dignissim mi. Duis a urna vel
risus pharetra imperdiet. Suspendisse potenti.
Morbi justo. Aenean nec dolor. In hac
habitasse platea dictumst. Proin nonummy
porttitor velit. Sed sit amet leo nec metus
rhoncus varius. Cras ante. Vestibulum com-
modo sem tincidunt massa. Nam justo. Ae-
nean luctus, felis et condimentum lacinia, lec-
tus enim pulvinar purus, non porta velit nisl
sed eros. Suspendisse consequat. Mauris a dui
et tortor mattis pretium. Sed nulla metus, vo-
lutpat id, aliquam eget, ullamcorper ut, ipsum.
Morbi eu nunc. Praesent pretium. Duis ali-
quam pulvinar ligula. Ut blandit egestas justo.
Quisque posuere metus viverra pede.
Vivamus sodales elementum neque. Viva-
mus dignissim accumsan neque. Sed at enim.
Vestibulum nonummy interdum purus. Mau-
ris ornare velit id nibh pretium ultricies. Fusce
tempor pellentesque odio. Vivamus augue pu-
rus, laoreet in, scelerisque vel, commodo id,
wisi. Duis enim. Nulla interdum, nunc eu sem-
per eleifend, enim dolor pretium elit, ut com-
modo ligula nisl a est. Vivamus ante. Nulla
leo massa, posuere nec, volutpat vitae, rhon-
cus eu, magna.
Quisque facilisis auctor sapien. Pellentesque
gravida hendrerit lectus. Mauris rutrum so-
dales sapien. Fusce hendrerit sem vel lorem.
Integer pellentesque massa vel augue. Integer
elit tortor, feugiat quis, sagittis et, ornare non,
lacus. Vestibulum posuere pellentesque eros.
Quisque venenatis ipsum dictum nulla. Ali-
quam quis quam non metus eleifend interdum.
Nam eget sapien ac mauris malesuada adipisc-
ing. Etiam eleifend neque sed quam. Nulla
facilisi. Proin a ligula. Sed id dui eu nibh
egestas tincidunt. Suspendisse arcu.
Maecenas dui. Aliquam volutpat auctor lorem.
Cras placerat est vitae lectus. Curabitur
massa lectus, rutrum euismod, dignissim ut,
dapibus a, odio. Ut eros erat, vulputate ut, in-
terdum non, porta eu, erat. Cras fermentum,
felis in porta congue, velit leo facilisis odio, vi-
tae consectetuer lorem quam vitae orci. Sed
ultrices, pede eu placerat auctor, ante ligula
rutrum tellus, vel posuere nibh lacus nec nibh.
Maecenas laoreet dolor at enim. Donec mo-
lestie dolor nec metus. Vestibulum libero. Sed
quis erat. Sed tristique. Duis pede leo, fer-
mentum quis, consectetuer eget, vulputate sit
amet, erat.
Donec vitae velit. Suspendisse porta fermen-
tum mauris. Ut vel nunc non mauris phare-
tra varius. Duis consequat libero quis urna.
Maecenas at ante. Vivamus varius, wisi sed
egestas tristique, odio wisi luctus nulla, lobor-
tis dictum dolor ligula in lacus. Vivamus ali-
quam, urna sed interdum porttitor, metus orci
interdum odio, sit amet euismod lectus felis et
leo. Praesent ac wisi. Nam suscipit vestibu-
lum sem. Praesent eu ipsum vitae pede cursus
venenatis. Duis sed odio. Vestibulum eleifend.
Nulla ut massa. Proin rutrum mattis sapien.
Curabitur dictum gravida ante.
Phasellus placerat vulputate quam. Maece-
nas at tellus. Pellentesque neque diam, dig-
nissim ac, venenatis vitae, consequat ut, lacus.
Nam nibh. Vestibulum fringilla arcu mollis ar-
cu. Sed et turpis. Donec sem tellus, volut-
pat et, varius eu, commodo sed, lectus. Lorem
ipsum dolor sit amet, consectetuer adipiscing
elit. Quisque enim arcu, suscipit nec, tempus
at, imperdiet vel, metus. Morbi volutpat pu-
rus at erat. Donec dignissim, sem id semper
tempus, nibh massa eleifend turpis, sed pellen-
tesque wisi purus sed libero. Nullam lobortis
tortor vel risus. Pellentesque consequat nulla
eu tellus. Donec velit. Aliquam fermentum,
wisi ac rhoncus iaculis, tellus nunc malesuada
orci, quis volutpat dui magna id mi. Nunc vel
ante. Duis vitae lacus. Cras nec ipsum.
Morbi nunc. Aliquam consectetuer varius nul-
la. Phasellus eros. Cras dapibus porttitor ris-
us. Maecenas ultrices mi sed diam. Praesent
gravida velit at elit vehicula porttitor. Phasel-
lus nisl mi, sagittis ac, pulvinar id, gravida sit
amet, erat. Vestibulum est. Lorem ipsum do-
lor sit amet, consectetuer adipiscing elit. Cur-
abitur id sem elementum leo rutrum hendrerit.
Ut at mi. Donec tincidunt faucibus massa.
Sed turpis quam, sollicitudin a, hendrerit eget,
pretium ut, nisl. Duis hendrerit ligula. Nunc
pulvinar congue urna.
Nunc velit. Nullam elit sapien, eleifend eu,
commodo nec, semper sit amet, elit. Nulla lec-
tus risus, condimentum ut, laoreet eget, viver-
ra nec, odio. Proin lobortis. Curabitur dictum
arcu vel wisi. Cras id nulla venenatis tortor
congue ultrices. Pellentesque eget pede. Sed
eleifend sagittis elit. Nam sed tellus sit amet
lectus ullamcorper tristique. Mauris enim sem,
tristique eu, accumsan at, scelerisque vulpu-
tate, neque. Quisque lacus. Donec et ipsum sit
amet elit nonummy aliquet. Sed viverra nisl at
sem. Nam diam. Mauris ut dolor. Curabitur
ornare tortor cursus velit.
Morbi tincidunt posuere arcu. Cras venenatis
est vitae dolor. Vivamus scelerisque semper
mi. Donec ipsum arcu, consequat scelerisque,
viverra id, dictum at, metus. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Ut
pede sem, tempus ut, porttitor bibendum, mo-
lestie eu, elit. Suspendisse potenti. Sed id lec-
tus sit amet purus faucibus vehicula. Praesen-
t sed sem non dui pharetra interdum. Nam
viverra ultrices magna.
Aenean laoreet aliquam orci. Nunc interdum
elementum urna. Quisque erat. Nullam tem-
por neque. Maecenas velit nibh, scelerisque a,
consequat ut, viverra in, enim. Duis magna.
Donec odio neque, tristique et, tincidunt eu,
rhoncus ac, nunc. Mauris malesuada malesua-
da elit. Etiam lacus mauris, pretium vel, blan-
dit in, ultricies id, libero. Phasellus bibendum
erat ut diam. In congue imperdiet lectus.
Aenean scelerisque. Fusce pretium porttitor
lorem. In hac habitasse platea dictumst. Nulla
sit amet nisl at sapien egestas pretium. Nunc
non tellus. Vivamus aliquet. Nam adipiscing
euismod dolor. Aliquam erat volutpat. Nul-
la ut ipsum. Quisque tincidunt auctor au-
gue. Nunc imperdiet ipsum eget elit. Ali-
quam quam leo, consectetuer non, ornare sit
amet, tristique quis, felis. Vestibulum ante ip-
sum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Pellentesque interdum
quam sit amet mi. Pellentesque mauris dui,
dictum a, adipiscing ac, fermentum sit amet,
lorem.
Ut quis wisi. Praesent quis massa. Vivamus
egestas risus eget lacus. Nunc tincidunt, risus
quis bibendum facilisis, lorem purus rutrum
neque, nec porta tortor urna quis orci. Ae-
nean aliquet, libero semper volutpat luctus,
pede erat lacinia augue, quis rutrum sem ip-
sum sit amet pede. Vestibulum aliquet, nibh
sed iaculis sagittis, odio dolor blandit augue,
eget mollis urna tellus id tellus. Aenean ali-
quet aliquam nunc. Nulla ultricies justo eget
orci. Phasellus tristique fermentum leo. Sed
massa metus, sagittis ut, semper ut, pharetra
vel, erat. Aliquam quam turpis, egestas vel,
elementum in, egestas sit amet, lorem. Duis
convallis, wisi sit amet mollis molestie, libero
mauris porta dui, vitae aliquam arcu turpis ac
sem. Aliquam aliquet dapibus metus.
Vivamus commodo eros eleifend dui. Vestibu-
lum in leo eu erat tristique mattis. Cras at
elit. Cras pellentesque. Nullam id lacus sit
amet libero aliquet hendrerit. Proin placerat,
mi non elementum laoreet, eros elit tincidun-
t magna, a rhoncus sem arcu id odio. Nul-
la eget leo a leo egestas facilisis. Curabitur
quis velit. Phasellus aliquam, tortor nec ornare
rhoncus, purus urna posuere velit, et commo-
do risus tellus quis tellus. Vivamus leo turpis,
tempus sit amet, tristique vitae, laoreet quis,
odio. Proin scelerisque bibendum ipsum. Eti-
am nisl. Praesent vel dolor. Pellentesque vel
magna. Curabitur urna. Vivamus congue ur-
na in velit. Etiam ullamcorper elementum dui.
Praesent non urna. Sed placerat quam non mi.
Pellentesque diam magna, ultricies eget, ultri-
ces placerat, adipiscing rutrum, sem.
Morbi sem. Nulla facilisi. Vestibulum ante
ipsum primis in faucibus orci luctus et ultri-
ces posuere cubilia Curae; Nulla facilisi. Mor-
bi sagittis ultrices libero. Praesent eu ligula
sed sapien auctor sagittis. Class aptent taciti
sociosqu ad litora torquent per conubia nos-
tra, per inceptos hymenaeos. Donec vel nunc.
Nunc fermentum, lacus id aliquam porta, dui
tortor euismod eros, vel molestie ipsum purus
eu lacus. Vivamus pede arcu, euismod ac, tem-
pus id, pretium et, lacus. Curabitur sodales
dapibus urna. Nunc eu sapien. Donec eget
nunc a pede dictum pretium. Proin mauris.
Vivamus luctus libero vel nibh.
Fusce tristique risus id wisi. Integer molestie
massa id sem. Vestibulum vel dolor. Pel-
lentesque vel urna vel risus ultricies elemen-
tum. Quisque sapien urna, blandit nec, iaculis
ac, viverra in, odio. In hac habitasse platea
dictumst. Morbi neque lacus, convallis vitae,
commodo ac, fermentum eu, velit. Sed in or-
ci. In fringilla turpis non arcu. Donec in ante.
Phasellus tempor feugiat velit. Aenean var-
ius massa non turpis. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices po-
suere cubilia Curae;
Aliquam tortor. Morbi ipsum massa, imperdi-
et non, consectetuer vel, feugiat vel, lorem.
Quisque eget lorem nec elit malesuada vestibu-
lum. Quisque sollicitudin ipsum vel sem. Nul-
la enim. Proin nonummy felis vitae felis. Nul-
lam pellentesque. Duis rutrum feugiat fe-
lis. Mauris vel pede sed libero tincidunt mol-
lis. Phasellus sed urna rhoncus diam euismod
bibendum. Phasellus sed nisl. Integer condi-
mentum justo id orci iaculis varius. Quisque et
lacus. Phasellus elementum, justo at dignissim
auctor, wisi odio lobortis arcu, sed sollicitudin
felis felis eu neque. Praesent at lacus.
Vivamus sit amet pede. Duis interdum, nunc
eget rutrum dignissim, nisl diam luctus leo,
et tincidunt velit nisl id tellus. In lorem tel-
lus, aliquet vitae, porta in, aliquet sed, lectus.
Phasellus sodales. Ut varius scelerisque erat.
In vel nibh eu eros imperdiet rutrum. Donec
ac odio nec neque vulputate suscipit. Nam nec
magna. Pellentesque habitant morbi tristique
senectus et netus et malesuada fames ac turpis
egestas. Nullam porta, odio et sagittis iaculis,
wisi neque fringilla sapien, vel commodo lorem
lorem id elit. Ut sem lectus, scelerisque eget,
placerat et, tincidunt scelerisque, ligula. Pel-
lentesque non orci.
Etiam vel ipsum. Morbi facilisis vestibulum
nisl. Praesent cursus laoreet felis. Integer
adipiscing pretium orci. Nulla facilisi. Quisque
posuere bibendum purus. Nulla quam mauris,
cursus eget, convallis ac, molestie non, enim.
Aliquam congue. Quisque sagittis nonummy
sapien. Proin molestie sem vitae urna. Mae-
cenas lorem. Vivamus viverra consequat enim.
Nunc sed pede. Praesent vitae lectus. Prae-
sent neque justo, vehicula eget, interdum id,
facilisis et, nibh. Phasellus at purus et libero
lacinia dictum. Fusce aliquet. Nulla eu ante
placerat leo semper dictum. Mauris metus.
Curabitur lobortis. Curabitur sollicitudin hen-
drerit nunc. Donec ultrices lacus id ipsum.
Donec a nibh ut elit vestibulum tristique. In-
teger at pede. Cras volutpat varius magna.
Phasellus eu wisi. Praesent risus justo, lobor-
tis eget, scelerisque ac, aliquet in, dolor. Proin
id leo. Nunc iaculis, mi vitae accumsan com-
modo, neque sem lacinia nulla, quis vestibulum
justo sem in eros. Quisque sed massa. Morbi
lectus ipsum, vulputate a, mollis ut, accumsan
placerat, tellus. Nullam in wisi. Vivamus eu
ligula a nunc accumsan congue. Suspendisse
ac libero. Aliquam erat volutpat. Donec au-
gue. Nunc venenatis fringilla nibh. Fusce ac-
cumsan pulvinar justo. Nullam semper, dui ut
dignissim auctor, orci libero fringilla massa, b-
landit pulvinar pede tortor id magna. Nunc
adipiscing justo sed velit tincidunt fermentum.
Integer placerat. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames
ac turpis egestas. Sed in massa. Class aptent
taciti sociosqu ad litora torquent per conubi-
a nostra, per inceptos hymenaeos. Phasellus
tempus aliquam risus. Aliquam rutrum purus
at metus. Donec posuere odio at erat. Nam
non nibh. Phasellus ligula. Quisque vene-
natis lectus in augue. Sed vestibulum dapibus
neque.
Mauris tempus eros at nulla. Sed quis dui dig-
nissim mauris pretium tincidunt. Mauris ac
purus. Phasellus ac libero. Etiam dapibus ia-
culis nunc. In lectus wisi, elementum eu, sollic-
itudin nec, imperdiet quis, dui. Nulla viverra
neque ac libero. Mauris urna leo, adipiscing
eu, ultrices non, blandit eu, dui. Maecenas
dui neque, suscipit sit amet, rutrum a, laoreet
in, eros. Ut eu nibh. Fusce nec erat tempus
urna fringilla tempus. Curabitur id enim. Sed
ante. Cras sodales enim sit amet wisi. Nunc
fermentum consequat quam.
Ut auctor, augue porta dignissim vestibulum,
arcu diam lobortis velit, vel scelerisque ris-
us augue sagittis risus. Maecenas eu justo.
Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis eges-
tas. Mauris congue ligula eget tortor. Nul-
lam laoreet urna sed enim. Donec eget eros ut
eros volutpat convallis. Praesent turpis. Inte-
ger mauris diam, elementum quis, egestas ac,
rutrum vel, orci. Nulla facilisi. Quisque adip-
iscing, nulla vitae elementum porta, sem urna
volutpat leo, sed porta enim risus sed massa.
Integer ac enim quis diam sodales luctus. Ut
eget eros a ligula commodo ultricies. Donec eu
urna viverra dolor hendrerit feugiat. Aliquam
ac orci vel eros congue pharetra. Quisque
rhoncus, justo eu volutpat faucibus, augue leo
posuere lacus, a rhoncus purus pede vel est.
Proin ultrices enim.
Aenean tincidunt laoreet dui. Vestibulum ante
ipsum primis in faucibus orci luctus et ultri-
ces posuere cubilia Curae; Integer ipsum lec-
tus, fermentum ac, malesuada in, eleifend ut,
lorem. Vivamus ipsum turpis, elementum vel,
hendrerit ut, semper at, metus. Vivamus sapi-
en tortor, eleifend id, dapibus in, egestas et,
pede. Pellentesque faucibus. Praesent lorem
neque, dignissim in, facilisis nec, hendrerit vel,
odio. Nam at diam ac neque aliquet viver-
ra. Morbi dapibus ligula sagittis magna. In
lobortis. Donec aliquet ultricies libero. Nunc
dictum vulputate purus. Morbi varius. Lorem
ipsum dolor sit amet, consectetuer adipiscing
elit. In tempor. Phasellus commodo porttitor
magna. Curabitur vehicula odio vel dolor.
Praesent facilisis, augue a adipiscing vene-
natis, libero risus molestie odio, pulvinar con-
sectetuer felis erat ac mauris. Nam vestibu-
lum rhoncus quam. Sed velit urna, pharetra
eu, eleifend eu, viverra at, wisi. Maecenas ul-
trices nibh at turpis. Aenean quam. Nulla
ipsum. Aliquam posuere luctus erat. Cur-
abitur magna felis, lacinia et, tristique id, ul-
trices ut, mauris. Suspendisse feugiat. Cras
eleifend wisi vitae tortor. Phasellus leo purus,
mattis sit amet, auctor in, rutrum in, magna.
In hac habitasse platea dictumst. Phasellus
imperdiet metus in sem. Vestibulum ac enim
non sem ultricies sagittis. Sed vel diam.
Integer vel enim sed turpis adipiscing biben-
dum. Vestibulum pede dolor, laoreet nec, po-
suere in, nonummy in, sem. Donec imperdiet
sapien placerat erat. Donec viverra. Aliquam
eros. Nunc consequat massa id leo. Sed ullam-
corper, lorem in sodales dapibus, risus metus
sagittis lorem, non porttitor purus odio nec o-
dio. Sed tincidunt posuere elit. Quisque eu
enim. Donec libero risus, feugiat ac, dapibus
eget, posuere a, felis. Quisque vel lectus ut me-
tus tincidunt eleifend. Duis ut pede. Duis velit
erat, venenatis vitae, vulputate a, pharetra sit
amet, est. Etiam fringilla faucibus augue.
Aenean velit sem, viverra eu, tempus id,
rutrum id, mi. Nullam nec nibh. Proin ullam-
corper, dolor in cursus tristique, eros augue
tempor nibh, at gravida diam wisi at purus.
Donec mattis ullamcorper tellus. Phasellus vel
nulla. Praesent interdum, eros in sodales sol-
licitudin, nunc nulla pulvinar justo, a euismod
eros sem nec nibh. Nullam sagittis dapibus
lectus. Nullam eget ipsum eu tortor lobortis
sodales. Etiam purus leo, pretium nec, feu-
giat non, ullamcorper vel, nibh. Sed vel elit
et quam accumsan facilisis. Nunc leo. Sus-
pendisse faucibus lacus.
Pellentesque interdum sapien sed nulla. Proin
tincidunt. Aliquam volutpat est vel massa.
Sed dolor lacus, imperdiet non, ornare non,
commodo eu, neque. Integer pretium sem-
per justo. Proin risus. Nullam id quam.
Nam neque. Duis vitae wisi ullamcorper di-
am congue ultricies. Quisque ligula. Mauris
vehicula.
Curabitur nunc magna, posuere eget, vene-
natis eu, vehicula ac, velit. Aenean ornare,
massa a accumsan pulvinar, quam lorem
laoreet purus, eu sodales magna risus molestie
lorem. Nunc erat velit, hendrerit quis, male-
suada ut, aliquam vitae, wisi. Sed posuere.
Suspendisse ipsum arcu, scelerisque nec, ali-
quam eu, molestie tincidunt, justo. Phasellus
iaculis. Sed posuere lorem non ipsum. Pel-
lentesque dapibus. Suspendisse quam libero,
laoreet a, tincidunt eget, consequat at, est.
Nullam ut lectus non enim consequat facili-
sis. Mauris leo. Quisque pede ligula, auctor
vel, pellentesque vel, posuere id, turpis. Cras
ipsum sem, cursus et, facilisis ut, tempus eu-
ismod, quam. Suspendisse tristique dolor eu
orci. Mauris mattis. Aenean semper. Viva-
mus tortor magna, facilisis id, varius mattis,
hendrerit in, justo. Integer purus.
Vivamus adipiscing. Curabitur imperdiet tem-
pus turpis. Vivamus sapien dolor, congue ve-
nenatis, euismod eget, porta rhoncus, magna.
Proin condimentum pretium enim. Fusce
fringilla, libero et venenatis facilisis, eros en-
im cursus arcu, vitae facilisis odio augue vitae
orci. Aliquam varius nibh ut odio. Sed condi-
mentum condimentum nunc. Pellentesque
eget massa. Pellentesque quis mauris. Donec
ut ligula ac pede pulvinar lobortis. Pellen-
tesque euismod. Class aptent taciti sociosqu
ad litora torquent per conubia nostra, per in-
ceptos hymenaeos. Praesent elit. Ut laoreet
ornare est. Phasellus gravida vulputate nulla.
Donec sit amet arcu ut sem tempor malesua-
da. Praesent hendrerit augue in urna. Proin
enim ante, ornare vel, consequat ut, blandit
in, justo. Donec felis elit, dignissim sed, sagit-
tis ut, ullamcorper a, nulla. Aenean pharetra
vulputate odio.
Quisque enim. Proin velit neque, tristique eu,
eleifend eget, vestibulum nec, lacus. Vivamus
odio. Duis odio urna, vehicula in, elementum
aliquam, aliquet laoreet, tellus. Sed velit. Sed
vel mi ac elit aliquet interdum. Etiam sapi-
en neque, convallis et, aliquet vel, auctor non,
arcu. Aliquam suscipit aliquam lectus. Proin
tincidunt magna sed wisi. Integer blandit la-
cus ut lorem. Sed luctus justo sed enim.
Morbi malesuada hendrerit dui. Nunc mauris
leo, dapibus sit amet, vestibulum et, commodo
id, est. Pellentesque purus. Pellentesque tris-
tique, nunc ac pulvinar adipiscing, justo eros
consequat lectus, sit amet posuere lectus neque
vel augue. Cras consectetuer libero ac eros. Ut
eget massa. Fusce sit amet enim eleifend sem
dictum auctor. In eget risus luctus wisi conva-
llis pulvinar. Vivamus sapien risus, tempor in,
viverra in, aliquet pellentesque, eros. Aliquam
euismod libero a sem.
Nunc velit augue, scelerisque dignissim, lobor-
tis et, aliquam in, risus. In eu eros. Vestibu-
lum ante ipsum primis in faucibus orci luctus
et ultrices posuere cubilia Curae; Curabitur
vulputate elit viverra augue. Mauris fringilla,
tortor sit amet malesuada mollis, sapien mi
dapibus odio, ac imperdiet ligula enim eget
nisl. Quisque vitae pede a pede aliquet sus-
cipit. Phasellus tellus pede, viverra vestibu-
lum, gravida id, laoreet in, justo. Cum soci-
is natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Integer com-
modo luctus lectus. Mauris justo. Duis var-
ius eros. Sed quam. Cras lacus eros, rutrum
eget, varius quis, convallis iaculis, velit. Mau-
ris imperdiet, metus at tristique venenatis, pu-
rus neque pellentesque mauris, a ultrices elit
lacus nec tortor. Class aptent taciti sociosqu
ad litora torquent per conubia nostra, per in-
ceptos hymenaeos. Praesent malesuada. Nam
lacus lectus, auctor sit amet, malesuada vel,
elementum eget, metus. Duis neque pede, fa-
cilisis eget, egestas elementum, nonummy id,
neque.
Proin non sem. Donec nec erat. Proin libero.
Aliquam viverra arcu. Donec vitae purus.
Donec felis mi, semper id, scelerisque porta,
sollicitudin sed, turpis. Nulla in urna. Integer
varius wisi non elit. Etiam nec sem. Mau-
ris consequat, risus nec congue condimentum,
ligula ligula suscipit urna, vitae porta odio er-
at quis sapien. Proin luctus leo id erat. Etiam
massa metus, accumsan pellentesque, sagittis
sit amet, venenatis nec, mauris. Praesent ur-
na eros, ornare nec, vulputate eget, cursus sed,
justo. Phasellus nec lorem. Nullam ligula ligu-
la, mollis sit amet, faucibus vel, eleifend ac,
dui. Aliquam erat volutpat.
Fusce vehicula, tortor et gravida porttitor, me-
tus nibh congue lorem, ut tempus purus mau-
ris a pede. Integer tincidunt orci sit amet
turpis. Aenean a metus. Aliquam vestibulum
lobortis felis. Donec gravida. Sed sed urna.
Mauris et orci. Integer ultrices feugiat ligu-
la. Sed dignissim nibh a massa. Donec orci
dui, tempor sed, tincidunt nonummy, viverra
sit amet, turpis. Quisque lobortis. Proin vene-
natis tortor nec wisi. Vestibulum placerat. In
hac habitasse platea dictumst. Aliquam por-
ta mi quis risus. Donec sagittis luctus diam.
Nam ipsum elit, imperdiet vitae, faucibus nec,
fringilla eget, leo. Etiam quis dolor in sapien
porttitor imperdiet.
Cras pretium. Nulla malesuada ipsum ut
libero. Suspendisse gravida hendrerit tellus.
Maecenas quis lacus. Morbi fringilla. Vestibu-
lum odio turpis, tempor vitae, scelerisque a,
dictum non, massa. Praesent erat felis, por-
ta sit amet, condimentum sit amet, placer-
at et, turpis. Praesent placerat lacus a en-
im. Vestibulum non eros. Ut congue. Donec
tristique varius tortor. Pellentesque habitant
morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Nam dictum dictum
urna.
Phasellus vestibulum orci vel mauris. Fusce
quam leo, adipiscing ac, pulvinar eget, mo-
lestie sit amet, erat. Sed diam. Suspendisse
eros leo, tempus eget, dapibus sit amet, tem-
pus eu, arcu. Vestibulum wisi metus, dapibus
vel, luctus sit amet, condimentum quis, leo.
Suspendisse molestie. Duis in ante. Ut so-
dales sem sit amet mauris. Suspendisse ornare
pretium orci. Fusce tristique enim eget mi.
Vestibulum eros elit, gravida ac, pharetra sed,
lobortis in, massa. Proin at dolor. Duis ac-
cumsan accumsan pede. Nullam blandit elit
in magna lacinia hendrerit. Ut nonummy luc-
tus eros. Fusce eget tortor.
Ut sit amet magna. Cras a ligula eu urna
dignissim viverra. Nullam tempor leo porta
ipsum. Praesent purus. Nullam consequat.
Mauris dictum sagittis dui. Vestibulum sol-
licitudin consectetuer wisi. In sit amet diam.
Nullam malesuada pharetra risus. Proin lacus
arcu, eleifend sed, vehicula at, congue sit amet,
sem. Sed sagittis pede a nisl. Sed tincidunt o-
dio a pede. Sed dui. Nam eu enim. Aliquam
sagittis lacus eget libero. Pellentesque diam
sem, sagittis molestie, tristique et, fermentum
ornare, nibh. Nulla et tellus non felis imperdi-
et mattis. Aliquam erat volutpat.
Vestibulum sodales ipsum id augue. Integer
ipsum pede, convallis sit amet, tristique vi-
tae, tempor ut, nunc. Nam non ligula non
lorem convallis hendrerit. Maecenas hendrerit.
Sed magna odio, aliquam imperdiet, porta ac,
aliquet eget, mi. Cum sociis natoque penati-
bus et magnis dis parturient montes, nascetur
ridiculus mus. Vestibulum nisl sem, dignissim
vel, euismod quis, egestas ut, orci. Nunc vi-
tae risus vel metus euismod laoreet. Cras sit
amet neque a turpis lobortis auctor. Sed ali-
quam sem ac elit. Cras velit lectus, facilisis
id, dictum sed, porta rutrum, nisl. Nam hen-
drerit ipsum sed augue. Nullam scelerisque
hendrerit wisi. Vivamus egestas arcu sed pu-
rus. Ut ornare lectus sed eros. Suspendisse
potenti. Mauris sollicitudin pede vel velit. In
hac habitasse platea dictumst.
Suspendisse erat mauris, nonummy eget,
pretium eget, consequat vel, justo. Pellen-
tesque consectetuer erat sed lacus. Nullam
egestas nulla ac dui. Donec cursus rhoncus
ipsum. Nunc et sem eu magna egestas male-
suada. Vivamus dictum massa at dolor. Mor-
bi est nulla, faucibus ac, posuere in, interdum
ut, sapien. Proin consectetuer pretium urna.
Donec sit amet nibh nec purus dignissim mat-
tis. Phasellus vehicula elit at lacus. Nulla fa-
cilisi. Cras ut arcu. Sed consectetuer. Integer
tristique elit quis felis consectetuer eleifend.
Cras et lectus.
Ut congue malesuada justo. Curabitur congue,
felis at hendrerit faucibus, mauris lacus port-
titor pede, nec aliquam turpis diam feugiat ar-
cu. Nullam rhoncus ipsum at risus. Vestibu-
lum a dolor sed dolor fermentum vulputate.
Sed nec ipsum dapibus urna bibendum lobor-
tis. Vestibulum elit. Nam ligula arcu, volutpat
eget, lacinia eu, lobortis ac, urna. Nam mol-
lis ultrices nulla. Cras vulputate. Suspendisse
at risus at metus pulvinar malesuada. Nullam
lacus. Aliquam tempus magna. Aliquam ut
purus. Proin tellus.
Vestibulum ante ipsum primis in faucibus orci
luctus et ultrices posuere cubilia Curae; Donec
scelerisque metus. Maecenas non mi ut metus
porta hendrerit. Nunc semper. Cras quis wisi
ut lorem posuere tristique. Nunc vestibulum
scelerisque nulla. Suspendisse pharetra sollic-
itudin ante. Praesent at augue sit amet ante
interdum porta. Nunc bibendum augue luctus
diam. Etiam nec sem. Sed eros turpis, facilisis
nec, vehicula vitae, aliquam sed, nulla. Cur-
abitur justo leo, vestibulum eget, tristique ut,
tempus at, nisl.
Nulla venenatis lorem id arcu. Morbi cur-
sus urna a ipsum. Donec porttitor. Integer
eleifend, est non mattis malesuada, mi nulla
convallis mi, et auctor lectus sapien ut pu-
rus. Aliquam nulla augue, pharetra sit amet,
faucibus semper, molestie vel, nibh. Pellen-
tesque vestibulum magna et mi. Sed fringilla
dolor vel tellus. Nunc libero nunc, venenatis
eget, convallis hendrerit, iaculis elementum,
mi. Nullam aliquam, felis et accumsan vehic-
ula, magna justo vehicula diam, eu condimen-
tum nisl felis et nunc. Quisque volutpat mauris
a velit. Pellentesque massa. Integer at lorem.
Nam metus erat, lacinia id, convallis ut, pul-
vinar non, wisi. Cras iaculis mauris ut neque.
Cras sodales, sem vitae imperdiet consequat,
pede purus sollicitudin urna, ac aliquam metus
orci in leo. Ut molestie ultrices mauris. Viva-
mus vitae sem. Aliquam erat volutpat. Prae-
sent commodo, nisl ac dapibus aliquet, tortor
orci sodales lorem, non ornare nulla lorem quis
nisl.
Sed at sem vitae purus ultrices vestibulum.
Vestibulum tincidunt lacus et ligula. Pel-
lentesque vitae elit. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices po-
suere cubilia Curae; Duis ornare, erat eget
laoreet vulputate, lacus ipsum suscipit turpis,
et bibendum nisl orci non lectus. Vestibu-
lum nec risus nec libero fermentum fringilla.
Morbi non velit in magna gravida hendrerit.
Pellentesque quis lectus. Vestibulum eleifend
lobortis leo. Vestibulum non augue. Vivamus
dictum tempor dui. Maecenas at ligula id fe-
lis congue porttitor. Nulla leo magna, egestas
quis, vulputate sit amet, viverra id, velit.
Ut lectus lectus, ultricies sit amet, semper
eget, laoreet non, ante. Proin at massa quis
nunc rhoncus mattis. Aliquam lorem. Cur-
abitur pharetra dui at neque. Aliquam eu tel-
lus. Aenean tempus, felis vitae vulputate ia-
culis, est dolor faucibus urna, in viverra wisi
neque non risus. Fusce vel dolor nec sapien
pretium nonummy. Integer faucibus massa ac
nulla ornare venenatis. Nulla quis sapien. Sed
tortor. Phasellus eget mi. Cras nunc. Cras a
enim.
Quisque nisl. In dignissim dapibus massa. Ae-
nean sem magna, scelerisque nec, ullamcorper
quis, porttitor ut, lectus. Fusce dignissim fa-
cilisis tortor. Vivamus gravida felis sit amet
nunc. Nam pulvinar odio vel enim. Pellen-
tesque sit amet est. Vivamus pulvinar leo non
sapien. Aliquam erat volutpat. Ut elementum
auctor metus. Mauris vestibulum neque vitae
eros. Pellentesque aliquam quam. Donec ve-
nenatis tristique purus. In nisl. Nulla velit
libero, fermentum at, porta a, feugiat vitae,
urna. Etiam aliquet ornare ipsum. Proin non
dolor. Aenean nunc ligula, venenatis suscipit,
porttitor sit amet, mattis suscipit, magna. Vi-
vamus egestas viverra est. Morbi at risus sed
sapien sodales pretium.
Morbi congue congue metus. Aenean sed pu-
rus. Nam pede magna, tristique nec, porta
id, sollicitudin quis, sapien. Vestibulum blan-
dit. Suspendisse ut augue ac nibh ullamcorper
posuere. Integer euismod, neque at eleifend
fringilla, augue elit ornare dolor, vel tincidunt
purus est id lacus. Vivamus lorem dui, commo-
do quis, scelerisque eu, tincidunt non, magna.
Cras sodales. Quisque vestibulum pulvinar di-
am. Phasellus tincidunt, leo vitae tristique fa-
cilisis, ipsum wisi interdum sem, dapibus sem-
per nulla velit vel lectus. Cras dapibus mauris
et augue. Quisque cursus nulla in libero. Sus-
pendisse et lorem sit amet mauris malesuada
mollis. Nullam id justo. Maecenas venenatis.
Donec lacus arcu, egestas ac, fermentum con-
sectetuer, tempus eu, metus. Proin sodales,
sem in pretium fermentum, arcu sapien com-
modo mauris, venenatis consequat augue ur-
na in wisi. Quisque sapien nunc, varius eget,
condimentum quis, lacinia in, est. Fusce facil-
isis. Praesent nec ipsum.
Suspendisse a dolor. Nam erat eros, congue
eget, sagittis a, lacinia in, pede. Maecenas
in elit. Proin molestie varius nibh. Vivamus
tristique purus sed augue. Proin egestas sem-
per tortor. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubil-
ia Curae; Class aptent taciti sociosqu ad l-
itora torquent per conubia nostra, per incep-
tos hymenaeos. Vestibulum orci enim, sagittis
ornare, eleifend ut, mattis at, ligula. Nulla
molestie convallis arcu. Ut eros tellus, condi-
mentum at, sodales in, ultrices vel, nulla.
Duis magna ante, bibendum eget, eleifend
eget, suscipit sed, neque. Vestibulum in mi
sed massa cursus cursus. Pellentesque pulv-
inar mollis neque. Fusce ut enim vitae mauris
malesuada tincidunt. Vivamus a neque. Mau-
ris pulvinar, sapien id condimentum dictum,
quam arcu rhoncus dui, id tempor lacus justo
et justo. Proin sit amet orci eu diam eleifend
blandit. Nunc erat massa, luctus ac, fermen-
tum lacinia, tincidunt ultrices, sapien. Prae-
sent sed orci vitae dolor sollicitudin adipiscing.
Cras a neque. Ut risus dui, interdum at, plac-
erat id, tristique eu, enim. Vestibulum ante
ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Etiam adipiscing eros
vestibulum dolor. Pellentesque aliquam, diam
eget eleifend posuere, augue eros porttitor lec-
tus, ac dignissim dui metus nec felis. Quisque
lacinia. Vestibulum tellus. Suspendisse nec
wisi. Aenean ac felis. Aliquam ultrices metus
et nulla.
Praesent sed est non nibh tempus venenatis.
Praesent rhoncus. Curabitur sagittis est sit
amet neque. Sed commodo malesuada lectus.
Phasellus enim tellus, tempor ut, tristique eu,
aliquam eu, quam. Aenean quis quam quis
wisi gravida vehicula. Pellentesque a massa
a leo pretium rhoncus. Suspendisse ultrices.
Donec lacinia malesuada massa. Class apten-
t taciti sociosqu ad litora torquent per conu-
bia nostra, per inceptos hymenaeos. Donec
pretium ornare mauris. Phasellus auctor er-
at eget enim. Integer scelerisque, felis eu con-
sequat fringilla, lorem wisi ultricies velit, id
vehicula purus nulla eget odio. Nullam mat-
tis, diam a rutrum fermentum, odio sapien
tristique quam, id mollis tellus quam in odi-
o. Mauris eu sapien. Donec aliquam lorem sit
amet lorem pharetra lobortis.
Donec ac velit. Sed convallis vestibulum sapi-
en. Vivamus tempor lacus sed lacus. Nunc
ut lorem. Ut et tortor. Nullam varius wisi at
diam. Etiam ultricies, dolor sit amet fermen-
tum vulputate, neque libero vestibulum orci,
vitae fringilla neque arcu aliquet ante. Lorem
ipsum dolor sit amet, consectetuer adipiscing
elit. Quisque venenatis lobortis augue. Sed
tempor, tellus iaculis pellentesque pharetra,
pede dui malesuada mauris, vel ultrices urna
mauris ac nibh. Etiam nibh odio, ultricies ve-
hicula, vestibulum vitae, feugiat eleifend, fe-
lis. Vivamus pulvinar. Aliquam erat volutpat.
Nulla egestas venenatis metus. Nam feugiat
nunc quis elit egestas sagittis. Sed vitae fe-
lis. In libero arcu, rhoncus in, commodo eget,
auctor in, enim. Vivamus suscipit est. Nul-
la dapibus, magna vel aliquet egestas, massa
massa hendrerit lacus, ac rutrum tellus tellus
sit amet felis. Cras viverra.
Suspendisse eu nunc. Aliquam dignissim urna
sit amet mauris. Cras commodo, urna ut port-
titor venenatis, arcu metus sodales risus, vitae
gravida sapien ligula in est. Donec vulputate
sollicitudin wisi. Donec vehicula, est id inter-
dum ornare, nibh tellus consectetuer justo, a
ultrices felis erat at lectus. In est massa, male-
suada non, suscipit at, ullamcorper eu, elit.
Nam nulla lacus, bibendum sit amet, sagit-
tis sed, tempor eget, libero. Praesent ligula.
Suspendisse nulla. Etiam diam. Nulla ante
diam, vestibulum et, aliquet ac, imperdiet vi-
tae, urna. Fusce tincidunt lacus vel elit. Mae-
cenas dictum, tortor non euismod bibendum,
pede nibh pretium tellus, at dignissim leo eros
eget pede. Nulla venenatis eleifend eros. Ae-
nean ut odio dignissim augue rutrum faucibus.
Fusce posuere, tellus eget viverra mattis, er-
at tellus porta mi, at facilisis sem nibh non
urna. Phasellus quis turpis quis mauris sus-
cipit vulputate. Sed interdum lacus non velit.
Vestibulum ante ipsum primis in faucibus orci
luctus et ultrices posuere cubilia Curae;
Vivamus vehicula leo a justo. Quisque nec au-
gue. Morbi mauris wisi, aliquet vitae, dignis-
sim eget, sollicitudin molestie, ligula. In dic-
tum enim sit amet risus. Curabitur vitae velit
eu diam rhoncus hendrerit. Vivamus ut elit.
Praesent mattis ipsum quis turpis. Curabitur
rhoncus neque eu dui. Etiam vitae magna.
Nam ullamcorper. Praesent interdum biben-
dum magna. Quisque auctor aliquam dolor.
Morbi eu lorem et est porttitor fermentum.
Nunc egestas arcu at tortor varius viverra.
Fusce eu nulla ut nulla interdum consectetuer.
Vestibulum gravida. Morbi mattis libero sed
est.

Abstract

The solution of Dirac particles confined in a one-dimensional finite
square well potential is solved by using the path-integral formalism
for Dirac equation. The propagator of the Dirac equation in case
of the bounded Dirac particles is obtained by evaluating an appro-
priate path integral, directly constructed from the Dirac equation.
The limit of integration techniques for evaluating path integral is
only valid for the piecewise constant potential. Finally, the Dirac
propagator is expressed in terms of standard special functions.

Keywords

Path-Integral, Dirac Equation, Dirac Propagator, Finite Square
Well

1. Introduction

The solution of quantum mechanical problems in non-relativistic
Schrödinger and relativistic Dirac equation with a finite square well
potential which were conceptually very relevant for our understand-
ing about 80 years ago seem to be no longer of primary importance.
Occasionally, however, there is a new line of inquiry into this problem
typically by applying new mathematical technique [1–5]. Moreover
the finite square well potential is of great practical importance since
it forms the basis for understanding low-dimensional structures such
as quantum well devices.

For relativistic quantum mechanics, the problem of a Dirac particle
confined in a finite square well potential is a useful tool to discuss, in
advanced quantum mechanics courses. The issues arise when one ex-
tends quantum mechanics to incorporate special relativity. In a series
of papers [6, 7] titled “The Relativistic One-Dimensional Square Po-
tential” and the textbooks of Relativistic Quantum Mechanics [8] the
problem of relativistic spin- 12 particle (or Dirac particle) confined in a
finite square well potential is studied by solving the one-dimensional
Dirac equation. It is surprising that this problem has not been solved
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using path integral approach despite the fact that one can do so for
the non-relativistic counterpart, for example Nevels et al. [9] evalu-
ated the path integral when a spinless particle encounters an infinite
potential barrier, Janke and Kleinert [10] exhibited the path integral
for particle in a box (infinite square well), Goodman [11] solved the
problem of the infinite squarewell potential in one dimension using the
path integral, and Barut and Duru [12] evaluated the exact path inte-
gral for the propagator for square potential barriers in one dimension
and for the radial square-well potential in two dimensions. Here we
will solve the problem of Dirac particle confined in a finite square well
potential via the path integral for Dirac equation.

It is fair to say that the Dirac equation and its propagator are
more fundamental concepts than the Schrödinger equation and its
propagator. There have been attempts to write down a path inte-
gral expression for the Dirac propagator similar to the Feynman path
integral expression for the Schrödinger propagator. For example Ri-
azanov [13] showed that the Feynman path integral is identical to the
propagation function of the Dirac equation. Papadopoulos and J. T.
Devreese [14] obtained the Dirac propagator through the Feynman
path integral [15–18], directly constructed from the Dirac equation.
Gaveau and Schulman [19] constructed path integral formula for the
Dirac propagator in three spatial dimensions, called the “projector
path” summation, which is one of a generalization of the Feynman
“checkerboard” propagator [18]. Rosen [20] discovered that the Feyn-
man path summation for the one-dimensional Dirac equation can be
projected into three spatial dimensions to yield a path-summation for-
mula for physical spin- 12 particles of nonzero 2 mass. Since the three-
space projection matrix is independent of time and does not involve
the particle’s mass, relativistic motion governed by the Dirac equation
has an underlying one-dimensional aspect.

The purpose of the present paper is to write down the Dirac prop-
agator for Dirac particles confined in a one-dimensional square well
potential of depth V0 ≤ 0 and width a. The organization of the rest
of the paper is as follows: In Section 2 we evaluate the propagator of
the Dirac particle in a square well. Finally, we summarize our results
in Section 3.

2. Dirac Propagator for a One-Dimensional
Square Well

This section deals with the construction and the evaluation of the
propagator of Dirac particles confined in an one-dimensional finite
square well potential of depth V0 ≤ 0 and width a. The one-
dimensional Dirac Hamiltonian for the motion in one dimension under
the influence of square well potential is

H = H0 + V (x) (1)

where

H0 = −ic~αx
∂

∂x
+m0c

2β (2)

is the free particle Hamiltonian, the matrix αx is

αx =

(
0 σx

σx 0

)
(3)
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where the Pauli matrix σx =

(
0 1
1 0

)
, the matrix β is

β =

(
1 0
0 −1

)
(4)

where 1 =

(
1 0
0 1

)
is identity 2× 2 matrix, and V (x) denotes square

well potential

V (x) =

{
−V0, for − a/2 < x < a/2
0 for x ≤ −a/2, x ≥ a/2

(5)

The propagator K(xb, tb;xa, ta) satisfies the Dirac equation(
i~

∂

∂t
−H

)
K = 0 (6)

The short-time propagator of the above equation is given by

K(xj , tj−1 + ε;xj−1, tj−1) = exp

(
− i

~
Hε

)
I4δ(xj − xj−1) (7)

where I4 is the 4× 4 identity matrix.

The finite-time propagator can be constructed via the composition
law

K(xb, tb;xa, ta) = lim
ε→0

∫ a/2

−a/2

N−1∏
j=1

dxj

N∏
j=1

K(xj , tj−1 + ε;xj−1, tj−1)

+

∫ −a/2

−∞

N−1∏
j=1

dxj

N∏
j=1

K0(xj , tj−1 + ε;xj−1, tj−1)

+

∫ ∞

a/2

N−1∏
j=1

dxj

N∏
j=1

K0(xj , tj−1 + ε;xj−1, tj−1)

]
(8)

This is the propagator for Dirac particles confined in an one-
dimensional finite square well, then, each integral is limited to the
domain −a/2 < x < a/2, otherwise the propagators for free Dirac
particles are taken into account, and allows all imaginable paths, in-
cluding those with velocities greater than that of light. It seems like
the principles of relativistic mechanics is being violated. However, the
situation is similar to that of nonrelativistic quantum mechanics in
which the non-classical paths are allowed.

The first term on right-hand side (RHS) of (8) depends only on the
short-time propagator

K(xj , tj−1 + ε;xj−1, tj−1) = xj | exp
(
− i

~
εH

)
|xj−1

= xj | exp
(
− i

~
εH0 −

i

~
εV (xj)

)
|xj−1

(9)
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It can be approximate up to the order of O(ε2) using Zassenhaus
formula [21–24]. Equation (9) becomes

K(xj , tj−1 + ε;xj−1, tj−1) = xj |e
−
i

~
εH0

|xj−1e
−
i

~
εV (xj)

= K0(xj , tj−1 + ε;xj−1, tj−1) e
−
i

~
εV (xj)

(10)

It is important to observe the order of the various K0(xj , tj−1 +
ε;xj−1, tj−1) in (10); they are noncommuting matrices and their time
ordering relates to the way a given spinor evolves according to the
Dirac dynamics.

The Dirae equation, being of first order in time, enables one to write
a short-time free propagator K0(xj , tj−1+ε;xj−1, tj−1) in terms of the
infinitesimal generator [I4 − (i/~)εH0] as

K0(xj , tj−1 + ε;xj−1, tj−1) =

(
I4 −

i

~
εH0

)
δ(xj − xj−1) (11)

The expression (11) can also be obtained by expanding the exact ex-
pression for the propagator to the first order in time.

By operating I4 − i
~εH0 on the Fourier representations of δ-

functions, the short-time free propagator becomes

K0(xj , tj−1+ε;xj−1, tj−1)

=

∫ [
I4 −

i

~
ε
(
c~αxkj +m0c

2β
)]

× exp[ikj(xj − xj−1)]
dkj
2π

(12)

Here we also use the fact that H0 does not operate on V (xj) because
it is a constant potential.

Inserting (10) and (12) into (8) and making use of isomeric time
partitions, i.e., all ε of the Nth partition will be taken equal to ε/N ,
we obtain for the finite-time propagator the expression

K(xb, tb;xa, ta)

= lim
N→∞

1

(2π)N

∫ a/2

−a/2

N−1∏
j=1

dxj

N∏
j=1

dkjκj exp

(
− i

~
εV (xj)

N

)

+

∫ −a/2

−∞

N−1∏
j=1

dxj

N∏
j=1

dkjκj +

∫ ∞

a/2

N−1∏
j=1

dxj

N∏
j=1

dkjκj

]
eikj(xj−xj−1)

(13)

where κj is a 4× 4 matrix given by

κj = I4 −
i

~
ε

N

(
c~αxkj +m0c

2β
)

(14)

Again it should be noted that as far as (13) is concerned the order
of the κj matrices is important. Equation (13) is already a form of
the path integral giving the propagator of the Dirac particle under the
influence of a potential V (x). The summation over all paths starting
from xa at time ta and ending at position xb at time ta is attained
through the infinitely multiple process of integration.
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The integrations over various kj ’s are essentially path summations in
momentum space. However, one would like to express the summation
in term of paths in configuration space. This is easily done in the
following manner: the short-time propagators entering the process of
multiple integration need only be taken to the first order in ε/N . If we
replace −ickjε/N in (13) by [exp(−ickjε/N)−1] and put the resulting
κj in (12), the limit as N → ∞ will not be affected. With the above
replacement we are able to perform the integrations, and the resulting
path integral in terms of configuration paths alone is given by

K(xb, tb;xa, ta)

= lim
N→∞

[∫ a/2

−a/2

N−1∏
j=1

dxj exp

[
− i

~
ε

N
V (xj)

]
+

∫ −a/2

−∞

N−1∏
j=1

dxj

+

∫ ∞

a/2

N−1∏
j=1

dxj

]{[
I4 − αx − i

~
ε

N
m0c

2β

]
δ (xj − xj−1)

+ αxδ
(
xj − xj−1 − c

ε

N

)}
(15)

This propagator is valid for piecewise constant potential. The product
of the various short-time propagators in (15) is ordered from right to
left in increasing order of time.

We found that the difficulties in evaluating the integrand (15) are
now obvious; the Gaussian integrals cannot be evaluated in closed form
if them are restricted to a bounded domain. We repeat the integration
of (8) with additional following term

∫ a/2

−a/2

N−1∏
j=1

dxj

N∏
j=1

K0(xj ,tj−1+ε;xj−1,tj−1)

−
∫ a/2

−a/2

N−1∏
j=1

dxj

N∏
j=1

K0(xj , tj−1+ε;xj−1, tj−1) (16)

We can rewrite the propagator in (8) as

K(xb, tb;xa, ta) = K0(xb, tb;xa, ta) + δK(xb, tb;xa, ta) (17)

The first term in (17) is the free propagator (see also Ref. [14])

K0(xb, tb;xa, ta) =

∫
1

2

(
I4+

H0(k)

E(k)

)
e[ik(xb−xa)− i

~E(k)ε]dk

2π

+

∫
1

2

(
I4−

H0(k)

E(k)

)
e[ik(xb−xa)+

i
~E(k)ε] dk

2π
(18)

which contains the states of positive energy, E(k), in the first term
and the states of negative energy, −E(k), in the second term. This
propagation of a given spinor both types of states enter the procedure,
in general.

For the second term is the propagator due to square well potential,
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called the perturbed propagator δK, reads

δK(xb, tb;xa, ta) = lim
N→∞

1

(2π)N

∫ a/2

−a/2

N−1∏
j=1

dxj

N∏
j=1

dkjκj

× eikj(xj−xj−1)

e− i

~
ε

N
V (xj)

− 1

 (19)

To evaluate (19) we rearrange the exponential terms in the form
exp i(kj − kj+1)xj , where j = 1, 2, . . . , N − 1. We can then integrate
the various exponential term over xj using the identity∫ a/2

−a/2

dxeibx =
2sin[b(a/2)]

b
(20)

resulting in the product of sine functions and two plane wave as

sin
[
(kN−1 − kN )

a

2

]
(kN−1 − kN )

sin
[
(kN−2 − kN−1)

a

2

]
(kN−2 − kN−1)

. . .
sin

[
(k2 − k3)

a

2

]
(k2 − k3)

×
sin

[
(k1 − k2)

a

2

]
(k1 − k2)

exp[(ikNxN − ik1x0)] (21)

These integrations do not include the potential term becuase we set
V (x) = −V0 which is just a constant.

Then integrating over kj when j = 1, ..., N − 1 and setting x0 = xa,
xN = xb, kN = k, Equation (19) becomes

δK(xb, tb;xa, ta) = lim
N→∞

∫ [
I4 −

i

~
(
c~αxk +m0c

2β
) ε

N

]N

× exp[ik(xb − xa)]

[
exp

(
i

~
εV0

)
− 1

]
dk

2π
(22)

The limit as N → ∞ can now be taken and leads to

δK(xb, tb;xa, ta) =

∫
exp

[
− i

~
(
c~αxk +m0c

2β
)
ε

]

× exp[ik(xb − xa)]

[
exp

(
i

~
εV0

)
− 1

]
dk

2π
(23)

By replacing the operator−i~∂/∂x in the free Dirac HamiltonianH0

with ~k, the free Dirac Hamiltonian in momentum vaiable is H0(k) =
c~αxk + m0c

2β. With the aid of the anticommutation relations of
the matrices αx and β, it is easy to show that H2

0 (k) = [(c~k)2 +
(m0c

2)2]I4 = (E(k))2, where E(k) will denote the positive root as

E(k) = +
[
(c~k)2 +m2

0c
4
]1/2

.

Next, with the aid of the first term of an exponential in (23) we are
able to write

exp

(
− i

~
H0ε

)
= cos

[
1

~
E(k)ε

]
I4 − i sin

[
1

~
E(k)ε

]
H0(k)

E(k)
(24)
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Equation (24) inserted into (23) gives an expression for the required
propagator

δK(xb, tb;xa, ta) =

∫ {
cos

[
1

~
E(k)ε

]
I4 − i sin

[
1

~
E(k)ε

]
H0(k)

E(k)

}

× exp[ik(xb − xa)]

[
exp

(
i

~
εV0

)
− 1

]
dk

2π
(25)

Clearly, (25) satisfies the bounded particles Dirac equation and at
the same time as tb → ta, it goes to I4δ(xb − xa). It can therefore
propagate any spinor given at tb = ta evolving then via the Dirac
equation. The matrix structure of the propagator this is in a simple
form since it only depends linearly on the off-diagonal matrix H0(k).

We shall now put (25) into a more transparent form, as far as the
energy spectrum is concerned. To this end we just decompose the
trigonometric functions into their combinations of exponentials. We
have

δK(xb, tb;xa, ta)

=

[∫
1

2

(
I4 +

H0(k)

E(k)

)
e[ik(xb−xa)− i

~E(k)ε] dk

2π

+

∫
1

2

(
I4 −

H0(k)

E(k)

)
e[ik(xb−xa)+

i
~E(k)ε] dk

2π

] [
e

i
~ εV0 − 1

]
(26)

By substituting (14) and (26) into (17), we obtain the propagator
for Dirac particles confined in an one-dimensional finite square well
potential as

K(xb, tb;xa, ta)

=

∫
1

2

(
I4 +

H0(k)

E(k)

)
e[ik(xb−xa)− i

~ [E(k)−V0]ε] dk

2π

+

∫
1

2

(
I4 −

H0(k)

E(k)

)
e[ik(xb−xa)− i

~ [−E(k)−V0]ε] dk

2π
(27)

In (27), we say that the propagator for bounded particles with po-
tential −V0 are obtained from the free propagator by the subsitution
±E → ±E − V0. In this case no spin-flip occurs at the border of the
well. The allowed energies can take all values from −∞ up to ∞, so
that we can describe particles as well as antiparticles.

By performing the integrations over k and making use of the func-
tions φ(x0, λ)

φ(x0, λ) =


1

2i
N0(m

√
λ)− 1

2E(x0)J0(m
√
λ) for λ > 0

i

π
K0(m

√
−λ) for λ < 0

(28)

with m = m0c/~, x0 = cε, ε = tb−ta, r = |xb−xa|, η = (1− V0/E(k))
and λ = (ηx0)2 − r2, defined in Bogoliubov and Shirkov [25]. The
Dirac propagator for Dirac particles confined in an one-dimensional
finite square well potential is thus
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K(xb, tb;xa, ta)

=
1

2

[
I4

∂

∂x0
− αx

∂

∂r
− imβ

] [
1

4π

∂

∂r

{
φ(x0, λ) + φ∗(x0, λ)

}]

=
1

2

[
I4

∂

∂x0
− αx

∂

∂r
− imβ

]
[
1

2π
E(x0)δ(λ)− m

4π
√
−λ

θ(λ)E(x0)J1(m
√
λ)

]
(29)

3. Conclusion

This paper applied the path-integral formalism to solve the Dirac e-
quation of Dirac particles confined in a one-dimensional finite square
well potential of depth V0 ≤ 0 and width a. The Dirac propagator
which is obtained by evaluating an appropriate path integral, directly
constructed from the Dirac equation, is expressed in terms of standard
special functions as in Equation (29). We note that the limit of this
technique for evaluating the propagator is only valid for a square well
potential, which is a piecewise constant potential. For a more gen-
eral potential new technique is needed. One possible direction is to
write down the path integral for the special wave equation associat-
ed with the Dirac equation instead of writing down the path integral
directly [14].
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Abstract 
I have already reported “Property of Tensor Satisfying Binary Law”. This ar-
ticle is the article that I revise the contents of “Property of Tensor Satisfying 
Binary Law”, and increase the report about new characteristics. We may ar-
rive at the deeper understanding in this about “Property of Tensor Satisfying 
Binary Law”. 
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1. Introduction 
I have already reported “Property of Tensor Satisfying Binary Law” [1]. This ar-
ticle is the article that I revise the contents of “Property of Tensor Satisfying Bi-
nary Law”, and increase the report about new characteristics. I show below it 
about the proposition supporting each for shifts from “Property of Tensor Satis-
fying Binary Law” to “[Property of Tensor Satisfying Binary Law 2]”. 

Proposition 1  [Proposition 2], Proposition 3  [Proposition 6], Proposi-
tion 4  [Proposition 7, Proposition 15], Proposition 5  [Proposition 3]. 

2. Definition 

Definition 1 x xµ µ≠ , x xν ν≠ , x xµ ν= , x xν µ= , {x xµ µ≠ , x xν ν≠ , 

x xµ ν= , }x xν µ=  is established [2]. I named x xµ µ≠ , x xν ν≠ , x xµ ν= , 

x xν µ= , { }, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  “Binary Law” [2].  

{ }, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  expresses a covariant form of Binary Law. 

Definition 2 If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established, x xµ
ν =  is 

established [2]. 
Definition 3 If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established,  x xνµ =  is 

established [2]. 
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Definition 4 If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established,  x xν µ= −  
is established [2].  

Definition 5 If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established, x xν µ= −  
is established [2]. 

Definition 6 If all coordinate systems , , , ,x x x xµ ν σ λ
  satisfy x xµ µ≠ , 

x xν ν≠ , x xµ ν= , x xν µ= , all coordinate systems , , , ,x x x xµ ν σ λ
  shifts to 

only two of ,x xµ ν  [2]. 
Definition 7 1g µ

µ = , ( )0 :g µ
ν µ ν= ≠  is establishment [3]. 

Definition 8 
3x M

x x x

µ

ν ν ν

∂
=

∂ ∂ ∂
 is established for 

3x
x x x

µ

ν ν ν

∂
∂ ∂ ∂

. 

Definition 9 ; 0mm
xν ν

∂
= =
∂

 is established. “m” expresses Mass. 

Hypothesis 1 m M∝ , m M=   is established. “M” expresses 
3x M

x x x

µ

ν ν ν

∂
=

∂ ∂ ∂
, 

“  ” expresses Proportional constant, and “m” expresses Mass. 
Definition 10 The first-order covariant derivative of the covariant vector sa-

tisfied ;
1
2

x x g ggx x x g
x x x x x
µ µ µ µντ τ ν

µ ν τ µν τν ν ν µ

∂ ∂ ∂ ∂ ∂
= − Γ = − + − ∂ ∂ ∂ ∂ ∂ 

 
  [4].  

Definition 11 The first-order covariant derivative of the contravariant vector 

satisfied ;
1
2

g g gx xx x x g
x x x x x

µ µ
µ τ µ τ µ τ ν τν
ν τνν ν ν τ

∂ ∂ ∂∂ ∂  = + Γ = + + − ∂ ∂ ∂ ∂ ∂ 
  

  [4]. 

Definition 12 The second-order covariant derivative of the contravariant 
vector satisfied  

;
; ; ; ;

2 1
2

1
2

x
x x x

x
x x xx x x

x x x x

g g gx x g
x x x x x x

g g gx g
x x x x

µ
νµ ι µ µ ι

ν σ ν ισ ι νσσ

µ ι µ
τ µ τ ι µ τ µ ι

τν τν ισ τι νσσ ν ν ι

µ
τ µ τ ν τν

ν σ σ ν τ

ι
µ ι σ ισ

ν σ ι

∂
= + Γ − Γ
∂

     ∂ ∂ ∂ ∂
= + Γ + + Γ Γ − + Γ Γ     ∂ ∂ ∂ ∂     

 ∂ ∂ ∂ ∂ ∂  = + + −  ∂ ∂ ∂ ∂ ∂ ∂  
∂ ∂ ∂∂ + + −

∂ ∂ ∂ ∂

  


  



 


 

1 1
2 2

1
2

1 1 .
2 2

g g g g g gx g g
x x x x x x

g g gx g
x x x x

g g g g g gx g g
x x x x x x

τ ι µτ ν τν ι σ ισ
ν τ σ ι

µ
ι ν σ νσ

ι σ ν

τ µ ιτ ι τι ν σ νσ
ι τ σ ν

∂ ∂ ∂ ∂ ∂ ∂   + + − + −   ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂∂  − + − ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂   − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

    
 

  


    
 

 [4] 

Definition 13 The third-order covariant derivative of the contravariant vector 
satisfied 

; ;
; ; ; ; ; ; ; ; ;

x
x x x x

x
x x xx x x

x x x x x

µ
ν σµ κ µ µ κ µ κ

ν σ λ ν σ κλ κ σ νλ ν κ σλλ

µ ι µ
τ µ τ ι µ τ µ ι

τν τν ισ τι νσλ σ ν ν ι

∂
= + Γ − Γ − Γ

∂
      ∂ ∂ ∂ ∂ ∂ = + Γ + + Γ Γ − + Γ Γ      ∂ ∂ ∂ ∂ ∂       
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x x xx x x
x x x x

x x xx x x
x x x x

x xx
x x

κ ι κ
τ κ τ ι κ τ κ ι µ

τν τν ισ τι νσ κλσ ν ν ι

µ ι µ
τ µ τ ι µ τ µ ι κ

τκ τκ ισ τι κσ νλσ κ κ ι

µ ι
τ µ

τνκ ν

      ∂ ∂ ∂ ∂ + + Γ + + Γ Γ − + Γ Γ Γ      ∂ ∂ ∂ ∂       

      ∂ ∂ ∂ ∂ − + Γ + + Γ Γ − + Γ Γ Γ      ∂ ∂ ∂ ∂       

 ∂ ∂ ∂
− + Γ + ∂ ∂ 

xx x
x x

µ
τ ι µ τ µ ι κ

τν ικ τι νκ σλν ι

    ∂ + Γ Γ − + Γ Γ Γ    ∂ ∂     

 

3 2 1
2

1
2

1 1
2 2

g g gx x g
x x x x x x x x

g g gx g
x x x x x

g g g g g gx g g
x x x x x x x

µ
τ µ τ ν τν

ν σ λ σ λ ν τ

ι
µ ι σ ισ

λ ν σ ι

τ ι µτ ν τν ι σ ισ
λ ν τ σ ι

 ∂ ∂ ∂ ∂ ∂  = + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 ∂ ∂ ∂∂ ∂  + + −  ∂ ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ ∂ ∂ ∂    + + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂
−
∂

  


  


    
 

1
2

1 1
2 2

g g gx g
x x x x x

g g g g g gx g g
x x x x x x x

µ
ι ν σ νσ

λ ι σ ν

τ µ ιτ ι τι ν σ νσ
λ ι τ σ ν

 ∂ ∂ ∂∂  + −  ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ ∂ ∂ ∂    − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

  


    
 

 

2 1
2

1 1
2 2

1 1
2 2

g ggx g
x x x x x

g g g g ggx g g
x x x x x x x

g g g g ggx g g
x x x x x x x

κ
µ λ κλκ

ν σ λ κ

τ κ µτ ν τν λ κλκ
σ ν τ λ κ

ι
κ µι σ ισ λ κλκ

ν σ ι λ κ

∂ ∂∂∂  + + − ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂  ∂ ∂∂∂    + + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂ ∂ ∂∂∂    + + − + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 


   
 

   
 

1 1
2 2

1
2

g g g g g g
x g g

x x x x x x

g ggg
x x x

τ ι κτ ν τν ι σ ισ
ν τ σ ι

µ λ κλκ
λ κ



∂ ∂ ∂ ∂ ∂ ∂   + + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂∂ × + − ∂ ∂ ∂ 

    
 

 


 

2

1 1
2 2

1 1
2 2

1 1
2 2

g g g g ggx g g
x x x x x x x

g g g g g g
x g g

x x x x x x

g g gg xg g
x x x x x

κ
ι µν σ νσ λ κλκ

ι σ ν λ κ

τ κ ιτ ι τι ν σ νσ
ι τ σ ν

µ
µ κλ κλ νκ

λ κ κ σ

∂ ∂ ∂ ∂ ∂∂∂    − + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ ∂   − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂∂ ∂ × + − − ∂ ∂ ∂ ∂ ∂ 

   
 

    
 

 


1 1
2 2

1 1
2 2

g g
x x x

g g g g ggx g g
x x x x x x x

g g g g g gx g g
x x x x x x x

λ νλ
λ ν

τ µ κτ τκ ν λ νλκ
σ κ τ λ ν

ι
µ κι σ ισ ν λ νλ

κ σ ι λ ν

∂ ∂ + − ∂ ∂ ∂ 

 ∂ ∂  ∂ ∂ ∂∂∂    − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂ ∂ ∂ ∂∂    − + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 


   
 

    
 

 

1 1
2 2

1
2

g g g g ggx g g
x x x x x x

g g g
g

x x x

τ ι µτ τκ ι σ ισκ
κ τ σ ι

κ ν λ νλ
λ ν

∂ ∂ ∂ ∂ ∂∂   − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ × + − ∂ ∂ ∂ 

   
 

  

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2

1 1
2 2

1 1
2 2

1 1
2 2

g g g g ggx g g
x x x x x x x

g g g g ggx g g
x x x x x x

g g g gxg g
x x x x x

µ
ι κσ κσ ν λ νλκ

ι σ κ λ ν

τ µ ιτ ι τι σ κσκ
ι τ σ κ

µ
κ κν λ νλ σ

λ ν ν κ

∂ ∂ ∂ ∂ ∂∂∂    + + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ ∂∂   + + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂∂ × + − − ∂ ∂ ∂ ∂ ∂ 

   
 

   
 

  


g g
x x x

λ σλ
λ σ

∂ ∂ + − ∂ ∂ ∂ 
 



 

1 1
2 2

1 1
2 2

1 1
2 2

g g g g g g
x g g

x x x x x x x

g g g g ggx g g
x x x x x x x

g g g g
x g g

x x x

τ µ κτ ν τν σ λ σλ
κ ν τ λ σ

ι
µ κι ικ σ λ σλκ

ν κ ι λ σ

τ ι µτ ν τν
ν τ

 ∂ ∂ ∂  ∂ ∂ ∂∂    − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂ ∂∂∂    − + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ − + − ∂ ∂ ∂ 

    
 

   
 

  


1
2

gg
x x x

g g g
g

x x x

ι ικκ
κ ι

κ σ λ σλ
λ σ

∂∂ + − ∂ ∂ ∂ 
∂ ∂ ∂ × + − ∂ ∂ ∂ 

 


  


 

1 1
2 2

1 1
2 2

1 .
2

g g g g gx gg g
x x x x x x x

g g g g ggx g g
x x x x x x

g g gg
x x x

µ
ι κν νκ σ λ σλκ

ι κ ν λ σ

τ µ ιτ ι τι ν νκκ
ι τ κ ν

κ σ λ σλ
λ σ

∂ ∂ ∂ ∂ ∂∂ ∂   + + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂ ∂∂   + + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ × + − ∂ ∂ ∂ 

   
 

    
 

  


 

Definition 14 When the next conversion equation is established, xµ
µ  is 

components of a tensor of rank zero. x xx x
x x

µ ν
µ ν
µ νν µ

∂ ∂
=
∂ ∂

 

Definition 15 When the next conversion equation is established, xµ  is con-

travariant components of a tensor of the first rank [4]. xx x
x

µ
µ ν

ν
∂

=
∂

 

Definition 16 When the next conversion equation is established, xµ  is cova-

riant components of a tensor of the first rank [4]. xx x
x

ν

µ νµ
∂

=
∂

 

Definition 17 When the next conversion equation is established, xµν  is 

contravariant components of a tensor of the second rank [4]. x xx x
x x

µ ν
µν σλ

σ λ
∂ ∂

=
∂ ∂

 

Definition 18 When the next conversion equation is established, xµν  is co-

variant components of a tensor of the second rank [4]. 
x xx x
x x

σ λ

µν σλµ ν

∂ ∂
=
∂ ∂

 

Definition 19 When the next conversion equation is established, xµ
ν  is 

components of the mixed tensor of the second rank [4]. x xx x
x x

µ λ
µ σ
ν λσ ν

∂ ∂
=
∂ ∂

 

Definition 20 When the next conversion equation is established, xµ
νσ  is 

components of the mixed tensor of the third rank of the second rank covariant 

in the first rank contravariant [4]. x x xx x
x x x

µ ι
µ λ
νσ ιλ ν σ

∂ ∂ ∂
=
∂ ∂ ∂



  

Definition 21 When the next conversion equation is established, xµ
νσλ  is 
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components of the mixed tensor of the fourth rank of the third rank covariant in 

the first rank contravariant. 
x x x xx x
x x x x

µ α β
µ ι
νσλ αβι ν σ λ

∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂



  

3. About Covariant Derivative for the Scalar in Tensor  
Satisfying Binary Law 
Proposition 1 When all coordinate systems satisfy Binary Law,  

; 0MM
xν ν

∂
= =
∂

 is established for 
3x M

x x x

µ

ν ν ν

∂
=

∂ ∂ ∂
. 

Proof: I get 

; 0MM
xν ν

∂
= =
∂

                         (1) 

as 1=  for Definition 9, Hypothesis 1. 
-End Proof- 

Proposition 2 When all coordinate systems satisfy Binary Law, 
2

0
x

x x
µ

ν ν

∂
=

∂ ∂
 

is established. 
Proof: I get 

2

0
x

x x
µ

ν ν

∂
=

∂ ∂
                          (2) 

from (1), (77). 
-End Proof- 
Proposition 3 When all coordinate systems satisfy Binary Law, 

4

0x
x x x x

µ

ν ν ν ν

∂
=

∂ ∂ ∂ ∂
 is established. 

Proof: I get 
4

0x
x x x x

µ

ν ν ν ν

∂
=

∂ ∂ ∂ ∂
                        (3) 

from (1), Definition 8.  
-End Proof- 

4. About Covariant Derivative for the Vector in Tensor  
Satisfying Binary Law 

Proposition 4 ;
;

1,
2

x x gx x x
xx x

νµ
µ µµ

µ ν µ νν µ
µ

∂ ∂  ∂
= = −  ∂∂ ∂ 

 is established in tensor 

satisfying Binary Law. 
Proof: If all coordinate systems satisfy Binary Law, I get 

;
1
2

1
2

x g gg
x x g

x x x x

x g
x

x x

µ µν µννν νν
µ ν νν ν µ ν

ν
µ ν

νν µ

∂ ∂ ∂ ∂
= − + − ∂ ∂ ∂ ∂ 
∂  ∂

= −  
∂ ∂ 

              (4) 

from Definition 10. (4) must rewrite it in 
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;
1
2

x g
x x

x x

σ
µ ν

µ ν σν µ

∂  ∂
= −  
∂ ∂ 

                     (5) 

by (4) being a tensor equation. The dummy index has an invariable property for 
consideration of Binary Law. In other words, the index which was dummy index 
in Definition 10 is dummy index in (5). I get the conclusion that (5) doesn’t sa-
tisfy Binary Law from Definition 6. I get the conclusion that Definition 10 isn’t 
an equation of the tensor satisfying Binary Law because (5) doesn’t satisfy Binary 
Law. 

I rewrite one existing index ν  in each term of (5) in index µ  using Defini-
tion 2 and get 

; 1 ,
2

x gx x
x x

σµ
µµ

µ σ µ
µ

∂  ∂
= −  ∂ ∂ 

 

; 1
2

x gx x
x x

νµ
µµ

µ ν µ
µ

∂  ∂
= −  ∂ ∂ 

.                     (6) 

I rewrite one existing index ν  in each term of (5) in index µ  using Defini-
tion 4 and get 

;
1 .
2

x g
x x

x x

σ
µ µ

µ µ σµ µ

 ∂ ∂
− = − +   ∂ ∂ 

                   (7) 

I get 

;

x
x

x
µ

µ µ µ

∂
− = −

∂
                         (8) 

in consideration of Definition 7 for (7). Because the second term of the right side 
of (8) doesn’t exist, 

;

x
x

x
µ

µ ν ν

∂
=
∂

                          (9) 

can rewrite (8) using Definition 4. In addition, ;xµ ν  can’t rewrite ;x µ
µ  of (6) 

using Definition 2 because the second term of the right side exists in (6). 
-End Proof- 

Proposition 5 ;
xx
x

µ
µ
ν ν

∂
=
∂

 is established in tensor satisfying Binary Law. 

Proof: If all coordinate systems satisfy Binary Law, I get 



;
1
2

g g gxx x g
x x x x

µ
µ ν νµ νν νν νν
ν ν ν ν ν

 ∂ ∂ ∂∂
= + + −  ∂ ∂ ∂ ∂ 

 

1
2

gx x
x x

µµ
ν ν

ν ν

 ∂∂  = +
 ∂ ∂ 

                           (10) 

1
2

gx x
x x

µµ
ν ν

ν ν

 ∂∂
= +  
∂ ∂ 

                           (11) 

from Definition 11. (10), (11) must rewrite it in 
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;
1
2

gxx x
x x

µµ
µ σ σ
ν ν ν

 ∂∂
= +  
∂ ∂ 

                       (12) 

1
2

gx x
x x

µµ
σ ν

ν σ

 ∂∂
= +  
∂ ∂ 

                       (13) 

by (10), (11) being a tensor equation. 
The dummy index has an invariable property for consideration of Binary Law. 

In other words, the index which was dummy index in Definition 11 is dummy 
index in (12), (13). I get the conclusion that (12), (13) doesn’t satisfy Binary Law 
from Definition 6. I get the conclusion that Definition 11 isn’t an equation of the 
tensor satisfying Binary Law because (12), (13) doesn’t satisfy Binary Law. 

I rewrite one existing index ν  in each term of (12), (13) in index µ  using 
Definition 4 and get 

;
1
2

1 .
2

gxx x
x x

gx x
x x

µµ
µ σ σ
µ µ µ

µµ
µσ

µ σ

 ∂∂
− = − −  ∂ ∂ 

 ∂∂
= − −   ∂ ∂ 

                   (14) 

I get 

;
xx
x

µ
µ
µ µ

∂
− = −

∂
                         (15) 

in consideration of Definition 7 for (14). Because the second term of the right 
side of (15) doesn’t exist, 

;
xx
x

µ
µ
ν ν

∂
=
∂

                          (16) 

can rewrite (15) using Definition 4. I rewrite one existing index ν  in each term 
of (12), (13) in index µ  using Definition 2 and get 

; 1
2

1 .
2

gxx x
x x

x gx
x x

µµ
µ µ σ σ

µ µ

µ µµ
σ

σ
µ

 ∂∂
= +   ∂ ∂ 

 ∂ ∂
= +  ∂ ∂ 

 

-End Proof- 

Proposition 6 
2

; :
xx

x x

µ
µ
ν ν ν ν

∂
=
∂ ∂

 is established in tensor satisfying Binary Law. 

Proof: If all coordinate systems satisfy Binary Law, I get 





2

; ;
1
2

1
2

g g gxx x g
x x x x x x

g g gx g
x x x x

µ
µ ν νµ νν νν νν
ν ν ν ν ν ν ν ν

ν
νµ νν νν νν

ν ν ν ν

  ∂ ∂ ∂∂ ∂  = + + −   ∂ ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂∂

+ + −  ∂ ∂ ∂ ∂ 
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 



 

1 1
2 2

1
2

1 1
2 2

g g g g g g
x g g

x x x x x x

g g gx g
x x x x

g g g g g g
x g g

x x x x x x

ν νν νµνν νν νν νν νν νν
ν ν ν ν ν ν

µ
νν νν νν νν

ν ν ν ν

ν νµ νννν νν νν νν νν νν
ν ν ν ν ν ν

   ∂ ∂ ∂ ∂ ∂ ∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂∂
− + −  ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂
− + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 

 

    

2 1 1
2 2

1 1 1 1 1
2 2 2 2 2

g gx xx
x x x x x x

g g g g gxx x
x x x x x x

µ µµ ν
ν ν ν

ν ν ν ν ν ν

ν µ ν µ νµ
ν νν ν ν ν ν

ν ν ν ν ν ν

    ∂ ∂∂ ∂ ∂    = + +
    ∂ ∂ ∂ ∂ ∂ ∂    

         ∂ ∂ ∂ ∂ ∂∂         + − −
         ∂ ∂ ∂ ∂ ∂ ∂         

    (17) 

2 1 1
2 2

1 1 1 1 1
2 2 2 2 2

g gx xx
x x x x x x

g g g g gxx x
x x x x x x

µ µµ ν
ν ν ν

ν ν ν ν ν ν

ν µ ν µ νµ
ν νν ν ν ν ν

ν ν ν ν ν ν

    ∂ ∂∂ ∂ ∂
= + +     ∂ ∂ ∂ ∂ ∂ ∂    

         ∂ ∂ ∂ ∂ ∂∂
+ − −         

∂ ∂ ∂ ∂ ∂ ∂         

     (18) 

from Definition 12. (17), (18) must rewrite it in 
2

; ;
1 1
2 2

1 1 1 1 1
2 2 2 2 2

g gx xx x
x x x x x x

g g g g gxx x
x x x x x x

µ µµ σ
µ σ σ σ
ν ν ν ν ν ν ν ν

σ µ σ µ σµ
σ σσ σ ν σ ν

ν ν σ ν σ ν

    ∂ ∂∂ ∂ ∂
= + +     ∂ ∂ ∂ ∂ ∂ ∂    

         ∂ ∂ ∂ ∂ ∂∂
+ − −         

∂ ∂ ∂ ∂ ∂ ∂         

    (19) 

2 1 1
2 2

1 1 1 1 1
2 2 2 2 2

g gx xx
x x x x x x

g g g g gxx x
x x x x x x

µ µµ σ
σ ν ν

ν ν ν σ ν σ

σ µ σ µ σµ
σ σν ν ν σ ν

σ σ σ ν σ ν

    ∂ ∂∂ ∂ ∂
= + +     ∂ ∂ ∂ ∂ ∂ ∂    

         ∂ ∂ ∂ ∂ ∂∂
+ − −         

∂ ∂ ∂ ∂ ∂ ∂         

     (20) 

by (17), (18) being a tensor equation. The dummy index has an invariable prop-
erty for consideration of Binary Law. In other words, the index which was 
dummy index in Definition 12 is dummy index in (19), (20). I get the conclusion 
that (19), (20) doesn’t satisfy Binary Law from Definition 6. I get the conclusion 
that Definition 12 isn’t an equation of the tensor satisfying Binary Law because 
(19), (20) doesn’t satisfy Binary Law. 

I rewrite two existing index ν  in each term of (19), (20) in index µ  using 
Definition 4 and get 

2

; ;

2

1 1
2 2

1 1 1 1 1
2 2 2 2 2

1
2

g gx xx x
x x x x x x

g gg g gxx x
x x x x x x

gx x
x x x x

µ µµ σ
µ σ σ σ
µ µ µ µ µ µ µ µ

σ σσ µ µµ
µ µσ σσ σ σ

µ µ σ µ σ µ

µµ
µσ

µ µ µ σ

    ∂ ∂∂ ∂ ∂
= + +     ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂     ∂ ∂ ∂∂
+ − −           ∂ ∂ ∂ ∂ ∂ ∂        

  ∂∂ ∂
= +    ∂ ∂ ∂ ∂ 

1
2

1 1 1 1 1 .
2 2 2 2 2

gx
x x

g g g ggxx x
x x x x x x

µσ
µ

µ σ

σ µ σ σµµ
µ µ µ µσ σ σ
σ σ σ µ σ µ

  ∂∂
+    ∂ ∂ 

       ∂ ∂ ∂ ∂ ∂∂
+ − −               ∂ ∂ ∂ ∂ ∂ ∂        

  (21) 
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I get 
2

; ;
xx

x x

µ
µ
µ µ µ µ

∂
=
∂ ∂

                        (22) 

in consideration of Definition 7 for (21). Because the second term of the right 
side of (22) doesn’t exist, 

2

; :
xx

x x

µ
µ
ν ν ν ν

∂
=
∂ ∂

                        (23) 

can rewrite (22) using Definition 4. I rewrite two existing index ν  in each term 
of (19), (20) in index µ  using Definition 2 and get 

2
; ;

2

1 1
2 2

1 1 1 1 1
2 2 2 2 2

1
2

g gx xx x
x x x x x x

g g gx g gx x
x x x x x x

x gx
x x x x

µ µµ σ
µ µ µ σ σ σ

µ µ µ µ µ µ

σ µ µµ σµ σµ
σ σσ σ σ

σ σ
µ µ µ µ

µ µµ
σ

σ
µ µ µ

    ∂ ∂∂ ∂ ∂
= + +        ∂ ∂ ∂ ∂ ∂ ∂    

        ∂ ∂ ∂∂ ∂ ∂
+ − −               ∂ ∂ ∂ ∂ ∂ ∂        

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂

1
2

1 1 1 1 1 .
2 2 2 2 2

x g
x x

gg g x g gx x
x x x x x x

σ µµ

σ
µ

µσµ µµ µ σµ σµ
σ σ σ

σ σ σ σ
µ µ

   ∂ ∂
+   ∂ ∂   

        ∂∂ ∂ ∂ ∂ ∂
+ − −           ∂ ∂ ∂ ∂ ∂ ∂        

 

-End Proof- 

Proposition 7 
3

; ; ;
xx

x x x

µ
µ
ν ν ν ν ν ν

∂
=
∂ ∂ ∂

 is established in tensor satisfying Binary 

Law. 
Proof: If all coordinate systems satisfy Binary Law, I get 





 

3 2

; ; ;
1
2

1
2

1 1
2 2

g g gxx x g
x x x x x x x x

g g gx g
x x x x x

g g g g g g
x g g

x x x x x x

µ
µ ν νµ νν νν νν
ν ν ν ν ν ν ν ν ν ν ν

ν
νµ νν νν νν

ν ν ν ν ν

ν νν νµνν νν νν νν νν νν
ν ν ν ν ν ν

  ∂ ∂ ∂∂ ∂  = + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂∂ ∂ + + −   ∂ ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ ∂ ∂∂
+ + − + −  ∂ ∂ ∂ ∂ ∂ ∂ 



 

1
2

1 1
2 2

x

g g gx g
x x x x x

g g g g g g
x g g

x x x x x x x

ν

µ
νν νν νν νν

ν ν ν ν ν

ν νµ νννν νν νν νν νν νν
ν ν ν ν ν ν ν

  
    ∂  
  ∂ ∂ ∂∂ ∂ − + −   ∂ ∂ ∂ ∂ ∂  
    ∂ ∂ ∂ ∂ ∂ ∂∂  − + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 



 

2 1
2

1 1
2 2

g g gx g
x x x x x

g g g g g g
x g g

x x x x x x x

ν
νµ νν νν νν

ν ν ν ν ν

ν νν νµνν νν νν νν νν νν
ν ν ν ν ν ν ν

 ∂ ∂ ∂∂
+ + −  ∂ ∂ ∂ ∂ ∂ 

    ∂ ∂ ∂ ∂ ∂ ∂∂  + + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    
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 

 



1 1
2 2

1 1
2 2

1
2

g g g g g gx g g
x x x x x x x

g g g g g gx g g
x x x x x x

g g gg
x x x

ν
νν νµνν νν νν νν νν νν

ν ν ν ν ν ν ν

ν νν νννν νν νν νν νν νν
ν ν ν ν ν ν

νµ νν νν νν
ν ν ν

   ∂ ∂ ∂ ∂ ∂ ∂∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
× + −  ∂ ∂ ∂ 

 

 

 



2

1 1
2 2

1 1
2 2

1
2

g g g g g gx g g
x x x x x x x

g g g g g gx g g
x x x x x x

g g g xg
x x x x

ν
νν νµνν νν νν νν νν νν

ν ν ν ν ν ν ν

ν νν νννν νν νν νν νν νν
ν ν ν ν ν ν

µ
νµ νν νν νν

ν ν ν ν

   ∂ ∂ ∂ ∂ ∂ ∂∂
− + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂
− + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂
× + − −  ∂ ∂ ∂ ∂ ∂ 



 

 

1
2

1 1
2 2

1 1
2 2

g g gg
x x x x

g g g g g gx g g
x x x x x x x

g g g g g gx g g
x x x x x x x

νν νν νν νν
ν ν ν ν

ν νµ νννν νν νν νν νν νν
ν ν ν ν ν ν ν

ν
νµ νννν νν νν νν νν νν

ν ν ν ν ν ν ν

 ∂ ∂ ∂
+ −  ∂ ∂ ∂ 

    ∂ ∂ ∂ ∂ ∂ ∂∂
 − + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    

  ∂ ∂ ∂ ∂ ∂ ∂∂
− + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂  





 

 



 

1 1
2 2

1
2

1 1
2 2

1
2

g g g g g gx g g
x x x x x x

g g gg
x x x

g g g g g gx g g
x x x x x x x

x g

ν νν νµνν νν νν νν νν νν
ν ν ν ν ν ν

νν νν νν νν
ν ν ν

µ
νν νννν νν νν νν νν νν

ν ν ν ν ν ν ν

ν νµ

   ∂ ∂ ∂ ∂ ∂ ∂
− + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
× + −  ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂
+

 

 

2

1
2

1 1
2 2

g g g g g gg
x x x x x x

g g g g g gxg g
x x x x x x x x

νννν νν νν νν νν νν
ν ν ν ν ν ν

µ
νν νννν νν νν νν νν νν

ν ν ν ν ν ν ν ν

   ∂ ∂ ∂ ∂ ∂
+ − + −      ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂∂
× + − − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 

 



1 1
2 2

1 1
2 2

1
2

g g g g g gx g g
x x x x x x x

g g g g g gx g g
x x x x x x x

g g gx g
x x x

ν νµ νννν νν νν νν νν νν
ν ν ν ν ν ν ν

ν
νµ νννν νν νν νν νν νν

ν ν ν ν ν ν ν

ν νν νν νν νν
ν ν ν

    ∂ ∂ ∂ ∂ ∂ ∂∂
 − + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂ ∂ ∂ ∂ ∂∂
− + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− + −

∂ ∂ ∂





 

1
2

1
2

1 1
2 2

g g gg
x x x

g g gg
x x x

g g g g g gx g g
x x x x x x x

νµ νν νν νν
ν ν ν

νν νν νν νν
ν ν ν

µ
νν νννν νν νν νν νν νν

ν ν ν ν ν ν ν

  ∂ ∂ ∂
+ −     ∂ ∂ ∂  

 ∂ ∂ ∂
× + −  ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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 1 1
2 2

g g g g g g
x g g

x x x x x x
ν νµ νννν νν νν νν νν νν

ν ν ν ν ν ν

   ∂ ∂ ∂ ∂ ∂ ∂
+ + − + −      ∂ ∂ ∂ ∂ ∂ ∂   

 



 

  

3 2

1
2

1 1
2 2

1 1 1
2 2 2

g g g
g

x x x

g gx xx
x x x x x x x x x

g g gxx
x x x x x x

νν νν νν νν
ν ν ν

µ µµ ν
ν ν ν

ν ν ν ν ν ν ν ν ν

ν µ νµ
ν ν ν ν

ν ν ν ν ν ν

 ∂ ∂ ∂
× + −  ∂ ∂ ∂ 

      ∂ ∂∂ ∂ ∂ ∂      = + +
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

      ∂ ∂ ∂∂ ∂ ∂      + −
      ∂ ∂ ∂ ∂ ∂ ∂      
  21 1 1

2 2 2
g g gxx

x x x x x x

µ ν µν
ν ν ν ν

ν ν ν ν ν ν

 
 
 
 

      ∂ ∂ ∂∂ ∂      − +
      ∂ ∂ ∂ ∂ ∂ ∂      

 

   

    



1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1
2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

g
x

x

ν µ ν µν
ν ν ν ν ν

ν ν ν ν ν ν

ν ν µ ν µν
ν ν ν ν ν ν

ν ν ν ν ν ν

ν
ν ν

ν

        ∂ ∂ ∂ ∂∂ ∂        + +
        ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂         + −
         ∂ ∂ ∂ ∂ ∂ ∂         
 ∂−
∂

  

   

  

21 1 1
2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g g gx
x x x x x

g g g gxx
x x x x x x

g g g
x

x x

ν µ νµ
ν ν ν
ν ν ν ν ν

µ ν µ νν
ν ν ν ν ν

ν ν ν ν ν ν

ν µ ν
ν ν ν ν

ν ν

      ∂ ∂ ∂∂      −
       ∂ ∂ ∂ ∂ ∂      
        ∂ ∂ ∂ ∂∂ ∂        − −

        ∂ ∂ ∂ ∂ ∂ ∂        
   ∂ ∂ ∂   −
   ∂ ∂   

 1 1
2 2

g gx
x x x x

ν νµ
ν ν

ν ν ν ν

     ∂ ∂∂     +
     ∂ ∂ ∂ ∂     

 

   

   

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1
2 2

g g g gxx
x x x x x x

g g g gxx
x x x x x x

g g
x

x x

µ ν ν νµ
ν ν ν ν ν

ν ν ν ν ν ν

µ ν µ νν
ν ν ν ν ν

ν ν ν ν ν ν

ν µ
ν ν ν

ν

       ∂ ∂ ∂ ∂∂       + −
       ∂ ∂ ∂ ∂ ∂ ∂       
        ∂ ∂ ∂ ∂∂ ∂        − −

        ∂ ∂ ∂ ∂ ∂ ∂        
 ∂ ∂ −
 ∂ ∂ 

  

  

1 1 1
2 2 2

1 1 1
2 2 2

g g gx
x x x x

g g g
x

x x x

ν ν νµ
ν ν ν

ν ν ν ν ν

µ ν ν
ν ν ν ν

ν ν ν

       ∂ ∂ ∂∂       +
       ∂ ∂ ∂ ∂       

     ∂ ∂ ∂     +
     ∂ ∂ ∂     

       (24) 

3 2 1 1
2 2

1 1 1
2 2 2

1 1
2 2

g gx xx
x x x x x x x x x

g g gxx
x x x x x x

g g
x

x x x

µ µµ ν
ν ν ν

ν ν ν ν ν ν ν ν ν

ν µ νµ
ν ν ν ν

ν ν ν ν ν ν

µ ν
ν ν ν

ν ν ν

      ∂ ∂∂ ∂ ∂ ∂
= + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

        ∂ ∂ ∂∂ ∂ ∂
+ −           ∂ ∂ ∂ ∂ ∂ ∂        

    ∂ ∂∂
−    
∂ ∂ ∂   

2 1
2

gx
x x x

µν
ν

ν ν ν

  ∂∂
+     ∂ ∂ ∂ 
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1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

ν µ ν µν
ν ν ν ν ν

ν ν ν ν ν ν

ν ν µ ν µν
ν ν ν ν ν ν

ν ν ν ν ν ν

        ∂ ∂ ∂ ∂∂ ∂
+ +         ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂
+ −         

∂ ∂ ∂ ∂ ∂ ∂         

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g g g gxx
x x x x x x

g g g gxx
x x x x x x

g g g
x

x x x

ν ν µ νµ
ν ν ν ν ν

ν ν ν ν ν ν

µ ν µ νν
ν ν ν ν ν

ν ν ν ν ν ν

ν µ ν
ν ν ν ν

ν ν ν

       ∂ ∂ ∂ ∂∂
− −       

∂ ∂ ∂ ∂ ∂ ∂       

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

    ∂ ∂ ∂
−    

∂ ∂ ∂    
2

1 1
2 2

1 1 1 1
2 2 2 2

g gx
x x x

g g g gxx
x x x x x x

ν νµ
ν ν

ν ν ν

µ ν ν νµ
ν ν ν ν ν

ν ν ν ν ν ν

    ∂ ∂∂
+     
∂ ∂ ∂    

       ∂ ∂ ∂ ∂∂
+ −       

∂ ∂ ∂ ∂ ∂ ∂       

 

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

g g
x

x x

µ ν µ νν
ν ν ν ν ν

ν ν ν ν ν ν

ν µ ν ν νµ
ν ν ν ν ν ν

ν ν ν ν ν ν

µ ν
ν ν ν

ν ν

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂
− +         

∂ ∂ ∂ ∂ ∂ ∂         

   ∂ ∂
+    

∂ ∂   

1
2

g
x

ν
ν
ν

 ∂
 
∂ 

        (25) 

from Definition 13. (24), (25) must rewrite it in 

3 2

; ; ;
1 1
2 2

1 1 1
2 2 2

1 1
2 2

g gx xx x
x x x x x x x x x

g g gxx
x x x x x x

g g
x

x x x

µ µµ σ
µ σ σ σ
ν ν ν ν ν ν ν ν ν ν ν ν

σ µ σµ
σ σ σ ν

ν ν ν ν σ ν

µ σ
σ σ ν

ν σ ν

      ∂ ∂∂ ∂ ∂ ∂
= + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

        ∂ ∂ ∂∂ ∂ ∂
+ −           ∂ ∂ ∂ ∂ ∂ ∂        

 ∂ ∂∂
−  
∂ ∂ ∂ 

2 1
2

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

gx
x x x

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

µσ
σ

ν ν ν

σ µ σ µσ
σ σ σ σ σ

ν ν ν ν ν ν

σ σ µ σ µσ
σ σ σ σ ν σ

ν ν ν σ ν

    ∂∂
+      ∂ ∂ ∂    

        ∂ ∂ ∂ ∂∂ ∂
+ +         ∂ ∂ ∂ ∂ ∂ ∂        

       ∂ ∂ ∂ ∂ ∂∂
+ −       

∂ ∂ ∂ ∂ ∂ ∂       
ν

 
 
 

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g g g gxx
x x x x x x

g g g gxx
x x x x x x

g g g
x

x x x

σ σ µ σµ
σ σ ν σ ν

σ ν ν σ ν ν

µ σ µ σσ
σ σ ν σ ν

ν σ ν σ ν ν

σ µ σ
σ σ σ ν

σ ν ν

       ∂ ∂ ∂ ∂∂
− −       

∂ ∂ ∂ ∂ ∂ ∂       

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

    ∂ ∂ ∂
−    

∂ ∂ ∂    
2

1 1
2 2

1 1 1 1
2 2 2 2

g gx
x x x

g g g gxx
x x x x x x

σ σµ
σ ν

σ ν ν

µ σ σ σµ
σ σ σ ν ν

σ ν ν ν σ ν

    ∂ ∂∂
+     
∂ ∂ ∂    

       ∂ ∂ ∂ ∂∂
+ −       

∂ ∂ ∂ ∂ ∂ ∂       
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1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

g g
x

x x

µ σ µ σσ
σ σ ν σ ν

σ ν ν ν σ ν

σ µ σ σ σµ
σ σ σ ν ν ν

ν σ ν σ σ ν

µ σ
σ σ ν

σ σ

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂
− +         

∂ ∂ ∂ ∂ ∂ ∂         
   ∂ ∂

+    
∂ ∂   

1
2

g
x

σ
ν
ν

 ∂
 
∂ 

       (26) 

3 2 1 1
2 2

1 1 1
2 2 2

1 1
2 2

g gx xx
x x x x x x x x x

g g gxx
x x x x x x

g g
x

x x x

µ µµ σ
σ ν ν

ν ν ν ν ν σ ν ν σ

σ µ σµ
σ ν ν ν

ν σ σ ν σ ν

µ σ
σ σ ν

ν σ ν

      ∂ ∂∂ ∂ ∂ ∂
= + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

        ∂ ∂ ∂∂ ∂ ∂
+ −           ∂ ∂ ∂ ∂ ∂ ∂        

    ∂ ∂∂
−    
∂ ∂ ∂   

2 1
2

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

gx
x x x

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

µσ
ν

ν ν σ

σ µ σ µσ
σ ν ν ν ν

ν σ σ ν σ σ

σ σ µ σ µσ
σ ν ν ν ν ν

σ σ σ σ ν σ

  ∂∂
+     ∂ ∂ ∂ 

        ∂ ∂ ∂ ∂∂ ∂
+ +         ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂
+ −         

∂ ∂ ∂ ∂ ∂ ∂         

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g g g gxx
x x x x x x

g g g gxx
x x x x x x

g g g
x

x x x

σ σ µ σµ
σ σ ν ν ν

σ ν σ σ ν ν

µ σ µ σσ
σ σ ν ν ν

ν σ ν σ σ ν

σ µ σ
σ σ ν ν

σ σ ν

       ∂ ∂ ∂ ∂∂
− −       

∂ ∂ ∂ ∂ ∂ ∂       

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

    ∂ ∂ ∂
−    

∂ ∂ ∂    
2

1 1
2 2

1 1 1 1
2 2 2 2

g gx
x x x

g g g gxx
x x x x x x

σ σµ
ν ν

σ σ ν

µ σ σ σµ
σ σ ν ν ν

σ σ ν ν σ ν

    ∂ ∂∂
+     
∂ ∂ ∂    

       ∂ ∂ ∂ ∂∂
+ −       

∂ ∂ ∂ ∂ ∂ ∂       

 

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

g g
x

x x

µ σ µ σσ
σ ν ν σ ν

σ σ ν ν σ ν

σ µ σ σ σµ
σ ν σ ν σ ν

σ σ ν σ ν ν

µ σ
σ σ σ

σ ν

        ∂ ∂ ∂ ∂∂ ∂
− −         ∂ ∂ ∂ ∂ ∂ ∂        

         ∂ ∂ ∂ ∂ ∂∂
− +         

∂ ∂ ∂ ∂ ∂ ∂         

   ∂ ∂
+    

∂ ∂   

1
2

g
x

σ
ν
ν

 ∂
 
∂ 

       (27) 

by (24), (25) being a tensor equation. The dummy index has an invariable prop-
erty for consideration of Binary Law. In other words, the index which was 
dummy index in Definition 13 is dummy index in (26), (27). I get the conclusion 
that (26), (27) doesn’t satisfy Binary Law from Definition 6. I get the conclusion 
that Definition 13 isn’t an equation of the tensor satisfying Binary Law because 
(26), (27) doesn’t satisfy Binary Law. 

I rewrite three existing index ν  in each term of (26), (27) in index µ  using 
Definition 4 and get 
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3 2

; ; ;
1 1
2 2

1 1 1
2 2 2

1 1
2 2

g gx xx x
x x x x x x x x x

gg g xx
x x x x x x

gg
x

x x

µ µµ σ
µ σ σ σ
µ µ µ µ µ µ µ µ µ µ µ µ

σσ µ µ
µσ σ σ

µ µ µ µ σ µ

µ
µσ σ

µ σ

      ∂ ∂∂ ∂ ∂ ∂
− = − − −         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

    ∂   ∂ ∂∂ ∂ ∂ − +          ∂ ∂ ∂ ∂ ∂ ∂       

∂ ∂∂
+  
∂ ∂ 

2 1
2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

gx
x x x x

g g g gxx
x x x x x x

gg g g xx
x x x x x

σ µσ
σ

µ µ µ µ

σ µ σ µσ
σ σ σ σ σ

µ µ µ µ µ µ

σσ σ µ σ
µσ σ σ σ

µ µ µ σ µ

    ∂∂  −     ∂ ∂ ∂ ∂   
        ∂ ∂ ∂ ∂∂ ∂

− −         ∂ ∂ ∂ ∂ ∂ ∂        
 ∂     ∂ ∂ ∂ ∂

− +         ∂ ∂ ∂ ∂ ∂       

1
2

g
x

µ
σ
µ

 ∂
 
∂ 

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g gg g xx
x x x x x x

g gg gxx
x x x x x x

g g
x

x x

σ σσ µ µ
µ µσ σ σ

σ µ µ σ µ µ

σ σµ µσ
µ µσ σ σ

µ σ µ σ µ µ

σ µ
σ σ σ

σ µ

   ∂ ∂   ∂ ∂ ∂
+ +         ∂ ∂ ∂ ∂ ∂ ∂      

     ∂ ∂   ∂ ∂∂ ∂
+ +            ∂ ∂ ∂ ∂ ∂ ∂        

∂   ∂ ∂
+    

∂ ∂   
2

1 1
2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g ggx
x x x x

g gg g xx
x x x x x x

gg gxx
x x x x x

σ σσµ
µ µσ
µ σ µ µ

σ σµ σ µ
µ µσ σ σ

σ µ µ µ σ µ

σµ µσ
µσ σ σ

σ µ µ µ σ

   ∂ ∂∂
−       ∂ ∂ ∂ ∂    

   ∂ ∂   ∂ ∂ ∂
− +          ∂ ∂ ∂ ∂ ∂ ∂       

   ∂   ∂ ∂∂ ∂
+ +        ∂ ∂ ∂ ∂ ∂      

1
2

g
x

σ
µ
µ

 ∂
  ∂ 

 

3 2

1 1 1 1 1
2 2 2 2 2

1 1 1
2 2 2

1
2

g g gg g xx
x x x x x x

g gg
x

x x x

gx x
x x x x x x x

σ σ σσ µ µ
µ µ µσ σ σ

µ σ µ σ σ µ

σ σµ
µ µσ σ

σ σ µ

µµ
µσ

µ µ µ µ µ σ µ

     ∂ ∂ ∂   ∂ ∂ ∂
+ −              ∂ ∂ ∂ ∂ ∂ ∂         

   ∂ ∂ ∂
−         ∂ ∂ ∂     

  ∂∂ ∂ ∂ ∂ = − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂  

2

1
2

1 1 1
2 2 2

1 1 1
2 2 2

gx
x x

g g gxx
x x x x x x

g gg xx
x x x x x x

µσ
µ

µ σ

σ µ σµ
µ µ µσ

µ σ σ µ σ µ

σ µµ σ
µ µσ σ

µ σ µ µ µ σ

  ∂
    ∂ ∂  

        ∂ ∂ ∂∂ ∂ ∂   − +             ∂ ∂ ∂ ∂ ∂ ∂        
    ∂ ∂ ∂∂ ∂ + −         ∂ ∂ ∂ ∂ ∂ ∂      

 

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1
2

g g g gxx
x x x x x x

g g g g gxx
x x x x x x

g
x

x

σ µ σ µσ
µ µ µ µσ

µ σ σ µ σ σ

σ σ µ σ µσ
µ µ µ µ µσ
σ σ σ σ µ σ

σ
σ σ

σ

        ∂ ∂ ∂ ∂∂ ∂ − −               ∂ ∂ ∂ ∂ ∂ ∂        
         ∂ ∂ ∂ ∂ ∂∂

− +                  ∂ ∂ ∂ ∂ ∂ ∂         

 ∂
+ 

∂

21 1 1
2 2 2

g g gx
x x x x x

σ µ σµ
µ µ µ
µ σ σ µ µ

     ∂ ∂ ∂ ∂
+           ∂ ∂ ∂ ∂ ∂      
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1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

g g gg xx
x x x x x x

g g g gg xx
x x x x x x

σ µ σµ σ
µ µ µσ σ

µ σ µ σ σ µ

µ σ σ σσ µ
µ µ µ µσ σ

σ σ µ σ σ µ

       ∂ ∂ ∂ ∂∂ ∂
+ +              ∂ ∂ ∂ ∂ ∂ ∂        

       ∂ ∂ ∂ ∂ ∂ ∂
+ −                ∂ ∂ ∂ ∂ ∂ ∂         

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1
2 2

g g gg xx
x x x x x x

g g ggxx
x x x x x x

g gx
x x

σ σ σµ µ
µ µ µσ σ

σ σ µ µ σ µ

µ σ σµσ
µ µ µσ σ

σ σ µ µ σ µ

σ µ
µσ σ
σ σ

     ∂ ∂ ∂ ∂ ∂
− +            ∂ ∂ ∂ ∂ ∂ ∂       

      ∂ ∂ ∂ ∂∂ ∂
+ +             ∂ ∂ ∂ ∂ ∂ ∂       

 ∂  ∂
+    ∂ ∂ 

1 1 1
2 2 2

1 1 1 .
2 2 2

g ggx
x x x x

gg gx
x x x

σ σσµ
µ µσ
µ σ µ µ

σµ σ
µσ σ σ

σ µ µ

   ∂ ∂  ∂∂
−        ∂ ∂ ∂ ∂     

 ∂   ∂ ∂
−       ∂ ∂ ∂     

    (28) 

I get 
3

; ; ;
xx

x x x

µ
µ
µ µ µ µ µ µ

∂
− = −

∂ ∂ ∂
                    (29) 

in consideration of Definition 7 for (28). Because the second term of the right 
side of (29) doesn’t exist, 

3

; ; ;
xx

x x x

µ
µ
ν ν ν ν ν ν

∂
=
∂ ∂ ∂

                      (30) 

can rewrite (29) using Definition 4. I rewrite three existing index ν  in each 
term of (26), (27) in index µ  using Definition 2 and get 

3 2
; ; ; 1 1

2 2

1 1 1
2 2 2

1
2

g gx xx x
x x x x x x x x x

g g x gx
x x x x xx

g
x

x x

µ µµ σ
µ µ µ µ σ σ σ

µ µ µ µ µ µ µ µ µ

σ µ µ σµ
σ σ σ

σ
µ µ µ µ µ

µ
σ σ

σ
µ

      ∂ ∂∂ ∂ ∂ ∂
   = + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

        ∂ ∂∂ ∂ ∂ ∂
   + −             ∂ ∂ ∂ ∂ ∂∂        

 ∂∂
− 
∂ ∂ 

21 1
2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

gg x
x x x x

g g g gxx
x x x x x x

g g g
x

x x x

µσµ σ
σ

µ µ µ µ

σ µ σ µσ
σ σ σ σ σ

µ µ µ µ µ µ

σ σ µ
σ σ σ σ

µ µ µ

    ∂∂ ∂
  +        ∂ ∂ ∂ ∂    
        ∂ ∂ ∂ ∂∂ ∂
 + +               ∂ ∂ ∂ ∂ ∂ ∂        
     ∂ ∂ ∂ ∂

+ −          ∂ ∂ ∂     

1 1
2 2

gx g
x xx

µσ σµ
σ

σ
µ µ

   ∂∂
      ∂ ∂∂    
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σ σ σ
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µ µσµ σ σµ
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σ
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      ∂ ∂∂ ∂ ∂
− −            ∂ ∂ ∂∂ ∂ ∂       

       ∂ ∂∂ ∂ ∂ ∂
− −              ∂ ∂ ∂ ∂∂ ∂        

  ∂ ∂
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1 1 1
2 2 2

gg x g
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σσµ µ σµ
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     ∂∂ ∂ ∂
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x x x xx x

µ σ σµ µ σµ
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σ σ
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σ σ σ

σ σ
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      ∂ ∂ ∂ ∂ ∂
+ −            ∂ ∂ ∂∂ ∂ ∂       

       ∂ ∂∂ ∂ ∂ ∂
 − −            ∂ ∂ ∂ ∂∂ ∂       
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        ∂ ∂ ∂ ∂ ∂ ∂
− +             ∂ ∂ ∂∂ ∂ ∂       

    ∂ ∂ ∂
+       ∂∂ ∂    

  ∂ ∂ ∂ ∂ ∂
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g g x gx
x x xx x x

g g x gx
x x x xx x

µµ

σ

σµ µµ µ σµ
σ

σ σ σ
µ µ µ

µ σµ σ µµ
σ σ

σ σ
µ µ µ µ

  ∂
   ∂  

      ∂ ∂ ∂ ∂ ∂ ∂
 + −          ∂ ∂ ∂∂ ∂ ∂       

     ∂∂ ∂ ∂ ∂
 − +      ∂ ∂ ∂ ∂∂ ∂     

 

1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2 2

1 1
2 2

g g x g gx
x xx x x x

g g g x g gx
xx x x x x

g gx
xx

σµ µµ σ σµ µµ
σ

σ σ σ σ
µ µ

σµ σµ µµ σ σµ µµ
σ

σ σ σ σ σ
µ

σ σµ
σ σ

σ
µ

        ∂ ∂ ∂ ∂ ∂ ∂
+ +         ∂ ∂∂ ∂ ∂ ∂        

        ∂ ∂ ∂ ∂ ∂ ∂
+ −          ∂∂ ∂ ∂ ∂ ∂        

 ∂ ∂
−    ∂∂  

21 1
2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

g x g
xx x x

g g x g gx
x x xx x x

g g g x gx
xx x x x

µµ µ σµ

σ σ
µµ

µ σµ σ µµ σµ
σ σ

σ σ σ
µ µ µ

σ µµ σµ µ σµ
σ σ

σ σ σ σ
µ

   ∂ ∂ ∂
−     ∂∂ ∂ ∂   

       ∂∂ ∂ ∂ ∂ ∂
− −            ∂ ∂ ∂∂ ∂ ∂       

     ∂ ∂ ∂ ∂ ∂
− +      ∂∂ ∂ ∂ ∂    

1
2

g
x

σµ

µ

  ∂
    ∂   

 

21 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
2 2 2

g g g x gx
x x x x x x

gg g x gx
x x x x x x

gg gx
x x

µ σµ σµ µ σµ
σ σ

σ σ σ
µ µ µ

µµµ σµ σ σµ
σ σ

σ σ σ
µ µ µ

µσµ σ
σ σ

σ σ

      ∂ ∂ ∂ ∂ ∂
+ −          ∂ ∂ ∂ ∂ ∂ ∂      

        ∂∂ ∂ ∂ ∂ ∂
− −           ∂ ∂ ∂ ∂ ∂ ∂        

   ∂∂ ∂
−   ∂ ∂   

1 1
2 2

1 1 1 .
2 2 2

gx g
x x x x

g g gx
x x x

σµ µ σµ
σ

σ
µ µ µ

µ σ σµ
σ σ σ

σ
µ µ

     ∂∂ ∂
+          ∂ ∂ ∂ ∂     

    ∂ ∂ ∂
+         ∂ ∂ ∂     

 

-End Proof- 

5. About a Coordinate Transformations Equation in Tensor 
Satisfying Binary Law 
Proposition 8 When all coordinate systems satisfy Binary Law,  
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x xx x x
x x

µ ν
µ ν ν
µ ν νν µ

∂ ∂
= =
∂ ∂

 is established for xµ
µ  components of a tensor satisfying 

Binary law of rank zero. 
Proof: When all coordinate systems satisfy Binary Law, I get 

x xx x x
x x

µ ν
µ ν ν
µ ν νν µ

∂ ∂
= =
∂ ∂

                     (31) 

from Definition 14. Because (31) accords in Definition 14, the components of a 
tensor of rank zero are equivalent with components of a tensor satisfying Binary 
law of rank zero. I rewrite (31) by consideration of ; ;,x x x xµ µ ν ν

µ µ ν ν→ → , (6), 
µ ν−  inversion form of (6) and get 

1 1
2 2

1 .
2

x xg x x gx x
x x x x x x

x gx
x x

νµ µ ν µν
µ ν

ν µµ ν µ ν
µ ν

µν
ν

µ ν
ν

 ∂     ∂∂ ∂ ∂ ∂
− = −       ∂ ∂ ∂ ∂ ∂ ∂     

  ∂ ∂
= −  ∂ ∂  

         (32) 

-End Proof- 

Proposition 9 When all coordinate systems satisfy Binary Law, 
xx x
x

µ
µ ν

ν

∂
=
∂

 

is established for xµ  contravariant components of a tensor satisfying Binary 
law of the first rank. 

Proof: When all coordinate systems satisfy Binary Law, I get 

xx x
x

µ
µ ν

ν

∂
=
∂

                          (33) 

from Definition 15. Because (33) accords in Definition 15, the contravariant 
components of a tensor of the first rank are equivalent with contravariant com-
ponents of a tensor satisfying Binary law of the first rank. 

-End Proof- 

Proposition 10 When all coordinate systems satisfy Binary Law, 
xx x
x

ν

µ νµ

∂
=
∂

 

is established for xµ  covariant components of a tensor satisfying Binary law of 
the first rank. 

Proof: When all coordinate systems satisfy Binary Law, I get 

xx x
x

ν

µ νµ

∂
=
∂

                         (34) 

from Definition 16. Because (34) accords in Definition 16, the covariant com-
ponents of a tensor of the first rank are equivalent with covariant components of 
a tensor satisfying Binary law of the first rank. 

-End Proof- 
Proposition 11 When all coordinate systems satisfy Binary Law, 

x xx x x
x x

µ ν
µν νµ νµ

ν µ

∂ ∂
= =
∂ ∂

 is established for xµν  contravariant components of a 

tensor satisfying Binary law of the second rank. 
Proof: When all coordinate systems satisfy Binary Law, I get 
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x x xx x x
x x x

µ ν µ
µν νν νν

ν ν ν

∂ ∂ ∂
= =
∂ ∂ ∂

                  (35) 

from Definition 17. xµν  isn’t contravariant components of a tensor satisfying 
Binary law of the second rank than (35). This is a problem. The dummy index has 
an invariable property for consideration of Binary Law. In other words, the in-
dex which was dummy index in Definition 17 is dummy index in (35). Therefore,  

I rewrite dummy index ν  in 
x x
x

ν
νν

ν

∂
∂

 of (35) in µ  and get 

x xx x x
x x

µ ν
µν νµ νµ

ν µ

∂ ∂
= =
∂ ∂

.                    (36) 

The kind of the optional dummy index is only two kinds of ,ν µ  in consider-
ation of Definition 6 here. A problem in (35) is solved in (36). If I assume estab-
lishment of 

( ), Falsex x x xµν µ νµ ν
µ ν= = .                  (37) 

I get 

( )Falsex xx x x
x x

µ ν
µ ν ν
µ ν νν µ

∂ ∂
= =
∂ ∂

                  (38) 

from (36), (37). I get 

( )Falsex xµ µ
µ µ=                        (39) 

from (31), (38). Because (39) isn’t established, 

,x x x xµν µ νµ ν
µ ν= =                        (40) 

is established. 
-End Proof- 
Proposition 12 When all coordinate systems satisfy Binary Law, 

x xx x x
x x

ν µ

µν νµ νµµ ν

∂ ∂
= =
∂ ∂

 is established for xµν  covariant components of a ten-

sor satisfying Binary law of the second rank. 
Proof: When all coordinate systems satisfy Binary Law, I get 

x x xx x x
x x x

ν ν ν

µν νν ννµ ν µ

∂ ∂ ∂
= =
∂ ∂ ∂

                   (41) 

from Definition 18. xµν  isn’t covariant components of a tensor satisfying Bi-
nary law of the second rank than (41). This is a problem. The dummy index has 
an invariable property for consideration of Binary Law. In other words, the in-
dex which was dummy index in Definition 18 is dummy index in (41). Therefore,  

I rewrite dummy index ν  in 
x x
x

ν

ννν

∂
∂

 of (41) in µ  and get 

x xx x x
x x

ν µ

µν νµ νµµ ν

∂ ∂
= =
∂ ∂

.                    (42) 

The kind of the optional dummy index is only two kinds of ,ν µ  in consider-
ation of Definition 6 here. A problem in (41) is solved in (42). If I assume estab-
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lishment of 

( ), Falsex x x xν µ
µν ν νµ µ= = .                  (43) 

I get 

( )Falsex xx x x
x x

ν µ
ν µ µ
ν µ µµ ν

∂ ∂
= =
∂ ∂

                 (44) 

from (42), (43). I get 

( )Falsex xµ µ
µ µ=                       (45) 

from (31), (44). Because (45) isn’t established, 

,x x x xν µ
µν ν νµ µ= =                       (46) 

is established. I rewrite (42) by consideration of ; ;,x x x xµν µ ν νµ ν µ→ → , (9), 
µ ν−  inversion form of (9) and get 

x x xx x
x x x x x

ν µ
µ ν ν
ν µ ν µ µ

∂  ∂ ∂∂ ∂    = =     ∂ ∂ ∂ ∂ ∂    
.                 (47) 

I rewrite (46) by consideration of ;
; ,x x x xν ν

µν µ ν ν ν→ → , (9), µ ν−  inversion 
form of (6) and get 

1
2

x x gx
xx x

µν
µ ν

µν ν
ν

∂   ∂ ∂
= −   ∂∂ ∂  

.                  (48) 

-End Proof- 
Proposition 13 When all coordinate systems satisfy Binary Law,  

x xx x
x x

µ µ
µ ν
ν µν ν

∂ ∂
=
∂ ∂

 is established for xµ
ν  components of the mixed tensor satis-

fying Binary law of the second rank. 
Proof: When all coordinate systems satisfy Binary Law, I get 

x x xx x x
x x x

µ ν µ
µ ν ν
ν ν νν ν ν

∂ ∂ ∂
= =
∂ ∂ ∂

                   (49) 

from Definition 19. xµ
ν  isn’t components of the mixed tensor satisfying Binary 

law of the second rank than (49). This is a problem. The dummy index has an 
invariable property for consideration of Binary Law. In other words, the index 
which was dummy index in Definition 19 is dummy index in (49). Therefore, I  

rewrite dummy index ν  in 
x x
x

ν
ν
νν

∂
∂

 of (49) in µ  and get 

x xx x
x x

µ µ
µ ν
ν µν ν

∂ ∂
=
∂ ∂

.                        (50) 

The kind of the optional dummy index is only two kinds of ,ν µ  in consider-
ation of Definition 6 here. A problem in (49) is solved in (50). I rewrite (50) by 
consideration of ; ;,x x x xµ µ ν ν

ν ν µ µ→ → , (16), µ ν−  inversion form of (16) and 
get 

x x x x
x x x x

µ µ µ ν

ν ν ν µ

   ∂ ∂ ∂ ∂
=   ∂ ∂ ∂ ∂   

.                    (51) 
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-End Proof- 
Proposition 14 When all coordinate systems satisfy Binary Law,  

x x x xx x x
x x x x

µ ν ν ν
µ ν ν
νν µµ µµν µ µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

 is established for xµ
νν  components of the 

mixed tensor satisfying Binary law of the third rank of the second rank covariant 
in the first rank contravariant. 

Proof: When all coordinate systems satisfy Binary Law, I get 

x x x xx x x
x x x x

µ ν ν µ
µ ν ν
νν νν ννν ν ν ν

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

                 (52) 

from Definition 20. xµ
νν  isn’t components of the mixed tensor satisfying Binary 

law of the third rank of the second rank covariant in the first rank contravariant 
than (52). This is a problem. The dummy index has an invariable property for 
consideration of Binary Law. 

In other words, the index which was dummy index in Definition 20 is dummy 

index in (52). Therefore, I rewrite dummy index ν  in 
x x x
x x

ν ν
ν
ννν ν

∂ ∂
∂ ∂

 of (52) in 

µ  and get 

x x xx x
x x x

µ µ µ
µ ν
νν µµν ν ν

∂ ∂ ∂
=
∂ ∂ ∂

.                      (53) 

The kind of the optional dummy index is only two kinds of ,ν µ  in consider-
ation of Definition 6 here. A problem in (52) is solved in (53). If I assume estab-
lishment of 

( )Falsex x x xx x x
x x x x

µ ν ν ν
µ ν ν
νν µµ µµν µ µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

.             (54) 

I get 

( )Falsex x x x x xx x
x x x x x x

µ µ µ µ ν ν
ν ν
µµ µµν ν ν ν µ µ

∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
            (55) 

from (53), (54). I rewrite the right side of (55) using Definition 4, Definition 5 
and get 

( )
( )

( )
( )

( )False .

x xx x x xx x
x x x x x x

x x x x
x x x

µ µµ µ µ µ
ν ν
µµ µµν ν ν ν ν ν

µ µ µ
ν
µµν ν ν

∂ − ∂ −∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ − ∂ −

∂ ∂ ∂
=
∂ ∂ ∂

            (56) 

Because (56) isn’t established, 

x x x xx x x
x x x x

µ ν ν ν
µ ν ν
νν µµ µµν µ µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

               (57) 

is established. If I assume establishment of 

( ), Falsex x x xµ ν
νν µ µµ ν= = .                 (58) 

I get 

( )Falsexx x
x

ν

µ νµ

∂
=
∂

                    (59) 
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from (57), (58). I get 

( )Falsex xµ µ=                      (60) 

from (34), (59). Because (60) isn’t established, 

,x x x xµ ν
νν µ µµ ν= =                      (61) 

is established. I rewrite (57) by consideration of ; ; ; ;,x x x xµ µ ν ν
νν ν ν µµ µ µ→ → , (23), 

µ ν−  inversion form of (23) and get 
2 2 2x x x x x x x

x x x x x x x x x x

µ µ ν ν ν ν ν

ν ν ν µ µ µ µ µ µ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
.            (62) 

I rewrite (61) by consideration of ; ;x xµ µ
νν ν ν→ , (23) and get 
2 x x

x x

µ

µν ν

∂
=

∂ ∂
.                         (63) 

-End Proof- 
Proposition 15 When all coordinate systems satisfy Binary Law,  

x x x xx x x
x x x x

µ µ ν ν
µ ν ν
ννν µµµ µµµν ν µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

 is established for xµ
ννν  components of the 

mixed tensor satisfying Binary law of the fourth rank of the third rank covariant 
in the first rank contravariant. 

Proof: When all coordinate systems satisfy Binary Law, I get 

x x x x xx x x
x x x x x

µ ν ν ν µ
µ ν ν
ννν ννν νννν ν ν ν ν

∂ ∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂ ∂

.              (64) 

from Definition 21. xµ
ννν  isn’t components of the mixed tensor satisfying Binary 

law of the fourth rank of the third rank covariant in the first rank contravariant 
than (64). This is a problem. The dummy index has an invariable property for 
consideration of Binary Law. 

In other words, the index which was dummy index in Definition 21 is dummy 

index in (64). Therefore, I rewrite dummy index ν  in 
x x x x
x x x

ν ν ν
ν
νννν ν ν

∂ ∂ ∂
∂ ∂ ∂

 of 

(64) in µ  and get 

x x x xx x
x x x x

µ µ µ µ
µ ν
ννν µµµν ν ν ν

∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂

.                   (65) 

The kind of the optional dummy index is only two kinds of ,ν µ  in consider-
ation of Definition 6 here. A problem in (64) is solved in (65). If I assume estab-
lishment of 

( )Falsex x x xx x x
x x x x

µ µ ν ν
µ ν ν
ννν µµµ µµµν ν µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

.           (66) 

I get 

( )Falsex x x x x x x xx x
x x x x x x x x

µ µ µ µ µ µ ν ν
ν ν
µµµ µµµν ν ν ν ν ν µ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
        (67) 

from (65), (66). I rewrite the right side of (67) using Definition 4, Definition 5 
and get 
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( )
( )

( )
( )

( )False .

x xx x x x x xx x
x x x x x x x x

x x x x x
x x x x

µ µµ µ µ µ µ µ
ν ν
µµµ µµµν ν ν ν ν ν ν ν

µ µ µ µ
ν
µµµν ν ν ν

∂ − ∂ −∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ − ∂ −

∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂

        (68) 

Because (68) isn’t established, 

x x x xx x x
x x x x

µ µ ν ν
µ ν ν
ννν µµµ µµµν ν µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

                 (69) 

is established. If I assume establishment of 

( ), Falsex x x xµ ν
ννν µν µµµ νµ= = .                  (70) 

I get 

( )Falsex x x xx x x
x x x x

µ µ ν ν

µν νµ νµν ν µ µ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

              (71) 

from (69), (70). I get 

( )Falsex xµν µν=                         (72) 

from (42), (71). Because (72) isn’t established, 

,x x x xµ ν
ννν µν µµµ νµ= =                        (73) 

is established. I get 

,x x x x x xµ ν ν µ
ννν µν ν µµµ νµ µ= = = =                   (74) 

from (46), (73). I rewrite (69) by consideration of ; ; ;x xµ µ
ννν ν ν ν→ , ; ; ;x xν ν

µµµ µ µ µ→ , 
(30), µ ν−  inversion form of (30) and get 

3 3 3x x x x x x x
x x x x x x x x x x x x x

µ µ µ ν ν ν ν

ν ν ν ν ν µ µ µ µ µ µ µ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
.         (75) 

I rewrite (74) by consideration of ;
; ; ; ;, ,x x x x x xµ µ ν ν

ννν ν ν ν µν µ ν ν ν→ → → , (9), (30), 
µ ν−  inversion form of (6) and get 

3 1
2

x xx gx
xx x x x x

µ µν
µ ν

µν ν ν ν ν
ν

∂   ∂∂ ∂
= = −   ∂∂ ∂ ∂ ∂ ∂  

.               (76) 

I get 
3 1

2
x xx gx M

xx x x x x

µ µν
µ ν

µν ν ν ν ν
ν

∂   ∂∂ ∂
= = − =   ∂∂ ∂ ∂ ∂ ∂  

            (77) 

from (76), Definition 8. 
-End Proof- 

6. Discussion 

About Proposition 8 
Because (31) accords in Definition 14, components of a tensor of rank zero 

accord in components of a tensor satisfying Binary law of rank zero. 
About Proposition 9 
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Because (33) accords in Definition 15, contravariant components of a tensor 
of the first rank accord in contravariant components of a tensor satisfying Bi-
nary law of the first rank. 

About Proposition 10 
Because (34) accords in Definision16, covariant components of a tensor of the 

first rank accord in covariant components of a tensor satisfying Binary law of the 
first rank. 

About Proposition 13 
I get 

[ ] [ ] [ ]
[ ]

1 1
11

11 1 1

x xx x
x x
∂ ∂

=
∂ ∂

, [ ] [ ] [ ]
[ ]

1 1
21

12 2 2

x xx x
x x
∂ ∂

=
∂ ∂

, 

[ ] [ ] [ ]
[ ]

2 2
12

21 1 1

x xx x
x x
∂ ∂

=
∂ ∂

, [ ] [ ] [ ]
[ ]

2 2
22

22 2 2

x xx x
x x
∂ ∂

=
∂ ∂

 

from (50) if I assume a dimensional number 2. 
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Abstract 
A few physicists have recently constructed the generating compatibility 
conditions (CC) of the Killing operator for the Minkowski (M), Schwarz-
schild (S) and Kerr (K) metrics. They discovered second order CC, well 
known for M, but also third order CC for S and K. In a recent paper 
(DOI:10.4236/jmp.2018.910125) we have studied the cases of M and S, with-
out using specific technical tools such as Teukolski scalars or Killing-Yano 
tensors. However, even if S(m) and K(m, a) are depending on constant para-
meters in such a way that S  M when m  0 and K  S when a  0, the CC 
of S do not provide the CC of M when m  0 while the CC of K do not pro-
vide the CC of S when a  0. In this paper, using tricky motivating examples 
of operators with constant or variable parameters, we explain why the CC are 
depending on the choice of the parameters. In particular, the only purely in-
trinsic objects that can be defined, namely the extension modules, may 
change drastically. As the algebroid bracket is compatible with the prolonga-
tion/projection (PP) procedure, we provide for the first time all the CC for K 
in an intrinsic way, showing that they only depend on the underlying Killing 
algebra and that the role played by the Spencer operator is crucial. We get K < 
S < M with 2 < 4 < 10 for the Killing algebras and explain why the formal 
search of the CC for M, S or K are strikingly different, even if each Spencer 
sequence is isomorphic to the tensor product of the Poincaré sequence for the 
exterior derivative by the corresponding Lie algebra. 
 

Keywords 
Formal Integrability, Involutivity, Compatibility Condition, Janet Sequence; 
Spencer Sequence, Minkowski Metric, Schwarzschild Metric, Kerr Metric 

 

1. Introduction 

In order to explain the type of problems we want to solve, let us start adding a 
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constant parameter to the example provided by Macaulay in 1916 that we have 
presented in a previous paper for other reasons [1]. However, before doing so, 
we first recall the following key definition and formal theorem before sketching 
the main results obtained in this paper: 

DEFINITION 1.1: A system of order q on E is an open vector subbundle 
( )q qR J E⊆  with prolongations  

( ) ( ) ( ) ( )( )r q q r r q q r r qR R J R J E J J Eρ + += = ⊆  and symbols  

( ) ( )*
r q q r q r q r q rg g S T E R J Eρ + + + += = ⊗ ⊆

 only depending on *
q qg S T E⊆ ⊗ . 

For , 0r s ≥ , we denote by ( ) ( )s q r s
q r q r q r s q rR R Rπ + +
+ + + + += ⊆  the projection of 

q r sR + +  on q rR + , which is thus defined by more equations in general. The sys-
tem qR  is said to be formally integrable (FI) if we have ( ) , , 0s

q r q rR R r s+ += ∀ ≥ , 
that is if all the equations of order q r+  can be obtained by means of only r 
prolongations. The system qR  is said to be involutive if it is FI with an involu-
tive symbol qg . We shall simply denote by ( ){ }| q qf E j f RΘ = ∈ ∈  the “set” 
of (formal) solutions. It is finally easy to prove that the Spencer operator 

( ) ( )*
1: q qD J E T J E+ → ⊗  restricts to *

1: q qD R T R+ → ⊗ . 
The most difficult but also the most important theorem has been discovered 

by M. Janet in 1920 [2] and presented by H. Goldschmidt in a modern setting in 
1968 [3]. However, the first proof with examples is not intrinsic while the second, 
using the Spencer operator, is very technical and we have given a quite simpler 
different proof in 1978 ([2], also [4] [5]) that we shall use later on for studying 
the Killing equations for the Schwarzschild and Kerr metrics: 

THEOREM 1.2: If ( )q qR J E⊂  is a system of order q on E such that its first 
prolongation ( )1 1q qR J E+ +⊂  is a vector bundle while its symbol 1qg +  is also a 
vector bundle, then, if qg  is 2-acyclic, we have ( )( ) ( )1 1

r q q rR Rρ += . 
COROLLARY 1.3: (PP procedure) If a system ( )q qR J E⊂  is defined over a 

differential field K, then one can find integers , 0r s ≥  such that ( )s
q rR +  is for-

mally integrable or even involutive. 
The paper will be organized as follows: 

• First of all, starting with an arbitrary system ( )q qR J E⊂ , the purpose of the 
next motivating examples is to prove that the generating CC of the operator: 

( ) ( )
0

0 0:
qj

q q q qj E J E J E R F
Φ

= Φ → → =  

though they are of course fully determined by the first order CC of the final 
involutive system ( )s

q rR +  produced by the prolongation/projection (PP) pro-
cedure, are in general of order 1r s+ +  like the Riemann or Weyl operators, 
but may be of strictly lower order. 

• The same procedure will be applied to the two first order systems of infinite-
simal Lie equations allowing to define the Killing operator for the S-metric 
and the K-metric while comparing the respective results obtained. We may 
say that the case of the S-metric has already been treated in the publication 
quoted in the abstract but that it took us two years just for daring to engage 
in dealing similarly with the K-metric as anybody can understand by looking 
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at the components of the Riemann tensor in the literature. It has been a sur-
prising “miracle” to discover in the proof of Theorem 4.2 that there was a 
unique but tricky way to bring this problem to a purely mathematical and 
relatively simple computation on Lie equations and their prolongations. 

• In the case of the S-metric, starting with the system ( )1 1R J T⊂ , we shall 
obtain ( )1

1 1R R=  but ( )2
1 1 1R R R′= ⊂  with a strict inclusion both with 

( )3
1 1 1R R R′′ ′= ⊂  again with a strict inclusion but in such a way that 1R′′  is FI 

though not involutive because only its first prolongation is involutive. From 
this result we shall exhibit 15 (generating) second order CC and 4 (generating) 
unexpected third order CC without having to refer to any specific technical 
relativistic tool. 

• Then, the case of the K-metric seems to be similar as it is also leading to the 
strict inclusions 1 1 1R R R′′ ′⊂ ⊂  of systems but the new systems are quite dif-
ferent and in particular 1R′′  is now involutive, a result providing 14 (gene-
rating) second order CC and 4 (generating) third order CC. As in the moti-
vating examples, it does not seem that the total numbers 15 4 19+ =  or 
14 4 18+ =  have any intrinsic mathematical meaning. In both cases, using 
the Spencer operator, we explain why the important object is the group of 
invariance of the metric but not the metric itself. 

• Finally, we are able to relate these results to the computation of certain ex-
tension modules in differential homological algebra, showing why the ma-
thematical foundations of conformal geometry in arbitrary dimension and 
general relativity must be entirely revisited in the light of these results. 

MOTIVATING EXAMPLE 1.4: With 1, 3, 2m n q= = = , let us consider the 
second order linear system ( )2 2R J E⊂  with ( )2dim 8R =  and parametric 
jets { }1 2 3 11 12 22 23, , , , , , ,y y y y y y y y , defined by the two inhomogeneous PD equa-
tions where a is a constant parameter: 

33 13 2,Py y u Qy y a y v≡ = ≡ + =  

First of all we have to look for the symbol 2g  defined by the two linear equ-
ations 33 130, 0y y= = . The coordinate system is not δ -regular and exchanging 

1x  with 2x , we get the Janet board: 

33

23

0 1 2 3
0 1 2

y
y

=
 = •

 

2g  is involutive, thus 2-acyclic and we obtain from the main theorem 
( )( ) ( )1 1
2 2r rR Rρ += . However, ( )1

2 2R R⊂  with a strict inclusion because ( )1
2R  is 

now defined by adding the equations 23 3 1a y v u= − . We may start afresh with 
( )1
2R  and study its symbol ( )1

2g  with Janet tabular: 

33

23

13

0 1 2 3
0 1 2

10

y
a y
y

=
 = •
 • •=

 

Since that moment, we have to consider the two possibilities: 
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• 0a = : The initial system becomes 33y u= , 13y v=  and has an involutive 
symbol. It is thus involutive because it is trivially FI as the left members are 
homogeneous with only one generating first order CC, namely 3 1 0u v− = . 
We have ( )2dim 4rg r+ = +  and the following commutative and exact dia-
grams: 

( ) ( )

( )

* *
3 3 0 1

3 3 1 0 1

2 2 0

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T E T F F

R J E J F F

R J E F

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

0 0 0 0

0 5 10 6 1 0

0 13 20 8 1 0

0 8 10 2 0

0 0 0

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

We have thus the Janet sequence: 
1

0 12 1
0 0E F F→Θ→ → → →


 

or, equivalently, the exact sequence of differential modules over  
[ ] [ ]1 2 3, ,D d d d d= =  : 

2

1 2
0 0

p
D D D M→ → → → →  

where p is the canonical projection onto the residual differential module. 
• 0a ≠ : When the coefficients are in a differential field of constants, for exam-

ple if a∈  is invertible, we may choose 1a =  like Macaulay [1]. It fol-
lows that ( )1

2g  is still involutive but we have the strict inclusion ( )1
2 1g g⊂  

and thus the strict inclusion ( )1
2 2R R⊂  because ( )( )1

2dim 7 8R = < . We may 
thus continue the PP procedure and obtain the new strict inclusion 

( ) ( )2 1
2 2R R⊂  because ( )( )2

2dim 6R =  as ( )2
2R  is defined by the 4 equations 

with Janet tabular: 

33

23 3 1

22 2 13 11

13 2

1 2 3
1 2
1 2
1

y u
y v u
y v v u
y y v

=
 = − •
 = − + •
 • •+ =
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As ( )2
2R  is easily seen to be involutive, we achieve the PP procedure, obtain-

ing the strict intrinsic inclusions and corresponding fiber dimensions: 

( ) ( )2 1
2 2 2 6 7 8R R R⊂ ⊂ ⇔ < <  

Finally, we have ( )( ) ( )( )( ) ( )( )( )( ) ( )( )( ) ( )11 12 1 1 1 2
2 2 2 2 2r r r r rR R R R Rρ ρ ρ + +

 = = = = 
 

. 

It remains to find out the CC for ( ),u v  in the initial inhomogeneous system. 
As we have used two prolongations in order to exhibit ( )2

2R , we have second or-
der formal derivatives of u and v in the right members. Now, as we have an in-
volutive system, we have first order CC for the new right members and could 
hope therefore for third order generating CC. However, we have the 4 CC: 

( )
( ) ( )

( )
( ) ( )

233 3 3 1 2 33 13 2

223 3 2 13 11 2 3 1 133 113 12

133 23 3 1 3 1

123 22 2 1 3 1 2 13 11

0

0

0 0

0 0

y d v u d u v u u

y d v v u d v u v u u

y y d v d u v u

y y d v d v u v v u

 = − = ⇒ − − =

 = − + = − ⇒ − − =

 + = = + − ⇒ =


+ = = − + − + ⇒ =

 

It follows that we have only one second order and one third order CC: 

33 13 2

133 113 12

0,
0

v u u
v u u

− − =

− − =
 

but, surprisingly, we are left with the only generating second order CC 

33 13 2 0v u u− − =  which is coming from the fact that the operator P commutes 
with the operator Q. 

We let the reader prove as an exercise (see [1] [6] for details) that  
( )2dim 4 8rR r+ = + , 0r∀ ≥  and thus ( )3dim 12R = , ( )4dim 16R =  in the fol-

lowing commutative and exact diagrams where E is the trivial vector bundle with 
( )dim 1E =  and ( )2dim 4, 0rg r r+ = + ∀ ≥ : 

( ) ( )

( ) ( )

* *
4 4 2 0 2

4 4 2 0 1

3 3 1 0

0 0 0

0 0

0 0

0 0

0 0

g S T E S T F h

R J E J F F

R J E J F

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓

 

We have thus the formally exact sequence: 
1

0 12 2
0 0E F F→Θ→ → → →


 

or, equivalently, the exact sequence of differential modules over D as before: 

2

2 2
0 0

p
D D D M→ → → → →  
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which is nevertheless not a Janet sequence because R2 is not involutive. 
MOTIVATING EXAMPLE 1.5: We now prove that the case of variable coef-

ficients can lead to strikingly different results, even if we choose them in the dif-
ferential field ( )1 2 3, ,K x x x=   of rational functions in the coordinates that we 
shall meet in the study of the S and K metrics. We denote by  

[ ] [ ]1 2 3, ,D K d d d K d= =  the ring of differential operators with coefficients in K. 
For this, let us consider the simplest situation met with the second order system 

( )2 2R J E⊂ : 

( ) { 3
2 2 33 13 2,R J E y u y x y v⊂ = + =  

We may consider successively the following systems of decreasing dimensions 
8 7 5 4> > > : 

( ) {1 3 3
2 2 2 33 23 2 3 1 13 2, ,R R R y u x y y v u y x y v′ = ⊂ = + = − + =  

( ) ( )
( )

3 3
33 23 33 13 2 13 2

23 32
22 12 2 13 112 2 2

23 3 3
2 33 13 2 3 1

, 2 , ,

2 2 2

y u y v u x u y x y v

x y y x v v uR R R

y x v x u x u v u

 = = − − + =

 − = − +′′ ′= ⊂ 


= − + + + −

 

( )
( )

( )

3 3
33 23 33 13 2 13 2

3 3
22 133 113 12 2

3 23 3 32 2 2
12 133 113 12 13 11

23 3 3
2 33 13 2 3 1

, 2 , ,
2 2

2 2 2

2 2 2

y u y v u x u y x y v
x y v u x u v

R R R y x v x u x u v u

y x v x u x u v u

 = = − − + =


= − + + +′′′ ′′= ⊂  = − + + + −


= − + + + −

 

The last system is involutive with the following Janet tabular: 

33

23

22

13

12

2

0 1 2 3
0 1 2
0 1 2

10
10

0

y
y
y
y
y
y

=
 = •
 = •
 • •=
 • •=


• • •=

 

The generic solution is of the form ( )1 3=y b x cx+  and it is rather striking that 
such a system has constant coefficients (This will be exactly the case of the S and 
K metrics but similar examples can be found in [5]). We could hope for 9 gene-
rating CC up to order 4 but tedious computations, left to the reader as a tricky 
exercise, prove that we have in fact, as before, only 2 generating third order CC 
described by the following involutive system, namely: 

3
333 133 23 23 0A v u x u u≡ − − − =  

( ) ( ) ( )2 2 33 3 3 3 3
133 113 233 123 23 22 12 22 3 2 0B v u x v x u x v x u x u v≡ − − + + + − − =  

satisfying the only first order CC: ( )23
3 1 2 0C d B d A x d A≡ − + = . 
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We obtain the sequence of D-modules: 

2 2

1 3 2
0 0

p
D D D D M→ → → → → →  

where the order of an operator is written under its arrow. This example proves 
that even a slight modification of the parameter can change the corresponding 
differential resolution. 

MOTIVATING EXAMPLE 1.6: We comment a tricky example first pro-
vided by M. Janet in 1920, that we have studied with details in [4] [7]. With 

3n = , 1m = , 2q = , ( )2K x=  and using jet notations, let us consider the 
inhomogeneous second order system: 

( ) { 2
2 2 33 11 22,R J E y x y u y v⊂ − = =  

We let the reader prove that the space of solutions has dimension 12 over   
and that we have 0, 5r s= =  in such a way that ( )5

2R  is involutive and even fi-
nite type with a zero symbol. Accordingly, we have ( )( )5

2dim 12R = . Passing to 
the differential module point of view, it follows that ( )dim 12K M =  and 

( ) 0Drk M = . According to the general results presented, we have thus to use 5 
prolongations and could therefore wait for CC up to order … 6!!!. In fact, and 
we repeat that there is no hint at all for predicting this result in any intrinsic way, 
we have only two generating CC, one of order 3 and … one of order 6 indeed, 
namely: 

2
233 112 222 113 0A v x v u v≡ − − − =  

( )
( ) ( )

2 2 2
333333 113333 223333 113333 111133 112233

22 2 2
111133 111111 111122 11233 11112 1111

2

2 2 2

0

B v x v u x v x v u

x v x v u u x u u

≡ − − − − −

+ − − − + −

=

 

satisfying the only fourth order CC 

( )22 2
3333 1133 1111 22 0C A x A x A B≡ − + − =  

It follows that we have the unexpected differential resolution: 

2 2

4 6 2
0 0

p
D D D D M→ → → → → →  

with, from left to right, D DC= , 2D DA DB= + , 2D Du Dv= + , D Dy=  
and Euler-Poincaré characteristic ( ) 1 2 2 1 0Drk M = − + − =  as expected. In ad-
dition, if we introduce a constant parameter a by replacing the coefficient 2x  
by 2ax , we obtain 2

112 33 11 222ay v ax v u= − −  and obtain the same conclusions 
as before. We point out the fact that, when 0a = , the system 33 22,y u y v= = , 
which is trivially FI because it is homogeneous, has a symbol 2g  which is nei-
ther involutive (otherwise it should admit a first order CC), nor even 2-acyclic 
because we have the parametric jets: 
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( ) ( )
( )

2 11 12 13 23 3 111 112 113 123

4 1111 1112 1113 1123

, , , , , , , ,

, , ,

par y y y y par y y y y

par y y y y

= =

=
 

and the long δ-sequence: 

* 2 * 3 * *
4 3 20 0g T g T g T T

δ δ δ
→ → ⊗ →∧ ⊗ →∧ ⊗ →  

0 4 12 12 3 0
δ δ δ

→ → → → →  

in which ( )( )2
2dim 12 4 8B g = − = , ( )( )2

2dim 12 3 9Z g = − =  

( )( )2
2dim 9 8 1 0H g⇒ = − = ≠ . 

However, 3g  is involutive with the following Janet tabular for the vertical 
jets ( ) *

3ijky S T∈ : 

333

233

223

222

133

122

0 1 2 3
0 1 2
0 1 2

1 20
10
10

y
y
y
y
y
y

=  
  = •  
  = •

  •=  
  • •=
 

• • =  

 

Accordingly, R3 is thus involutive and the only CC 33 22 0v u− =  is of order 2 
because we need one prolongation only to reach involution and thus 2-acyclicity. 

MOTIVATING EXAMPLE 1.7: With 1, 2, 2,m n q K= = = =  , let us con-
sider the inhomogeneous second order system: 

22 12,y u y y v= − =  

We obtain at once through crossed derivatives 11 12y u v v= − −  and, by substi-
tuting, two fourth order CC for ( ),u v , namely: 

1122 1222 22 1112 11 11220, 0A u v v u B u u v≡ − − − = ≡ − − =  

satisfying 12 11 0B B A+ − = . However, we may also obtain a single CC for 
( ),u v , namely 12 22 0C d u u d v≡ − − =  and we check at once 12A d C C= + , 

11B d C=  while 22 12C d B d A A= − + . We let the reader prove that ( )2dim 4rR + = , 
0r∀ ≥ . Hence, if ( ),A B  is a section of 1F  while C is a section of 1F ′ , the jet 

prolongation sequence: 

( ) ( )6 6 4 0 10 0R J E J F F→ → → → →  

0 4 28 30 2 0→ → → → →  

is not formally exact because 4 28 30 2 4 0− + − = ≠ , while the corresponding 
long sequence: 

( ) ( ) ( )4 4 2 0 10 0r r r rR J E J F J F+ + + ′→ → → → →  

( )( ) ( )( ) ( )( )0 4 5 6 2 3 4 1 2 2 0r r r r r r→ → + + → + + → + + →  

is indeed formally exact because  
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( )
2 2

211 30 3 24 7 12 0
2 2

r r r rr r+ + + +
− + + + − =  

but not strictly exact because 2R  is quite far from being FI as we have even 
( )4
2 0R = . 
It follows from these examples and the many others presented in [6] that we 

cannot agree with [8] [9] [10] [11]. Indeed, it is clear that one can use successive 
prolongations in order to look for CC of order 1,2,3,  and so on, selecting 
each time the new generating ones and knowing that Noetherian arguments will 
stop such a procedure … after a while! 

However, as long as the numbers r and s are not known, it is not effectively 
possible to decide in advance about the maximum order that must be reached. 
Therefore, it becomes clear that exactly the same procedure MUST be applied 
when looking for the CC of the Killing operators we want to study, the problem 
becoming only a “mathematical” one but surely not a “physical” one. 

IMPORTANT REMARK 1.8: The intrinsic properties of a system with con-
stant coefficients may drastically depend on these coefficients, even if the sys-
tems do not appear to be quite different at first sight. Using jet notations, let us 
consider the second order system 33 13 20, 0aξ ξ ξ= − =  depending on a constant 
parameter a and defining a differential module M by residue. When 0a =  we 
have the differential sequence:  

( ) ( )11 2 2 1
33 13 3 12 1

,d d d dξ ξ η ξ η η η ζ→ = = → − =


 

and the adjoint sequence:  

( )
( )
( )

( )1
1 2 1 2

33 13 1 32 1
,

ad ad

d d d dν µ µ µ λ µ λ λ= + ← = = − ←
 

 

though the CC sequence that must be used with 3dν ν ′=  is: 

( )
( )
( )

( )1
1 2 1 2

3 1 1 32 1
,

ad ad

d d d dν µ µ µ λ µ λ λ′ = + ← = = − ←
 

 

On the contrary, if 0a ≠  say 1a = , we have the differential sequence: 

( ) ( )( )11 2 2 1
33 13 2 33 13 22 2

,d d d d dξ ξ η ξ ξ η η η ζ→ = − = → − − =


 

and the CC sequence does coincide with the adjoint sequence: 

( )( )
( )

( )( )
( )1

1 2 1 2
33 13 2 13 2 332 2

,
ad ad

d d d d d dν µ µ µ λ µ λ λ= + + ← = − + = ←
 

 

It is thus essential to notice that ( )ad   generates the CC of ( )1ad   when 
0a ≠ , a result leading to ( )1 0ext M =  but this is not true when 0a = , a result 

leading to ( )1 0ext M ≠  [5] [12] [13] [14]. 
Comparing the sequences obtained in the previous examples, we may state: 
DEFINITION 1.9: A differential sequence is said to be formally exact if it is 

exact on the jet level composition of the prolongations involved. A formally ex-
act sequence is said to be strictly exact if all the operators/systems involved are 
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FI (see [1] for more details). A strictly exact sequence is called canonical if all the 
operators/systems are involutive. The only known canonical sequences are the 
Janet and Spencer sequences that can be defined independently from each other. 

With canonical projection ( ) ( )0 0: q q qJ E J E R FΦ = Φ ⇒ = , the various 
prolongations are described by the following commutative and exact introduc-
tory diagram: 

( )
( )

( )

( )
( )

( )

1

* *
1 1 1 0 1

1 1 1 0 1

0

0 0 0

0 0

0 0

0 0

0 0 0

r

r

q r q r r r

q r q r r r

q r q r r r

g S T E S T F h

R J E J F Q

R J E J F Q

ρ

ρ

+

+ + + + + +

Φ

+ + + + + +

Φ

+ +

↓ ↓ ↓

→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓

 

Applying the standard “snake” lemma, we obtain the useful long exact con-
necting sequence: 

1 1 1 10 0q q qg R R h Q+ +→ → → → → →  

which is thus connecting in a tricky way FI (lower left) with CC (upper right). 
We finally recall the Fundamental Diagram I that we have presented in many 

books and papers, relating the (upper) canonical Spencer sequence to the (lower) 
canonical Janet sequence, that only depends on the left commutative square 

qj= Φ   with 0Φ = Φ  when one has an involutive system ( )q qR J E⊆  over 
E with ( )dim X n=  and ( ):q qj E J E→  is the derivative operator up to order 
q: 

( ) ( ) ( ) ( )

31 2

31 2

31 2

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0

0 0

0 0

0 0

0 0 0 0

q n

q n

n

j D DD D

n

j D DD D

n

n

D

n

C C C C

E C E C E C E C E

E F F F F

↓ ↓ ↓ ↓

→ Θ → → → → → →

↓ ↓ ↓ ↓

→ → → → → → →

↓Φ ↓Φ ↓Φ ↓Φ

→ Θ → → → → → → →

↓ ↓ ↓ ↓









 

 

We shall use this result, first found exactly 40 years ago [2] but never ac-
knowledged, in order to provide a critical study of the comparison between the S 
and K metrics. 
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EXAMPLE 1.10: The Janet tabular in Example 1.4 with 1a =  provides the 
fiber dimensions: 

32 1 2

32 1 2

1 2

0 1 2

0 0 0 0

0 6 16 14 4 0

0 1 10 20 15 4 0

0 1 4 4 1 0

0 0 0

Dj D D

Dj D D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓

→ → → → → →
↓Φ ↓Φ ↓Φ ↓

→ Θ → → → → →
↓ ↓ ↓





 

 

We notice that 6 − 16 + 14 − 4 = 0, 1 − 10 + 20 − 15 + 4 = 0 and 1 − 4 + 4 − 1 = 
0. In this diagram, the Janet sequence seems simpler than the Spencer sequence 
but, sometimes as we shall see, it is the contrary and there is no rule. We invite 
the reader to treat similarly the cases 0a =  and 3a x= . 

2. Schwarzschild versus Kerr 
2.1. Schwarzschild Metric 

In the Boyer-Lindquist (BL) coordinates ( ) ( )0 1 2 3, , , , , ,t r x x x xθ φ = , the 
Schwarzschild metric is ( ) ( )( ) ( )2 2 2 2 2 2 2d 1 d d sin dA r t A r r r rω θ θ φ= − − −  and 

i
id Tξ ξ= ∈ , let us introduce r

i riξ ω ξ=  with the 4 formal derivatives ( 0 td d= ,  

)1 2 3, ,rd d d d d dθ φ= = = . With speed of light 1c =  and 1 mA
r

= −  where m is 

a constant, the metric can be written in the diagonal form: 

( )

2

2 2

0 0 0
0 1 0 0
0 0 0
0 0 0 sin

A
A

r
r θ

 
 − 
 −
  − 

 

with a surprisingly simple determinant ( ) ( )4 2sindet rω θ= − . 
Using the notations of differential modules or jet theory, we may consider the 

infinitesimal Killing equations: 

( ) 0 2 0

0

r
ij i j j i ij r

r r r
ij rj i ir j r ij

L d dξ ω ξ ξ γ ξ

ω ξ ω ξ ξ ω

Ω ≡ = ⇔ Ω ≡ + − =

⇔ Ω ≡ + + ∂ =
 

where we have introduced the Christoffel symbols γ  through the standard Le-
vi-Civita isomorphism ( ) ( )1 ,j ω ω γ  while setting rA A′ = ∂  in the differen-
tial field K of coefficients [15]. As in the Macaulay example just considered and 
in order to avoid any further confusion between sections and derivatives, we 
shall use the sectional point of view and rewrite the previous 10 equations in the 
symbolic form ( ) *

1 2L S Tξ ωΩ ≡ ∈  where L is the formal Lie derivative: 
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( )

( ) ( ) ( ) ( )

( )

( )

( )

2 2 3 2 1 2 2
33 3

2 2 2 2 3
23 3 2

1 2 2 3
13 3 1

0 2 2 3
03 3 0

2 0 1
22 2

1 1 1 2 2
12 2 1

0 2 2
02 2 0

1 1
11 1 2

1
01 0 1

2 sin 2 sin 2 sin cos 0

sin 0

1 sin 0

sin 0

2 2 0

1 0

0

2 0

1

r r r

r r

r
A

A r

r r
R J T

r
A

A r

A
A A

A
A

θ ξ θ ξ θ θ ξ

ξ θ ξ

ξ θ ξ

ξ θ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

Ω ≡ − − − =

Ω ≡ − − =

Ω ≡ − − =

Ω ≡ − =

Ω ≡ − − =

⊂
Ω ≡ − − =

Ω ≡ − =

′
Ω ≡ − + =

Ω ≡ − + 0

0 1
00 0

0

2 0A Aξ ξ





















 =

 ′Ω ≡ + =

 

Though this system ( )1 1R J T⊂  has 4 equations of class 3, 3 equations of 
class 2, 2 equations of class 1 and 1 equation of class 0, it is far from being invo-
lutive because it is finite type with second symbol 2 0g =  defined by the 40 eq-
uations 0k

ijξ =  in the initial coordinates. From the symmetry, it is clear that 
such a system has at least 4 solutions, namely the time translation  

0
01t Aξ ξ∂ ↔ = ⇔ =  and, using cartesian coordinates ( ), , ,t x y z , the 3 space 

rotations , ,z y x z y xy z z x x y∂ − ∂ ∂ − ∂ ∂ − ∂ . 
We obtain in particular, modulo Ω : 

( )

( )

0 1 1 1 2 1 3 1 2
0 1 2 3

0 1 2 3 2
0 1 2 3

1 1, , , cot
2 2

0, cot

A A
A A r r

ξ ξ ξ ξ ξ ξ ξ ξ θ ξ

ξ ξ ξ ξ θ ξ

′ ′
= − = + = − = − −

⇒ + = + = −
 

We may also write the Schwarzschild metric in cartesian coordinates as:  

( ) ( ) ( )2 2 2 2 21d 1 d d d d ,

d d d d

A r t r x y z
A r

r r x x y y z z

ω
 

= + − − + +  
 

= + +

 

and notice that the 3 3×  matrix of components of the three rotations has rank 
equal to 2, a result leading surely, before doing any computation, to the existence 
of one and only one zero order Killing equation  

10 0r x y z rr x y zξ ξ ξ ξ ξ ξ= + + = ⇒ = = . Such a result also amounts to say that 
the spatial projection of any Killing vector on the radial spatial unit vector 
( ), ,x r y r z r  vanishes beause r must stay invariant. 

However, as we are dealing with sections, 1 0ξ =  implies 0
0 0ξ = , 1

1 0ξ = , 
2
2 0ξ =  … but NOT (care) 1

0 0ξ = , these later condition being only brought by 
one additional prolongation and we have the strict inclusions  

( ) ( ) ( )3 2 1
1 1 1 1R R R R⊂ ⊂ =  that we rename as 1 1 1R R R′′ ′⊂ ⊂ . Hence, it remains to 

determine the dimensions of these subsystems and their symbols, exactly like in 
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the Macaulay example. We shall prove in the next section that two prolongations 
bring the five new equations: 

1 1 1 0 0
2 3 2 30, 0, 0, 0, 0ξ ξ ξ ξ ξ= = = = =  

and a new prolongation only brings the single equation 1
0 0ξ = . 

Knowing that ( ) ( )1 2dim dim 10R R= = , ( )3dim 5R = , ( )4dim 4R = , we have 
thus obtained the 15 equations defining ( )2

1 1R R′ =  with ( )1dim 20 15 5R′ = − =  
and let the reader draw the corresponding Janet tabular for the 4 equations of 
class 3, the 4 equations of class 1, the 3 equations of class 0 and the 3 equations 
of class 2. The symbol 1g ′  has the two parametric jets ( )3 1

2 0,ξ ξ  and is not 
2-acyclic. Adding 1 0

0 10 0ξ ξ= ⇔ = , we finally achieve the PP procedure with the 
16 equations defining the system ( )3

1 1R R′′=  with ( )1dim 20 16 4R′′ = − = , name-
ly: 

( )

( )
( )

3 2
3
2 2 3
3 2
1
3
0
3
3

1
2

1
1
1
0

1
1 1 1 1 3

0
2
0
1
0
0
0
2
2
1
2
0
2
1

2 0 1 3cot 0
2 0 1 3sin 0
2 0 1 30
2 0 1 30
2 0 10
2 0 10
2 0 10
2 0 10
2 00
2 00
2 00
2 00
20
20
20

0

R R R J T

ξ θ ξ
ξ θ ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

 + =


+ =
 =


=
 •=

•=
 •=
 •=′′ ′⊂ ⊂ ⊂  • •=
 • •=


• •=
 • •=

• • × =
 • • •=
 • • •=


• • • •=

 

and we have replaced by “×” the only “dot” (non-multiplicative variable) that 
cannot provide vanishing crossed derivatives and thus involution of the symbol 

1g ′′  with the only parametric jets ( )3 1
2 0,v v . It is easy to check that 1R′′ , having 

minimum dimension equal to 4, is formally integrable, though not involutive as 
it is finite type with ( )1 1dim 16 15 1 0g g′′ ′′= − = ⇒ ≠  with parametric jet 3

2v  and 
to exhibit 4 solutions linearly independent over the constants. We let the reader 
prove as an exercise that the dimension of the Spencer δ -cohomology at 

2 *
1T g ′′∧ ⊗  is ( )( )2

1dim 3 0H g ′′ = ≠  but we have proved in [15] that its restric-
tion to ( )2 3,x x  is of dimension 1 only. We obtain: 

THIS SYSTEM IS NOT INVOLUTIVE BUT DOES NOT DEPEND ON m 
ANY LONGER 

Denoting by ( )2 2 2R R J T′′ ⊂ ⊂  with ( )2dim 4R′′ =  the prolongation of 
( )1 1R J T′ ⊂ , it is the involutive system provided by the prolongation/projection 

(PP) procedure. We are in position to construct the corresponding canoni-
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cal/involutive (lower) Janet and (upper) Spencer sequences along the following 
fundamental diagram I that we recalled in the Introduction. In the present situa-
tion, the Spencer sequence is isomorphic to the tensor product of the Poincaré 
sequence by the underlying 4-dimensional Lie algebra G, namely: 

0 * 1 * 4 * 0
d d d

T T T∧ ⊗ →∧ ⊗ → →∧ ⊗ →    

In this diagram, not depending any longer on m, we have now *
2

r
rC T R′′= ∧ ⊗  

and   is of order 2 like 2j  while all the other operators are of order 1: 

32 1 2 4

32 1 2 4

31 2 4

2

0 0 0 0 0

0 4 16 24 16 4 0

0 4 60 160 180 96 20 0

0 4 56 144 156 80 16 0

0 0 0 0 0

Dj D D D

Dj D D D

↓ ↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓ ↓

→ → → → → → →
↓ ↓ ↓ ↓ ↓

→ Θ → → → → → → →

↓ ↓ ↓ ↓ ↓



  

 

We notice the vanishing of the Euler-Poincaré characteristics: 

4 16 24 16 4 0, 4 60 160 180 96 20 0,
4 56 144 156 80 16 0
− + − + = − + − + − =
− + − + − =

 

We point out that, whatever is the sequence used or the way to describe 1 , 
then ( )1ad   is parametrizing the Cauchy operator ( )ad   for the S metric. 
However, such an approach does not tell us explicitly what are the second and 
third order CC involved in the initial situation. 

In actual practice, all the preceding computations have been finally used to 
reduce the Poincaré group to its subgroup made with only one time translation 
and three space rotations! On the contrary, we have proved during almost fourty 
years that one must increase the Poincaré group (10 parameters), first to the 
Weyl group (11 parameters by adding 1 dilatation) and finally to the conformal 
group of space-time (15 parameters by adding 4 elations) while only dealing 
with he Spencer sequence in order to increase the dimensions of the Spencer 
bundles, thus the number ( )0dim C  of potentials and the number ( )1dim C  of 
fields (compare to [16]). 

2.2. Kerr Metric 

We now write the Kerr metric in Boyer-Lindquist coordinates: 

( )

( ) ( )

22 2
2 2 2 2 2

2 2

2 2
2 2 2 2

2

2 sin
d d d d d d

sin
sin d

amrmrs t r t

mra
r a

θρ ρ ρ θ φ
ρ ρ

θ
θ φ

ρ

−
= − − −

∆

 
− + +  
 
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where we have set ( )2 2 2 2 2 2, cosr mr a r aρ θ∆ = − + = +  as usual and we check 
that: 

( )22 2 2 2 2 2 210 d 1 d d d sin d
1

ma s t r r r
mr
r

θ θ φ = ⇒ = − − − − 
  −

 

as a well known way to recover the Schwarschild metric. We notice that t or φ  
do not appear in the coefficients of the metric. As the maximum subgroup of 
invariance of the Kerr metric must be contained in the maximum subgroup of 
invariance of the Schwarzschild metric because of the above limit when 0a → , 
we shall obtain the only two possible infinitesimal generators { },t φ∂ ∂ . We shall 
prove that the new first order system ( )3

1 1R R′′=  is involutive, contrary to the 
case of the S metric. Accordingly, we have the fundamental diagram I with fiber 
dimensions: 

31 1 2 4

31 1 2 4

31 2 4

0 0 0 0 0

0 2 8 12 8 2 0

0 4 20 40 40 20 4 0

0 4 18 32 28 12 2 0

0 0 0 0 0

Dj D D D

Dj D D D

↓ ↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓ ↓

→ → → → → → →
↓ ↓ ↓ ↓ ↓

→ Θ → → → → → → →
↓ ↓ ↓ ↓ ↓



  

 

with Euler-Poincaré characteristic 4 18 32 28 12 2 0− + − + − = . Comparing the 
surprisingly high dimensions of the Janet bundles with the surprisingly low di-
mensions of the Spencer bundles needs no comment on the physical usefulness 
of the Janet sequence, despite its purely mathematical importance. In addition, 
using the same notations as in the preceding section, we shall prove that we have 
now the additional zero order equations 0rξ = , 0θξ =  produced by the 
non-zero components of the Weyl tensor and thus, at best,  

( )( ) ( )( )3 2
0 1dim 2 dim 2R R= ⇔ =  as these zero order equations will be obtained 

after only two prolongations. They depend on ( )2j Ω  and we should obtain 
therefore eventually ( ) ( )2 1dim 10 dim 12Q R′′= + ≥  CC of order 2 without any 
way to know about the desired third order CC. 

Using now cartesian space coordinates ( ), ,x y z  with 0zξ = , 0x yx yξ ξ+ = , 
we have only to study the following first order involutive system for xξ ξ=  
with coefficients no longer depending on ( ),a m , providing the only generator 

y xx y∂ − ∂ : 
3

2

1

1 2 30
1 0 1 2

10

z

y

x

y

ξ

ξ ξ

ξ

Φ ≡ =

Φ ≡ − = •

 • •Φ ≡ =
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and the fundamental diagram 

31 1 2

31 1 2

1 2

0 0 0 0

0 1 3 3 1 0

0 1 4 6 4 1 0

0 1 3 3 1 0

0 0 0

Dj D D

Dj D D

↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓

→ → → → → →
↓ ↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓





 

 

The involutive system produced by the PP procedure does not depend on 
( ),m a  any longer. Accordingly, this final result definitively proves that, as far 
as differential sequences are concerned: 

THE ONLY IMPORTANT OBJECT IS THE GROUP, NOT THE METRIC 

2.3. Schwarzschild Metric Revisited 

Let us now introduce the Riemann tensor ( ) 2 * *
,
k
l ij T T Tρ ∈∧ ⊗ ⊗  and use the 

metric in order to raise or lower the indices in order to obtain the purely cova-
riant tensor ( ) 2 * * *

,kl ij T T Tρ ∈∧ ⊗ ⊗ . Then, using r as an implicit summation 
index, we may consider the formal Lie derivative on sections: 

, , , , , , 0r r r r r
kl ij rl ij k kr ij l kl rj i kl ir j r kl ijR ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ + + + + ∂ =  

that can be considered as an infinitesimal variation. As for the Ricci tensor 

( ) *
2ij S Tρ ∈ , we notice that , 0 0r r r r

ij i rj ij rj i ir j r ijRρ ρ ρ ξ ρ ξ ξ ρ= = ⇒ ≡ + + ∂ =  
though we have only: 

( ), , , , modrs rs t r rs
ri sj ij i rj st ij i rj ri sjR R R R Rω ω ρ ω= + Ω ⇒ = = Ω  

The 6 non-zero components of the Riemann tensor are known to be: 

( )

( ) ( )

2

01,01 02,02 03,033

2
2

12,12 13,13 23,23

sin
, ,

2 2
sin

, , sin
2 2

mAm mA
r rr

mm mr
rA rA

θ
ρ ρ ρ

θ
ρ ρ ρ θ

= + = − = −

= + = + = −

 

First of all, we notice that: 

0 1 1 1 0 1
0 1 0 10, 0 0

2 2
A A
A A

ξ ξ ξ ξ ξ ξ
′ ′

+ = − = ⇒ + =  

1 2 2 2 1
12 2 1 2

1 10, 0r
A r
ξ ξ ξ ξΩ ≡ − − = + =  

We obtain therefore: 

( ) ( )0 1 1 1 1
01,01 01,01 0 1 01,01 1 01,01 4

32 0 0r
r

mR
r

ρ ξ ξ ξ ρ ξ ρ ξ ξ≡ + + ∂ = ∂ = − = ⇒ =  
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( ) ( )0 2
02,02 02,02 0 2 02,02

1 1
2

2

1 3 0
2 2 2

r
rR

mA A mA mA
r A r r r

ρ ξ ξ ξ ρ

ξ ξ

≡ + + ∂

 ′′    ≡ − − − − = =        

 

Similarly, we also get: 

( )

1 2 1 2 1
01,02 01,01 2 02,02 1 01,02 2 1 23

2
1 3 1 3 1

01,03 01,01 3 03,03 1 01,03 3 1 33

0 2 0 2 0
01,12 01,10 2 21,12 0 01,12 2 0 23

01,13

0 0 0
2

sin
0 0 0

2

0 0 0
2

r
r

r
r

r
r

m mAR
rr

mAmR
rr

m mR
rAr

R

ρ ξ ρ ξ ξ ρ ξ ξ ξ

θ
ρ ξ ρ ξ ξ ρ ξ ξ ξ

ρ ξ ρ ξ ξ ρ ξ ξ ξ

ρ

≡ + + ∂ = ⇒ − = ⇒ =

≡ + + ∂ = ⇒ − = ⇒ =

≡ + + ∂ = ⇒ − − = ⇒ =

≡
( )2

0 3 0 3 0
01,10 3 31,13 0 01,13 3 0 33

sin
0 0 0

2
r

r

mm
rAr

θ
ξ ρ ξ ξ ρ ξ ξ ξ










 + + ∂ = ⇒ − − = ⇒ =

 

We also obtain for example, among the second order CC: 
2

1 1
01,01 02,02 02,02 01,014 2

3 30, 0 0
22

m mA r AR R R R
r r

ξ ξ≡ − = ≡ = ⇒ − =  

and thus, among the first prolongations, the third order CC that cannot be ob-
tained by prolongation of the various second order CC while taking into account 
the Bianchi identities [15]. Using the Spencer operator and the fact that 

( )1
2jξ ∈ Ω , we first obtain the 3 third order CC: 

1 1 1 1 1 1 1 1
1 1 1 2 2 3 30, 0, 0

2
Ad d d d
A

ξ ξ ξ ξ ξ ξ ξ ξ
′

− = − = − = − =  

However, introducing ( )1
2jξ ∈ Ω  in the right member as in the motivating 

examples, we have 3 PD equations for ( )2 3,ξ ξ , namely: 

( ) ( )3 2 1 2 2 3 2 1
3 3 2 2

1 1cot , sin 0,
r r

ξ θ ξ ξ ξ θ ξ ξ ξ+ = − + = = −  

Using two prolongations and eliminating the third order jets, we obtain succes-
sively: 

( ) ( ) ( )2 2 3 3
233 223 23sin 2sin cos 0ξ θ ξ θ θ ξ+ + =  

2 1
233 33

1
r

ξ ξ− =  

( ) ( ) ( ) ( ) ( )2
2 3 2 2 2 1

223 22 2 22

sin
sin sin cos 2 2cot

r
θ

θ ξ θ θ ξ ξ θ ξ ξ− − + − = −  

( ) ( ) ( ) ( ) ( ) ( )3 2 2 2 1
23 2 2

2sin cos
2sin cos 2cos 2cot

r
θ θ

θ θ ξ θ ξ θ ξ ξ− − + =  

( ) ( ) ( ) ( )2 1
22 2

sin cos
sin cos

r
θ θ

θ θ ξ ξ= −  

( ) ( )2
2 2 1

2

2sin
2sin

r
θ

θ ξ ξ− =  

Summing, we see that all terms in 2ξ  and 3ξ  disappear and that we are only 
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left with terms in 1ξ , including in particular the second order jets 1 1
22 33,ξ ξ , 

namely: 

( ) ( ) ( ) ( )1 2 1 1 2 1
33 22 2sin sin cos 2sin 0ξ θ ξ θ θ ξ θ ξ− − + =  

Setting 1U ξ= , 1
2 2V ξ= , 1

3 3V ξ= , 0
2 2W ξ= , 0

3 3W ξ=  with  
( ) ( )2 3 2 3 2, , , ,U V V W W j∈ Ω , we obtain the additional strikingly unusual third or-
der CC for Ω : 

( ) ( ) ( ) ( )2 2
3 3 2 2 2sin sin cos 2sin 0d V d V V Uθ θ θ θ− − + =  

Nevertheless, in our opinion at least, we do not believe that such a purely “tech-
nical” relation could have any “physical” usefulness and let the reader compare it 
with the CC already found in ([15], Lemma 3.B.3). Finally, we have: 

( )0 1 2 3
01,23 01,23 01,23 0 1 2 3 01,230 0Rρ ρ ξ ξ ξ ξ ξ ρ= ⇒ ≡ + + + + ∂ =  

( ) ( )0 0
1 01,23 2 01,31 3 01,12 2 3 3 23

3 0mod , ,
2
md R d R d R d d R
r

ξ ξ+ + = − = Ω Γ  

a result showing that certain third order CC may be differential consequences of 
the Bianchi identities (see [15] for details). Finally, we notice that: 

( ) ( )2 3 2 1
23,23 23,23 2 3 23,232 3 sin 0R mρ ξ ξ ξ ρ θ ξ≡ + + ∂ = =  

and, comparing to the previous computation for ( )2 3,ξ ξ , nothing can be said 
about the generating CC as long as the PP procedure has not been totally 
achieved with a FI or involutive system. 

2.4. Kerr Metric Revisited 

Though we shall provide explicitly all the details of the computations involved, 
we shall change the coordinate system in order to confirm these results by only 
using computer algebra as less as possible. The idea is to use the so-called “ra-
tional polynomial” coefficients while setting anew: 

( )( )
( ) ( ) ( )

0 1 2 3

22 2 2 2

, , cos ,

d sin d d 1 d

x t x r x c x

x x c

θ φ

θ θ θ

= = = = =

⇒ = − ⇒ = −
 

in order to obtain over the differential field  
( )( ) ( )( ), , , , ,K a m t r c a m xφ= =  : 

( ) ( )
( )

( )

( )( )

( )( ) ( )
( )( )

( )

2 1 2 22 2 22 0 1 2
2 22

21 2

0 3
2

22 1 2
2 2 22 1 2 3

2

d d d d
1

2 1
d d

1
1 d

mxs x x x
x

amx x
x x

ma x x
x x a x

ρ ρ ρ
ρ

ρ

ρ

−
= − −

∆ −

−
−

 − 
− − + + 

 
 

 

with now ( )21 1 2 2 2=x mx a r mr a∆ = − + − +  and  
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( ) ( )2 22 1 2 2 2 2 2x a x r a cρ = + = + . For a later use, it is also possible to set  

( ) ( ) ( )( )( ) ( )22 2 2 2 2 2 2 2 2 2
33 1 1c r a a c a mr r r a cω = − − + − − − + + . 

As this result will be crucially used later on, we have: 
LEMMA 4.1: ( ) ( )22 2 2det r a cω = − + . 
Proof: As an elementary result on matrices, we have: 

( ) ( )2

0 0
0 0 0

det det det
0 0 0

0 0

a e
b a e

bc bc ad e
c e d

e d

ω

 
    = = = −     
 

 

with 
( )( )21 2

03 2

1amx x
e ω

ρ

−
= =  because 2 0 3

03d 2 d ds x xω= + +   and ( )det ω  

is thus equal to: 

( )( ) ( )( ) ( )
( )( )

( )( )

22 1 2
4 2 1 2 22 1 2

2 222

221 2

4

1
1

1

1

ma x xmx x x a
x

amx x

ρ ρ
ρ ρ

ρ

  −  −
− − + +  
∆ −  

 
 −    −



 

that is, after division by ( )( )221 x−  and 4ρ : 

( ) ( ) ( )( ) ( ) ( )( )2 2 2 22 1 2 1 2 2 2 1 2 2 2 1 21 1 1mx x a ma x x a m x xρ ρ ρ  − − + + − − −   ∆  
 

Finally, after eliminating the last term, we get: 

( )( ) ( )( ) ( )( )2 2 24 1 2 2 2 1 2 2 1 1 21 1x a ma x x mx x aρ ρ ρ − + − − + +  ∆
 

that is (Compare to [ ] and [ ]): 

( ) ( ) ( )

( ) ( ) ( )( )

2 34 1 2 2 1 2 2 1

2 24 1 2 1 2 2 1 4

1

1

mx ma x x m x

mx mx a x x

ρ ρ ρ

ρ ρ ρ

 − ∆ + + +  ∆
 = − ∆ + + + = −  ∆

 

in a coherent way with the result ( )( )
2

2 2 4
2

1 1
1

rA r c r
A c

  − − − − = −   −  
 obtained  

for the S metric when 0a → . For a later use, we have obtained  
( ) ( )2 2

00 33 03 1 cω ω ω− = − − ∆ . 
Q.E.D. 

Contrary to the S-metric, the main “trick” for studying the K-metric is to take 
into account that the partition between the zero and nonzero terms will not 
change if we use convenient coordinates, even if the nonzero terms may change. 
Meanwhile, we notice that the most important property of the K-metric is the  
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existence of the off-diagonal term 
( )2

2

sin
t t

am
φ φ

θ
ω ω

ρ
= = − , that is 1

2
 the  

coefficient of d dt φ  in the metric 2ds  which is indeed 2 d dt tφω φ . We may 
obtain therefore successively the Killing equations for the Kerr type metric, us-
ing sections of jet bundles and writing simply 1 2

1 2
r

rξ ω ξ ω ξ ω ξ ω∂ = ∂ = ∂ + ∂  
while framing the principal derivative j

iξ  of ijΩ : 

( )

( )3 0
33 33 3 03 3 33

3 0 2
23 33 2 03 2 22 3

2
22 22 2 22

3 0 1
13 33 1 03 1 11 3

2 1
12 22 1 11 2

1 1
1

11 11 1 11

3 0 3 0
03 33 0 03 0 3 00 3 03

2 0
02 22 0 00 2 03

2 0

0

2 0

0

0

2 0

( ) 0

R J T

ω ξ ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ξ ω ξ ξ ω

ω ξ ω ξ ω

Ω ≡ + + ∂ =

Ω ≡ + + =

Ω ≡ + ∂ =

Ω ≡ + + =

Ω ≡ + =
⊂

Ω ≡ + ∂ =

Ω ≡ + + + + ∂ =

Ω ≡ + +

( )

3
2

1 0 3
01 11 0 00 1 03 1

0 3
00 00 0 03 0 00

0

0

2 0

ξ

ω ξ ω ξ ω ξ

ω ξ ω ξ ξ ω

















 =

Ω ≡ + + =

Ω ≡ + + ∂ =


 

With ( ) ( )1 2mod mod ,ξ ξ ξ= , multiplying 33Ω  by 00ω , 00Ω  by 33ω  and 
adding, we notice that: 

( ) ( ) ( )0 3 0 3
00 33 0 3 03 00 3 33 0 00 332 2 0ω ω ξ ξ ω ω ξ ω ξ ξ ω ω+ + + + ∂ =  

Similarly, multiplying 03Ω  by 032ω  (care to the factor 2), we get: 

( ) ( ) ( ) ( )2 20 3 0 3
03 0 3 03 00 3 33 0 032 2 0ω ξ ξ ω ω ξ ω ξ ξ ω+ + + + ∂ =  

Substracting, we obtain therefore the tricky formula (see the previous Lemma): 

( )( )( ) ( )( )2 20 3
00 33 03 0 3 00 33 032 0ω ω ω ξ ξ ξ ω ω ω− + + ∂ − =  

Substituting, we obtain: 

( ) ( )

( )

3 0 3 0
33 3 03 3 33 0 00 3

0 0
33 0 03 3

0mod , 0mod ,

0mod

ω ξ ω ξ ξ ω ξ ω ξ ξ

ω ξ ω ξ ξ

+ = + =

− =
 

a situation leading to modify 33Ω , 03Ω  and 00Ω , similar to the one found in 
the Minkowski case with 3,3 0ξ = , 0,3 3,0 0ξ ξ+ = , ( )0,0 0modξ ξ=  when 

03 0ω = . We also obtain with 01Ω  and 13Ω : 

( )( ) ( ) ( )

( )( ) ( ) ( )

2 0 1 1
00 33 03 1 11 33 0 03 3

2 3 1 1
00 33 03 1 11 03 0 00 3

0mod

0mod

ω ω ω ξ ω ω ξ ω ξ ξ

ω ω ω ξ ω ω ξ ω ξ ξ

− + − =

− − − =
 

and with 02Ω  and 23Ω : 
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( )( ) ( ) ( )

( )( ) ( ) ( )

2 0 2 2
00 33 03 2 22 33 0 03 3

2 3 2 2
00 33 03 2 22 03 0 00 3

0mod

0mod

ω ω ω ξ ω ω ξ ω ξ ξ

ω ω ω ξ ω ω ξ ω ξ ξ

− + − =

− − − =
 

Finally, multiplying 22Ω  by 11ω , 11Ω  by 22ω  and adding, we finally ob-
tain (see the Lemma again) 

( )( ) ( )1 2
11 22 1 2 11 222 0ω ω ξ ξ ξ ω ω+ + ∂ =  

Using the rational coefficients belonging to the differential field  
( )( )1 2, ,K m a x x=  , the nonzero components of the corresponding Riemann 

tensor can be found in textbooks. 
One has the classical orthonormal decomposition: 

( )( ) ( ) ( )

( ) ( )

22 2 22 2 2
2

22 2 2 2

2 2 2

d d sin d d d

sin
d d

s t a r

r a a t
r a

ρθ φ ρ θ
ρ

θ
φ

ρ

∆
= − − −

∆

+  − − + 

 

and defining: 

( )( )

( )

( ) ( )

0 2

1 1

2 2

2 2
3

2 2

d d sin d

d d d

d d d
sin

sin
d d d

X t a

X r x

X x

r a aX t
r a

θ φ
ρ
ρ ρ

ρρ θ
θ

θ
φ

ρ

 ∆
= −




= =
∆ ∆


 = = −



+  = −  + 

 

in which the coefficient of ( )2dt  is ( )2 2

2 2 2

sin
1

a mrθ
ρ ρ ρ
∆

− = −  while the coeffi-

cient of ( )2dφ  is 
( ) ( )

2 2
2 2 2

2

sin
sin

mra
r a

θ
θ

ρ
 

− + +  
 

 indeed. We have  

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3d d d d ds X X X X= − − −  and make thus the Minkowski metric 
appearing in a purely algebraic way. We now use the new coordinates ( 0x t= , 

( ) )1 2 3, cos ,x r x xθ φ= = =  and it follows that the conditions 1 0ξ = , 2 0ξ =  
are invariant under such a change of basis because dX1 and dX2 are respectively 
proportional to 1dx  and 2dx . Indeed, as ( ),rω ω θ=  and thus 0ξ ω∂ = , 
the new symbol 1g ′  of ( )2 *

1 1 1R R R T T′ = ⊂ ⊂ ⊗  while 2 * *T T Tρ ∈∧ ⊗ ⊗  as 
mixed tensors. 

We may obtain simpler formulas in the corresponding basis, in particular the 6 

components with only two different indices are proportional to 
( )

( )

2 2 2

32 2 2

3mr r a c

r a c

−

+
 

while the 3 components with all four different indices are proportional to 
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( )
( )

2 2 2

32 2 2

3amc r a c

r a c

−

+
. 

In the original rational coordinate system, the main nonzero components of 
the Riemann tensor can only be obtained by means of computer algebra. For 
helping the reader to handle the literature, for example the book “Computations 
in Riemann Geometry” written by Kenneth R. Koehler that can be found on the 
net with a free access, we refer to the seventh chapter on “Black Holes”. We no-
tice that ω  −ω, that is to say changing the sign of the metric, does not change 
the Christoffel symbols ( k

ijγ ) and the Riemann tensor ( ,
r
l ijρ ) but changes the 

sign of ( , ,
r

kl ij kr l ijρ ω ρ= ). For this reason, we have adopted the sign convention of 
this reference for the explicit computation of these later components as the 
products and quotients used in the sequel will not be changed. 

We have successively: 

( ) ( )( )( )
( ) ( )

( )( )( )
( )( )

( )( )( )
( )
( )

( )( )( )
( )

2 2 2 2 2 2 2

01,01 32 2 2 2 2

2 2 2 2 2 2 2

02,02 32 2 2 2

2 2 2 2 2 2

03,03 32 2 2

2 2 2

12,12 2 2 2 2 2 2

2 4 2 2 2

13,13

2 1 3

2

2 1 3

2 1

1 3

2

3

2 1

1 2 4

mr r mr a a c r a c

r a c r mr a

mr r mr a a c r a c

c r a c

mr c r mr a r a c

r a c

mr r a c

c r a c r mr a

c mr r a c r a

ρ

ρ

ρ

ρ

ρ

− + + − −
= −

+ − +

− + + − −
=

− +

− − + −
=

+

−
= −

− + − +

− − − +
=

( )( )( )
( ) ( )

( )( )( )
( )

( )( )
( )

( )( )

2 2 4 2 4 2 2 2 2 2

32 2 2 2 2

4 2 2 2 2 2 4 2 4 2 2 2 2 2

23,23 32 2 2

2 2 2 2 2 2 2

01,23 32 2 2

2 2 2 2 2 2 2

02,31 2 2 2 3

03,12

2 3 2 1 3

2

2 5 3 1 3

2

2 3 3

2

2 3 3

2( )

r a c a a mr c r a c

r a c r mr a

mr r a c r a r a c a a mr c r a c

r a c

amc r a c a r a c

r a c

amc r a c a r a c

r a c

amc

ρ

ρ

ρ

ρ

− + − − −

+ − +

− + − + − − −
=

+

− + −
=

+

− + −
= −

+

= −
( )

( )

2 2 2

22 2 2

3

2

r a c

r a c



































 −

 +

 

It must be noticed that we have been able to factorize the six components with 
only two different indices by ( )2 2 23r a c−  and the three components with four 
different indices by ( )2 2 23r a c− , a result not evident at first sight but coherent 
with the orthogonal decomposition. 

After tedious computations, we obtain: 
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( )
( )

( )( )
( ) ( )

203 2

03,03 03,0311 2 2

2 2 2 2 2 2

22 2 2 2 2

1 1
1

1 3

2

amr c

c

am r c r a c

r a c r mr a

ω ρρ ρ
ω ρ

  −   − = − − −   ∆ − ∆   

− −
= −

+ − +

 

which is indeed vanishing when 0a =  for the S metric, both with: 

( )( )
( )

( )( )
( )

3 2 2 2 2

02,13 03,12 32 2 2

2 2 2 2 2

01,23 03,21 32 2 2

3 1 3

2

3 3

2

a mc c r a c

r a c

amc r a r a c

r a c

ρ ρ

ρ ρ

 − −
 + =
 +


+ −
+ =

+

 

( )
( )
( )( )

( )
( )( )( )

( )
( )( )( )

( ) ( )
( )( )
( )

( )( )

2 2 2 2

02,10 32 2 2

2 2 2 2 2

02,32 32 2 2

2 2 2 2 2 2 2

13,23 32 2 2

2 2 2 2 2 2

01,13 32 2 2 2 2

2 2 2 2 2 2 2 2 2 2

32 2 2

3 3

2

3 3 3

2

3 1 3

2

1 3 3 2 3

2

3 1 3 1 3

2 2

a mc r a c

r a c

amr r mr a r a c

r a c

a mc c r a r a c

r a c

amr c r a mr r a c

r a c r mr a

amr c r a c am r c r a c

r a c

ρ

ρ

ρ

ρ

−
=

+

− + −
=

+

− + −
= −

+

− + − −
=

+ − +

− − − −
= +

+ ( ) ( )32 2 2 2 2r a c r mr a




















 + − +

 

Introducing the formal Lie derivative ( )1R L ξ ρ=  and using the fact that 
2 * * *T T Tρ ∈∧ ⊗ ⊗  is a tensor, the system ( )2

1R  contains the new equations: 

, , , , , , 0r r r r r
kl ij rl ij k kr ij l kl rj i kl ir j r kl ijR ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ + + + + ∂ =  

Taking into account the original first order Killing equations, we obtain succes-
sively: 

( )
( )
( )
( )
( )

03,03

0 1 3 2
01,01 01,01 0 1 01,31 0 01,02 1 01,01

0 2 3 1
02,02 02,02 0 2 02,32 0 01,02 2 02,02

0 3
03,03 0 3 03,03

1 2
12,12 12,12 1 2 12,12

1 3
13,13 13,13 1 3 13,

2 2 2 0

2 2 2 0

2 0

2 0

2 2

R

R

R

R

R

R

ρ ξ ξ ρ ξ ρ ξ ξ ρ

ρ ξ ξ ρ ξ ρ ξ ξ ρ

ρ ξ ξ ξ ρ

ρ ξ ξ ξ ρ

ρ ξ ξ ρ

≡ + + + + ∂ =

≡ + + + + ∂ =

≡ + + ∂ =

≡ + + ∂ =

≡ + +

( )

2 0
23 1 13,10 3 13,13

2 3 1 0
23,23 23,23 2 3 13,23 2 20,23 3 23,23

2 0

2 2 2 0R

ξ ρ ξ ξ ρ

ρ ξ ξ ρ ξ ρ ξ ξ ρ










 + + ∂ =

 ≡ + + + + ∂ =

 

and we must add: 
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( )
( )
( )

0 1 2 3
01,23 01,23 0 1 2 3 01,23

0 1 2 3
02,13 02,13 0 1 2 3 02,13

0 1 2 3
03,12 03,12 0 1 2 3 03,12

0

0

0

R

R

R

ρ ξ ξ ξ ξ ξ ρ

ρ ξ ξ ξ ξ ξ ρ

ρ ξ ξ ξ ξ ξ ρ

 ≡ + + + + ∂ =

 ≡ + + + + ∂ =


≡ + + + + ∂ =

 

These linear equations are not linearly independent because: 

01,23 02,31 03,12 01,23 02,31 03,120 0R R Rρ ρ ρ+ + = ⇒ + + =  

Also, linearizing while using the Kronecker symbol δ , we get: 

kr k kl kr ls
ir i rsω ω δ ω ω= ⇒ Ω = − Ω  

Thus, introducing the Ricci tensor and linearizing, we get: 

, ,

, , , ,

0

0

rs rs
ij ri sj ir js

rs kl rs kr ls
ij ri sj ik jl ir js ik jl rs

r r r
rj i ir j r ij

R R R

ρ ω ρ ω ρ

ω ρ ω ρ ω ω

ρ ξ ρ ξ ξ ρ

= = =

⇒ = + Ω = − Ω

= + + ∂ =

 

It follows that ( ), 0modrs
ij ir sjR Rω− ≡ = Ω  and we have in particular ( )mod Ω : 

11 22 33
00 01,01 02,02 03,03

00 03 22 33
11 01,01 01,31 12,12 13,13

00 03 11 33
22 02,02 02,32 12,12 23,23

00 11 22
33 03,03 13,13 23,23

0
2 0
2 0

0

R R R R
R R R R R
R R R R R
R R R R

ω ω ω
ω ω ω ω
ω ω ω ω
ω ω ω

 ≡ + + =


≡ + + + =
 ≡ + + + =
 ≡ + + =

 

The first row proves that 03,03R  is a linear combination of 01,01R  and 02,02R . 
Then, if we want to solve the three other equations with respect to 12,12R , 13,13R  
and 23,23R , the corresponding determinant is, up to sign: 

22 33

11 33 11 22 33

11 22

0
det 0 2 0

0

ω ω
ω ω ω ω ω

ω ω

 
 

= − ≠ 
 
 

 

Accordingly, we only need to take into account 01,01 02,02 01,13 02,23, , ,R R R R . 
Similarly, we also obtain ( )mod Ω : 

( )

22 33 03
01 20,21 30,31 30,01

11 33 03
02 01,21 03,32 30,02

11 22 03
03 10,13 20,23 03,03

00 33 03
12 01,02 31,32 01,32 31,02

00 22 03
13 01,03 21,23 31,03

00 11
23 02,03

0
0

0

0

0

R R R R
R R R R

R R R R

R R R R R

R R R R
R R R

ω ω ω
ω ω ω

ω ω ω

ω ω ω

ω ω ω
ω ω

≡ + + =
≡ + + =

≡ + + =

≡ + + + =

≡ + + =
≡ + 03

12,13 32,03 0Rω










 + =

 

where we have to set 01,23 02,13 03,120, 0 0R R R= = ⇒ = . 
Hence, taking into account 03 0R = , we just need to use 01,01 02,02,R R  and 

01,13R . 
However, using the previous lemma, we obtain the formal Lie derivative: 

( )( ) ( )0 1 2 3
0 1 2 32det det 0ω ξ ξ ξ ξ ξ ω+ + + + ∂ =  

https://doi.org/10.4236/jmp.2020.1110104


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2020.1110104 1696 Journal of Modern Physics 
 

and thus ( )( )01,23 det 0ξ ρ ω∂ =  with ( ) ( )2 2 2det cosr aω θ= + . 

In addition, we have ( )( ) ( )1 2
11 22 1 2 11 222 0ω ω ξ ξ ξ ω ω+ + ∂ =  and thus  

( )( )12,12 11 22 0ξ ρ ω ω∂ = . 
We have also: 

( )( ) ( )
( )( )

0 1 2 3
03,03 12,12 0 1 2 3 03,03 12,12

03,03 12,12

2 0

det 0

ρ ρ ξ ξ ξ ξ ξ ρ ρ

ξ ρ ρ ω

+ + + + ∂ =

⇒ ∂ =
 

The following invariants are obtained successively in a coherent way: 

( )
( )

( )
( )
( )

222 2 2 2 2 2 2 2

03,03 12,12 03,03 12,124 32 2 2 2 2 2

3 3
det

4 2

m r r a c mr r a c

r a c r a c
ρ ρ ρ ρ ω

 − − = ⇒ =   + + 

 

( )
( )( ) ( )

( )
( )

22 2 2 2 2 2

11 22 12,12 11 22 32 2 2 2 2 2

3

1 2

r a c mr r a c

c r mr a r a c
ω ω ρ ω ω

+ −
= ⇒ =

− − + +
 

However, as a K∈ , then 01,23ρ  and 02,13ρ  can be both divided by a and we 
get the new invariant: 

2 2 2 2

01,23 03,12 2 2 2

2 3r a c a
r a c

ρ ρ − +
=

+
 

These results are leading to 1 0ξ = , 2 0ξ = , thus to 1
1 0ξ = , 2

2 0ξ =  and 
0 3
0 3 0ξ ξ+ =  after substitution. In the case of the S-metric, only the first invariant 

can be used in order to find 1 0ξ = . 
Taking into account the previous result, we obtain the two equations: 

( )
( )

0 1 3 2
01,01 0 1 01,31 0 01,02 1

0 2 3 1
02,02 0 2 02,32 0 01,02 2

0

0

ρ ξ ξ ρ ξ ρ ξ

ρ ξ ξ ρ ξ ρ ξ

 + + + =


+ + + =
 

Using the fact that we have now: 
2 1 11 2 22 1

22 1 11 2 1 20 0ω ξ ω ξ ω ξ ω ξ+ = ⇔ + =  

we may multiply the first equation by 11ω , the second by 22ω  and sum in or-
der to obtain: 

( ) ( )11 22 0 11 22 3
01,01 02,02 0 01,31 02,32 0 0ω ρ ω ρ ξ ω ρ ω ρ ξ+ + + =  

Using the previous identity for 03R , we obtain therefore: 

33 0 03 3 33 0 03 3 0 3
03,03 0 03,03 0 0 0 03 0 33 00 0 0ω ρ ξ ω ρ ξ ω ξ ω ξ ω ξ ω ξ+ = ⇒ + = ⇔ − =  

Taking into account the fact that 0 0 3 003 00
0 3 0 3

33 33

,
ω ω

ξ ξ ξ ξ
ω ω

= = −  and substituting, 

we finally obtain: 

( )( )2 0 0 1 3 2 0 3
00 33 03 3 3 2 0 1 0 30 0 , 0 0 , 0 , 0 , 0ω ω ω ξ ξ ξ ξ ξ ξ ξ− = ⇒ = = ⇔ = = = =  

A similar procedure could have been followed by using 13,13 23,230, 0R R= =  and 

33 0ρ = . 
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Now, we must distinguish among the 20 components of the Riemann tensor 
along with the following tabular where we have to take into account the identity 

01,23 02,31 03,12 0ρ ρ ρ+ + = : 

01,01 01,02 01,03 01,12 01,13 01,23

02,02 02,03 02,12 02,13

03,03 03,12 03,13 03,23 02,23

12,12 12,13 12,23

13,13 13,23

23,23

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ
ρ

 

In this tabular, the vanishing components obtained by computer algebra are put 
in a box, the nonzero components of the left column do not vanish when 0a =  
and the other components vanish when 0a = . Also, the 11 (care) lower com-
ponents can be known from the 10 upper ones. 

Keeping in mind the study of the S-metric and the fact that 01,03 0ρ = , 

03,13 0ρ = , 02,03 0ρ = , 03,13 0ρ =  while framing the leading terms not vanishing 
when 0a = , we get: 

( )1 3 2 2 1
01,03 01,01 3 03,03 1 01,23 03,21 0 01,02 3 01,13 0 0R ρ ξ ρ ξ ρ ρ ξ ρ ξ ρ ξ≡ + + + + + =  

Then, taking into account the fact that 01,12 02,12 12,130, 0, 0ρ ρ ρ= = = , we obtain 
similarly: 

( ) 3 2 0 3 0
01,12 01,32 03,12 1 12,21 0 01,10 2 01,13 2 01,02 1 0R ρ ρ ξ ρ ξ ρ ξ ρ ξ ρ ξ≡ + + + + + =  

The leading determinant does not vanish when 0a =  because, in this case, 
all terms are vanishing and we are left with the two linearly independent framed 
terms, a result amounting to 1 3

3 10 0ξ ξ= ⇔ =  and 0 2
2 00 0ξ ξ= ⇔ =  in the 

case of the S-metric in [15]. 
In the case of the K-metric, we may use the relations already framed in order 

to keep only the four parametric jets ( )1 2 1 2
3 0 0 3, , ,ξ ξ ξ ξ  on the right side. We may 

also rewrite them as follows: 

11 0 00 1 03 1 11 3 03 1 33 1
1 0 3 1 0 3

22 0 00 2 03 2 22 3 03 2 33 2
2 0 3 2 0 3

0, 0

0, 0

ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ

ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ

 + + = + + =


+ + = + + =
 

if we use the fact that ( )( )203
03 00 33 03ω ω ω ω ω= − −  in the inverse metric. 

As a byproduct, we are now left with the two (complicated) equations 
( )1

3 ... 0aξ + =  and ( )2
0 ... 0aξ + =  where the dots mean linear combinations of 

( )1 2
0 3,ξ ξ  with coefficients in K and the study of the Killing operator is quite 

more difficult in the case of the K-metric. Of course, it becomes clear that the 
use of the formal theory is absolutely necessary as an intrinsic approach could 
not be achieved if one uses solutions instead of sections. Indeed the strict inclu-
sion ( )2

1 1 1R R R′ = ⊂  cannot be even imagined if one does believe that 1 0ξ = , 
2 0ξ =  brings 1

3 0ξ =  and 2
0 0ξ = . The computation could have been done 
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with 12,23 0R =  and 03,23 0R =  because 02 0R =  and 13 0R = . 
The next hard step will be to prove that the other linearized components of 

the Riemann tensor do not produce any new different first order equation. The 
main idea will be to revisit the new linearized tabular with: 

01,01 01,02 01,03 01,12 01,13 01,23

02,02 02,03 02,12 02,13

03,03 03,12 03,13 03,23 02,23

12,12 12,13 12,23

13,13 13,23

23,23

R R R R R R
R R R R
R R R R R
R R R
R R
R

 

Putting the leading terms into a box, we have the identity  

01,23 02,3 03 21 ,1 0RR R+ + =  that must be combined with the following formulas 
( )mod Ω : 

( )( )11 22 03 33 11 22
01,13 02,23 01,01 02,02 0R R R Rω ω ω ω ω ω+ − + =  

11 33 03
01,12 03,32 03,02 0R R Rω ω ω+ + =  

00 03 22 33
10,01 10,31 12,21 13,312 0R R R Rω ω ω ω+ + + =  

and so on, allowing to compute the 11 (care) lower terms from the 2 + 4 + 4 = 10 
upper ones. 

We have thus the following successive eleven logical inter-relations: 

( )01,23 02,13 03,12,R R R→  

( )
( )

( )
00 11 22 33 03, , , ,

01,01 02,02 01,13 03,03 12,12 13,13 23,23 02,23, , , , , ,
R R R R R

R R R R R R R R→  

( )
12

01,02 01,23 02,13 13,23, ,
R

R R R R→  

( )
01

01,03 02,12 03,13,
R

R R R→  

( )
02

01,12 02,03 03,23,
R

R R R→  

( )
13

01,03 03,13 12,23,
R

R R R→  

( )
23

02,03 03,23 12,13,
R

R R R→  

Keeping in mind the four additional equations and their consequences that 
have been already framed, both with the vanishing components of the Riemann 
tensor, namely: 

01,03 01,12 02,03 02,12 03,13 03,23 12,13 12,230, 0, 0, 0, 0, 0, 0, 0ρ ρ ρ ρ ρ ρ ρ ρ= = = = = = = =  

we get successively: 

01,01 02,02 01,02 01,13 01,23 02,130, 0, 0, 0, 0, 0R R R R R R= = = = = =  

As we have already exhibited an isomorphism ( ) ( )3 0 0 3 1 2 1 2
1 2 1 2 3 0 0 3, , , , , ,ξ ξ ξ ξ ξ ξ ξ ξ→ , 

we may use only the later right set of parametric jet components. Using the pre-
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vious logical relations while framing the leading terms not vanishing a priori 
when 0a = , there is only one possibility to choose four components of the li-
nearized Riemann tensor, namely: 

( ) ( )

( ) ( )
( ) ( )

1 3 2 1 2
01,03 01,01 3 03,03 1 01,23 03,21 0 01,13 0 01,02 3

1 0 2 1 2
03,23 01,23 03,21 3 03,03 2 23,23 0 13,23 0 02,23 3

1 2 0 1 2
03,13 01,13 3 23,13 0 03,03 1 13,13 0 03,12 02,13 3

02,0

0

0

0

R

R

R

R

ρ ξ ρ ξ ρ ρ ξ ρ ξ ρ ξ

ρ ρ ξ ρ ξ ρ ξ ρ ξ ρ ξ

ρ ξ ρ ξ ρ ξ ρ ξ ρ ρ ξ

≡ + + + + + =

≡ + + + + + =

≡ + + + + + =

( ) ( )1 2 1 2 3
3 02,01 3 02,23 0 03,12 02,13 0 02,02 3 03,03 2 0ρ ξ ρ ξ ρ ρ ξ ρ ξ ρ ξ










≡ + + + + + =

 

In order to understand the difficulty of the computations involved, we propose 
to the reader, as an exercise, to prove “directly” that the two following relations: 

( ) ( )1 0 3 0 3
02,12 12,12 0 02,02 1 02,13 03,12 2 02,10 2 02,32 1 0R ρ ξ ρ ξ ρ ρ ξ ρ ξ ρ ξ≡ + + + + + =  

( ) ( )3 2 0 3 0
12,13 13,13 2 12,12 3 03,12 02,13 1 32,13 1 10,13 2 0R ρ ξ ρ ξ ρ ρ ξ ρ ξ ρ ξ≡ + + + + + =  

are only linear combinations of the previous ones ( )mod Ω . 
We are facing two technical problems “spoilting”, in our opinion, the use of 

the K metric: 
• With 1ω−  in place of ω , we have 11 3 33 1

1 3ω ξ ω ξ= − +  and the leading 
term of 01,03R  becomes proportional to ( )11 33 1

01,01 03,03 3ω ρ ω ρ ξ− +  with a 
wrong sign that cannot allow using 00R . A similar comment is valid for the 
four successive leading terms. 

• We also discover the summation 01,23 03,21ρ ρ+  in 01,03R  with a wrong sign 
that cannot allow introducing 02,31ρ  as one could hope. A similar comment 
is valid for the four successive summations. 

Nevertheless, we obtain the following unexpected formal linearized result that 
will be used in a crucial intrinsic way for finding out the generating second order 
and third order CC: 

THEOREM 4.2: The rank of the previous system with respect to the four jet 
coordinates ( )1 2 1 2

3 0 0 3, , ,ξ ξ ξ ξ  is equal to 2, for both the S and K-metrics. We ob-
tain in particular the two striking identities: 

( ) ( )
2

03,13 01,03 02,03 03,232 2
1 0, 0aR a c R R R

r a
+ − = + =

+
 

Proof: In the case of the S-metric with 0a = , only the framed terms may not 
vanish and, denoting by “~” a linear proportionality, we have already obtained 

( )( )2mod j Ω : 
1 0

01,03 3 03,23 2 02,03 03,13~ , ~ , 0, 0R R R Rξ ξ = =  

Hence, the rank of the system with respect to the 4 parametric jets 

( )1 2 1 2
3 0 0 3, , ,ξ ξ ξ ξ  just drops to 2 and this fact confirms the existence of the 5 addi-

tional first order equations obtained, as we saw, after two prolongations. 
In the case of the K-metric with 0a ≠ , the study is much more delicate. 
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With 0 1a = , the coefficients of the 4 4×  metric of the previous system on 
the basis of the above parametric jets are proportional to the symmetric matrix: 

2

2

2 2 3

2 3 2

1
1
a a a

a a a
a a a a
a a a a

 
 
 
 
  
 

 

Indeed, we have successively for the common factor ( )21a c− − : 

( )
( )

( )( )
( )

2 2 233
1
3 01,01 03,03 32 2 211

2 2 2 2
1
3 01,13 32 2 2

3 3
Row1

2

3 1 3
Row 3

2

mr r a c

r a c

amr c r a c

r a c

ωξ ρ ρ
ω

ξ ρ

 −
 → − = −
 +


− −
→ =

+

 

( )( )
( )

( )( )( )
( )

2 2 2 2 2
2
0 01,23 03,21 32 2 2

2 2 2 2 2 2 2
2
0 23,13 32 2 2

3 3
Row1

2

3 1 3
Row 3

2

amc r a r a c

r a c

a mc c r a r a c

r a c

ξ ρ ρ

ξ ρ

 + −
 → + =
 +


− + −
→ = −

+

 

( )( )
( )
( ) ( )
( )

2 2 2 203
1
0 01,13 03,03 32 2 211

22 2 2 2 203
1
0 13,13 03,03 32 2 211

3 1 3
Row1

2

3 1 3
Row 3

2

amr c r a c

r a c

a mr c r a c

r a c

ωξ ρ ρ
ω

ωξ ρ ρ
ω

 − −
 → − =
 +


− −
→ − = −

 +

 

( )
( )

( )( )
( )

2 2 2 2
2
3 01,02 32 2 2

3 2 2 2 2
2
3 03,12 02,13 32 2 2

3 3
Row1

2

3 1 3
Row 3

2

a mc r a c

r a c

a mc c r a c

r a c

ξ ρ

ξ ρ ρ

 −
 → = −
 +


− −
→ + =

+

 

and similarly for the common factor 2 2

a
r a

−
+

: 

( )( )
( )

( )
( )

2 2 2 2 2
1
3 01,23 03,021 32 2 2

2 2 2 2
1
3 02,01 32 2 2

3 3
Row 2

2

3 3
Row 4

2

amc r a r a c

r a c

a mc r a c

r a c

ξ ρ ρ

ξ ρ

 + −
 → + = −
 +


−
→ = −

+

 

( ) ( )
( )
( )( )
( )

22 2 2 2 200
2
0 23,23 03,0322 32 2 2

2 2 2 2 203
2
0 02,23 03,0322 32 2 2

3 3
Row 2

2

3 3
Row 4

2

mr r a r a c

r a c

amr r a r a c

r a c

ωξ ρ ρ
ω

ωξ ρ ρ
ω

 + − → − =
 +


+ −
→ − = −

 +
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( )( )( )
( )
( )( )
( )

2 2 2 2 2 2 2
1
0 13,23 32 2 2

3 2 2 2 2
1
0 03,12 02,13 32 2 2

3 1 3
Row 2

2

3 1 3
Row 4

2

a mc c r a r a c

r a c

a mc c r a c

r a c

ξ ρ

ξ ρ ρ

 − + −
 → = −
 +


− −
→ + =

+

 

( )( )
( )

( )
( )

2 2 2 2 203
2
3 02,23 03,0322 32 2 2

2 2 2 233
2
3 02,02 03,0322 32 2 2

3 3
Row 2

2

3 3
Row 4

2

amr r a r a c

r a c

a mr r a c

r a c

ωξ ρ ρ
ω

ωξ ρ ρ
ω

 + −
 → − = −
 +


−
→ − =

+

 

We do not believe that such a purely computational mathematical result, 
though striking it may look like, could have any useful physical application and 
this comment will be strengthened by the next theorem provided at the end of 
this section. 

Q.E.D. 
COROLLARY 4.3: The Killing operator for the K metric has 14 generating 

second order CC. 
Proof: According to the previous theorem, we have ( )( ) ( )2

1 3dim dim 4R R= =  
as we can choose the 4 parametric jets ( )0 3 1 2

0 3, , ,ξ ξ ξ ξ  and 3 0g = . Using the 
introductory diagram with 4, 1, 2,n q r E T= = = =  and thus  

( )( ) ( )( )2 0 3dim dim 150 140 10J F J T− = − = , we obtain at once  
( ) ( )( )2

2 1dim 10 dim 14Q R= + =  in a purely intrinsic way. We may thus start 
afresh with the new first order system ( ) ( )2

1 1 1 1R R R J T′ = ⊂ ⊂  obtained from 

1R  after 2 prolongations. This result is thus obtained totally independently of 
any specific GR technical object like the Teukolski scalars, the Killing-Yano ten-
sors or even the Penrose spinors introduced in [8] [9] [10] [11] [16]. 

Q.E.D. 
Finally, we know from [2] [4] [12] [15] [17] [18] [19] that if ( )q qR J T⊂  is a 

system of infinitesimal Lie equations, then we have the algebroid bracket 
,q q qR R R  ⊂   defined on sections by the following formula not depending on 

the lift ( )1 1 1,q q qJ Tξ η+ + +∈  of ( ),q q q qR J Tξ η ∈ ⊂ : 

{ } ( ) ( )1 1 1 1, , ,q q q q q q q q q qR i D i D Rξ η ξ η ξ η ξ η η ξ+ + + + ∈ ⇒ = + − ∈   

with the algebraic bracket bilinearly defined by [ ]( ) ( ) ( ){ }1 1, ,q q qj j jξ η ξ η+ +=  
and such that: 

( ) ( ) ( ), , , , , 0s s s
q q q q r q r q rR R R R R R q r s+ + +

   ⊂ ⇒ ⊂ ∀ ≥     

It follows that ( ) ( )2 3
1 1 1 3R R Rπ′ = =  is such that [ ]1 1 1,R R R′ ′ ′⊂  with  

( )1dim 20 16 4R′ = − =  because we have obtained a total of 6 new different first 
order equations. We have on sections (care again) the 16 (linear) equations of 

1R′  as follows: 
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( ) ( )

1 2 0 3 1 1 2
00 1 03 1 11 0 1 2

1 2
2 1

1 0 3 1
3 03 1 33 1 11 32

1 1 1
2 0 3 2
0 00 2 03 2 22 0

0 3 2
03 2 33 2 22 3

0 3 0 3
3 0 0 3

0, 0 0, 0, 0

0 0

0 0

0 0,

0

0 0, 0, 0

R R J T

ξ ξ ω ξ ω ξ ω ξ ξ ξ

ξ ξ

ξ ω ξ ω ξ ω ξ

ξ ω ξ ω ξ ω ξ

ω ξ ω ξ ω ξ

ξ ξ ξ ξ

 = = ⇒ + + = = =

 = ⇒ =

 + = ⇒ + + =′ = ⊂ 

+ = ⇒ + + =

 + + =

 = ⇒ = = =





 

and we may choose only the 2 parametric jets ( )1 2
0 3,ξ ξ  among ( )1 1 2 2

0 3 0 3, , ,ξ ξ ξ ξ  
to which we must add ( )0 3,ξ ξ  in any case as they are not appearing in the 
Killing equations and their prolongations. 

The system is not involutive because it is finite type with 2 0g ′ =  and 1g ′  
cannot be thus involutive. 

It remains to make one more prolongation in order to study  
( ) ( )3 4

1 1 1 4 1 1R R R R Rπ′′ ′= = ⊂ ⊂  with strict inclusions in order to study the third 
order CC for Ω  already described for the Schwarzschild metric in [15]. 

( )

3
3
2
3
1
3
0
3
3
2
2
2
1
2
0
2
3

1
1 1 1 1 2

1
1
1
0

1
3
0
2
0
1
0
0
0
2

1

0 1 2 30
0 1 2 30
0 1 2 30
0 1 2 30
0 1 20
0 1 20
0 1 20
0 1 20
0 10
0 10
0 10
0 10
00
00
00
00

0
0

R R R J T

ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

 =


=
 =


=
 •=

•=
 •=
 •=
 • •=′′ ′⊂ ⊂ ⊂  • •=
 • •=


• •=
 • • •=

• • • =
 • • •=
 • • •=


• • • •=
 = • • • •  

Surprisingly and contrary to the situation found for the S metric, we have now 
a trivially involutive first order system with only solutions ( 0 cstξ = , 1 0ξ = , 

2 0ξ = , )3 cstξ = . However, the difficulty is to know what second members 
must be used along the procedure met for all the motivating examples. In partic-
ular, we have again identities to zero like 1 1

0 0 0d ξ ξ− = , 2 2
3 3 0d ξ ξ− =  or, equi-

valently, 1 1
3 3 0d ξ ξ− = , 2 2

0 0 0d ξ ξ− =  and thus 4 third order CC coming from 
the 4 following components of the Spencer operator: 

1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 20, 0, 0, 0d d d dξ ξ ξ ξ ξ ξ ξ ξ− = − = − = − =  
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a result that cannot be even imagined from [8] [9] [10] [11] [16]. Of course, 
proceeding like in the motivating examples, we must substitute in the right  

members the values obtained from ( )2j Ω  and set for example 1
1 11

11

1
2

ξ ξ ω
ω

= − ∂   

while replacing 1ξ  and 2ξ  by the corresponding linear combinations of the 
Riemann tensor already obtained for the right members of the two zero order 
equations. 

Using one more prolongation, all the sections (care again) vanish but 0ξ  and 
3ξ , a result leading to ( )1dim 2R′′ =  in a coherent way with the only nonzero 

Killing vectors { },t φ∂ ∂ . We have indeed: 
1 3 0 2 3 2
0 1 1 0 2 30 0 0, 0 0 0ξ ξ ξ ξ ξ ξ= ⇒ = ⇒ = = ⇒ = ⇒ =  

Like in the case of the S metric, 3R  is not involutive but 4R  is involutive. 
However, contrary to the S metric with 1 0g ′′ ≠ , now 1 0g ′′ =  for the K metric 
and 1R′′  is trivially involutive with a full Janet tabular having 16 rows of first 
order jets and 2 rows of zero order jets. 

REMARK 4.4: We have in general ([2] [5] p 339, 345): 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

s q r s q r s
q r q r q r s q r r q s q r s

s sq s
r q q s q r r q q r r q

R R J R J E

J R J E J R J E R

π π

π ρ

+ + + +
+ + + + + + + +

+
+ + +

= =

⊆ = =



 

 

that is, in our case ( ) ( )( )2 2
2 1 1R Rρ⊆ . However, we have indeed the equality 

( ) ( )( )2 2
2 1 1R Rρ=  even if the conditions of Theorem 1.1 are not satisfied because 

1g ′  is not 2-acyclic. Indeed, the Spencer map 2 * 3 *
1: T g T Tδ ′∧ ⊗ → ∧ ⊗  is not 

injective and we let the reader check as an exercise that its kernel is generated by 

{ }0 3
1,01 2,23,v v  and the Spencer δ-cohomology is such that ( )( )2

1 1dim 2 0H g ′ = ≠  
because the cocycles are defined by the equations 0=,,,

k
ijr

k
rij

k
jri vvv ++ . Hence, 

contrary to what could be imagined, the major difference between the S and 
K-metrics is not at all the existence of off-diagonal terms but rather the fact that 

1R′′  is not involutive with 1 0g ′′ ≠  for the S-metric while 1R′′  is involutive with 

1 0g ′′ =  for the K-metric. This is the reason for which one among the four third 
order CC must be added with two prolongations for the S-metric while the four 
third order CC are obtained in the same way from the Spencer operator for the 
K-metric. Of course no classical approach can explain this fact which is lacking 
in [8] [9] [10] [11]. 

The following result even questions the usefulness of the whole previous ap-
proach: 

THEOREM 4.5: The operator ( )Cauchy ad Killing=  admits a minimum 
parametrization by the operator ( )Airy ad Riemann=  with 1 potential when 

2n = , found in 1863. It admits a canonical self-adjoint parametrization by the 
operator ( )Beltrami ad Riemann=  with 6 potentials when 3n= , found in 1892 
and modified to a mimimum parametrization by the operator Maxwell with 3 
potentials, found in 1870 or Morera found in 1892. More generally, it admits a 
canonical parametrization by the operator ( )ad Riemann  with ( )2 2 1 12n n −  
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potentials that can be modified to a relative parametrization by ( )ad Ricci  with 
( )1 2n n +  potentials which is nevertheless not minimum when 4n ≥ , found in 

2007. In all these cases, the corresponding potentials have nothing to do with the 
perturbation of the metric. Such a result is also valid for any Lie group of trans-
formations, in particular for the conformal group in arbitrary dimension. 

Proof: We provide successively the explicit corresponding parametrizations: 
• 2n = : Multiplying the linearized Riemann operator by a test function φ  

and integrating by parts, we obtain (care to the factor 2 involved): 

( ) ( ) ( )22 11 12 12 11 22 22 11 12 12 11 222 2 ...d d d d d d divφ φ φ φΩ − Ω + Ω = Ω − Ω + Ω +  

11 12 22
11 12 222ij ji ij

ijσ σ σ σ σ σ= ⇒ Ω = Ω + Ω + Ω  

Cauchy operator 11 12 1 21 22 2
1 2 1 2,d d f d d fσ σ σ σ+ = + =  

Airy operator 11 12 21 22
22 12 11, ,d d dσ φ σ σ φ σ φ= = = − =  

0

2 3 1 0

0 2 3 1
0

Killing Riemann

Cauchy Airy

R

f

ξ

σ φ

→ Ω → →

→ → →

← ← ←
← ← ←

 

It is clear that the test function φ has nothing to do with the metric ω ([5], In-
troduction). 
• 3n =  We now present the original Beltrami parametrization: 

11
1133 23 22

12
1233 23 13 12

13
1323 22 13 12

22
2233 13 11

23
2323 13 12 11

33
3322 12 11

0 0 0 2
0 0
0 0

0 2 0 0
0 0

2 0 0 0

d d d
d d d d

d d d d
d d d
d d d d

d d d

φσ
φσ
φσ
φσ
φσ
φσ

−    
    − −    
    − −    =    −    
    − −
    

−       

 

which does not seem to be self-adjoint but is such that 0ir
rd σ = . Accor-

dingly, the Beltrami parametrization of the Cauchy operator for the stress is 
nothing else than the formal adjoint of the Riemann operator. However, 
modifying slightly the rows, we get the new operator matrix: 

11
1133 23 22

12
1233 23 13 12

13
1323 22 13 12

22
2233 13 11

23
2323 13 12 11

33
3322 12 11

0 0 0 2
0 2 2 0 2 22
0 2 2 2 2 02

0 2 0 0
2 2 2 0 2 02

2 0 0 0

d d d
d d d d

d d d d
d d d
d d d d

d d d

φσ
φσ
φσ
φσ
φσ
φσ

−    
    − −   
   − −   =    −   
   − −
   

−     









 

which is indeed self-adjoint. Keeping ( )11 22 33, ,A B Cφ φ= = Φ =  with 
( )12 13 230, 0, 0φ φ φ= = = , we obtain the Maxwell parametrization: 
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11
33 22

12
12

13
13

22
33 11

23
23

33
22 11

0
0 0
0 0

0
0 0

0

d d
d

A
d

B
d d

C
d

d d

σ
σ
σ
σ
σ
σ

   
   −       −    =    
    

    −
   

     

 

which is minimum because ( )1 2 3n n − = . However, the corresponding op-
erator is FI because it is homogeneous but it is not evident at all to prove that 
it is also involutive as we must look for δ-regular coordinates (see [20] for the 
technical details). 

• 4n ≥  This is far more complicated and we do believe that it is not possible 
to avoid using differential homological algebra, in particular extension mod-
ules. As we found it already in many books [4] [12] [17] [21] or papers [12] 
[13] [14] [15] [22], the linear Spencer sequence is (locally) isomorphic to the 
tensor product of the Poincaré sequence for the exterior derivative by a Lie 
algebra   with ( ) ( )1 2dim n n≤ +  equal to the dimension of the largest 
group of invariance of the metric involved. When 4n = , this dimension is 
10 for the M-metric, 4 for the S-metric and 2 for the K-metric. As a bypro-
duct, the adjoint sequence roughly just exchanges the exterior derivatives up 
to sign and one has for example, when 3n= , the relations ( )ad grad div=− , 

( )ad div grad= − . It follows that, if D2 generates the CC of D1, then ( )2ad D  
is parametrizing ( )1ad D , a fact not evident at all, even when 2n =  for the 
Cosserat couple-stress equations exactly described by ( )1ad D  [18]. Passing 
to the differential modules point of view with the ring (even an integral domain) 

[ ] [ ]1, , nD K d d K d= =  of differential operators with coefficients in a dif-
ferential field K, this result amounts to say that ( ) ( )1 1, 0Dext M D ext M= = . 
As it is known that such a result does not depend on the differential resolu-
tion used or, equivalently, on the differential sequence used, if 1  generates 
the CC of   in the Janet sequence, then ( )1ad   is parametrizing ( )ad   
and this result is still true even if   is not involutive. In such a situation, 
which is the one considered in this paper, the Killing operators for the 
M-metric, the S-metric and the K-metric are such that, whatever are the ge-
nerating CC 1  (second order for the M-metric, a mixture of second and 
third order for the S-metric and K-metric), then ( )1ad   is, in any case, pa-
rametrizing the Cauchy operator ( )ad   for any ( )*

2: :T S T ξ ξ ω→ →  . 
Once more, the central object is the group, not the metric. The same results 
are also valid for any Lie group of transformations, in particular for the con-
formal group in arbitrary dimension, even if the operator 1  is of order 3 
when 3n =  as we shall see below [6] [13] [14] [23]. 

Q.E.D. 
REMARK 4.6: Accordingly, the situation met today in GR cannot evolve as 

long as people will not acknowledge the fact that the components of the Weyl 
tensor are the torsion elements (the so-called Lichnerowicz waves in [22]) for 
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the equations 0Ricci =  because the Einstein equations cannot be parametrized 
and the extension modules are torsion modules [5] [7] [13] [19]. Such a result is 
only depending on the group structure of the conformal group of space-time 
that brings the canonical splitting Riemann Weyl Ricci= ⊕  without any refer-
ence to a background metric as it is usually done [4] [15] [19] [22] [23]. It is an 
open problem to know why one may sometimes find a self-adjoint operator. It is 
such a confusion that led to introducing the so-called Einstein parametrizing 
operator [19] [22]. A minimum parametrization of the Cauchy operator when 

4n =  with 6 potentials can be found by keeping only the Lagrange multipliers 
ijλ  with i j<  used in [13] while setting 0iiλ =  like Morera when 3n = . 
EXAMPLE 4.7: (Weyl tensor for 3n =  and euclidean metric) We proved in 

([21], p 156-158) and more recently in [14] [22] [23] that, for 3n = , the natural 
“geometric object” corresponding to the Weyl tensor is no longer providing a 
second order differential operator but by a third order Weyl operator 1̂  with 
first order CC 2̂  in the differential sequence: 

1 2ˆ ˆˆ

1 3 1
ˆ0 3 5 5 3 0→Θ→ → → → →

 
 

corresponding to the differential sequence of D-modules where p is the canoni-
cal residual projection: 

2 1ˆ ˆ ˆ
3 5 5 3

1 3 1
ˆ0 0

p
D D D D M→ → → → → →

  
 

The true reason is that the symbol 1ĝ  of ̂  is finite type with second pro-
longation 3ˆ 0g =  while its first prolongation 2ĝ  is not 2-acyclic. It is impor-
tant to notice that the operators are acting on the left on column vectors in the 
upper sequence but on the right on row vectors in the lower sequence though we 
have in any case the identities 1̂

ˆ 0=   and 2 1
ˆ ˆ 0=  . 

Of course, these operators can be obtained by using computer algebra like in 
([21], Appendix 2) but one may check at once that ̂  and 2̂  are completely 
different operators while the operator 1̂  is far from being self-adjoint even 
though it is described by a 5 5×  operator matrix. Our purpose is to prove that 
it can be nevertheless transformed in a very tricky way to a self-adjoint operator, 
exactly like the 3 3×  curl operator in 3-dimensional classical geometry because 

( )ad grad div= − . It does not seem that these results are known today. 
The starting point is the 3 5×  first order operator matrix defining the con-

formal Killing operator ̂ , namely: 

1 2 3

2 1

3 1

1 2 3

3 2

4 2 2
3 3 3

0
0

2 4 2
3 3 3
0

d d d

d d
d d

d d d

d d

 − − 
 
 
 
 
 
− − 
  
 

 

Substracting the fourth row from the first row and multiplying the fourth row by 
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3
2

, we obtain the operator matrix: 

1 2

2 1

3 1

1 2 3

3 2

2 2 0
0

0
2

0

d d
d d
d d
d d d

d d

− 
 
 
 
 
− − 
 
 

 

Adding the fourth row to the first, we obtain the operator matrix: 

1 3

2 1

3 1

1 2 3

3 2

0
0

0
2

0

d d
d d
d d
d d d

d d

− 
 
 
 
 
− − 
 
 

 

Adding the first row to the fourth row and dividing by 2, we obtain the operator 
matrix: 

1 3

2 1

3 1

2 3

3 2

0
0

0
0
0

d d
d d
d d

d d
d d

− 
 
 
 
 

− 
 
 

 

Multiplying the second, fourth and fifth row by −1, then multiplying the central 
column of the matrix thus obtained by −1, we finally obtain the operator matrix 

ˆ ′ : 

1 3

2 1

3 1

2 3

3 2

0
0

0
0
0

d d
d d
d d

d d
d d

− 
 − 
 
 
 
 − 

 

We now care about transforming 2̂  given in ([21], p 158) by the 5 3×  oper-
ator matrix: 

3 1 3 2

1 2 3

1 2 3

2 0 2
2 0 0
0 0 2

d d d d
d d d

d d d

− − − 
 − 
 − 

 

Dividing the first column by 2 and the fourth column by −2, then using the cen-
tral row as a new top row while using the former top row as new bottom row, we 
obtain the operator matrix 2′ : 

1 2 3

1 2 3

3 1 3 2

0 0
0 0

0

d d d
d d d

d d d d

− 
 
 
 − − 

 

and check that ( )2
ˆ ˆad ′ ′= −   like in the Poincaré sequence for 3n =  where 
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( )ad div grad= − . As the new corresponding operator 1̂′  is homogeneous and 
of order 3 (care), we obtain locally ( )1 1

ˆ ˆad ′ ′=  , a result not evident at first 
sight (compare to [21], p 157). 

The combination of this example with the results announced in [14] [23] 
brings the need to revisit almost entirely the whole conformal geometry in arbi-
trary dimension and we notice the essential role performed by the Spencer 
δ-cohomology in this new framework. 

3. Conclusion 

First of all, comparing the M-metric, the S-metric and the K-metric by using the 
corresponding systems of first order infinitesimal Lie equations, we may sum-
marize the results previously obtained by repeating that, when E = T, the smaller 
is the background Lie group, the smaller are the dimensions of the Spencer bun-
dles and the higher are the dimensions of the Janet bundles. As a byproduct, we 
claim that the only solution for escaping is to increase the dimension of the Lie 
group involved, adding successively 1 dilatation and 4 elations in order to deal 
with the conformal group of space-time while using the Spencer sequence in-
stead of the Janet sequence. In particular, the Ricci tensor only depends on the 
elations of the conformal group of space-time in the Spencer sequence where the 
perturbation of the metric tensor does not appear any longer contrary to the Ja-
net sequence. It finally follows that Einstein equations are not mathematically 
coherent with group theory and formal integrability. In other papers and books, 
we have also proved that they were also not coherent with differential homolog-
ical algebra which is providing intrinsic properties as the extension modules, 
which are torsion modules, do not depend on the sequence used for their defini-
tion, a quite beautiful but difficult theorem indeed. The main problem left is 
thus to find the best sequence and/or the best group that must be considered. 
Presently, we hope to have convinced the reader that only the Spencer sequence 
is clearly related to the group background and must be used, on the condition to 
change the group. As a byproduct, we may thus finally say that the situation will 
not evolve in GR as long as people will not acknowledge the existence of these 
new purely mathematical tools like Lie algebroids or differential extension mod-
ules and their purely mathematical consequences. Summarizing this paper in a 
few words, we do really believe that “God used group theory rather than com-
puter algebra when He created the World”! 
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Abstract 
We review the (2 + 1)-dimensional Baňados-Teitelboim-Zanelli black hole so-
lution in conformally invariant gravity, uplifted to (3 + 1)-dimensional space-
time. For the matter content we use a scalar-gauge field. The metric is written 
as 2g gµν µνω=  , where the dilaton field ω contains all the scale dependencies 

and where gµν  represents the “un-physical” spacetime. A numerical solu-
tion is presented and shows how the dilaton can be treated on equal footing 
with the scalar field. The location of the apparent horizon and ergo-surface 
depends critically on the parameters and initial values of the model. It is not a 
hard task to find suitable initial parameters in order to obtain a regular and 
singular free gµν  out of a BTZ-type solution for gµν . In the vacuum situa-
tion, an exact time-dependent solution in the Eddington-Finkelstein coordi-
nates is found, which is valid for the (2 + 1)-dimensional BTZ spacetime as 
well as for the uplifted (3 + 1)-dimensional BTZ spacetime. While gµν  re-

sembles the standard BTZ solution with its horizons, gµν  is flat. The dilaton 
field becomes an infinitesimal renormalizable quantum field, which switches 
on and off Hawking radiation. This solution can be used to investigate the 
small distance scale of the model and the black hole complementarity issues. 
It can also be used to describe the problem of how to map the quantum states 
of the outgoing radiation as seen by a distant observer and the ingoing by a 
local observer in a one-to-one way. The two observers will use a different 
conformal gauge. A possible connection is made with the antipodal identifi-
cation and unitarity issues. This research shows the power of conformally in-
variant gravity and can be applied to bridge the gap between general relativity 
and quantum field theory in the vicinity of the horizons of black holes. 
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Invariance, Dilaton Field, Eddington-Finkelstein Coordinate, Black Hole 
Complementarity, Antipodal Identification 

 

1. Introduction 

Besides the well-studied Schwarzschild and Kerr solution in general relativity 
theory (GRT), there is another black hole solution in (2 + 1)-dimensional space-
time, i.e., the Baňados-Teitelboim-Zanelli (BTZ) black hole [1] [2]. The BTZ 
geometry solves Einstein’s equations with a negative cosmological constant in 
(2 + 1)-dimensions. In general, (2 + 1)-dimensional gravity has been widely rec-
ognized as a laboratory not only for studying GRT, but also quantum-gravity 
models. A nice overview of these models can be found in the book of Compère 
[3]. It is conjectured that this genuine solution will be of importance when one 
considers thermodynamic properties close to the horizon, i.e., Hawking radiation. 
The (2 + 1)-dimensional BTZ solution is comparable with the spinning point 
particle solution (or “cosmon” [4]) of the dimensional reduced spinning cosmic 
string or Kerr solution. (2 + 1)-dimensional gravity without matter, implying 
that the Ricci- and Riemann tensor vanish, so matter-free regions are flat pieces 
of spacetime. When locally a mass at rest is present, it cuts out a wedge from the 
2-dimensional space surrounding it and makes the space conical. The angle defi-
cit is then proportional to the mass [5]. The important fact is that the spinning 
point particle has a physical acceptable counterpart in (3 + 1)-dimensions, i.e., 
the spinning cosmic string. The z-coordinate is suppressed, because there is no 
structure in that direction altogether. It is not a surprise that these models are 
used in constructing quantum gravity models. In these models one uses locally 
Minkowski spacetime, so planar gravity fits in very well. 

The BTZ solution is related to the Anti-deSitter/Conformal Field Theory 
(AdS/CFT) correspondence [6] and became a tool to understand black hole en-
tropy [7]. For the (2 + 1)-dimensional BTZ black hole solution, one can try to 
follow the same procedure as used for the cosmic string, by uplifting the solution 
to (3 + 1)-dimensional spacetime. However, the cosmological constant must be 
taken zero, when the BTZ solution is uplifted, so it loses its connection with the 
asymptotic AdS3 black hole. This opens the way to new solutions, which was 
done in a conformally invariant setting [8] [9]. Conformal invariance (CI) was 
originally introduced by Weyl [10]. See also the textbook of Wald [11]. The 
AdS/CFT correspondence renewed the interest in conformal gravity. AdS/CFT is 
a conjectured relationship between two kinds of physical theories. AdS spaces 
are used in theories of quantum gravity while CFT includes theories similar to 
the Yang Mills theories that describe elementary particles. It is believed that CI 
can help us to move a little further along the road to quantum gravity. Exact lo-
cal CI at the level of the Lagrangian, will then spontaneously be broken, compa-
rable with the Brout-Englert-Higgs (BEH) mechanism. It is an approved alterna-
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tive for disclosing the small-distance structure when one tries to describe quan-
tum-gravity problems [12] [13]. It can also be used to model scale-invariance in the 
cosmic microwave background radiation (CMBR) [14]. Another interesting ap-
plication can be found in the work of Mannheim on conformal cosmology [15]. 
This model could serve as an alternative approach to explain the rotational 
curves of galaxies, without recourse to dark matter and dark energy (or cosmo-
logical constant). In Mannheim’s model, standard Schwarzschild phenomenol-
ogy can in fact be recovered in conformal gravity in the presence of a sca-
lar-gauge field. Further, GRT will be different on different scales by virtue of the 
dilaton field. As regards dark matter, there is nothing in principle wrong with 
the existence of nonluminous material. Rather, what is disturbing is the ad hoc, 
after the fact, way in which dark matter is actually introduced, with its presence 
only being inferred after known luminous astrophysical sources are found to fail 
to account for any given astrophysical observation [15]. The dark energy prob-
lem is even more severe, and not simply because its composition and nature are 
as mysterious as that of dark matter. The introduction of a cosmological con-
stant will not solve this problem. It is not possible to explain the huge discre-
pancy between the contribution from zero-point fluctuations in quantum field 
theory and the predicted value in GRT (some 120 orders of magnitude!). It is 
hoped that in future more data will become available for the rotation curves of 
galaxies. The validity of conformal gravity theory can also be tested with the 
cosmic microwave background. It is a challenge to alternate theories to fit the 
cosmic microwave background data. The growth of inhomogeneities in the 
model and the size of the fluctuation “yardstick” (determined by ω) of the con-
formal theory would be different from the one used in the standard theory. 

Another key problem is the handling of asymptotic flatness of isolated systems 
in GRT, especially when they radiate and the generation of the metric gµν  
from at least Ricci-flat spacetime. In the non-vacuum case one should construct 
a Lagrangian where spacetime and the fields defined on it, are topological regu-
lar and physical acceptable. This can be done by considering the scale factor (or 
warp factor in higher-dimensional models [16]) as a dilaton field besides, for 
example, a conformally coupled scalar field or other fields. Conformal invariant 
gravity distinguishes itself by the notion that the spacetime is written as 

2g gµν µνω=  , with ω a dilaton field which contains all the scale dependencies 
and gµν  the “un-physical” spacetime, related to the (2 + 1)-dimensional Kerr 
and BTZ black hole solution. ω is just an ordinary renormalizable field, which 
could create the spacetime twofold: an in-falling and outside observer use dif-
ferent ways to fix the conformal gauge in order to overcome the unitarity prob-
lems encountered in standard approaches in quantum gravity models. It can be 
handled on equal footing with a scalar field. Renormalization and unitarity 
problems in general relativity at the quantum scale, have a long history [17] [18]. 
In first instance, it was believed that conformal invariance would not survive in 
quantum gravity (see, for example, the overview of Duff [19]). However, new 
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interest occurred, when it was realized that Weyl anomalies and unitarity prob-
lems could be overcome. In constructing an effective theory in canonical quan-
tum gravity and to obtain quantum amplitudes, one performs a functional inte-
gration of the exponent of the entire action over, for example, all components of 
the metric tensor at all spacetime points. Now the integration is first performed 
over the dilaton function ω together with the matter fields. Integration over the 
ω is identical to the integration over a renormalizable scalar field. In the action 
the dilaton must be shifted to the complex contour, in order to obtain the same 
unitarity and positivity features as the scalar field. Another actual problem is the 
back hole complementarity: how to handle the in- and out-going radiation as 
experienced by an in-falling- and outside observer. In a dynamical setting, there 
will be a back-reaction on the location of the horizon(s). The in falling and out-
side observer will experience a different ω. They use different ways to fix the 
conformal gauge. Further, there is the problem of extending the Penrose dia-
gram in a one-to-one map, in order to avoid unitarity and locality problems and 
to avoid the need to define the inside of the black hole (or even another un-
iverse). The antipodal identification could be used [20], i.e., a conformal com-
pactification of the manifold [21]. 

In Section 2 and 3 we describe the dynamical CI model on the original BTZ 
black hole spacetime, uplifted to (3 + 1) dimensions. In Section 3.2 we present a 
numerical solution of the complete set of coupled PDE’s. In Section 4 and 5 we 
find an exact time-dependent solution in the vacuum situation in Edding-
ton-Finkelstein coordinates and we explain possible ways to connect this solu-
tion with recent research on black hole complementarity, antipodal identifica-
tions and hawking radiation.  

2. The BTZ Solution Revised  

If one solves the Einstein equations G gµν µνλ=  for the spacetime 

( )
( )

( )( )222 2 2 2
2

1d d d d d ,s N t N t
N

ϕρ ρ ρ ϕ ρ
ρ

= − + + +           (1) 

one obtains [8] 

( )

( )

2 2
2 2 2

2

2

16 ,

4 ,

G JN

GJN Sϕ

ρ α ρ
ρ

ρ
ρ

≡ −Λ +

≡ − +
                   (2) 

where S, J and α are integration constants [1] [3]. The parameters α and J 
represent the standard ADM mass (α2 = ±8GM) and angular momentum and 
determine the asymptotic behavior of the solution. Λ represents the cosmologi-
cal constant. There is an inner and outer horizon and an ergo-circle just as in the 
case of the Kerr spacetime. However, we live in a 4-dimensional spacetime, so 
one way or another, the BTZ solution in 3 dimensions must be up-lifted to (3 + 1) 
dimensions. From the Einstein equations one can then easily verify that Λ = 0. 
So we consider here the case Λ = 0, and we write the spacetime as 
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( ) ( )
2 2

2 2 2 2 2
2 2 2 2

2 2 2
2

d 8 d d
16

4d 2 d d ,

H

H

rs G JS M S t
G J r

GJS t

ρ
ρ ρ

ρ

ρ ϕ ρ ϕ
ρ

 = − − − +  −

 
+ + − 

 

        (3) 

with Hρ  the horizon 2
H

G J
M

ρ = . In the case of S = 0, which is also done in 

the original BTZ solution, one can transform the spacetime to 

( ) ( )
2

2 22 2 24d d d d d ,GJs tα ϕ ρ α ρ ϕ
α

  ′ ′= − + + + 
 

            (4) 

by ( )
2 2 2 2

2
4

16G J α ρρ
α
+′ = . This is just the spinning particle spacetime [4]. 

In a former study [8], we investigated the revised BTZ solution in connection 
with the spinning cosmic strings and conformal invariance and found an up-
lifted exact vacuum solution.  

The spacetime Equation (1) is then replaced by 

( ) ( )
( )

( )( )22 22 2 2 2
2

1d d d d d ,s N t N t
N

ϕω ρ ρ ρ ρ ϕ ρ
ρ

 
= − + + + 

  
     (5) 

with ω the dilaton field. A typical solution is then found [8] for ω, N and Nϕ , 
which is asymptotically regular. See Figure 1. It is remarkable that this solution 
resembles the standard BTZ solution. However, we don’t need a cosmological 
constant. Further, ω plays the role here of a cosmological scale factor. So we can 
extend the model to small scales. This will be done, in a dynamical setting, in the 
next section.  

3. The Dynamical BTZ Model 

3.1. The Field Equations 

Let us consider the time-dependent spacetime ( )2,g t gµν µνω ρ≡   

( ) ( )
( )

( )( )22 22 2 2 2 2
2

1d , , d d d d , d ,
,

s t N t t z N t t
N t

ϕω ρ ρ ρ ρ ϕ ρ
ρ

 
= − + + + + 

  
(6) 

 

 
Figure 1. Example of a conformal invariant solution of the BTZ on a 3-dimensional 

spacetime. 
( )4

~
r c

N
r
+

. The location of the horizon is determined by the constant c. 
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with ω the dilaton field. The action under consideration is 

( ) ( )( )
( )

*4 * 2

2 4

1 1d
12 2

1 1, .
4 36

S x g R D D

F F V

α α
α α

αβ
αβ

ω ω ω

ω κ ω

= − − ΦΦ + − Φ Φ + ∂ ∂


− − Φ − Λ 


∫    





      (7) 

We parameterize the scalar and gauge field as 

( ) ( )( ) ( ) ( )0
1, ,0,0, , , , , e .inA P t P t n t X t
e

ϕ
µ ρ ρ ρ η ρ = − Φ =  

        (8) 

The gauge covariant derivative is D ieAµ µ µΦ = ∇ Φ + Φ  and Fµν  the Abelian 
field strength. 

In the action one redefined 
2

2
2

6ωω
κ

≡ −  (in order to ensure that the ω field 

has the same unitarity and positivity properties as the scalar field Φ [22]) and 
1
ω

Φ = Φ . This Lagrangian is local conformal invariant under the transforma-

tion 2 1,g gµν µν→ Ω Φ→ Φ
Ω

 

   and 1ω ω→
Ω

. 

Varying the Lagrangian with respect to , ,gµν ωΦ  and Aµ , we obtain the 
equations 

( ) ( ) ( ) ( ), 2 4
2 *

1 1 , ,
6

c AG T T T g g Vω
µν µν µν µν µν µνκ ω ω

ω
Φ = + + + Λ + Φ +ΦΦ  



    

 

 

    (9) 

2 31 1 0,
6 9

VRα
αω ω κ ω

ω
∂

∇ ∂ − − − Λ =
∂

                  (10) 

( )( )* *
*

1 0, ,
6 2

V iD D R F D Dα ν
α µν µ µε∂
Φ − Φ − = ∇ = Φ Φ −Φ Φ

∂Φ
          



     (11) 

with 

( ) 1 ,
4

AT F F g F Fα αβ
µν µα ν µν αβ= −

                    (12) 

( ) ( )
( ) ( ) ( )

, * *

** *
3

cT g

D D D D g D D

α
µν µ ν µν α

α
µ ν µ ν µν α

Φ = ∇ ∂ ΦΦ − ∇ ∂ ΦΦ

 − Φ Φ + Φ Φ − Φ Φ  



     



          



       (13) 

and 

( ) ( )2 2 16 .
2

T g gω α α
µν µ ν µν α µ ν µν αω ω ω ω ω ω = ∇ ∂ − ∇ ∂ − ∂ ∂ − ∂ ∂ 

 
  

        (14) 

The covariant derivatives are taken with respect to gµν . Newton’s constant 
reappears in the quadratic interaction term for the scalar field. One refers to the 
field ( ),tω ρ  as a dilaton field. A massive term in ( ),V ωΦ  will break the 
tracelessness of the energy momentum tensor, a necessity for conformal inva-
riance. The cosmological constant Λ could be ignored from the point of view of 
naturalness in order to avoid the inconceivable fine-tuning. Putting Λ zero in-
creases the symmetry of the model. 
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Note that we cannot use in the stationary CI invariant model the gauge At = 0. 
In standard gauged vortices models, this gauge simplifies the well-known Niel-
sen-Olesen 1n =  vortex solution. The spatial rotational symmetry can then be 
completely compensated by a spatially uniform gauge transformation. In the sta-
tionary situation this is not the case. 

For the Maxwell field Aµ , the equation for At is a constraint equation and in a 
time-dependent setting, only iA  are dynamical. Standard, one uses then the 
Lorentz-gauge to remove At completely. Gauge invariance is necessary in order 
to overcome breaking of locality and unitarity. In models with arbitrary vorticity 
n and SU(2)-Yang-Mills-Higgs theory, Gauss’s law yields also a non-zero At for 
most gauges. Just as in the monopole and dyon solutions, At produces a back 
reaction on iA  perturbatively. Although the dyon fields are time-independent, 
there is a net kinetic energy because At is non-vanishing, so are steadily rotating 
(see for example the textbook of Weinberg [23]). 

In our model we have rotation, i.e., a term ( ),N tϕ ρ . If we calculate the con-
servation equations for the Einstein equations, one easily finds that 

0
1P PN
e

ϕ=                           (15) 

So we obtained a kind of natural “gauge” in order to get rid of A0 (Equation (8)). 
The equation for Nϕ  decouples from the other equations. 

The field equations now become 

( )

( ) ( ) ( )

( )

( )

2
4 3 2 4 2 2

2 2 2

5
3 2 2 4 2 2 2 4 2

2 2

4 2 2 3 2 2 4 2 3
2 3 4

2 3 2 2 2 42 2 2

2 2 5
2 4 2 2

4 4 2 3

13 3 3

3 2

1 16 6 18
6

3 6

N NN N N N N N N
N X

N NN V XX N N X X P N P
e

N P N X P X NN N
e eX

NP P NP N P X
e e

ω ω
ρ η ω

ωω η η
ρ ρ

η ηκ ω
ρ ρ ρη ω

ωω η
ρ ρ

′  ′′ ′ ′= − + + − + −  +  

′ ′ ′ ′− − + + − + −

 
′− − Λ + + 

 +

′ ′+ − − +







 

 ( ) ,X


′ 


(16) 

( ) ( )

( )
( ) ( )

2
4 3

2 3
4 2 2 2 4 2 2

2 3

2 2 2

2 4
2 2 4 2

2 2 3 2 22 2 2

2 2 2 2 2 2
2 2 2 2 2 2

2 2 2 2 2

d2 2
d

2

1 12
2

2 6

N XN VN N N
N X

P NN N X X N
e

X

P N XX P N P
e e rX

P P N X PX X
e e

ω ω ηω ω ω
ρ ω

ωω ω ω η ω
ρ

η ω

ω ωω η ω
ρη ω

η ωω η ω η
ρ ρ ρ

′ ′′ ′ ′= + + + + 
 
 

′ ′ ′− + − − 
 +

+


′ ′ ′+ − + + −

+

   
⋅ + + + + +   
   

−













( )
2

2 4 4 2 2 2 4 41 3 5 2 ,
3 6
N V X Xκ ω ω η ω η
ω

 + Λ + +  
  

   (17) 
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( ) ( )

( )
( ) ( )

2
4 3

2 3 2
2 4 2 2 4 2 2 2 4

2 3

2 2 2

2 4
2 2 4 2

2 2 3 2 22 2 2

2 2 2 2 2 2
2 2 2 4

2 2 2

d2 2
d

12
3 6
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Further, we obtain from the Maxwell equations and Einstein constraint equations 
2 2

2 2
2 2 2 2 2 2
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2 2, .
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P PX X

e e

η ωω η ωω

η ω η ω
ρ ρ
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



           (22) 

The equation for ω is obtained from the Einstein equations and the scalar equa-
tion for X. If we substitute back the equations into the dilaton equation, we ob-
tain the relation for the potential 

2 d d ,
3 d d

V VV X
X

η ω
ω

= +                       (23) 

From the conservation equations we then obtain 
2 2 2 2

2 2
d d d d5 6 6 , 5 6 6 .
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X PP V V X PP V VV X V X
X X

η ηη ω η ω
ω ωρ ρ

′
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

 

  (24) 

Sometimes, one chooses a unitary gauge in order to obtain a comparable relation 
(see for example Oda [24]).  

3.2. The Numerical Solution  

We can plot a numerical solution of the field equations of Section 3.1 for a set of 
initial and boundary values. We can choose as initial values the vacuum solution 
of Equation (16)-(21). This solution can easily be found exactly: 

( ) ( ) ( ) ( )( )
( ) ( )

1 11

1

1
212

1 1
1

1 2 2 1 2 3 2
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1e , log ,

1e , d ,
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F N G t F
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N H t F F a a
F

ϕ
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ρ

ρ ρ
ρ

−
= = −

= + = + ∫
        (25) 
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where from the other PDE’s a function for F1 can be found for any 1k . We write 
the second order PDE system as a set of first order PDE’s and used a Mathema-
tica routine for solving the system. We checked the solution with the Cad-
sol-Fidisol solver.1 In Figure 2 and Figure 3 we plotted typical solutions for dif-
ferent initial and boundary conditions. It turns out that the solution is insensi-
tive for the cosmological constant (as expected), but very sensitive for the value 
of the potential. Further, we observe that an initial wavelike function for the sca-
lar field, induces a wavelike behavior in the dilaton field. It is not a hard task to 
find the initial conditions and the suitable values of the several parameters in 
order to obtain a regular and singular free spacetime gµν  out of a BTZ solution 
gµν  with its horizons. We already mentioned in the introduction, that the 
z-coordinate don’t play a role in our model. So it was possible to uplift the 
BTZ-spacetime. We will return to this issue in connection with conformal com-
pactification in the next sections.  

 

 
Figure 2. Example of a numerical solution of the system of Equation (16)-(21) with only for the scalar field 
X an outgoing wavelike initial value. We used the potential from Equation (23). 

 

 

1See: http://www.sai.msu.su/sal/B/2/FIDISOL.html.  
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Figure 3. As Figure 2, but now with a different initial wave for the scalar field. We used the initial outgoing 

wave ( )( )e sin 4X tρ ρ ρ−= − + . We observe that the wave turns quickly into a solitary wave and induces a 

wavelike behavior in ω. 

4. An Exact Time-Dependent Vacuum BTZ Solution in  
Eddington-Finkelstein Coordinates in Conformal  
Invariant Gravity  

Quite recently, some progress was made in understanding the physics at the ho-
rizon of black holes, where quantum effects will come into play. For a main-
stream treatment on this subject we refer to Parker and Toms [25]. 

The fundamental question is what happens with an evaporating black hole 
(see for example the overview article of Page [26] and references therein). It is 
for sure that quantum effects will resolve the distinction between the inside and 
outside of the black hole and the description of the hawking radiation. It will be 
necessary to consider the dynamical evolution of the spacetime. This can be 
done in a tractable way in an Eddington-Finkelstein coordinate system. One of 
the first attempts was the Vaidya solution [27]. In fact, the Vaidya solution is 
one of the non-static solutions of the Einstein field equations and is a generaliza-
tion of the static Schwarzschild black hole solution. This solution is characte-
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rized by a dynamical mass function depending on the retarded time. A solution 
on the (2 + 1)-dimensional BTZ spacetime was recently found by Chan et al. [28] 
and an approximate solution by Abdolrahimi, et al. [29]. There are several ways 
to look at the “inside” of a black hole, or, differently formulated, how to extend 
maximally the Penrose diagram. Some authors use the existence of white holes, a 
parallel universe, or a wormhole to black-bounce transition [30] [31]. Another 
possibility was proposed by Susskind and Maldacena [32]. Two entangled par-
ticles (a so-called Einstein-Podolsky-Rosen or EPR pair) are connected by a 
wormhole (or Einstein Rosen bridge) and may be a basis for unifying general re-
lativity and quantum mechanics. However, the two entangled black holes in re-
gions I and II in the extended Penrose diagram, will interact via the ingoing and 
outgoing particles instantly. Another problem is, how to treat the connection 
between the observation of the in-falling observer and the outside observer, i.e., 
how to map the quantum states of the in- and out-going radiation in a 
one-to-one way. In context of conformal invariance and black hole complemen-
tarity, there is another possibility of maximal extension of the Penrose diagram 
as initiated by 't Hooft [33], using antipodal identification as spherical harmon-
ics (see also 't Hooft [20] and references therein). If one doesn’t want to give up 
locality and unitarity, one needs this approach. We can ask ourselves if some of 
these ideas can be applied to our spacetime. It seems possible for the Kerr space-
time [3]. However, here we are dealing with the uplifted standard (2 + 1) BTZ 
spacetime. It is clear that one has to consider a dynamical evolution of the space-
time, as described in section 3.1. In the case of the BTZ black hole, the evolution 
of the horizons (where the inner one is the unstable Cauchy horizon) and er-
go-surface outside the horizons can then be revealed. 

Let us write the spacetime Equation (6) in the retarded (“outgoing”) *U t ρ= −  
or advanced (“ingoing”) *V t ρ= +  Eddington-Finkelstein coordinates 

( ) ( ) ( )( )

( ) ( ) ( )( )

22 22 2 2 2

22 22 2 2 2

d , , d 2d d d d , d ,
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(26) 

with 
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d dd d , d d ,
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,
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,
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N t N t

N t

N t
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ρ ρρ ρ
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ρ
ξ ϕ ρ

ρ

≡ − ≡ − ≡ + ≡ +

≡ −

        (27) 

with domains [ ] [ ], , ,U V ρ∈ −∞ +∞ ∈ −∞ +∞ . We make no a priori assumptions 

for N and N ξ  (for example by writing ( )
2 2

2
1

M u
N

aρ
= −

+
 [30]). The field eq-

uations without matter terms now reduce to (an over-dot represents 
U
∂
∂

 and 

'
ρ
∂

=
∂

) 
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′′ =                           (28) 
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( ) ( ) ( ) ( ) 2 32 , 2 ,N N N N
r

ξ ξ ξ ξω ω
ω ω

′ ′ ′ ′′ ′= − = − + 
 
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and constraint 

( )
22 2 2 2

2 2

4 3 2 6 2 .
3

N NN N N Nξ ω ω ω ω ω
ρω ω ρωρ ω

 ′ ′ ′′ ′ ′= + − − + + 
 
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One easily finds the non-trivial solution 
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( )

1

2 2 2
2 3 2

1
2 32 3
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ec U

c c
N c N F U

c cc c
ξρ

ω
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−
= = ± =
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with ( )F U  an arbitrary function of U. This solution is consistent with the di-
laton equation. Further, it is remarkable that the time dependency emerge in ω  
and not N. However, UUg  depends on U via N ξ . So our metric ( )4gµν  becomes 
(for the retarded case) 

( )
( )

( )( )
1

2 2 22
21 3 22 2 2 2

2
2 32 3

ed d 2d d d d d ,
c U c c c

s U U z F U U
c cc c

ρ
ρ ρ ξ

ρ

−  −
 = ± − + + +
 +  

(35) 

which is flat, while ( )4 1 2

3

6c cR
c

= . The function ( )F U  will be fixed when mat-

ter terms are incorporated (i.e. for example, a scalar gauge field). The metric 
Equation (26) will then contain a term ( )2 2, db U ρ ϕ  and a relation like 

( ) 2 2 2

bN
X

ξ

η ω
′ =

+
 will be obtained. We can now express, for example, U in t 

and ρ : 

2 3

2 3

log .
c c

U t
c c
ρ
ρ

 +
= −  − 

                      (36) 

So we have now a complete picture of the spacetime. We must note that this 
solution is rather different with respect to the vacuum Vaidya spacetime. We al-
so are dealing here with null radiation (null matter fields or gravitational radia-
tion) as in the case of Vaidya, but we did not make any explicit assumption for 
the U or V dependency of , Nω  and N ξ . They follow from the field equations. 
Further, the radiation is in the ( ), zρ -plane instead of the ( ),r θ  plane in the 
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Vaidya case. It is interesting to compare our solution with the Vaidya-type solu-
tion of a spinning black hole in (2 + 1) dimensions found by Chan in conven-
tional GR [28]. They also find a rotation function ( )N Uξ  which is determined 
by an energy-momentum tensor of null spinning dust. From Equation (35), we 
see that the small-scale behavior (and so the dynamical apparent Cauchy hori-
zon) is determined by 

( )
( )
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2 2 2
1 3 222

2 2 2 2 2 3
22

2 3

,
e c U

c c c
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c c
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+

             (37) 

and in the advanced coordinate 
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1 3 222
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c c
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−
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+

             (38) 

If we omit the dilaton factor, we obtain the expressions for gµν . De apparent 
horizon is then determined (in V) by 

( )( )22 2d 1 0,
d 2

N N
V

ξρ ρ= − =                    (39) 

so 
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and in U 

( )

3

23
2 2

1

.AH
c

cc c F U
c

ρ = ±
 

+ 
 

                  (41) 

We see that the location of apparent horizon is independent of the dilaton (so 
also valid for gµν ). However, VVg  depends also on ω , as can be seen by in-
spection of Equation (35), i.e., the denominator. The solution turns out to be  

also valid in the (2 + 1)-dimensional spacetime, i.e., ( )3 1 2

3

6c cR
c

=  and ( )3gµν  flat.  

So we can safely uplift the BTZ solution in Eddington-Finkelstein coordinates in 
vacuum to 4-dimensional spacetime. We will return to this issue in the next sec-
tion. In Figure 4 we plotted *ρ  against ρ  and *ρ  against U. The asymptote  

is at 3

2

c
c

. In Figure 5 we plotted the light cone structure. For the outward emit-

ted signals, the slope is given by Equation (39) (in U) (for the inward, d 0U = ). 
For the limiting cases, we obtain 
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2 3
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             (42) 
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Figure 4. Left: *ρ  as function of ρ. The asymptote is at 3

2

c
c

. Right: *ρ  as function of 

U for 1 2 3 1c c c= = =  and 4 0.3c = ± . 

 

 
Figure 5. Left: Plot of light cone structure. The location of the apparent horizon is for 

small ( )F U  at 3

2

c
c

. For increasing ( )F U  it tends closer to 0ρ = . Right: Penrose di-

agram for the evaporating BTZ black hole in Eddington Finkelstein coordinates ( )*,U ρ . 

The global location of the two pairs of the apparent horizons as function of U is indicated. 
Note that one pair *

AHρ  enters the “future inside” region and comes from the “past in-
side”. By the antipodal identification these regions are removed (no “inside” of the black 
hole) so the locations are mapped on each other. See Section 5. 

 
For 0ρ → , its value doesn’t tend necessarily to −∞ . For increasing U it could 
approach zero again by suitable 1c . Note that in general the location of the ap-
parent horizon is dependent of U (see Figure 5). We can express the apparent 
horizon also in *ρ , 

( )

( )

23

1 2*

23

1 2

1 1
ln ,

1 1
AH

c F U
c c
c F U

c c

ρ

 
+ + 

 =  
 − + 
 

                 (43) 

We can globally plot the location of the apparent horizon in a Penrose diagram, 
if we take for ( )F U  for example 4c Ue . See Figure 5. 

Let us now describe what is the meaning of the dilaton field for an infalling 
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and outside observer in connection with the complementarity of the ingoing and 
outgoing massless particles. We will use the notion of conformal maps. The out-
side observed experiences a mass 2 2Nω  and an evaporating black hole (in 
U-coordinate) by Hawking radiation (in the case of massive particles, of course, 
there can also be first a growing mass; we will not consider this here). This radi-
ation is 

( ) 1
2

22 2 1

2 3

2
~ e .c U

U
cN

c c
ω −∂ =                      (44) 

This blows up for 1 0c <  and U → +∞ . However, there is in VVg  in the de-
nominator the factor 12e c U . So an infalling observer crossing the apparent hori-
zon will need a different ω . The ingoing observer, passing the horizon, will 
NOT use the ω  of the outside observer. In fact, it is locally unobservable. This 
happens at very small scales, when 0UUg →  and ( )2 2 2 2 0N Nξω ρ − →  for 

1U −
 in Planck units (the ergo-surface) and there is no horizon at all (note 

that 2ω  is an overall factor for gµν ). The dilaton determines the different no-
tion of what is happening near the horizon for an infalling and outside observer. 
Now remember that the Ricci scalar curvature transforms under conformal  

transformations as 2

1 6R R α
α

 → − ∇ ∇ Ω ΩΩ  
 and the additional freedom in ω, 

i.e., 1ω ω→
Ω

. The dilaton equation of Equation (10) is an auxiliary equation in  

vacuum. It follows also from the Einstein equations. When matter is included, 
one obtains conditions on the potential (see, for example, Equation (23)). So it 
would be fine if we could impose 0R =  for the local observer by using  

6 0R α
α− ∇ ∇ Ω =

Ω
   . One can then apply Fourier analysis of quantum mechanics  

and treat ω  infinitesimal [34]. This is a complementarity transformation on 
the dilaton and switches on and off the effects these Hawking particles have on 
the metric. 

5. Complementarity Transformation and Conformal  
Compactification  

Let us first describe what is the meaning of the dilaton field for an in-falling and 
outside observer in connection with the complementarity of the ingoing and 
outgoing massless particles. We will use the notion of conformal maps. The out-
side observed experiences a mass 2 2Nω  and an evaporating black hole (in 
U-coordinate) by Hawking radiation (in the case of massive particles, of course, 
there can also be first a growing mass; we will not consider this here). This radi-
ation is 

( ) 1
2

22 2 1

2 3

2
~ e .c U

U
cN

c c
ω −∂ =                     (45) 

This blows up for 1 0c <  and U → +∞ . However, there is in VVg  in the de-
nominator the factor 12e c U . So an in-falling observer crossing the apparent ho-
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rizon will need a different ω. The ingoing observer, passing the horizon, will 
NOT use the ω of the outside observer. In fact, it is locally unobservable. This 
happens at very small scales, when 0UUg →  and ( )2 2 2 2 0N Nξω ρ − →  for 

1U −
 in Planck units (the ergo-surface) and there is no horizon at all (note 

that 2ω  is an overall factor for gµν ). The dilaton determines the different no-
tion of what is happening near the horizon for an in-falling and outside observer. 
Now remember that the Ricci scalar curvature transforms under conformal  

transformations as 2

1 6R R α
α

 → − ∇ ∇ Ω ΩΩ  
 and the additional freedom in ω, 

i.e., 1ω ω→
Ω

. The dilaton equation of Equation (10) is an auxiliary equation in  

vacuum. It follows also from the Einstein equations. When matter is included, 
one obtains conditions on the potential (see, for example, Equation (23)). So it 
would be fine if we could impose R = 0 for the local observer by using  

6 0R α
α− ∇ ∇ Ω =

Ω
   . One can then apply Fourier analysis of quantum mechanics  

and treat ω infinitesimal [34]. This is a complementarity transformation on the 
dilaton and switches on and off the effects these Hawking particles have on the 
metric. 

Let us return to the conformal mapping in more detail. We know that in 
Minkowski spacetime the conformal map preserves the light-cone structure and 
so the null geodesics (i.e., the affine parameter). The conformal group in Min-
kowski, however, does not act as linear transformations, so one needs a trick (see, 
for example Felsager [21], section 10.3). 

One starts with a pseudo-Cartesian space 1 1R R⊗  (for example our ( ),x z ). 
One then enlarge first the pseudo-Cartesian space by adding a “null”-cone at in-
finity. So one compactifies the plane in R2. In order to apply the conformal 
transformation of inversion, one considers the unit sphere S1 and map R1 onto 

{ }1S N− . If we want to apply all the conformal transformations, then we must 
enlarge the pseudo-Cartesian space by adding two extra dimensions ( ),t y , (lat-
er, we replace x by sinx ρ ϕ=  and cosy ρ ϕ= , to get back our axially sym-
metric spacetime coordinates ( ), , ,t zρ ϕ ). The goal is then to embed the pseu-
do-Cartesian space 1 1R R⊗  as a subset of 2 2R R⊗ . We define M as the inter-
section of the null cone K (in 2 2R R⊗ ) with the hyperplane 1tρ − =  (or 

tρ + ) and define an isometry 1 1:F R R M⊗ → . Further, one works in the par-
ticular section of M, ( )1 1M R R⊗ . Because F induces a coordinate system on M, 
one can construct characteristic lines. There are characteristic lines that are pa-
rallel to 1tρ − =  and are generated by null vectors where tρ = . There is a 
one-to-one correspondence between these lines missing ( )1 1M R R⊗  and 
points on K in 1 1R R⊗ . So they represent points on the null cone at infinity. 
One can proof [21] that local sections N1 and N2 on the null cone which intersect 
characteristic lines at most once, can be mapped onto each other by a conformal 
map obtained by projection along the characteristic lines. If we would now try to 
project ( )1 1M R R⊗  onto a suitable subsection of K, then it turns out that it is 
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not possible to find a single section that is intersected exactly once by each cha-
racteristic line. Instead one can consider N as the product of two unit spheres in 

( )2 2M R R⊗ , i.e., N becomes a hyper-torus 1 1S S⊗  and each characteristic 
line will then intersect K twice in antipodal points. So each point in 

( )1 1M R R⊗  is represented by a pair of antipodal points on 1 1S S⊗ . The pro-
jection is a conformal map. The procedure here described is called a conformal 
compactification of ( )1 1M R R⊗ . In our case the antipodal identification is 
( ) ( ), , , , , ,U V z U V zϕ ϕ→ − − − + π . The points are not physically distinct events, 
but identical and are different representations of one black hole. In fact, there is 
no inside of the black hole. The price is that the manifold is not time-orientable 
for AHρ ρ< . When the evaporation process speeds up, we observe from Equa-
tion (40) that the two horizons approach zero for increasing ( )F U , which is 
assumable. Moreover 

1

1
20

2 3

lim
eUU c U

cg
c cρ→

→ ±                      (46) 

where in the denominator appears the exponential factor from the dilaton. So ω 
determines the scale as function of U the local observer experiences. Note that 
on “the other side” (in the Penrose picture region II), U change sign and the  

righthand side of Equation (46) becomes 
1

1
2

2 3e
c U

c
c c − . 

We found in section 4 that the solution of the BTZ spacetime in 4D in Ed-
dington-Finkelstein coordinates in conformally invariant gravity is identical to 
the 3D case, where we omitted the 2dz . That is curious, because we can still ap-
ply the conformal compactification (conformal transformations) and the antip-
odal identifications in 4D spacetime sketched above. Further, we obtained a flat 
gµν  out of the “un-physical” gµν , which resembles the original BTZ-black 
hole (without the need of a cosmological constant). 

Some notes can be made about the connection with the gravitational 
back-reaction. In the non-vacuum situation of section 3.2, the back-reaction is 
quite clear. In the vacuum case, there will be a shift in the location of the appar-
ent horizon after the emission of null radiation (Equation (45)). This can be 
made clear in the Penrose diagram, as was also found in the time-dependent 
Vaidya spacetime in connection with black-bounces and traversable wormholes 
[30] [31]. In the conformally invariant model and the antipodal approach, how-
ever, one doesn’t need such extreme escape. This shift will be related to the ic  
in (Equation (45)), just as the scalar curvature of gµν  was related to ic , i.e.,  

( )4 1 2

3

6c cR
c

= . A comparable effect was found in the counterpart model of the  

cylindrical radiating Lewis-van Stockum solution (in ( ), tρ  coordinates) and 
Einstein-Rosen pulse-wave solution [35]. This solution is obtained from the sta-
tionary ( ),z ρ  spacetime where one replaces ,t iz z it→ →  and J iJ→ . This 
solution has, however, reflection symmetry, , z zϕ ϕ→ − → − . A curious feature 
of the solution is the fact that the Kretschmann scalar becomes zero for two dif-
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ferent values of a constant in the exact solution. In some sense, the spacetime 
returns to his original status after the emission of the pulse wave. The relation 
with the antipodal symmetry is current under investigation by the author. 

6. Conclusions  

Using conformally invariant gravity, a new solution is found for the uplifted BTZ 
spacetime, without a cosmological constant. The solution shows some different 
features with respect to the standard BTZ solution. In the non-vacuum situation, 
where a scalar-gauge field is present, a numerical solution is presented on a 
spacetime where one writes the metric as 2g gµν µνω=  , with ω a dilaton field, to 
be treated on equal footing with the scalar field and gµν  an “un-physical” 
spacetime. The effect of ω on the behavior of the solution is evident. An out-
going wave-like initial value for the scalar field induces a wave-like response in 
the dilaton field and pushes the apparent horizon closer to 0ρ = . The solution 
depends critically on the shape of the potential. The solution can be used to in-
vestigate what happens with the spacetime of an evaporating black hole through 
Hawking radiation. In the vacuum situation in Eddington-Finkelstein coordi-
nates, an exact solution is found for the (2 + 1)-dimensional case as well as for 
the uplifted situation. The “un-physical” gµν  (BTZ) solution has a non-zero 
Ricci scalar, while gµν  is flat. 

There is possible a link with the antipodal identification. Antipodal mapping 
is inevitable if one wants to maintain unitarity during quantum mechanical cal-
culations on the Hawking particles. The antipodal identification can be 
represented as a conformal transformation generated from the pseudo-orthogonal 
matrices of ( )3,3O , i.e., the conformal group. Each conformal transformation 
in this group can be presented by a pair of antipodal matrices. This was the main 
reason to investigate in this manuscript the dynamics of the BTZ black hole in 
conformally invariant gravity. In the conformally invariant approach, the dilaton 
field plays a fundamental role. We find that as soon its value is fixed (by the 
global spacetime after choosing the coordinate frame), the local observer expe-
riences scales. Moreover, we find that it also plays a role in the antipodal map-
ping. If we substitute the apparent horizon AHρ  (Equation (41)) into ω (Equa-
tion (34)) at the horizon, we can then compare ω on both sides of the horizon by 
replacing U by −U. By imposing proper matching conditions, one could obtain 
restrictions on ( )F U . 

We do not pretend that our model is a new description of the physics of an 
evaporating BTZ black hole. We have tried to compare conformally invariant 
gravity solutions of the (2 + 1)-dimensional BTZ black hole solution and its up-
lifted counterpart model with the results of former results on black hole studies. 
Especially the antipodal identification seems to fit well in our model. 
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Abstract 
We study the quantization of a charged particle motion without spin inside a 
flat box under a static electromagnetic field. Contrary to Landau’s solution 
with constant magnetic field transverse to the box and using Fourier trans-
formation, we found a full solution for the wave function which is different 
from that one given by Landau, and this fact remains when static electric field 
is added. However, the Landau’s levels appear in all cases. 
 
Keywords 
Landau’s Levels, Quantum Hall Effect, Flat Box 

 

1. Introduction 

The work of Klitzing, Dora and Pepper [1] presented a breakthrough in experimen-
tal physics due to the success in measuring the Hall voltage of a two-dimensional 
electron gas realized in a MOSFET. The important fact discovered in this experi-
ment was that the Hall resistance is quantized, and Landau’ eigenvalues solution 
[2] (Landau’s levels) of a charged particle in a flat surface with magnetic field has 
become of great importance in trying to understand integer hall effect [1] [3] [4] 
[5] [6], fractional Hall effect [6] [7] [8] [9], and topological insulators [10]-[16]. 
These elements promise to become essential for future nanotechnology devices 
[17] [18] [19]. Due to this considerable application of the Landau’s levels, it is 
worth to re-study this problem and its variations with an static electric field. In 
this paper, we solve the problem of a charged particle inside a flat box with 
lengths xL , yL , and zL  such that ,z x yL L L  by using the Fourier trans-
formation, for three different cases: for a transverse constant magnetic field, for 
a constant magnetic field orthogonal to a constant electric field, and for a con-
stant magnetic field parallel to a constant electric field. We show that there exists 
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a different solution for this type of eigenvalue quantum problems than that one 
given by Landau, but having the same Landau’s levels. We consider that this re-
sult could be relevant because Landau’s solution is kept using in different works 
like Prange’s [20], Laughling’s [21], solid state and quantum transport books as 
well [3] [7] [22] [23].  

2. Analytical Approach for the Case ( )B B0,0,=  

Let us consider a charged particle “q” with mass “m” in the box with a constant 
magnetic field orthogonal to the flat surface, ( )0,0, B=B , as shown in Figure 1.  

For a nonrelativistic charged particle, the Hamiltonian of the system (units 
CGS) is  

( )2

,
2
q c

H
m

−
=

p A
                        (1) 

where p  is the generalized linear momentum, A  is the magnetic potential 
such that = ∇×B A , and “c” is the speed of light. We can choose the Landau’s 
gauge to have the vector potential of the form ( ),0,0By= −A . Therefore, the 
Hamiltonian has the following form  

( )2 2 2

.
2 2 2

yx zpp qBy c pH
m m m

+
= + +                    (2) 

To quantize the system, we need to solve the Schrödinger’s equation [24]  

( )2 2 2ˆˆ ˆ
.

2 2 2
yx zpp qBy c pi

t m m m

 +∂Ψ  = + + Ψ 
∂   

                (3) 

where ( ), tΨ = Ψ x  is the wave function,   is the Plank’s constant divided by 
2π , ˆ ip  is the momentum operators such that ˆ,i j ijx p i δ  =   . Now, the argu-
ment used by Landau is that due to commutation relation ˆˆ , 0xp H  =  , between 
the operators ˆ xp  and the Hamiltonian Ĥ  (implying that ˆ xp  is a constant of 
motion), it is possible to replace this component of the momentum by xk ,  
 

 
Figure 1. Electric charged in a flat box with magnetic field. 
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having a solution for the eigenvalue problem of separable variable type, 
( ) ( ) ( )2 3 4f x f y f z  for the resulting eigenvalue problem, once the time variable 

is separated. However, this problem can be fully addressed using the Fourier 
transformation. First, since the Hamiltonian Ĥ  does not depend explicitly on 
time, the proposition  

( ) ( ), e iEtt −Ψ = Φx x                        (4) 

reduces the equation to an eigenvalue problem 
ˆ .H EΦ = Φ                            (5) 

Then, this equation is written as  
2 22 2

2 2
2

ˆ ˆ1 2ˆ ˆ .
2 2 2

y z
x x

p pqB q Bp yp y E
m c m mc

   + + + + Φ = Φ  
   

           (6) 

The variable “z” is separable through the proposition  

( ) ( ), e , ,zik z
zx y kφ −Φ = ∈ℜx                     (7) 

resulting in the following equation  
22 2

2 2
2

ˆ1 2ˆ ˆ ,
2 2

y
x x

pqB q Bp yp y E
m c mc

φ φ
    ′+ + + =  

   
              (8) 

where E′  is  
2 2

.
2

xk
E E

m
′ = −



                           (9) 

That is, the resulting partial differential equation is of the form  
2 2 2 2 2

2 2
2 2 2

1 2 .
2 2

qB q Bi y y E
m c x mx c y

φ φ φφ φ
 ∂ ∂ ∂ ′− − + − = 

∂∂ ∂ 

 

          (10) 

This equation will be solved using Fourier transformation [25] on the variable “x”,  

( ) [ ] ( )1ˆ , e , d .
2

ikxk y x y xφ φ φ
ℜ

=
π

= ∫                 (11) 

Applying Fourier transformation to this equation, knowing its property 
[ ] ( ) ˆx ikφ φ∂ ∂ = − , we get the ordinary differential equation  

( )
2 2

22
02

ˆd ˆ ˆ,
2 2d c

m y y E
m y

φ ω φ φ′− + − =
                  (12) 

where cω  is the cyclotron frequency  

c
qB
mc

ω =                            (13a) 

and ( )0 0y y k=  is the displacement parameter  

0 .cy k
qB

=
                           (13b) 

This equation is just the quantum harmonic oscillator in the “y” direction dis-
placed by an amount 0y . So, its solution in the Fourier’ space is  
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( ) ( ) ( ) ( ) ( )2

0
ˆ , , , e ,c
n n n n n

m
k y y y A Hξω

φ ψ ξ ξ ψ ξ ξ−= = − =


   (14) 

being ( )nH ξ  the Hermit polynomials, and nA  is a constant of normalization, 
( )1 4 2 !n

n cA m nω π=  . and  

( )1 .2n cE nω′ = +                        (15) 

Now, the solution in the real space ( ),n x yφ  is gotten by using the inverse 
Fourier transformation [25],  

( ) ( ) ( )1 1, , e d .
2

ikx c
n n n

m
x y k y y ck qB k

ω
φ φ ψ− −

ℜ

 
= = −      

 π ∫




    (16) 

Making the change of variable ( )cm y ck qBσ ω= −  , and knowing that the 
Fourier transform of the harmonic oscillator solution is another harmonic oscil-
lator solution, we get  

( )
2 2

, e .
qBi xy

c
n n

c c

qB qBxx y
mc mc

φ ψ
ω ω

−  −  =
 
 



 

             (17) 

This last equation is indeed a nonseparable solution of (8). Therefore, the nor-
malized eigenfunctions and the eigenvalues of the eigenvalue problem (5) are 
(ignoring the sign)  

( )
( ), 22 2 2 1 4 e .

z

z

qBi xy k z
c

n k n

cy z c

qB qBx

mcL L mc
ψ

ωω

 − − 
 

 
 Φ =
 
 

x 





       (18a) 

and  
2 2

,
1 .
2 2z

z
n k c

kE n
m

ω  = + + 
 



                    (18b) 

These eigenvalues represent just the Landau’s levels, but its solution (18a) 
is completely different from that one given by Landau on the variables “x” 
and “y”. One needs to point out that there is not displacement at all in the 
harmonic oscillation solution. Now, assuming a periodicity in the z-direction, 

( ) ( ), ,, , , ,
z zn k n k zt x y z L tΦ = Φ +x , the usual condition 2 ,z zk L n n′π ′= ∈  makes 

the eigenvalues to be written as and the general solution of Schrödinger’s Equation 
(3) can be written as  

( )
2 2

2
, 21 2 2 .n n c

z

E n n
mL

ω′ ′= + +
π

                   (19) 

We must observe that these quantum numbers correspond to the degree of 
freedom in the “ ( )y n ” and “ ( )z n′ ” directions. The quantization condition of 
the magnetic flux appears rather naturally since e 1iqBxy c− =  for any “x” and “y” 
such that 2qBxy c j= π , were j∈ . So, in particular one can ask this to 
happen for xx L=  and yy L= . Thus, it follows from the phase term that  

2 , ,x yqBL L
j j

c
= π ∈



                      (20) 

where x yBL L  is the magnetic flux crossing the surface with area x yL L , and 
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c q  is the so-called quantum flux [26]. Then, expression (18a) is written as  

( )
( )

2 2

2 2 1 4 22
.x y z

j ni xy z
L L L

nn j n

cy z c

qB qBxe
mcL L mc

ψ
ωω

 ′
 − − 
 

′

π π  
 Φ =
 
 

x




      (21) 

The degeneration of the eigenvalues (19) comes from the degree of freedom in 
“x” and can be obtained by making use of the following quasi-classical argument: 
given the energy of the harmonic oscillator ( )1 2o cE nω= + , we know the 
maximum displacement of the particle (classically) is given by  

2
max 2 o cx E mω= ± , and since the periodicity in the variable “y” mentioned be-

fore is valid for any “x” value, we must have that the maximum value of the 
quantum number “j” must be  

( )
max

1 22
,y y

c

qBL qBL n
j x

c c mω
+

∆
π

=
π

=


 

               (22) 

and this represents the degeneration, ( )D n , we have in the system  

( )
2

2 1 .y

c

qBL
D n n

mc ω

 
 = +
 π 



                  (23) 

where [ ]ξ  means the integer part of the number ξ . Therefore, the general so-
lution (absorbing the sign in the constants) is  

( )
( ) ,

2 2

2
,

1 4

0

2, e e

2 ,

n n
x y z

j n ED n i xy z i tL L L
nn j

n n j cx y z

n
c x y

jt C
mL L L

j x
m L L

ω

ψ
ω

′
′

− − −
 π π 


′



=

 
′

 
Ψ =  

 

  
 ×    

π



π



∑∑x 





      (24) 

where the constants nn jC ′  must satisfy that 
2

, , 1nn jn n j C ′′ =∑ . The Landau’s le-
vels ,n nE ′  are given by expression (19). 

3. The Analytical Approach for Case B E⊥  

This case is illustrated in Figure 2.  
 

 
Figure 2. Electric charged in a flat box with magnetic and electric fields. 
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Where the magnetic and electric constant fields are given by ( )0,0, B=B  
and ( )0, ,0=E  . We select Landau’s gauge for the magnetic field such that the 
vector and scalar potentials are ( ),0,0By= −A  and yφ = − . Then, our Ha-
miltonian is [21] [22] [23]  

( )

2

ˆ
ˆ ,

2

q
cH q
m

φ

 − 
 = +

p A
x                     (25) 

and the Schrödinger’s equation,  

ˆ ,i H
t

∂Ψ
= Ψ

∂
                         (26) 

is written as  
22 2ˆ ˆ1 ˆ .

2 2 2
y z

x

p pqBi p y q y
t m c m m

 ∂Ψ   = + + + Ψ − Ψ  ∂    
           (27) 

Using the definition ˆ j jp i x= − ∂ ∂  and the commutation relation 
kipx jjk δ=]ˆ,[ , the above expression is written as the following partial diffe-

rential equation  
2 2 2 2 2 2 2 2

2
2 2 2 2 .

2 2 22
qB q Bi i y q y

t m mc x m mx mc y z
∂Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ Ψ

= − − + Ψ − − − Ψ
∂ ∂∂ ∂ ∂

   

   (28) 

Taking the Fourier transform, with respect the x-variable,  
( ) ( )ˆ , , , ,xk y z t tΨ = Ψ  x , the resulting expression is  

2 2 2 2 2 2 2 2
2

2 2 2

ˆ ˆ ˆˆ .
2 2 22

k qB k q Bi q y y
t m mc m mmc y z

 ∂Ψ ∂ Ψ ∂ Ψ = − + + Ψ − −  ∂ ∂ ∂  

   

     (29) 

By proposing a solution of the form  

( ) ( )ˆ , , e ,ziEt ik zk yz t k y− +Ψ = Φ                     (30) 

and after some rearrangements, the resulting equation for Φ  is  

( )
2 2

22
02

d 1 ,
2 2d cm y y E
m y

ωΦ ′− + − Φ = Φ
                  (31) 

where cω  is the cyclotron frequency (13a), and we have made the definitions  
2

0 2

c mcy k
qB qB

= +
                           (32) 

and  
22 22 2 1 .

2 2 2
zkk mcE E k

m m m B
 ′ = − − + + 
 





                (33) 

This equation is again the quantum harmonic oscillator on the variable “y” 
with a cyclotron frequency cω  and displaced by a quantity 0y . Therefore, the 
solution (14) is  

( ) ( )0, c
n

m
k y y y

ω
ψ

 
Φ = −  

 

                  (34) 
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and  

( )1 .2n cE nω′ = +                        (35) 

Thus, the solution in the Fourier space is  

( ) ( ),
0

ˆ , , , e n k zziE t ik z c
n

m
k y z t y y

ω
ψ− +  

Ψ = −  
 





           (36) 

with the energies , zn kE  given by  

( )
2 2 2 2

, 2 .
2

1 2
2z

z
n k c

k mc cE n k
m BB

ω= + + − −
 



 
            (37) 

The solution in the space-time is obtained by applying the inverse Fourier 
transformation,  

( ) ( ) ( ), , ,
1ˆ ˆ, , , , e , , , d ,
2z z z

ixk
n k n k n kt k y z t k y z t k−

ℜ
 Ψ = Ψ = Ψ  π ∫

x      (38) 

which after a proper change of variable and rearrangements, we get the norma-
lized function (ignoring the sign)  

( )
( )

( ), ,
, 1 4 22 2 2

, e ,n kz
z

i t
n k n

cy z c

qB qB c tt x
BmcL L mc

φ ψ
ωω

−
   Ψ = −    

xx





    (39) 

where the phase ( ), ,
zn k tφ x  has been defined as  

( ) ( )
2 2 2 2

, 2

2

2

,
2

.

1
2

2
z

z
n k c

z

k mc tt n
m B

qB c t mck z x y
c B qB

φ ω
 

= + + − 
 

  − + − −  
  

x 









 
            (40) 

asking for the periodicity with respect to the variable “z”,  
( ) ( ), ,, , , ,

z zn k n k zx t z y z L tΨ = Ψ + , it follows that 2z zk L n′= π  where n′  is an 
integer number, and the above phase is now written as  

( ) ( )
2 2 2 2 2

2 2

2

2

1 2 2 2,
2

.

nn c
zz

n mc t nt n z
LmL B

qB c t mcx y
c B qB

φ ω′

 ′ ′
= + + − − 
 

  + − −  
 

π

 

πx 









 
      (41) 

Note from this expression that the term ( ),e i tφ− x  contains the element e
qBi xy

c ,  
and by assuming the periodic condition ( ) ( ), , , ,yt x y L z tΨ = Ψ +x , will imply 
that ( ), tΨ x  will be periodic with respect to the variable “y”, for any “x” at any 
time “t”. In particular, this will be true for xx L= . This last assumption brings 
about the quantization of the magnetic flux of the form  

2 , ,x yqBL L
j J

c
= π ∈



                      (42) 

obtaining the same expression as (20), and this phase is now depending on the 
quantum number “j”  
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( )
2

2

2 2 2, .nn j nn
z x y x y

n j j mc ct e t z xy x ty
L L L L L BqB

φ ′ ′

 ′
= − + − + 



π π



πx 

       (43) 

where nne ′  is the energy associated with the system,  

( )
2 2 2 2

2
, 2 21 2 2 .

2n n c
z

mce n n
mL B

ω′ ′= +
π

+ +




               (44) 

In this way, from these relations and the expression (39) we have a family of 

solutions ( ){ } , ,
,nn j n n j

x t′ ′ ∈
Ψ


 of the Schrödinger Equation (27),  

( ) ( )
4

,
2

1
2 2, e ,nn ji t

nn j n
c c x yx y z

j j c tt x
m m L L BL L L

φ ψ
ω ω

′−
′

      Ψ = −         

π π

 

xx     (45) 

Now, by the same arguments we did in the previous case, the degeneration of 
the systems would be given by (23), and the general solution would be of the 
form  

( )
( )

( )
, 0

, , .
D n

nn j nn j
n n j

t C t′ ′
′ =

Ψ = Ψ∑∑x x                   (46) 

4. The Analytical Approach for Case B E  

Figure 3 shows this case.  
The fields are of form ( )0, ,0B=B  and ( )0, ,0=E  . The scalar and vector 

potentials are chosen as ( ),0,0Bz=A  and yφ = − . The Shrödinger equation 
is for this case as  

( )2 2 2ˆˆ ˆ
,

2 2 2
yx zpp qBz c pi q y

t m m m

 −∂Ψ  = + + − Ψ 
∂   

               (47) 

which defines the following partial differential equation  
2 2 2 2

2
2 2

2 2 2 2

2 2

2 2

.
2 2

qB z q Bi i z
t m mc xx mc

q y
m my z

∂Ψ ∂ Ψ ∂Ψ
= − + + Ψ

∂ ∂∂
∂ Ψ ∂ Ψ

− − − Ψ
∂ ∂

 



 


             (48) 

 

 
Figure 3. Electric charged in a flat box with 
parallel electric and magnetic fields. 
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Proposing a solution of the form ( ) ( ), e iEtt −Ψ = Φx x , we get the following ei-
genvalue problem  

2 2 2 2
2

2 2

2 2 2 2

2 2

2 2

.
2 2

qB z q BE i z
m mc xx mc

q y
m my z

∂ Φ ∂Φ
Φ = − + + Φ

∂∂
∂ Φ ∂ Φ

− − − Φ
∂ ∂

 

 


              (49) 

Applying the Fourier transform over the x-variable, ( ) ( )ˆ , , xk y zΦ = Φ  x , 
the following equation arises after some rearrangements  

( )2 2 2 2 2

2 2

ˆ ˆˆ ˆ ˆ ,
2 2 2

k qBz c
E q y

m m mz y
φ+ ∂ ∂ Φ

Φ = Φ − − − Φ
∂ ∂



 

           (50) 

which can be written as  

( )
2 2 2 2

2
02 2

ˆ ˆ1 ˆ ˆ ,
2 2 2cm z z q y
m mz y

ω∂ Φ ∂ Φ
− + + Φ − − Φ

∂ ∂
 

           (51a) 

where ωc is the cyclotron frequency (13a), and ( )0 0z z k=  has been defined as  

0 .cz k
qB

=
                          (51b) 

This equation admits a variable separable approach since by the proposition 
( ) ( ) ( )ˆ , , ,k y z f k z g yΦ = , the following equations are bringing about  

( ) ( )
2 2

2 12
02

d 1
2 2d c

f m z z E f
m z

ω− + + =


               (52a) 

and  

( )
2 2

2
2

d ,
2 d

g g yg E g
m y

− − =


                     (52b) 

where ( ) ( )1 2E E E= + . The solutions of these equations are, of course, the 
quantum harmonic oscillator and the quantum bouncer, which are given by  

( ) ( ) ( ) ( ) ( )2 12
0 1e , , .2, c

n n n n c
m

f k z A H z z E nξ ω
ξ ξ ω−= = + = +



  (53a) 

and  

( )
( )
( )

( )2, , ,n
n n n

n

Ai
g y y l E q l

Ai

ξ ξ
ξ ξ

ξ

′
′ ′

′

−
= = = −

′ −

 

 



           (53b) 

where ( )1 4 2 !n
n cA m nω= π , ( )( )2 1 3

2l mq= −  , ( ) 0nAi ξ ′− = , and 
( )Ai ξ′  is the differentiation of the Airy function. In this way, we have  

( ) ( ) ( )( )

( )

1
, 0

,

ˆ , , ,

1 2 ,

c
n n n n n

n n c n

m
k y z a z z Ai l y y

E n q y

ω
ψ

ω

−
′ ′ ′

′ ′

 
Φ = + −  

 
= + −



 

        (54) 

where we have defined na ′  as ( )11n na Ai l y−
′ ′′= − . Now, the inverse Fourier 

transformation will affect only the quantum harmonic oscillator function nψ  
through the k-dependence on the parameter 0z , and the resulting expression is  
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( )
( )

( )( )1
, 22 1 4 e .

qBi xzn c
n n n n

cc

a qB qBxx Ai l y y
mcmc

ψ
ωω

′ −
′ ′

 
 Φ = −
 
 







     (55) 

Now, asking for the periodicity condition of the above solution with respect 
the z-variable, ( ) ( ), , , ,n n n n zx y z L′ ′Φ = Φ +x , the periodicity must satisfy for any 
x-values, and in particular for xx L= . Thus it follows the quantization expres-
sion for the magnetic flux  

2 , .x zqBL L
j j

c
= π ∈



                      (56) 

Using the same arguments shown above for the degeneration of the system, 
we have the same expression (23) for the degeneration of the system and the 
function (55) is given by (normalized)  

( )

( )( )

2

4 2

1

1
2 2e

.

x z

ji xz
L L

nn j n n
c c x yx y z

n

j ja x
m m L LL L L

Ai l y y

ψ
ω ω′ ′

−
′

π  π π
 
 

  
Φ =        

×



−


x  

      (57) 

Then, we have obtained a family of solution of the Schrödinger Equation (48),  

( ) ( ),
, , e ,n niE t

n n nn jt ′−
′ ′Ψ = Φx x                  (58) 

where the energies ,n nE ′  are given by the expression (54). The general solution 
of (48) can be written as  

( )
( )

( ),

2
*
, ,

, 0
, e e , ,n n x z

jD n i xziE t L L
n n n n

n n j
t C u x y′−

′ ′
′ =

π

Ψ = ∑∑x 

            (59) 

with the condition 
2*

,, 1n nn n C ′′ =∑ , and where it has been defined the functions 

,n nu ′  as  

( )

( )( )1

4

, 2

1
2 2,

.

n n n n
c c x yx y z

n

j ju x y a x
m m L LL L L

Ai l y y

ψ
ω ω′ ′

−
′

   
 =          

× −

π π 



       (60) 

5. Conclusion and Comment 

We have studied the quantization of a charged particle in a flat box and under 
constant magnetic and electric fields for several electromagnetic static cases us-
ing Fourier transformation to solve the linear differential equations resulting 
from the Shrödinger’s equation, and we have shown that the full solution ob-
tained is different from Landau’s solution for the wave function, but as expected, 
Landau’s levels appear as the solution of the eigenvalues. In all cases, a characte-
ristic phase appears which helps us to find the quantization of the magnetic flux 
in a very natural way. We consider that the approach given here could be very 
useful to understand quantum Hall effect and related phenomena mainly be-
cause with Landau’ solution a Hall’s voltage appears (which is not possible with 
Landau’ solution due to free particle solution on this direction). In addition, the 
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resulting degeneration in our calculations is different, and this one is used in the 
Fermi-Dirac distribution function to calculate the axial and transversal conduc-
tivities on the Hall’s experiments. 
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