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Abstract 
The purpose of this article is to show that a neutron can have excited states. 
The well known characteristic feature of the Bohr atom is that its electron 
shell can exist in a stable ground state or in various excited states. These states 
differ by integer numbers of de Broglie waves filled in their electronic orbits. 
Considering neutron to be an analog of the Bohn atom [1] differing in relati-
vistic nature of its electron, a question arises on a possibility for neutron to 
have similar excited states. The calculations of the properties of these states 
show that two hyperons 0Λ  and 0Σ  which are usually considered as ele-
mentary particles, are excited states of neutron. 
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1. Introduction 

The foundation of modern physics was laid during the Middle Ages. Since then, 
the most important achievements include the postulate or principle of W. 
Gilbert [2]. This postulate formed the basis of all modern natural sciences and 
created the basis for the successful development of modern physics. 

According to this postulate, all theoretical constructs that claim to be scientific 
must be verified and confirmed experimentally. 

It can be formulated in another way: in theoretical physics, all objects must 
correspond to experimental data, and, even more important, there cannot be 
objects whose physical properties are principally immensurable experimentally. 

For religious people, the existence of angels seems quite normal and natural. 
Similar constructions are unacceptable for theoretical physics. 
Based on the Gilbert postulate, modern scientific society excludes consideration 

of the objects whose properties are fundamentally immeasurable. 
However, the twentieth century left us a legacy of a number of theoretical 
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constructions that violate this principle [3]. 
The fallacy of some provisions of particle physics arose provisions the fact that 

was based on the model of quarks, and the main method of their description was 
the construction of tables illustrating the quark structure of particles. 

The idea that elementary particles consist of quarks is quite attractive and is 
confirmed by a number of experiments. 

On the other hand, construction of particles by quarks with fractional charge 
is unsatisfactory. Such particles could not be detected experimentally. The 
confinement model makes them essentially unobservable, which contradicts the 
Gilbert principle. 

Nevertheless, it is still supposed that in order to understand the world of 
particles, they need to be collected in tables, sorted by the composition of quarks. 

At that new immeasurable quarks are introduced into tables to describe new 
particles: strange quarks, charmed quarks, beauty quarks, which also differ in 
colors and aroma. 

It is important to emphasize that the ability to classify objects of study by 
constructing some tables of complex structure (for example, decouplets) proves 
nothing by itself and can not play the role of experimental proof. At least in such 
a construction it is necessary first to prove the uniqueness of this classification. 

Modern quark theory is based on the fundamental quarks of the lower level u 
and d. They are needed to explain the important property of neutron: its 
transformation into proton. However, other properties of neutron cannot be 
explained by fundamental quarks of the lower level. 

All this construction is based on the assumption that neutron is an elementary 
particle. This hypothesis arose at an early stage of the study of atomic nuclei, 
when the properties of neutron had not yet been studied. 

The question of whether the neutron can be considered a fundamental particle 
was discussed in the physical community repeatedly in the last century and was 
solved without relying on measurement data. 

One of the first attempts to consider the neutron as a composite particle 
constructed from proton and electron was made by I. E. Tamm [4]. However, 
this attempt failed for the reason that became obvious now, it is impossible to 
construct neutron from proton and a nonrelativistic electron. 

In order for theoretical consideration to explain the formation of a composite 
corpuscle possessing the properties of neutron, it is necessary to consider the 
unification of a proton with a relativistic electron [5] [6]. 

This model allows calculating with high accuracy all the main parameters 
characterizing neutron: its magnetic moment, mass and spin. The mechanism of 
neutron decay does not require a complicated explanation, but the model allows 
calculating the energy of this decay. 

In addition, this approach makes it possible to explain the nature of nuclear 
forces on the basis of standard quantum mechanics, whereas gluons, mesons and 
the strong interaction are excluded from consideration (at least for light nuclei) 
[1] [6]. 
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Additionally, this model predicts the existence of excited states of neutron. 
The existence of excited states of the electron shell is a characteristic feature of 

the Bohr atom model. In describing the excited states of the electron shell of 
atom, it is assumed that the degree of excitation is determined by how many de 
Broglie waves of electron fit on the circumference of the electron orbit. 

Using the same principle of formation of excited states, it is possible to 
determine them for neutron. It turns out that among particles currently classified 
as elementary, there are those that are not, since their parameters correspond to 
the excited states of neutron. 

Let us consider this question in more detail. 

2. The Energy of Interaction of Relativistic Electron with 
Proton 

Consider a composite particle in which an electron having a rest mass em  and 
a charge e−  is moving around a proton in a circle of radius eR  with a speed 

ev c→  (Figure 1). 
Since we initially assume that the motion of the electron is likely to be 

relativistic, it is necessary to take into account the relativistic effect of the growth 
of its mass: 

* ,e em mγ=                             (1) 

where the relativistic factor 

2

1

1 e

γ
β

=
−

                          (2) 

and e
e

v
c

β = . 

The rotation of the heavy electron *
em  does not allow considering the proton 

as at rest. The proton will also move, revolving around the center of mass 
common with the heavy electron. 

Let's introduce a parameter characterizing the ratio of the mass of a relativistic 
electron to the mass of proton: 

2
.

1
e

p p

m

M

γ
ϑ

β
=

−
                        (3) 

Since the ratio of orbit radii is inverse to the ratio of particle masses we get 

p

e

R
R

ϑ=                            (4) 

and radii of orbits of the electron and proton can be written as: 

, .
1 1

ep ep
e p

R R
R R

ϑ
ϑ ϑ

= =
+ +

                   (5) 

where ep e pR R R= + . 
The relativistic factor characterizing the electron in this case is equal to 
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Figure 1. A system consisting of a proton and a heavy 
(relativistic) electron, revolving around a common center of 
mass. 

 

2
.

1
p

e

M
m

ϑγ
ϑ

=
−

                          (6) 

In accordance with Larmor theorem [7], a rotating proton is affected by 
magnetic field. The magnitude of this field is determined by proton gyromagnetic 
ratio. The influence of this field will cause the magnetic moment of proton to be 
oriented perpendicular to the plane of rotation. In other words, due to the 
interaction with this field, the electron must rotate in the plane of the “equator” 
of the proton. 

2.1. Quantization of Equilibrium Orbit 

It can be assumed that, as in the formation of a stable orbit in a hydrogen atom, 
the orbit of a relativistic electron will be stable if an integer number of de Broglie 
wavelengths dBλ  fits on the circumference of the electron ring 2 eRπ , that is: 

2 .e dBR nλπ =                               (7) 

where n is integer number 
and 

2 .dB
em c

λ
γ
π

=
                              (8) 

That is, in accordance with this assumption, the stability condition of the 
electronic orbit takes the form: 

21
pc

e e

Mr
R m nn

ϑ γ

ϑ
= =

−
                       (9) 
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where c
e

r
m c

=
  is Compton radius. 

2.2. The Kinetic Energy of the System of Relativistic Electron + 
Proton 

The kinetic energy of a relativistic electron is expressed by the equality: 

( ) 21e
kin em cγ= − ⋅                          (10) 

Due to the assumption of the electron to be ultrarelativistic 
2e

kin em cγ≈ ⋅                            (11) 

In this case, the centrifugal force acts on the electron: 

[ ]
2

1 , e
e e

e

m c
m R

R
γ

γ ω ω = =                     (12) 

The kinetic energy of the proton is equal to: 

2

2

1 1
1

p
kin pM c

ϑ

 
= − ⋅  − 

                     (13) 

2.3. The Coulomb Interaction in the System of Relativistic 
Electron + Proton 

The energy of Coulomb attraction between a proton and a relativistic electron is 
proportional to the relativistic factor γ  [7], §24: 

( )
2

2 .
1

c
C e

ep e

re m c
R R

α
γ γ

ϑ
= − = −

+
                (14) 

where 
2e
c

α =


 is the fine structure constant. 

Therefore, the Coulomb attraction force acting between these particles is 
equal to 

( )

22

2 2 2 .
1

c e

e eep

r m ce
R RR

αγ γ
ϑ

= − = −
+

                (15) 

2.4. The Magnetic Interaction of a Rotating Relativistic Electron 
2.4.1. Magnetic Energy of the Electron Current Ring 
An additional contribution to the kinetic energy of the system is made by the 
magnetic energy of a rotating electron. 

The energy of the magnetic field created by the rotation of electron tends to 
break the ring of electron current. This energy depends on the magnitude of the 
magnetic flux in the ring Φ  and the current J which creates it: 

.
2
J

Φ
Φ

=                           (16) 

Due to the fact that the electron orbit is quantized, the magnetic flux 
penetrating the ring of radius eR  should be equal to the magnetic flux quantum 
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0Φ  

0
2 .c

e
π

Φ = Φ =
                            (17) 

By definition the magnetic flux in the ring is determined by the current 0J  
and the area of the ring 0S : 

0 0 0J Sµ = ⋅                             (18) 

i.e. 
2

2

2

1 1 .
2 2 1e p

e e

e r M c
R R n

ϑ
α ϑ

Φ = = ⋅
−

                (19) 

The force arising at the same time, tending to break the current ring, turns out 
to be equal 

2

3 .
2

e

e

m c
n R
γ

=                         (20) 

The magnetic energy created by the rotation of a proton is much less: 
2

2

2

2 .
1p pM cϑ

ϑ
Φ

⋅
= ⋅

−
                     (21) 

The force corresponding to this energy is applied to proton and does not 
directly affect the electron equilibrium orbit. 

2.4.2. Interaction of Electron with Magnetic Field of Proton 
In the present case a proton possesses two magnetic moments. This is its own 
internal magnetic moment: 

2p
p

e
M c
ξµ =
                            (22) 

and the orbital magnetic moment which occurs due to the fact that proton 
rotates in an orbit of radius pR : 

0 2
p

p

e Rϑ
µ =                           (23) 

Therefore, the energy of interaction of rotating electron with the proton 
magnetic field consists from two components: 

( )02 .
2 p p

e

e
Rµ
γ µ µ= ± −                     (24) 

In order for the system energy to be less, the magnetic moments pµ  and 

0 p
µ  must be oppositely directed. But the total contribution of the energy of this 
interaction can be either positive or negative. It depends on the direction of 
electron rotation relative to the orientation of the proton magnetic moment. 
Therefore, in the future, when solving these equations, it will be necessary to 
take into account both options with different signs. 

The force that acts on the rotating electron can be written as: 
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( )

( )

0 0
4 3 3 3 33

2 2

3 2 2

1

.
2 1 2 1 2 1

p pp p

e ep e e

pe

e e

e e
R R R R

Mm c
R mn n

µ µµ µ
γ β γ

ϑ

ϑ ξ ϑ ϑγ α
ϑ ϑ ϑ

  
 = ± − = ± −    +   

 
 = ± −
 + − − 



     (25) 

where 2.79ξ ≈  is the proton magnetic moment expressed in Bohr magnetons. 
The magnetic moment of electron is not considered because, as will be shown 

below, the generalized momentum (spin) of the electron orbit is equal to zero 
and there is no direction for the selected orientation of the electron magnetic 
moment in the system. 

3. Equilibrium Electron Orbit 

The equilibrium condition for the electron orbit is: 
4

1
0.i

i=
=∑                             (26) 

At summing of Equation (12), Equation (15), Equation (20) and Equation (25) 
after simplifying transformations taking into account Equation (9) we get: 

( ) ( )

2

2 32 2

1 11 0.
2 21 2 11 1

p

e

M
n m nn

αϑ ϑ ξ ϑ
ϑ ϑϑ ϑ

   
  + − ± − =     + +− −    

  (27) 

The double sign ± before the last term on the left side of this equality is 
explained by the fact that the direction of this force depends on the direction of 
rotation of relative to the magnetic field created by the magnetic moment of 
proton. 

To find the electron orbit with minimum energy, the solution of this equation 
with respect to ϑ  must be carried out for each directions of the electron 
rotation. 

3.1. The State with n = 1 

Under this condition, one needs to find a solution to the equation: 

( )

( )

22

2

32 2

1 11
2 11

0.
2 2 11 1

p

e

p

e

M
m

M
m

αϑ
ϑϑ

αϑ ϑ ξ ϑ
ϑϑ ϑ

  
+ −     + −   

  
− − =    + − −   

            (28) 

As a result, the solution of this equation is 

0.1991.ϑ =                            (29) 

3.2. The State with n = 2 

Under this condition the equation is 
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( )

( )

22

2

32 2

1 11
2 2 12 1

0.
2 2 2 12 1 1

p

e

p

e

M
m

M
m

αϑ
ϑϑ

αϑ ϑ ξ ϑ
ϑϑ ϑ

  
+ −    ⋅ + −   

  
+ − =    ⋅ + − −   

           (30) 

The solution to this equation is 
0.263.ϑ =                              (31) 

3.3. The State with n = 3 

At that the equation is 

( )

( )

22

2

32 2

1 11
2 3 13 1

0
2 2 3 13 1 1

p

e

p

e

M
m

M
m

αϑ
ϑϑ

αϑ ϑ ξ ϑ
ϑϑ ϑ

  
+ −    ⋅ + −   

  
− − =    ⋅ + − −   

         (32) 

and its solution is 

0.479.ϑ =                           (33) 

4. The Particle Magnetic Moment 
The particle magnetic moment is the sum of the proton magnetic moment and 
magnetic moments of orbital currents of electron and proton. 

The total magnetic moment generated by of both circular currents 

( )
( ) ( )

2

0

1
1 .

2 2 2 1 2
p p ep epe e e R eR eRe R ϑββ

µ ϑ
ϑ

−
= − + = = −

+
           (34) 

If to express this moment in the magnetons of Bohr Bµ , we get 

( )2 2
0

0 2

1 1
.

B

ϑ ϑµ
ξ

µ ϑ

− −
= = −                     (35) 

Thus, the magnetic moment of the electron orbit: 

( )2 2

0

1 1
.

ϑ ϑ
µ

ϑ

 − −
 = −
 
 

                    (36) 

Summing it with the proton magnetic moment, we get 

( )2 21 1
2.79 .total

ϑ ϑ
µ

ϑ

 − −
 = − +
 
 

                  (37) 

These values at different ϑ  are shown in Table 1. 
It should be noted that the magnetic moment of 0Σ -hyperon in [8] is 

designated as the transition moment of 0µΣΛ . 

5. Mass of Particles 

The mass of a composite particle is determined by the sum of the rest masses of  
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Table 1. Comparison of calculated values of magnetic moments with measurement data. 

n ϑ  0µ  totalµ  experimental Ref. 

  
Equation 

(36) 
Equation 

(37) 
data  

n = 1 0.1991 −4.727 −1.9367 
0

1.9130427 0.0000005nµ = − ±  [8] 

n = 2 0.263 −3.4147 −0.6247 0 0.613 0.004µ
Λ
= − ±  [8] 

n = 3 0.479 −1.4121 1.3779 0 1.61 0.08µ
ΣΛΣ
= ±  [8] 

 
the particles, their relativistic kinetic energy and the mass defect arising from the 
potential energy of their internal interaction. Calculate these contributions. 

5.1. Kinetic Energy of Electron and Proton 

Summing Equations (11), (13), (19) and (21) we obtain 

( )
2

2

2 2

1 1 11 1 2
21 1

pkin M c
n

ϑ ϑ ϑ
ϑϑ ϑ

   −  = + − + + ⋅        − −  
     (38) 

5.2. Potential Energy of Electron and Proton 

Summing Equations (14) and (24) we obtain 

( )
( )

22
2

3 2 2

1 11 .
1 2 1 1 1

p
p

e

M
pot M c

nm n

α ϑ ξ ϑ
ϑ ϑ ϑ ϑ ϑ

    
  = − − ⋅ ⋅   + + ⋅ − −   

  (39) 

5.3. Neutron and Hyperon Masses 

The total mass of proton and electron at taking in to account their energies: 

( ) ( )

( )

2 2

2

2 2

22

3 2 2

1 1 11 1 2
21 1

1 11
1 2 1 1 1

total e p

e p p

p
p

e

kin pot
M m M

c c

m M M
n

M
M

nm n

ϑ ϑ ϑ
ϑϑ ϑ

α ϑ ξ ϑ
ϑ ϑ ϑ ϑ ϑ

= + + −

   −  = + + + − + + ⋅        − −  
    
  − − − ⋅ ⋅   + + ⋅ − −   

 

    (40) 

This formula allows us to calculate masses of particles in question as a 
function of the parameter n. The results of calculations are summarized in Table 
2. 

The sum of kinetic and potential energy thus obtained must correspond to the 
energy released during the decay of the particle. For the neutron, this estimate is 
in qualitative agreement with the measured data. 

6. Spin Particles 

Since in the relativistic case the vector-potential takes the form [7], §24: 

( ) ,A Aγ βϕ′ ′= +                            (41) 
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Table 2. The comparison of calculated particle mass values with measurement data. 

n 2
kin

c
  

2
pot

c


 totalM  experimental 
exp calc

exp

M M
M
−

∆ =  

   Equation (40) data  

n = 1 702me 700me 1839me 0
1837n eM m=  0.001 

n = 2 879me 778me 1938me 0 2183 eM m
Λ
=  0.11 

n = 3 2103me 1740me 2200me 0 2335 eM m
Σ
=  0.06 

 
the force that acts on the charge of a relativistically rapidly rotating particle can 
be represented as: 

,eF e rotAγ= ⋅                           (42) 

and as a result, taking into account the Equation (37) to obtain a condition for 
the generalized momentum of the particle 

0 0.eP mc A
c

γ γ= + =                      (43) 

Thus, in the case under consideration, the moment of the generalized 
momentum of rotating particles 

[ ]0 0, 0.eS R P= =                       (44) 

For this reason, the total spin of the particles in question is 1/2 because it is 
created by the spin of the proton. 

A detailed computation of neutron spin is considered in [1] [6]. 

7. Conclusions 

It should be emphasized that the above estimates of the basic parameters of the 
corpuscles under consideration are obtained in a simple and usual way. They do 
not contain any hidden fitting parameters. The agreement that the calculated 
parameters show when compared with the corresponding measured values leads 
to important conclusions. 

As a consequence, neutron, 0Λ - and 0Σ -hyperons (as well as π-mesons and 
μ-mesons [9]), cannot be considered elementary particles, as it is commonly 
thought at present. 

There is no need to introduce strange quarks to describe 0Λ - and 0Σ
-hyperons (just as there is no need to introduce basic u and d quarks to describe 
neutron decay [1] [6]). 

The exclusion of hyperons, as well as mesons and neutrons, from the table of 
elementary particles deconstructs these tables, built on the hypothesis of the 
existence of quarks with a fractional charge, thus destroys the hypothesis of the 
existence of the baryon decuplet because it included 0Σ -hyperons. 

It can be assumed that many other particles like +Σ  and −Σ  are also not 
elementary particles, but are short-living excited states of other constituent 
corpuscules. 
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Abstract 
While the second law of thermodynamics suggests that our universe is driven 
by the tendency towards disorder, living organisms seem to exempt them-
selves by creating physiologic complexity. Since genetic material is life’s blue-
print, better understanding of the origins of life is predicated on deciphering 
the conditions that allowed the formation of this complex molecule with its 
unique properties. In this article, we propose and examine the hypothesis that 
informational entropy models would allow for the formation of complex or-
ganic molecules with genetic properties, without the disruption of the second 
law of thermodynamics. Therefore, we demonstrate that formation of life’s 
blueprint may have initially been derived by informational entropy by means 
of decomplexification of the materials with higher informational entropy 
content, leading to the formation of primitive genetic molecules. 
 

Keywords 
Entropy, Informational Entropy, Genetic Material, Second Law of  
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1. Introduction 

The ability of living organisms to defy the natural tendency of all matter towards 
decay by creating order and evolving into complex organisms has been the sub-
ject of much fascination since the ancient times. Perhaps the earliest implemen-
tation of the role of disorder in relation to life was conveyed to us through Greek 
mythology where Gaea, the earth and mother of all things, sprang from Chaos. 
During the more modern times, the eighteenth century German chemist and 
physician Georg Ernst Stahl described life as a conservatio mixtionis corporis, 
against the tendency to decompose. Later, Erwin Schrodinger in his 1944 book 
titled “What is life”, described the tendency of the living organisms to seemingly 
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exempt themselves from the second law of thermodynamics by avoiding decay 
through a state of non-equilibrium with their surroundings [1]. Thus, while our 
universe is driven by the tendency towards higher entropy or disorder, living 
organisms constantly strive to increase or maintain physiological complexity in 
order to avoid the increase in their entropy to a state of equilibrium with the 
surrounding environment. As thermodynamically open systems, living organ-
isms must harness free energy or enthalpy from food and chemical substrate to 
create an ideally equal balance between the entropy created within the system 
and the entropy exported [2]. Thus, as Schrodinger had concluded, all living or-
ganisms continuously create and export positive entropy while maintaining as 
he called it, “negative entropy”. Furthermore, since the transformation of inor-
ganic compounds to organic compounds was initially demonstrated in 1828 by 
the German chemist Friedrich Wöhler, who artificially obtained urea by treating 
silver cyanate with ammonium chloride, the transformation of inanimate being 
to life form is no longer hindered by the absence of preceding organic com-
pounds. Thus, a better understanding of the forces that may resolve the classical 
thermodynamic dilemmas of life forms, paves the way for peering into possible 
conditions and requirements that may have initially led to the formation of life, 
or at the very least, its most fundamental component, life’s genetic blueprint 
(e.g. DNA, RNA). 

Yet, formation of life’s molecular blueprint and its surrounding structures 
from the less complex substrates requires temporary violation of the second law 
of thermodynamics by reducing the entropy of the substrates through their or-
ganization into more complex compounds and eventually a living organism with 
the promise of increased consumption of food material, export of entropy, and 
thus overall increase in the system’s entropy. To overcome this challenge, Horo-
witz and England have proposed an in silico model of molecules where inanimate 
material settings may act “life-like” by maintaining a “far-from-equilibrium” 
steady state [3]. 

In this article, we demonstrate that information has physical properties that 
provide an essential component of the thermodynamics of living organisms and 
can provide a solution in regards to the thermodynamic pathway that paved the 
way to de novo formation of life from inanimate organic or inorganic substrates. 
In other words, we demonstrate that the initial formation of the primitive genet-
ic material, which is one of the most fundamental components of life, is not 
formed through a series of complex physical reactions that are only applicable in 
theoretical timeframes or environments, but in fact is a natural phenomenon 
that can be explained through the observed reactions within the physical envi-
ronment. 

Therefore, we propose that, 
1) Shannon’s informational entropy in the context of biology, suggests that 

information is an essential deriving factor in the formation of life. 
2) Inanimate inorganic compounds can not only provide a substrate for life, 

but also provide informational entropy content for the earliest forms of genetic 
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material, thus providing a solution for the thermodynamic derive that led to the 
formation of life. 

2. Information and Life 

Life’s defiance of the second law of thermodynamics within its system has led to 
the exploration of alternative or complementary physical laws that may explain 
life’s tendency to thrive through the export of entropy to its surrounding in or-
der to maintain disequilibrium between the living organism, and its surrounding 
environment. 

As Sanchez has demonstrated through the “egg conundrum”, which calculates 
the thermodynamics of a fertilized egg compared to an unfertilized one, the sta-
tistical and classical thermodynamics cannot explain the formation of life [4]. 
Furthermore, Sanchez calculates the assignable statistical entropy content of 
each codon using Gibbs entropy formula. 

( )ln
l

S k Pl Pl= − ∑                           (1) 

where k is the Boltzmann’s constant, Pl in this setting represents the probability 
of a unique consecutive “linear” sequence of N codons in the lth state. Using this 
approach, Sanchez concludes that the negative entropy assignable to each codon 
is estimated as, 

3.06 KS = −                           (2) 

As the equation above demonstrates, the statistical negative entropy content 
of each codon does not fully account for the positive entropy generated by an 
organism [4]. Therefore, inclusion of the informational content of DNA is es-
sential to account for its total negative entropy content. 

However, while including the informational content of DNA as a source of its 
negative entropy offers a solution for the inadequacy of the statistical thermo-
dynamic models, it implies that formation of genetic material requires increase 
in stored information, which further poses the question as to what conditions 
originally derived formation and accumulation of information in the initial mo-
lecular blueprints that would eventually lead to life formation. 

3. Substrate for Information 

To better understand conditions under which the primitive form of a complex, 
information-rich molecule such as primitive RNA or DNA may have been in-
itially formed, we propose a look at the informational content of some of the 
comparatively more complex inorganic compounds found in nature. 

We begin by introducing the Shannon information formula 

( )21 bits sym blog ols
iH Pi Pi
=

= −∑                  (3) 

where H is the amount of information contained in a system with n symbols of s 
different types occurring with the probability Pi. The importance of this formula 
is its universal application to any form of message, regardless of its medium. 
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Therefore, blueprint of living organisms and inanimate sources share certain 
commonalities in the rules governing information and its relation to physical 
properties as described in the example below. 

Consider the example of Crystals. As Krivovichev has demonstrated, the 
structural complexity and configuration of crystal structures add informational 
entropy to crystal structures that go beyond the molecular content of each crys-
tal [5]. The informational content IG per atom appearing in a crystal is calculated 
as, 

( )1 2  bits a tomk
G i Pi logI Pi= =∑                    (4) 

where k is the number of crystallographic orbits, denoted as i, and Pi is the 
probability of a randomly chosen atom appearing in the i-th crystallographic or-
bit. 

Using Shannon’s information equation, Krivovichev demonstrates that even 
in a simple crystal with all atoms equivalent and distributed into various asym-
metrical crystallographic orbits, the configuration of orbits and arrangement of 
various crystal “cells” creates informational content that in fact holds physical 
properties, makes negative contribution to the entropy of the crystal, and there-
fore, should be accounted for in the total entropy of the crystal. 

4. Information as the Common Denominator 

As Equations (2) and (4) imply, DNA and crystals carry information through the 
arrangement of their analogous informational building blocks. More specifically, 
the configuration of atoms in a crystal carries information, similarly to the linear 
arrangement of codons in the case of a strand of DNA. Furthermore, as Landau-
er suggested (1961, 1996), erasure of each bit of information requires energy loss 
(expressed in degrees Kelvin) and thus, information and energy are interlinked 
[6] [7]. 

ln 2kT                                   

where K is Boltzman’s constant and temperature is in Kelvin. 
As Landauer suggests, for each bit of information lost at Temperature T, kln 2 

of energy is released into the environment, which in turn contributes to the en-
tropy S of the environment. 

This suggests that complexification of a crystal, and formation of any form of 
life’s blueprint should both be considered within the context of energy and in-
formation exchange, within their surrounding environment. 

Considering the information-rich content of many complex crystals, it is con-
ceivable that conditions that allowed information and thermodynamic exchange 
between the substrates of the primitive genetic material and comparatively more 
complex crystals in their surroundings, led to the formation of the earliest ge-
netic material [7]. Therefore, the net result of the simplification of these crystal 
structures, and hence increase in their informational and thermodynamic en-
tropy, led to complexification and decrease in the thermodynamic and informa-
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tional entropy of the substrates of the earliest forms of codons. Hence, this 
transference of negative informational and thermodynamic entropy from the 
comparatively more complex molecules such as complex crystals to genetic sub-
strates, eliminates the need for a hypothetical temporary decrease in the entropy 
of the system with the promise of eventual increase in the entire system’s entro-
py that would arrive after the complete formation of a functioning organism. 
Furthermore, considering the unknown composition of the initial blueprints, 
minerals of complex composition may have in fact provided both the substrate 
and entropy (informational and statistical) of these molecular blueprints. 
Therefore, we propose that inorganic molecules may have potentially, not only 
provided the substrate to form organic molecules, as Friedrich Wöhler had 
demonstrated, but also acted as the source of informational entropy through a 
series of chemical reactions that led to decomplexification of these inorganic 
molecules coupled with transference of their informational entropy to the newly 
formed organic molecules. Thus, this exchange of informational entropy can sa-
tisfy the second law of thermodynamics while providing adequate informational 
entropy to allow these primitive molecules to carry gene-like properties. 

However, the proposed hypothesis greatly hinges upon the existence of inor-
ganic molecules (e.g. mineral crystals) with complex structures that would have 
been geologically formed prior to the formation of the first life form, while con-
taining adequate complexity to contain informational entropy that exceeds the 
primitive genetic material. 

Although the informational content and composition of the earliest genetic 
material is beyond the scope of this paper and may have significantly varied 
from the informational content of the modern DNA, a comparison of the more 
primitive crystals’ informational content with the more modern DNA codons 
provides some clues as to the plausibility of this hypothesis. Therefore, if a unit 
cell of a crystal holds more information than a comparable DNA codon, then it 
is possible that decomplexification of an analogous crystal could have led to the 
formation of a codon of comparatively lesser informational content and com-
plexity, and therefore, the second law of thermodynamics is preserved. 

To compare the informational content of a unit of crystal with the entropy of 
each codon of DNA, we must first consider the energy content of each bit of in-
formation as noted in Landauer’s equation. The ratio of the energy released and 
therefore contributed to the entropy of its environment from all or part of the 
informational content of a crystal in the process of decomplexification as calcu-
lated through Landauer’s equation, divided by the Gibbs entropy of each codon 
of DNA must be equal or exceed 1. 

( )ln 2 3.06 0.227 1c cI kT k I T= >  

  1 0.227 4.405cI T > =  

where Ic is the informational content of a unit of crystal, k is the Boltzman’s con-
stant and T is the temperature of the environment in Kelvin. As this indicates, as 
long as the product of the temperature and informational content of each unit 
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cell of a crystal exceeds 4.405, the ratio above is satisfied. 
A brief review of some of the structurally simple crystals in the initial geologi-

cal formations (>4.55 Ga) preceding our estimated time for the formation of 
primitive life indicates that a variety of crystals had moderate level of informa-
tional content that may have reached up to 200 bits/unit cell, far exceeding the 
informational content needed to form each codon of a strand of DNA [8] [9]. 

Minerals and their crystal structure also offer a unique solution since despite 
their low entropy and high informational content, they are inevitably formed and 
evolve into more complex structures under geological conditions [9]. Therefore, 
geological conditions that naturally led to the formation of complex inorganic 
structures such as minerals, may have in turn led to the formation of life and its 
essential components through a series of complexification (i.e. crystal forma-
tion), and subsequent decomplexification of crystals that lead to complexifica-
tion of inorganic and organic molecular building blocks of the initial genetic 
material. 

5. Conclusion 
Statistical thermodynamic models alone fail to explain the conditions under 
which life could have initially been formed. However, integration of the infor-
mational entropy models provides a plausible scenario for life formation under 
known natural conditions. This model suggests that informational and energy 
exchange between the initial substrates of the primitive genetic material and the 
more complex molecules and structures may have made life possible. The pres-
ence of crystals and minerals with low entropy and high informational content 
preceding life formation, offers a plausible source of such complex molecules. 
Further experimentation is needed to test this hypothesis by delineating the po-
tential chemical reactions through which inorganic molecules in the environ-
ment surrounding the newly formed organic molecules can exchange and con-
tribute informational entropy, in order to enable gene-like properties that are 
essential for life formation. 
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Abstract 
Different learning algorithms have been developed in the literature for train-
ing the radial basis function network (RBFN). In this paper, a new neural 
network named as Hanman Entropy Network (HEN) is developed from 
RBFN based on the Information set theory that deals with the representation 
of possibilistic uncertainty in the attribute/property values termed as infor-
mation source values. The parameters of both HEN and RBFN are learned 
using a new learning algorithm called JAYA that solves the constrained and 
unconstrained optimization problems and is bereft of algorithm-specific pa-
rameters. The performance of HEN is shown to be superior to that of RBFN 
on four datasets. The advantage of HEN is that it can use both information 
source values and their membership values in several ways whereas RBFN 
uses only the membership function values. 
 

Keywords 
RBFN, HEN, Gradient Descent (GD), Pseudo-Inverse, JAYA 

 

1. Introduction 

The artificial neural networks (ANNs) that include back propogation (BP) 
networks [1], radial basis function networks (RBFNs) [2], counter propagation 
networks [3] to mention a few show their power in data classification, pattern 
recognition and function approximation. In this paper, we are mainly concerned 
with incorporating a new learning agorithm, called JAYA into the architecture of 
RBFN to mitigate the drawbacks of its gradient descent learning. 

A radial basis function network (RBFN) [4] [5] is a three-layer feed-forward 
neural network. Each hidden layer neuron evaluates its kernel function on the 
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incoming input. The network output is simply a weighted sum of the values of 
the kernel functions in the hidden layer neurons. The value of a kernel function 
is highest when the input falls on its center and decreases monotonically as it 
moves away from the center. A Gaussian function is normally used as the kernel 
function. The training of an RBFN is done by finding the centers and the widths 
of the kernel functions and the weights connecting the hidden layer neurons to 
the output layer neurons. 

Next, we will foray into the learning domain. Finding the global optimum of a 
function is the main task of many of the scientific applications. Gradient descent 
approach is widely used but it suffers from local minima. Another limitation is 
that it cannot be used in optimization problems that have non-differentiable 
objective functions. Many modern population based heuristic algorithms focus on 
finding a near optimum solution to overcome this requirement of differentiability 
associated with gradient descent learning. 

A brief survey of the population based heuristic algorithms will enlighten 
the readers how much work has been done in the domain of learning. These 
algorithms can be clubbed into two important groups: evolutionary algorithms 
(EA) and swarm intelligence (SI) based algorithms. Some of the recognized 
evolutionary algorithms are: Genetic Algorithm (GA), Evolution Strategy (ES), 
Evolution Programming (EP), Differential Evolution (DE), Bacterial Foraging 
Optimization (BFO), Artificial Immune Algorithm (AIA), etc. Some of the well 
known swarm intelligence based algorithms are: Particle Swarm Optimization 
(PSO), Shuffled Frog Leaping (SFL), Ant Colony Optimization (ACO), Artificial 
Bee Colony (ABC), Fire Fly (FF) algorithm, etc. Besides the evolutionary and 
swarm intelligence based algorithms, there are some other algorithms that 
work on the principles of different natural phenomena. Some of them are: 
Harmony Search (HS) algorithm, Gravitational Search Algorithm (GSA), 
Biogeography-Based Optimization (BBO), Grenade Explosion Method (GEM), etc. 
All the evolutionary and swarm intelligence based algorithms are probabilistic 
algorithms that require common controlling parameters like population size, 
number of generations, elite size, etc. Besides the common control parameters, 
different algorithms require their own algorithm-specific control parameters. A 
recent meta-heuristic learning method called Human Effort for Achieving Goals 
(HEFAG) by Jyotsana and Hanmandlu contains the comparison of several 
learning methods in [6]. A new learning algorithm called JAYA is developed in 
[7] to overcome the need for the algorithm-specific parameters but the need for 
the common control parameters still exists. This algorithm helps the initial 
solutions move towards the best solution by avoiding the worst solution. 

2. Design of RBFN 

For the detailed study on artificial neural networks (ANN) and fuzzy systems 
and their applications readers may refer to Jang et al. [8]. As Multilayer 
Perceptron (MLP) is a major leap in ANNs and RBFN has arisen out of 
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simplying computational burden involved in MLP; hence it is widely used [9] for 
the traditional classification problems. A comparison between the traditional 
neural networks and RBFN is presented in [10]. 

RBFN deals with attrubute/feature values that are clustered. The attribue 
values in a cluster are fitted with the radial basis function which is another 
name for Gaussian function. RBFN fuzzifies the attribute values in a cluster 
into the membership function values. Each RBFN neuron stores a cluster 
centre or centroid, which is initially taken to be one of the samples from the 
training set. When we want to classify a new input, each neuron computes the 
Euclidean distance between the input and its centroid and computes the 
membership function using the standard deviation or width of the Gaussian 
function. The output of the RBFN is a weighted sum of the membership 
function values as shown in Figure 1. In this iµ  denotes the ith membership 
function (MF) of a neuron. The MF vector is of size k and each value of this 
vector is multiplied with the output weight and then summed up to get the 
computed output. 

2.1. The Derivation of the Model of RBFN 

We will derive an input-output relation underlying the architecture of RBFN in 
Figure 1 in which prototype refers to the cluster centre. In this architecture there 
are two phases. The first phase is fuzzification and second phase is regression. For 
the fuzzification let us assume a cluster consisting of feature vectors of 
dimension k. Let ith feature Xui in this vector Xu be fuzzified using the ith 
membership function iµ  and u stands for uth input vector-output pair. Thus 
we have k fuzzy sets. Here we have as many neurons as the number of the 
input feature values. We don’t require any equation for this phase. In the 
regression phase we employ Takagi-Sugeno-Kang fuzzy rule [8] on k-input 
fuzzy sets and one output as: 

If Xu1 is A1 and Xu2 is A2 and ∙∙∙ Xuk is Ak then 

0 1 1 2 2u u u k ukY b b X b X b X= + + + +                 (1) 

where the fuzzy set { }, | 1, , ; 1, 2, ,i ui uiA X P u m i k= = =  . Now substituting 
the fuzzified inputs, i.e. ( )ui uiiP Xµ= , for the inputs we get 

0 1 1 2 2u u u ukY b b P b P b= + + + +                  (2) 

This equation is valid if there is one class. We now extend this equation to the 
multi-class case. We feed the input vector of size k denoted by Xu and the neurons 
compute the membership function values Puj. Let the number of classses be c. The 
regression equation that computes the outputs Yl in multi-class is framed as: 

0 1 1 2 2 ;  1, ,l l l u l u kl ukY w w P w P w P l c= + + + + =               (3) 

where we have replaced the weight vector {bi} by the weight matrix {wil} to 
account for multi-class. This is the governing equation for the architecture in 
Figure 1. The calculation of the output weights is deferred to Section III. The 
case when a class is represented by more than one cluster is now explained. 
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Figure 1. Architecture of RBFN. 

2.2. Procedure for Learning of Weights 

Consider first the problem of Iris flower recognition. In this we have 4 features. 
That is each feature vector is 4 dimensional. Assume that these are clustered into 
say, 3. It means that each cluster contains some number of feature vectors. 
According to the fuzzy set theory, we can form 4 fuzzy sets in each cluster 
corresponding to four features. Now each fuzzy set is defined by its attribute 
values and their membership function values. As we are using clustering, we can 
obtain mean values as well as scaling factors that are functions of variances 
involved in MFs of the fuzzy sets resulting from clustering. Our attempt is to 
focus on learning of weights. 

Let us assume that we are feeding each feature vector of a cluster. Then we will 
have four neurons that convert four feature values of the feature vector into four 
membership function values. Then these membership values will be summed up. 
As we have assumed three clusters for one class (each flower type of Iris), this 
procedure is repeated on all feature vectors of the remaining two clusters. By this, 
we get three sums which will be multiplied with three weights (i.e. forming one 
weight vector) and the weighted sum is the computed output that represents one 
class. 

The above procedure is repeated for the other three classes and the three 
weight vectors so obtained correspond to the remaining three flower types. 
There will also be three weighted sums called the computed outputs. In this 
paper, we are concerned with one cluster per class for simplicity. 

3. Training of RBFN 

The training process for RBFN consists of finding the three sets of parameters: 
the centrods of clusters, scaling parameters for each of the neurons of RBFN, 
and a set of the output weight vectors between the neurons and the output nodes 
of RBFN. The approaches for finding the centriods and their variances are 
discussed next. 

3.1. Cluster Centrods 

The possible approaches for the selection of clustercentrods are: Random 
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selection of centroids, Clustering based approach and Orthogonal Least Squares 
(OLS). We have selected the K-means clustering for the computation of 
centroids of clusters or cluster centres from the training setr. Note that this 
clustering method partitionsn observations into K number of clusters such that 
each observation having its value closest to the cluster centre belongs to that 
cluster. 

3.2. Scaling Parameters 

Camped with the centoid of each cluster, the variance is computed as the average 
distance between all points in the cluster and the centrod. 

( )22
1

1 m
i ui iu X C

m
σ

=
= −∑                     (4) 

Here, iC  is the centroid of ith cluster, m is the number of training samples 
belonging to this cluster, Xui is the uth training sample in the ith cluster. Next we 

use 2
iσ  to compute the scaling parameters denoted by 2

1
i

i

β
σ

= . 

3.3. Output Weights 

In the literature, there are two popular methods for the determination of the 
output weights: one learning method called gradient descent [11] and another 
computational method called pseudo inverse [12] [13]. As gradient descent 
learning has problems of slow convergence to local minima, we embark on a 
new learning algorithm called JAYA. Prior to using JAYA for learning the 
parameters of RBFN, we will discuss how the weights can be determined by 
Pseudo-inverse (PINV) method. 

Consider an input vector which is generally a feature vector of some 
dimension n. When all the feature vectors are clustered, we will have C number 
of clusters (Note that c denotes the number of classes). In some datasets such as 
Iris dataset, we can easily separate out all the feature vectors belonging to each 
class of one flower type. Thus the feature vectors belonging to a class form a 
cluster. Out of these feature vectors some are selected for training and the rest 
for testing. 

Let { }, ; 1, ,u uX Z u m=   be the set of feature vectors with each feature vector 
having the size of n, i.e.   k

uX R∈  with target, c
ulZ R∈ , and ( )uj ujiP Xµ=  be 

the membership function of the jth basis radial function jµ  with the uth feature 
vector. Xuj is the jth component of the feature vector Xu and Zul is the lth target 
output. Note that this formulation is meant for one cluster per one class. After 
the fuzzification of Xuj into Puj, we can form a matrix P by taking 1, ,u m=  ; 

1,2, ,j k=  . The matrix Q is written as 
 

P11 P12 ∙∙∙ P1k 

P21 P22 ∙∙∙ P2k 

 .. ∙∙∙ .. 

Pm1 Pm2 ∙∙∙ Pmk 
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As we have [ ]1 2, , ,l l l klW w w w=  ; ; 1, 2, ,lZ l c=  ; [ ]1 2, , , cZ Z Z Z=  . Let 
us denote [ ]1 2, , , mQ P P P=   with [ ]1 2, , ,u u u ukP P P P=   and  

[ ]1 2, , , kW W W W=  . The objective function to be minimized is given by: 

( ) 2, ,f W Q Z W Q Z= ∗ −                      (5) 

where Y W Q= ∗  with [ ]1 2, , , cY Y Y Y=   as per Equation (3). The solution to 
the above equation lies in the assumption that be Y W Q Z= ∗ =  which leads to 
W Q Z+=  where Q+ denotes the pseudo inverse matrix of Q, defined as follows: 

( ) 1T T

0
lim nQ QQ I Q
α

γ
−

→

+ +=                  (6) 

where kI  is the k-dimensional unity matrix and γ  is a small positive constant. 
The pseudo inverse ( ) 1T T Q Q Q Q

−+ =  exists if (QTQ) is nonsingular. After 
calculating the weights at the output layer, all the parameters of RBFN with its 
3-layered architecture in Figure 1 can be determined. 

4. Learning of the Output Weights by JAYA 

We will now discuss JAYA algorithm to be used for learning the parameters of 
RBFN. 

Description of the JAYA Algorithm 

It is a simple and powerful learning method for solving the constrained and 
unconstrained optimization problems. As mentioned above JAYA algorithm is 
the offshoot of Teacher-Learner Based Optimization (TLBO) algorithm 
proposed in [14] [15]. This needs only the common controlling parameters like 
population size and number of iterations. The guidelines for fixing these 
parameters can be seen in [15]. Here we have fixed the population size as 10 and 
the number of iterations as 3000. 

Let ( ), ,f W Q Z  be the objective function to be minimized. Let the best 
candidate be the one associated with the least value of the function (i.e. 

( ), ,bestf W Q Z ) and the worst candidate is the one with the highest value of the 
function (i.e. ( ), ,worstf W Q Z ) in all the candidate solutions. We choose B to 
stand for the weights W when the cluster centres and scale parameters are found 
separately. In case we use to learn all the parameters, B includes the cluster 
centres, scaling parameters and the output weights, i.e. [ ], ,B C Wβ= . 

At any run of the algorithm, assume that there are ‘j’ design variables and ‘k’ 
candidate solutions and ‘i’ iterations. So to fit B into the JAYA algorithm, it is 
denoted by , ,j k iB  which is the value of the jth variable of the kth candidate 
during the ith iteration. , ,j k iB  is updated to , ,j k iB′  during the iteration as, 

( ) ( ), , , , 1, , , , , , 2, , , , , ,j k i j k i j i j best i j k i j i j worst i j k iB B r B B r B B′ = + − − −         (7) 

where , ,j best iB  is the value of the jth variable for the best candidate, , ,j worst iB  is 
the value of the jth variable for the worst candidate at ith iteration and 1, ,j ir  and 

2, ,j ir  are the two random numbers in the range 0 to 1 for the jth variable at the ith 
iteration. The term ( )1, , , , , ,j i j best i j k ir B B−  indicates the tendency to move closer 
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to the best solution whereas the term ( )2, , , , , ,j i j worst i j k ir B B−  indicates the 
tendency to avoid the worst solution. , ,j k iB′  is accepted if its function value is 
better than that of , ,j k iB . All the accepted function values at the end of iteration 
are retained and these values become the input to the next iteration. The 
flowchart of JAYA algorithm is shown in Figure 2. Unlike TLBO algorithm that 
has two phases (i.e. teacher and learner), JAYA algorithm has only one phase 
and it is comparatively simpler to apply. Rao et al. [16] have used TLBO 
algorithm in the machining processes. A tea-category identification (TCI) 
system is developed in [17] and it uses a combination of JAYA algorithm and 
fractional Fourier entropy on three images captured by a CCD camera. In two 
studies involving heat transfer and pressure drop, i.e. thermal resistance and 
pumping power, two objective functions are used to ascertain the performance 
of the micro-channel heat sink. Multi-objective optimization aspects of plasma 
arc machining (PAM), electro-discharge machining (EDM), and micro 
electro-discharge machining (μ-EDM) processes are investigated in [18]. These 
processes are optimized while solving the multi-objective optimization problems 
of machining processes using MO-JAYA algorithm. 

There are three learning parameters, viz., the cluster centers Ci, the scaling 
parameters ( iβ ) and the output weights W between the hidden and output 
layers. The learning of these parameters is depicted in Figure 3. The first 
parameter is found using K-means clustering algorithm. 

We make use of JAYA algorithm for learning the second parameter, iβ . The 
weights are learned by optimizing the objective function using JAYA algorithm. 
The RBFN model so obtained can then be used for both classification and 
function approximation. 

5. Design of Hanman Entropy Network 

As the RBFN is not geared up to take care of the uncertainty in the input which 
may be an attribute or property value, we will make use of the Information set 
 

 
Figure 2. The learning processes in RBFN. (a) Weights using pseudo inverse; (b) Weights 
using JAYA Algorithm. 
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Figure 3. Flowchart of JAYA algorithm. 

 
theory expounded by M. Hanmandlu and his co-workers [19] [20] [21]. In this 
theory each input variable is termed as the information source value. It centres 
around the concept of information set that expands the scope of a fuzzy set in 
which each element is a pair comprising a property (Information source) value 
and its degree of association with the set/concept called the Membership 
function value. In most of the applications involving fuzzy theory only the 
membership function is at the centres tage of operations. This limitation is 
sought to be removed by proposing the concept of information set. In real life 
contexts, we operate on information values. The information sources received by 
our senses are perceived by the mind as information values. That is the reason 
why we fail to perceive sound even when it strikes our ears. Like fuzzy variables, 
information values are also natural variables. 
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5.1. Definition of Information Set and Generation of Features 

Consider a fuzzy set constructed from the feature values {Xuj} termed as the 
Information source values and their membership function values which we take 
as the Gaussian function values {Puj}. If the information source values do not fit 
the Gaussian function, we can choose any other mathematical function to 
describe their distribution. Thus each pair (Xuj, Puj) consisting of information 
source value and its membership value is an element of a fuzzy set. Puj gives the 
degree of association of Xuj and the sum of Puj values doesn’t provide the 
uncertainty associated with the fuzzy set. In the fuzzy domain, only Puj is used in 
all applications of fuzzy logic thus ignoring Xuj altogether. This limitation is 
eliminated by applying the information theoretic entropy function called the 
Hanman-Anirban function [22] to the fuzzy set. This function combines the pair 
of values Xuj and Puj into a product termed as the information value given by 

uj uj ujH X P=                           (8) 

The above relation owes its derivation to the non-normalized Hanman-Anirban 
entropy function expressed as 

( )3 2

1 e uj uj ujaX bX cX dn
ujjH X

− + + +

=
= ∑                    (9) 

where a, b, c and d are the real-valued parameters. In this equation 
normalization by n is not needed as the number of attributes is very small (less 
than 10 in the databases used) but needed if the value of H exceeds more than 1.  

With the choice of parameters: 0a = , 2

1
2

b
σ

= , 2

2
2

Xc
σ

= −  and 
2

22
Xd
σ

=  

where X  is the mean value and 2σ  is the variance of the information source 
values ujX , the exponential gain function is converted into the Gaussian 
function Pu. As a result, Equation (9) is modified to 

1
n

uj ujjH X P
=

= ∑                         (10) 

The set of information values constitutes the information set denoted by 

{ } { }uj uj ujH X P= =  whereas the corresponding fuzzy set is simply {Xuj, Puj}. 
Consider another entropy function called Mamta-Hanman entropy function [20] 
which is a generalized form of Hanman-Anirban entropy function, expressed as: 

( )e ujcX d
MH ujH X

ργ
α − +

= ∑                     (11) 

Substituting 1c
σ

=  and Xd
σ

= −  in (11) modifies MHH  to the following: 

1
n

MH uj ujjH X Gα
=

= ∑                       (12) 

where ujG  is the generalized Gaussian function given by 

e
ujX X

ujG

ργ

σ

 − − 
  =  

This function takes different shapes as we vary the value of ρ  from 1 to 5. 
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Assuming each information value as a unit of information, we can derive several 
modified information sets. For instance application of sigmoid function on 

uj ujX Gα  leads to 

1

1

1 e uj uj

n
j X G

S α= −
=

+
∑                   (13) 

In Equations (9)-(13) the information values are the ones inside the 
summation sign. Thus a family of information forms can be deduced from both 
Hanman-Anirban and Mamta-Hanman entropy functions for dealing with 
different problems. For the derivation of different forms of H and HMH the 
readers may refer to [19] and [21] respectively. 

5.2. The Hanman Transform and its Link to Intuitionistic Set 

This is a higher form of information set. To derive this transform, we have to 
consider the adaptive form of Hanman-Anirban entropy function in which the 
parameters in the exponential gain function are taken to be varaibles. Assuming 

0a b d= = =  and ujc P=  in (9) we obtain the Hanman Transform [21]: 

1 1e euj uj ujn nX P H
T uj ujj jH X X− −

= =
= =∑ ∑                 (14) 

Note that the exponentional gain function in (14) is a function of the 
information value. This transform acts as an evaulator of information values 
based on the information values obtained on them. The higher form of 
information set { }e ujH

ujX −  is recursive because r.h.s of (14) can be rewritten as 

( ) ( )e ujH old
uj ujH new X −=                      (15) 

An interesting result termed as Shannon transform emerges from Hanman 
transform by changing the substitution such that d = −1 instead of 0 in (9) and 
then simplifying the resulting exponential function as follows: 

1
1 1e logujn nH

Sh uj uj ujj jH X X H−

= =
== ∑ ∑                (16) 

Let us consider the adaptive Hanman-Anirban entropy function involving the 
membership functions alone. Then we have 

( ) ( ) ( ) ( )( )3 2. . . .

1 e uj uj uja P b P c P dn
ujjH P

− + + +

=
= ∑                (17) 

This gives the uncertainty in the membership function values. This is useful 
when a mathematical function describing the information source values is not 
appropriate thus leading to error in the fuzzy modeling. Now with a particular 
substitution of values for ( ) ( ) ( ). . . 0a b d= = =  and ( ). ujc X= . Equation (14) 
takes the form 

1 e ujn H
T ujjH P −

=
= ∑                       (18) 

This equation paves the way for the recursive membership function value. The 
r.h.s. of (18) without summation can be written as: 
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( ) ( ) ( )e ujH old
uj ujP new P old −=                      (19) 

On the lines of derivation of (19), we can have another derivation from (11) as 
follows: 

( ) ( ) ( )e ujH old
uj ujP new P oldα −=                    (20) 

This is a useful relation becuase it can be used to make RBFN adaptive by 
changing the membership function. At this juncture we can make an interesting 
connection between the modified membership function in Equation (19) and 
hesitancy function in the Intuitionistic fuzzy set [23]. The hesitancey function is 
defined as follows: 

1uj uj ucjh P P= − −                         (21) 

where 1ucj ujP P= − , the complemetary of Puj. The hesitancy function reflects the 
uncertainty in the modeling of Puj and Pucj. As Equation (19) bestows the way to 
evaluate Puj, we can use the new values of Puj and Pucj in determining the updated 
value of huj as follows: 

( ) ( ) ( )1uj uj ucjh new P new P new= − −                 (22) 

where ( ) ( ) ( )e ucjH old
ucj ucjP new P old −=  and ucj uj ucjH X P= . We can use this 

hesitancy function for the design of a new network in future. 

5.3. Properties of Information Set 

We will now present a few useful properties of Information set. 
1) In the information set, the product of the complementary membership 

function value and the information source value gives the complementary 
information value. 

2) Information values are natural variables just as signals received by biological 
neuron from visual cortex after modification by synapse. 

3) The information values can be modified by applying various functions to 
provide effective features. 

4) Higher form of information values like Hanman Transform provides a 
better representation of the information source values. 

5) The fuzzy rules can be easily aggregated using the information set concept. 

5.4. The Architecture and Model of Hanman Entropy Network 

We will now discuss the architecture of HEN in Figure 4. 
The architecture of HEN is the same as that of RBFN but for the function iϕ , 

which assumes the specified form of an entropy function of the input. In HEN 
each n-input vector needs to be categorized into any one of “c” classes. The ith 
function denoted by iϕ  converts all the values of the input vector into the 
entropy function values. This will be clear if we consider the Takagi-Sugeno-Kang 
fuzzy rule for multi-class case: 

If Xu1 is A1 and Xu2 is A2 and ∙∙∙ Xun is An then 
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Figure 4. The Architecture of HEN. 

 
0 1 1 2 2v v v u v u vn unY b b X b X b X= + + + +               (23) 

As mentioned above that at the fuzzification phase we replace bvj with Pvj and 
set Pv0 to 0 in (23) to get the neuron output as: 

1 1 2 2 ; 1,v u v u vv n unP X P X P X vϕ = + + + =               (24) 

On substituting Huj for the information values in (24) we get: 

1 2 ; 1, 2, ,v v vnv H H H v kϕ = + + + =               (25) 

Thus the fuzzification phase in HEN is different from that of RBFN. In HEN 
the input feature vectors of size n are clustered into k clusters but in RBFN there 
is a single cluster for each feature of a feature vector. Each neuron in RBFN of 
Figure 1 has only one radial basis function whereas each neuron in HEN has k 
radial basis functions in Figure 4. So in Equation (25) k sums 1ϕ  to kϕ  will be 
multiplied with the corresponding weights w1l to wkl to yield the lth output Yl in 
the regression phase as follows: 

11 2 20 ; 1, ,l l l l k klY w w w w l cϕ ϕ ϕ= + ⋅ + ⋅ + + ⋅ =            (26) 

Here 0 1ϕ =  and [ ]1 21, , , , kϕ ϕ ϕ ϕ=  ; [ ]0 1, , ,l l l klW w w w=  . This is the 
governing equation of Hanman Entropy Network in Figure 4. The objective 
function to be optimized by the JAYA + HEN combination is different. In view 
of this, the objective function becomes: 

( ) 2, ,l l l lf W Z W Zϕ ϕ= ∗ −                     (27) 

Instead of jµ  in RBFN, we will now use jϕ  in HEN. In the general case 

jϕ  can be taken as any relation linking the information source values to their 
membership function values. Thus, we can assume the following relations for 
this function: 

{ }
MHuj ujj u X Gαϕ = ∑  or 

S

1

1 e uj ujXu Gα−

  
 
  +

∑  or { }
T

e ujH
uu jX −∑  or 

{ }  Sh
logu uj ujX H∑                                          (28) 
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where subscripts MH, S, T and Sh indicate Mamta-Hanman, Sigmoid, Hanman 
transform and Shannon transform respectively. Note that RBFN network simply 
responds to the pattern in the input vector but the Hanman entropy network 
responds not only to the pattern but also to the uncertainty associated with it. 

6. Results of Case Studies 

The experimentation is conducted on four datasets: IRIS, Wine, and Waveform 
from UCI repository and Signature dataset [24] in two phases. In the first phase, 
we have entirely dealt with the performance analysis of RBFN and in the 
second phase only with that of Hanman Entropy Network (HEN). We have 
split up our computations into two cases. In Case-1 which is applicable only to 
RBFN, the learning/computation of the output weights is delinked from the 
computation of centriods and scaling parameters. Next, we have employed two 
learning methods such as Genetic algorithm (GA) and Gradient Descent (GD) 
and one computational method called Pseudo inverse (PINV) for the weights 
and K-means clustering for the centriods and scaling parameters. 

There is another combination, JAYA + PINV + RBFN wherein JAYA is used 
for learning scaling parameters and PINV is used for computing the output 
weights. Of course, the centroids are found by K-means clustering. 

The notations GA + RBFN, GD + RBFN, PINV + RBFN and JAYA +P INV 
refer to the learning of weights of RBFN by Genetic Algorithm, Gradient 
descent, Pseudo-Inverse, JAYA + PINV combination respectively. The results of 
classification accuracy with these four methods GA, GD, PINV and JAYA + 
PINV along with RBFN are given in Table 1. The last combination gives the best 
results. Table 2 gives the comparison of JAYA + PINV + RBFN with JAYA + 
RBFN where the latter shows the best results. 

A brief exposition on how to form fuzzy sets from which information sets are 
formed is the need of the hour. Assuming n feature types of an object, say, 
signature we form n fuzzy sets by collecting all the feature values of each feature 
type and fitting the radial basis function with the help of centroid (mean value of 
feature values) and scaling parameter (variance). Then conversion of this fuzzy 
set to information set is a simple matter. 

The dataset-wise discussion of results follows the next. 
IRIS dataset: This dataset consists of three classes with 50 samples for each 

class. There are four attributes for each sample. These are: sepal length, sepal 
 
Table 1. A comparison of the Classification accuracy of RBFN using several learning 
methods on different datasets. 

Dataset GA + RBFN GD + RBFN PINV+RBFN JAYA + PINV + RBFN 

IRIS 96.3% 96.3% 96.3% 96.7% 

WINE 86.88% 84.8% 82.6% 92.13% 

WAVE 
FORM 

87% 87.4% 87.5% 85.8% 
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Table 2. A comparison of the Classification accuracy of RBFN using JAYA for the 
learning of all parameters. 

Dataset JAYA + PINV + RBFN JAYA + RBFN 

IRIS 96.7% 98% 

WINE 92.13% 92.6% 

WAVEFORM 85.8% 87.5% 

 
width, petal length and petal width all in cms. The classes are: Setosa, 
Versicolour and Virginica. It may be noted that GA, GD and PINV learning 
methods yield the classification accuracy of 96.3% when used for learning the 
weights of RBFN by classifying 144 instances out of 150. However, the 
combination symbolized by JAYA + PINV + RBFN gives the accuracy of 96.7% 
which uses 1) JAYA to learn the scaling parameters and 2) PINV to learn the 
weights of RBFN. This is the best result among all the results obtained on this 
dataset by the methods compared. 

WINE dataset: The dataset consists of three classes with class 1, class 2, class 
3 having 59, 71, 48 samples repectively. Each sample has 13 attribultes that 
include Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, 
Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, 
OD280/OD315 of diluted wines and Proline. The classification accuracies of 84.8% 
and 82.6% are achieved with GD and PINV respectively when these are used for 
the determination of the output weights of RBFN whereas GA + RBFN 
combination gives an accuracy of 86.88%. However, the best accuracy of 92.13% 
is achieved with JAYA-RBFN combination. 

WAVEFORM dataset: The dataset consists of 5000 samples with each sample 
comprising 22 attributes. Each class is generated from a combination of 2 out of 
3 “base” waves and each instance is generated by adding noise (mean 0, variance 
1) to every attribute. RBFN classifies 4350 instances correctly out of 5000 
instances with an accuracy of 87% with GA. The weights of RBFN computed 
using GD and PINV yield the best accuracies of 87.4% and 87.5% respectively 
but with JAYA + RBFN combimation the accuracy comes down to 85.8% in 
Table 2. 

As can be seen from the results, the efficiency of the classification task 
increases when we use JAYA algorithm even for learning the weights of the 
network in comparison to learning the scaling parameters of the membership 
function. When the concept of information set is incorporated into our 
approach, the output is computed as Weights*Information values, i.e. lW ϕ∗ . If 
the parameter vector, B also includes the centrods and the scaling parameters in 
addition to the weights then these parameters modify Pu indirectly. Then we will 
write ( ),Cϕ ϕ β′ = . Accordingly the objective function is modified as: 

( ) 2, ,l l l lf W Z W Zϕ ϕ′ ′= −∗                      (29) 

For, RBFN the above with ( ),i iP P C β′=  is written as 
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Table 3. A comparison of Verification accuracy on Signature dataset. 

Dataset JAYA + PINV + RBFN JAYA + RBFN HEN 

SVC2004 90.7% 99.6% 99.8% 

 
Table 4. Comparison of Classification accuracy. 

Dataset JAYA + RBFN JAYA + HEN MLP 

IRIS 98% 98.7% 95.3% 

WINE 92.6% 93.2 % 81.4% 

WAVE 
FORM 

87.5% 88.6% 87.1% 

 

( ) 2, ,i l l l i lf P W Z W P Z′ ′= −∗                      (30) 

Applying JAYA on (29) and (30) learns B. 
SIGNATURE dataset: This dataset (SVC2004) in [24] has been used for a 

competition and it consists of 20 skilled forgeries and 20 genuine signatures of 
40 users. Each signature in the dataset is represented as a sequence of points 
containing X and Y co-ordinates, time stamp and pen status (pen up or down) 
along with the additional information like azimuth, altitude and pressure. The 
text file contains a sequence of 7-dimensional measurements (feature types) for 
each signature. Our previous work on signature verification using Information 
set features on this dataset shows the effectiveness of these features [25]. We 
have used JAYA for learning both scaling parameters and the output weights of 
Hanman Entropy network (HEN) just as in JAYA + RBFN combination. The 
results of classification accuracy with JAYA + HEN are slightly better than those 
of JAYA + RBFN. But with JAYA + PINV + RBFN combination the results are 
very poor as shown in Table 3. The power of Hanman Entropy network can 
only be realized when the dataset is very large. 

On conducting tests on three datasets as shown in Table 4, we find that the 
performance of JAYA + RBFN combination is somewhat inferior to that of 
JAYA + HEN combination on three datasets (Iris, Wine and Waveform) but the 
performance of Multi-layer perceptron (MLP) network is the worst. The use of 
high level information set features may help improve the performance of JAYA 
+ HEN. 

7. Conclusions 

In this paper not only the performance of Radial Basis Function Network 
(RBFN) is improved by learning its parameters with a new evolutionary 
method called JAYA but also the design of Hanman Entropy network is given 
based on the Hanman-Anirban entropy function. Of all the combinations of 
RBFN with GA, GD, PNV, MLP and JAYA, JAYA + RBFN gives the best results. 
The proposed Hanman Entropy network (HEN) along with JAYA outperforms 
this combination on all the datasets considered in this paper. 
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As HEN is based on information set theory that caters to uncertainty 
representation; there is so much flexibility in the choice of information forms. 
This advantage is missing in RBFN where only the membership function values 
rule the roost. The only silver lining with RBFN is that we can use Type-2 fuzzy 
sets where the membership function values can be varied by changing the 
variance parameter of Gaussian membership function. 

The present work opens up different directions to change the information at 
the hidden neurons of HEN. 
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Abstract 
Definitions of the mechanical parameters entering the Bohr model of the hy-
drogen atom allowed us to calculate the time intervals connected with the 
electron transitions between the nearest-neighbouring energy levels in the 
atom. This is done in a strictly non-probabilistic way. The time results are 
compared with those derived earlier on the basis of the classical Joule-Lenz 
law for the energy emission adapted to the case of the electron transfer in the 
quantum systems. A similar formalism has been next applied to the harmonic 
oscillator and a particle moving in the one-dimensional potential box. 
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Spectrum of the Hydrogen Atom, Time Intervals of the Electron  
Transitions 

 

1. Introduction 

Following the fundamental paper by Einstein [1] [2], a probabilistic approach to 
the intensity of the electron transitions in the atomic systems has been mainly 
applied: this has been done equally in the old as well as the modern quantum 
theory [2] [3] [4]. Physically this situation seems to be rather an encumbering 
one because the time intervals which are neglected are, in general, measurable 
parameters the size of which seems to be of interest for different processes. 

A step towards a non-probabilistic theory of the electron transitions in the 
quantum systems has been done by the author [5] [6] [7]: it concerns the energy 
emission, therefore a transfer from a higher to a lower energy level, based on the 
classical Joule-Lenz law adapted to the quantum systems. When the transfer 
concerns solely the nearest-neighbouring quantum levels, say n + 1 and n, the 
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formula coupling the emitted energy E∆  to the emission time t∆  becomes 
very simple, namely 

;E t h∆ ∆ =                             (1) 

here 

1 0.n nE E E+∆ = − >                        (2) 

Because of (1) and (2), the intensity of the energy emission from state n + 1 to 
n is represented by the ratio 

.E
t

∆
∆

                               (3) 

The formula (3) could be next applied to the energy emission between the 
quantum states being also not nearest-neighbour ones. The numerical calcula-
tions were essentially limited to the ratios of the emission intensities for dif-
ferent kinds of the electron transitions in the hydrogen atom. The obtained 
results do not differ extensively from those calculated on the basis of the quan-
tum-mechanical formalism; see [8] [9] [10]. 

Evidently (1) can be transformed into the formula representing t∆ : 

.ht
E

∆ =
∆

                             (4) 

In case of large n we have for the hydrogen atom 

( )

4 4 4

2 2 2 2 4 2 3

1 1 2 1 ,
2 21
me me n meE

n n nn

  +
∆ = − − ≅ ⋅ ≈ 

+    

            (5) 

so in this case 
2 3 3 3

4 4

2 .h h n nt
E me me

∆ = ≅ =
∆

π                        (6) 

The aim of the present paper is to demonstrate that results for t∆  much 
similar to (6) can be easily obtained also by a direct application of the mechani-
cal parameters entering the Bohr atomic model [11]. 

In Appendix A and Appendix B, respectively, the same formalism is applied 
to the harmonic linear oscillator and a particle enclosed in the one-dimensional 
potential box. 

2. The Time Interval Δt Deduced from the Acceleration and 
Velocity Parameters Characteristic for the Bohr Atomic 
Model 

The main idea by Bohr in constructing his model of the hydrogen atom (see e.g. 
[11] [12]) was that the centrifugal acceleration force of the electron due to its 
circulation about the proton nucleus is compensated by the electrostatic attrac-
tive force acting between the proton and the electron. Therefore the mechanical 
acceleration is given by the formula 

2
n

n
n

v
a

r
=                               (7) 

https://doi.org/10.4236/jmp.2019.1013101


S. Olszewski 
 

 

DOI: 10.4236/jmp.2019.1013101 1524 Journal of Modern Physics 
 

where 
2

n
ev
n

=


                             (8) 

is the velocity size along the circular electron orbit (see e.g. [12]) and 
2 2

2n
nr
me

=
                             (9) 

is the orbit radius [12]. Expressions (8) and (9) substituted into (7) give 
4 2 6

2 2 2 2 4 4 .n
e me mea

n n n
= =

  

                      (10) 

In course of the electron transition from level n + 1 to level n the acceleration 
is changed by the interval whose absolute value is 

( )

( )
( )

6

1 4 4 4

4 46 6 2 6

4 4 4 8 4 54

1 1
1

1 2 2 4 ,
1

n n n
mea a a

nn

n nme me n n me
n nn n

+

 
∆ = − = − 

+  

+ −
= ≈ =

+



  

           (11) 

on condition in the last steps of (11) a large n is only considered. Simultaneously 
the absolute change of the electron velocity becomes 

( )
2 2 2

2

1 1 1 ,
1 1n

e e n n ev
n n n n n

+ − ∆ = − = ≈ + +   

             (12) 

where the result obtained in the last step holds for large n. Since we expect the 
approximate validity of the formula 

,n
n

v
a

t
∆

= ∆
∆

                          (13) 

we obtain from (11)-(13) the time interval 
2 4 5 3 3

2 6 4 .
4 4

n

n

v e n nt
a n me me

∆
∆ = = =

∆
 



                 (14) 

The ratio of the result calculated in (6) to that obtained in (14) becomes equal 
to a constant number: 

3 3 4

4 3 3

2 4 8 .n me
me n
π

⋅ = π




                     (15) 

3. The Time Interval Δt Deduced from the Electron Velocity 
and Orbit Length Parameters of the Bohr Model 

A still more simple calculation of t∆  than in Section 2 is connected with the 
case when the changes of the orbit length and electron velocity are taken into 
account. Here the change of velocity due to the electron transition between the 
levels n + 1 and n is given by the formula 

2 n
n

r
v

t
∆

= ∆
∆
π                        (16) 
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where 

( )
2 2

2 2
1 2 21 2n n nr r r n n n

me me+
 ∆ = − = + − ≅ 

               (17) 

and 
2

2

1
n

ev
n

∆ ≅


                         (18) 

is a repetition of the result obtained in (12). In effect from (16) we have 
3 2 3 3

2 2 4

2 44 .n

n

r n nt n
v me e me

π π
π

∆
∆ = = =

∆
                 (19) 

This result for t∆  differs from that calculated in (6) solely by the factor of 2. 

4. Time Interval of the Electron Transition and the Virial 
Theorem 

Let us examine here the time interval t∆  in reference to the virial theorem. 
Because of virial we have the following relation between the kinetic and potential 
electron energy in the hydrogen atom for any state n: 

kin pot2 0.n nE E+ =                         (20) 

In effect of (20) the electron energy becomes 

kin pot kin 2

2n n n n n
mE E E E v= + = − = −                   (21) 

which implies 
2 6 2 8

4 5 5 6

4 42
2

n n
n n n

E vm e me m ev mv a m
t t n n n

∆ ∆
≅ = ∆ = =

∆ ∆   

            (22) 

due to the formulae (8) and (11). By substituting the result in (5) for nE∆  into 
(22) we obtain 

4 5 6 3 3
5 6

2 8 2 3 2 8 44 4 4
nE me n nt n

m e n m e me
∆

∆ = = =
 





                 (23) 

which is the interval t∆  identical to that given in (14). 

5. Discussion 

It looks that neither Einstein nor his followers were able to calculate a definite 
size of t∆ , the time interval associated with the electron transitions in the atom, 
which, in the present considerations, is limited to the hydrogen case. In fact, the 
former authors were occupied mainly with the time changes of the transition 
probabilities than the time interval itself. 

Our present idea concerning the time calculation was associated with an ap-
plication of the classical definitions of the mechanical parameters (orbital posi-
tion, electron velocity and acceleration) entering the Bohr model of the hydro-
gen atom. All these definitions make reference to the time interval t∆  of the 
electron transition. But t∆  could be calculated earlier on the basis of the clas-
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sical Joule-Lenz law ([13] and [5] [6] [7]) adapted to the electron transitions 
between the nearest-neighbouring energy levels of the atom; see the end of Sec-
tion 1. 

In fact the essence of the formulae attained for t∆  with the aid of the me-
chanical parameters in the Bohr atom and the expression for t∆  obtained from 
the Joule-Lenz law is the same. The results of both approaches differ solely by 
the constant number represented in (15) or the factor of 2 derived at the end of 
Section 3. 

Evidently the present semiclassical calculations do not take into account the 
degeneracy of the energy levels in the atom with respect to the electron angular 
momentum, or electron spin. In consequence the selection rules for transitions 
connected with the changes of the angular momentum could not be obtained; 
see [14]. 

As the end step we present the result of the numerical calculations of t∆  in 
the hydrogen atom. By taking the formula (6) we obtain for large n: 

( )
( )

3273
3 3 16 3

4 428 10

1.06 102 2  sec 1.5 10  sec.
9.1 10 4.8 10

t n n n
me

−
−

− −

×
∆ = ≅ ≅ ×

×

π

× ×
π



   (24) 

In consequence the intensity of a single energy transition—considered also for 
large n—is 

5

6

3 10 erg
sec

E
t n

∆ ×
≅

∆
                      (25) 

because from (5): 
4 11

2 3 3

5 10 erg.meE
n n

−×
∆ = ≅



                 (5a) 

Both cases represented in (24) and (25) consider the quantum transition 

1n n+ →                          (26) 

for 1n . 
The derivations of the time interval done—classically—in the paper indicate 

that the size of t∆  does not depend appreciably on the origin of t∆  specifi-
cally whether we consider the process of the energy emission ( 1n n+ → ), or a 
reversed process of the absorption of energy ( 1n n→ + ). 

A separate problem concerns the situation when the electron transition, say 
that of the energy emission between the levels n α+  and n, viz. 

n nα+ →                          (27) 

has 

1.α >                            (28) 

In this case Equations (1) and (6) joining the intervals t∆  and E∆  do not 
apply. 

In order to overcome this difficulty the energy differences between the le-
vels 
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1 and ,
2 and 1,
3 and 2,

and 1

n n
n n
n n

n nα α

+
+ +
+ +

+ + −


                        (29) 

should be separately considered. For any pair of states entering (29) we can ap-
ply the formulae (1) and (6) which give us a set of the time intervals representing 
transitions between the succesive pairs of the energy levels indicated in (29). 

A sum of these time intervals listed respectively as 

1

2

3

,
,
,

t
t
t

tα

∆
∆
∆

∆


                             (30) 

provides us with the time interval between the levels n α+  and n indicated in 
(27). Examples of such situations for the energy emission in the hydrogen atom 
are examined in [8] [9] [10]. 
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Appendix A. Transition Time between the Energy Levels n + 
1 and n of the Harmonic Oscillaror 

First we note that the averages of the kinetic and potential parts of the energy W 
of a linear harmonic oscillator, viz. 

2 2

2 2
m kW v x= +                           (A1) 

are equal; m is the mass, k, the oscillator constant [15]. This result can be ob-
tained by substituting 

= cosx A tω                            (A2) 

where A is the amplitude and ω  is the circular frequency of the oscillator. In 
effect 

d sin
d
xv A t
t

ω ω= = −                        (A3) 

gives in average 

2 2 2 2 2 2sin ,
2 2 4
m m mv A t Aω ω ω= =                  (A4) 

whereas 

2 2 2 2cos .
2 2 4
k k kx A t Aω= =                    (A5) 

The (A4) and (A5) are equal due to the relation 
1 2

.k
m

ω  =  
 

                          (A6) 

Evidently the amplitude nA A=  is different for any quantum state of energy 

nW W n ω= ≅                          (A7) 

which holds on condition n is a large integer number. 
By considering the averages in (A4) and (A5) we have 

2 2 2
kin

1 1 .
2 4 4 2 2n n n n
m m k kE v A A W n

m
ω= = = = ≅              (A8) 

In effect 

( )1 22
n

n
A

k
ω

≅


                         (A9) 

and 

( )
1 2 1 2 1 21 2

2 1 1 .
2 2n n n n

kv v A A
m

ω     ≅ ≈ =     
     

            (A10) 

The change of v  due to the transition from state n + 1 to n leads to: 

( )
1 2

1
1 .
2n n nv A A ω+

 ∆ ≈ − 
 

                  (A11) 

On the other side the change of the average velocity v  can be considered as a 
direct effect of the change of the amplitude A in course of sometime interval 
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t∆ : 

( )1
1 .n

n n n
A

v A A
t t+

∆
∆ ≅ = −

∆ ∆
                   (A12) 

A comparison of (A11) with (A12) leads to relation 

( ) ( )
1 2

1 1
1 1
2 n n n nA A A A

t
ω+ +

  − = −  ∆ 
               (A13) 

which can be transformed into 
1 22 .t
ω

∆ =                          (A14) 

On the other hand, according to the Joule-Lenz law, we have 

( )
2 .

1
h ht
E n n ω ω

∆ = = =
∆ +

π
−

               (A15) 

A similarity between the t∆  obtained from the particle mechanics in (A14) 
and t∆  calculated from the Joule-Lenz law in (A15) becomes evident. 

Appendix B. Transition Time between the  
Nearest-Neighbouring Energy Levels of a Particle Enclosed 
in a One-Dimensional Potential Box 

The parameters characterizing a free particle of mass m in a one-dimensional 
box having the length L are given e.g. in [16]. According to the kinetic energy 
formula the particle in a quantum level n has the velocity 

1 22 1
2

n
n

E nhv
m mL

 = = 
 

                       (B1) 

because the particle kinetic energy is 
2 2

2 .
8n
n hE
mL

=                           (B2) 

Evidently the velocity change between the levels n + 1 and n is 

( ) ( )1 2 1 2
11 2

1 2 2 .n n nv E E
m +

 ∆ = −                   (B3) 

The energy change between the neighbouring levels is 

( )2 2 2 2
2

1 2 2 2

1 2 ;
8 8 4n n

n n nh nhE E E h
mL mL mL+

+ −
∆ = − = ≅ =          (B4) 

in the last steps the condition 1n  is considered. 
The E∆  in (B4) can be coupled with the energy change entering (B3) by the 

relation 

1 2 1 2 1 21
11 2 1 2 1 2 1 2

1 1

2n n
n n n

n n n n

E EE E E E
E E E E

+
+

+ +

−∆
= = + ≈

− −
          (B5) 

where the last step holds for large n. 
The acceleration change na∆  of the particle associated with the levels change 
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from n+1 to n is 

n
n

v
a

t
∆

∆ =
∆

                            (B6) 

where t∆  is an unknown time interval. This interval can be obtained when the 
balance of energy change due to the change na∆  is compared with the energy 
decrease (B4). This gives the relation 

12 2n
n n n

v
a m L m L E E E

t +

∆
∆ = = ∆ = −

∆
                (B7) 

in which we assumed that the energy loss is produced in course of a full 
free-particle oscillation in the box along the path length 

2 .L L L+ =                          (B8) 

By substituting in (B7) the necessary parameters we obtain the following rela-
tion for t∆  entering (B6): 

( )
1 2 3 2 1 2

1 2 1 2
11 2 1 2 1 2

1
3 2 1 2 2 2

1 2 1 2
1 2

2 2 2 2

2 42 8 .
2

n
n n

n n

n

Lm v Lm Lmt E E
E E m E E

Lm L m L m
nh nhE

+
+

∆
∆ = = − =

∆ ∆ +

≈ = =

        (B9) 

The end result of (B9) can be compared with t∆  obtained from the Joule-Lenz 
law [5] [6]: 

2 2

2

4 4 .h mL L mt h
E nhnh

∆ = = =
∆

                  (B10) 

In fact the (B9) and (B10) are the identical expressions. 
It should be noted that identity concerns also the velocity in (B1) and that ob-

tained on the basis of the distance (B8): 

2

2 2 .
24n

L nh nhv L
t LmL m

= = =
∆

                 (B11) 
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Abstract 
In this paper, we have presented a new approach to the dynamics of hypo-
thetical primary particles, moving at speeds greater than the speed of light in 
a vacuum within their flat spacetime, which is why we understood the reason 
why they have not been detected so far. By introducing a new factor, we have 
linked the space-time coordinates of primary particles, within different iner-
tial frames of reference. We have shown that transformations of coordinates 
for primary particles with respect to different inertial frames of reference, 
based on this factor, constitute the Lorentz transformations. Utilizing this 
factor, we have set the foundations of primary particle dynamics. The results 
obtained for the dynamic properties of these particles are in accordance with 
the fundamental laws of physics, and we expect them to be experimentally ve-
rifiable. Likewise, due to their dynamic properties, we have concluded that 
the Big Bang could have occurred during a mutual collision of the primary 
particles, with a sudden speed decrease of some of these particles to a speed 
slightly greater than the speed of light in a vacuum, which would release an 
enormous amount of energy. Created in such manner, our Universe would 
possess a limit on the maximum speed of energy-mass transfer, the speed of 
light in a vacuum, which we will show after introducing the dynamic proper-
ties of these particles. Similarly, we have concluded that the creation of other 
universes, possessing a different maximum speed of energy-mass transfer, 
occurred during the collision of these particles as well, only by means of de-
celeration of some of these particles to a speed slightly greater than the max-
imum speed of energy-mass transfer in that particular universe. 
 

Keywords 
Big Bang, Flat Spacetime, Lorentz Transformations 

 

1. Introduction 
According to the hypothesis, primary particles move at speeds u much greater 
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than the maximum speed of energy-mass transfer in different universes k, and 
because of this they are in their flat spacetime, wherein the aforementioned 
space is homogeneous and isotropic and time is homogeneous. Simultaneously, 
their lower border speed equals k, i.e. they can only move at speeds that surpass 
the values of it u k> . In our Universe, the maximum speed of energy-mass 
transfer is k c= . We have shown what the basic kinematic and dynamic prop-
erties of these hypothetical particles look like, based on the newly introduced ξ  
factor which links space-time coordinates between different inertial frames of 
reference. It is widely known that our Universe originated in the Big Bang, but 
that modern physics cannot explain events preceding Planck time. We expect 
further development of this hypothesis to clarify the Big Bang itself. 

In the following section of this paper, we will discuss potential kinematic and 
dynamic properties of hypothetical primary particles with regard to our Un-
iverse, in which the maximum speed of energy-mass transfer is the same as the 
speed of light in a vacuum. 

The facts known thus far are the following: 
 Particles that possess the rest mass can approach the speed of light by in-

creasing their momentum and energy. Let’s assume they move with v c< . 
 The maximum speed of energy-mass transfer is the same as the speed of light 

in a vacuum c. 
Newly described: 

 Primary particles, whose speeds we will denote by u, are able to move faster 
than light pc u u< ≤ , ( )pu c . 

The postulates on which the primary particle hypothesis is based on, extend 
the first two postulates of the special theory of relativity with the third: 

1) The Principle of Relativity: The laws of physics are invariant in all inertial 
frames of reference. 

2) The Principle of Constancy of the speed of light: The speed of light in a 
vacuum is the same for all observers, regardless of the motion of the light source 
or observer. 

3) The speeds of the primary particles u, may possess values pc u u< ≤ , 

( )pu c , that are independent of the choice of inertial frame of reference from 
which observations are being made. 

2. Time Dilation for Primary Particles 

Einstein’s relativity of the notion of simultaneous occurrence of some events [1] 
can also be extended to primary particles moving faster than light. 

We will imagine how observers from the “mobile” S’ and the “stationary” S 
frames of reference see the time between two events in the world of primary par-
ticles, through an example of the time required for the primary particle to pass a 
certain distance from the point of departure to the primary particle reflector 
(Figure 1). Let us assume that S’ moves in the positive direction of the x-axis at 
the speed of light c, relative to system S, because we want to find the factor  
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Figure 1. The observer O from the S perceives that the observer O’ and the reflector are 
moving to the right at speed of light c, which represents the lower border velocity of the 
primary particles movement, hence the series of these events appear different to him. By 
the time primary particle reaches it, the reflector moves to the right by distance ct, hence 
the primary particle travels the distance ut, where t represents the time required for pri-
mary particle to relocate from the point of the viewer O’ to the reflector at the position R. 
After time 2t, the primary particle, starting from the point O’ and reflecting of the reflec-
tor, returns to O’ again, but observed from the S, by passing the distance 2ut. Therefore, 
the observer O from the S concludes that the primary particle will reach the reflector only 
if it leaves the point of the observer at some angle in relation to the vertical plane. Note 
also that observer O must possess two synchronized clocks at the departure and arrival 
points of the primary particle, which are immobile in his frame of reference S, and com-
pare their display with the display of a mobile clock located in the frame of reference S’. 
Thus, the observer O from the S measures the dilated time t in relation to the time τ  
measured by the observer O’ from the S’. 

 
through which the space-time connection of possible speeds of the primary par-
ticles u with c, would be implemented. Above the observer O’ and the frame of 
reference S’, a reflector of primary particles R’ is located at a certain distance, 
perpendicular to the path of the primary particle in that frame of reference. Ob-
server O’ measures time for which the primary particle proceeding perpendicu-
lar towards the reflector returned as 2τ , travels the distance 2uτ . Note that in 
order to measure this time, the observer O’ requires only one clock which is 
permanently situated at the same location from which the primary particle starts 
and to which it returns. 

From the shaded triangle, we can see the following: 
2

2 2 2 2 2 2 2 2
2 2 2

2

1, , .

1

uu t c t u t t
u c c

u

τ τ τ= + = =
−

−

 

We can also introduce the ξ  factor: 

2

2

1 ,

1 c
u

ξ =

−

                          (1) 

so the following applies t ξτ=  
Similarly, if these events were to play out in the S, in the manner that the pri-
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mary particle moved from and returned to the same place in this frame of refer-
ence, the observer O’ from the S’ would measure the same dilation of time, since 
in relation to him, the S moves at speed of light c only in the opposite direction, 
to the left. In accordance with the postulate on the independence of primary 
particle speed from choice of the inertial frame of reference from which it is be-
ing observed, for both observers it moves at the identical speed u. None of the 
observers O and O’ have the means of determining whether or not they are 
moving, i.e. each of them is in a state of rest in his own frame of reference. 
Therefore, the names of two frames of reference “mobile” and “stationary” are 
written in inverted commas. 

The shortest possible time between two events, proper time τ , is measured 
by the observer from whose perspective they are taking place at the same loca-
tion in space. We therefore conclude that the time elapsed between the two 
events depends on how far they have unfolded within the two observed frame of 
references, i.e. that a connection between spatial and time intervals exists. 

3. The Transformation of Space-Time Coordinates for  
Primary Particles 

Since primary particles moving at speeds higher than the speed of light u c> , it 
is necessary to introduce new transformations of space-time coordinates be-
tween inertial frames of reference. They must apply to all speeds of these par-
ticles of u which is slightly higher than c to pu . As we can see (Figure 2), the 
same event has different coordinates in two different inertial frames of reference. 

, ,x Cx Dt t Kx Lt′ ′= + = +                  (2) 

where C, D, K and L represent constants to be determined. If we observe the 
movement of a primary particle along the x-axis, it will, from the perspective of 
the frame of reference S’ at time moments 1t′  and 2t′ , possess the spatial coor-
dinates 1x′  and 2x′ , and its shift will be 

( ) ( )2 1 2 1 2 1 .x x x C x x D t t′ ′ ′∆ = − = − + −                 (3) 

The time interval in the S’, during which the movement occurred is 

( ) ( )2 1 2 1 2 1 .t t t K x x L t t′ ′ ′∆ = − = − + −                 (4) 

Based on this, the velocity of the observed primary particle moving along the 
x-axis equals: 

.x C x D tu
t K x L t
′∆ ∆ + ∆′ = =
′∆ ∆ + ∆

                     (5) 

Relative to the frame of reference S the velocity of that same point is 
xu
t

∆
=
∆

, 

and the relation of these two velocities is given via expression 

.Cu Du
Ku L

+′ =
+

                           (6) 

In order to determine the constants C, D, K and L in this expression, we will 
consider several special cases of motion. 
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Figure 2. Let us assume the frame of reference S to be “stationary” and the frame of 
reference S’ to be “mobile”, moving in the positive direction of x-axis at a constant 
velocity of u. Assume that both reference systems coincided at the moment of time 

0t t′= = . The same event would be described by the observer from S in space-time 

coordinates ( ), , ,x y z t , while the observer from S’ would assign them the coordinates 

( ), , ,x y z t′ ′ ′ ′ . It is necessary now to find new coordinate transformations that would also 

apply at the higher relative velocities of frames of reference, than the speed of light. Along 
the y and z axes, no movement S and S’ occurs, and as in the cases of Galilean and 
Lorentz transformations, y y′ = , z z′ = , applies. In order to determine the functional 
connection between the remaining two coordinates, one of space and one of time, we 
have to acknowledge that it should preserve the properties of space and time. The basic 
properties of the space are homogeneity and isotropy, and the basic property of time is 
homogeneity, which is directly related with the conservation laws in mechanics. 
Therefore, the coordinate transformation law we are searching for has to be linear, hence 
the interconnection of the coordinates is linear. 

 
We will first observe the border case. The primary particle is idle relative to S’, 

i.e. is located in its own frame of reference, at its lowest possible velocity in rela-
tion to S. In this case, 0u′ =  while u has slightly greater value than c, i.e. 
u c→ . Therefore, observed from a “stationary” frame of reference, the primary 
particle moves at the same velocity as the “mobile” frame of reference. Thus, ex-
pression (6) becomes 

0 ,Cc D
Kc L

+
=

+
 

and the following applies 
.D Cc= −                           (7) 

Vice versa, due to relativity of motion, when the primary particle is idle rela-
tive to S i.e. 0u = , then its velocity in relation to S’, u c′ → . If we substitute 

this in (6) using (7) we get 
Ccc
L

− = − , i.e. 

.C L=                            (8) 

We will now use the third postulate according to which the possible primary 
particle velocities appear identical, observed from all inertial frames of reference 

,u u′=                            (9) 

and if we substitute this in (6) using (7) and (8) we get 
Cu Ccu
Ku C

−
=

+
, from 
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which the following applies 

2 .cK C
u

= −                         (10) 

Equations (2), after replacing the values D, K and L, become 

( ) 2, ,cx C x ct t C t x
u

 ′ ′= − = − 
 

               (11) 

in which only the constant C remains unspecified. According to the principle of 
relativity, a complete equality of the observed frames of reference exists. Which 
means that for an “stationary” frame of reference we can take S’ and consider 
that the frame of reference S moves at velocity “−u” in relation to it. Based on 
that, equations that connect x and t with x’ and t’ read 

( ) 2, .cx C x ct t C t x
u

 ′ ′ ′ ′= + = − 
 

                (12) 

When we replace (12) in (11) we get 

2
2 ,cx C x ct ct x

u
 ′ ′ ′ ′ ′= + − − 
 

                  (13) 

from which we can see that 
2

2

1

1

C
c
u

=

−

, i.e. C have the same values as the pre-

viously introduced ξ  factor (1). With constants determined in such a manner, 
we obtain the transformations in the form 

2

2 2

2 2

, , , ,

1 1

ct xx ct ux y y z z t
c c
u u

−−′ ′ ′ ′= = = =

− −

           (14) 

i.e. 

2

2 2

2 2

, , , .

1 1

ct xx ct ux y y z z t
c c
u u

′ ′+′ ′+ ′ ′= = = =

− −

           (15) 

These transformations connect the space-time coordinates ( ), , ,x y z t  and 
( ), , ,x y z t′ ′ ′ ′  of the same event observed from two inertial frames of reference S 
and S’ in the case of their motion being relative along x-axis at a constant veloci-
ty of u c> . 

4. Four-Dimensional Formulation of Coordinate  
Transformations for Primary Particles 

Similar to Minkowski space [2], we shall introduce a real four-dimensional space 
in which we will present transformations of coordinates of the primary particles 
as transformations of coordinates of that very space. Points in that space are po-
sition vectors 
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0

1

2

3

,

utx
xxx
yx
zx

σ
σ

   
   
   = = =   
       

x e                       (16) 

where xσ  represent contravariant components of the vector x  at basis 

0 1 2 3

1 0 0 0
0 1 0 0

, , , .
0 0 1 0
0 0 0 1

       
       
       = = = =
       
       
       

e e e e  

The metric of this space is identical to the metric of Minkowski space 
1 0 0 0
0 1 0 0

.
0 0 1 0
0 0 0 1

gσς

 
 − =
 −
 

− 

                    (17) 

This metric is used to determine the length of a vector. A square of length of 
the position four-vector x equals 

( )

( ) ( ) ( ) ( )

2 T

2 2 2 20 1 2 3 2 2 2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

ut
x

x x gx ut x y z
y
z

x x x x u t

  
  −  = =
  −
  

−  

= − − − = − x

        (18) 

Within spacetime of the primary particles, we associate each contravariant 
vector to covariant components using the metric 

.A g Aς
σ σς=                         (19) 

Below, we will use Einstein summation convention, which implies summation 
when an index is repeated twice in a single term, once as upper index and once 
as lower index, without writing the sum sign. Therefore, the previous form is 
summed by the index ς , and the following applies 

0 1 2 3 0
0 0 00 01 02 03

1 1 2 3 1
1 1 10 11 12 13

,

.

A g A g A g A g A g A A

A g A g A g A g A g A A

ς
ς

ς
ς

= = + + + =

= = + + + = −
        (20) 

In a similar way, we get 2
2A A= −  and 3

3A A= − . We see that lowering the 
time index does not change the sign, while lowering the spatial index 1,2,3i =  
does change the sign, so we can write 

0
0 , .i

iA A A A= = −                       (21) 

The covariant components of the position vector are 
0

0
1

1
2

2
3

3

,

,

,

.

x x ut

x x x

x x y

x x z

= =

= − = −

= − = −

= − = −

                        (22) 
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An inverse metric tensor is defined by 
1 1 ,gg g g I− −= =                           (23) 

where I represents an identity matrix. Numerically, we easily get 1g g− = . 
However, tensors 1g −  and g have different index layout. The inverse metric al-
lows us to transform the lower indices into the upper ones i.e. A g Aσ σς

ς= . 
The square of the length of vector x is calculated via 

( )22 0 2 ,x g x x xσ ς
σς= = − x                      (24) 

and for differential of the square length between the points x and dx x+  we get 

( ) ( )2 22 2d d d .s g x x u tσ ς
σς= = − r                   (25) 

Boost along x-axis for primary particles, which is similar to the Lorentz boost, 
we will record in the form of 

0 0 1

1 0 1

2 2

3 3

x x x
x x x
x x
x x

ξ νξ

νξ ξ

′ = −

′ = − +

′ =

′ =

 

where the following applies: 

2

2

1, .

1

c
u c

u

ν ξ= =

−

                    (26) 

In matrix form, the previous equations are 
0 0

1 1

2 2

3 3

0 0
0 0

0 0 1 0
0 0 0 1

x x
x x
x x
x x

ξ νξ
νξ ξ

−   ′  
    −′    =    ′
       ′     

               (27) 

where 4 4×  matrix represents the transformation matrix σ
ςΣ , in which the in-

dex σ  represents the row index and index ς  is the column index. The matrix 
Equation (27) in component notation is 

.x xσ σ ς
ς′ = Σ                         (28) 

Lorentz transformations are those linear transformations of the coordinates 
x x′ = Λ , where Λ  represents the real matrix 4 4× , which does not alter the 
square of length of the four-vector, i.e. the following applies to them 2 2x x′ = , 
which gives 

T .g gΛ Λ =                         (29) 

Therefore, every real 4 4×  matrix that satisfies the condition (29) is a Lorenz 
transformation. Hence, we see that our boost matrix along x-axis is a Lorentz 
transformation, and it can be easily shown that the boost matrices along y-axis 
and z-axis are also Lorentz transformations, as well as the three matrices of rota-
tion of the coordinate system. 
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5. Time Dilation as a Result of a Transformation of  
Coordinates for Primary Particles 

We have already derived the time dilation formula for primary particles based 
on postulates that apply to primary particles. We will now demonstrate how it is 
obtained by applying the transformations of the coordinates of the primary par-
ticles. Imagine the clock being located at the coordinate start of the inertial 
frame of reference S’. It will show time S’ in t’ and its coordinates in S’ would be 

0x y z′ ′ ′= = = . If we replace those values of time coordinates with expressions 
for transformation of the space-time coordinates of primary particles (15), we 
get the coordinates of the clock from “stationary” frame of reference S in relation  

to which S’ moves at velocity u: 
2

21

ctx
c
u

′
=

−

, 0y = , 0z = , since, observed  

from the S, clock moves along x-axis. Thus, the remaining time coordinate 

2

2

.

1

tt
c
u

′
=

−

 

As we have shown earlier, the time shown by the clock in frame of reference S’, 
in relation to which it remains immobile, equals less than the time measured in 
frame of reference S, that is, in this case, time t’ represents own time. 

6. The Velocity-Addition Formula for Primary Particles 

We will continue to observe that S as a “stationary” frame of reference in re-
lation to which S’ moves at velocity ( ), ,x y zu u u=u . Primary particle with 
the velocity of ( ), ,x y zw w w=w  in relation to S, possess the velocity  

( ), ,x y zw w w′ ′ ′ ′=w  in relation to S’, while its x component 

d .
dx
xw
t
′

′ =
′

 

According to the Equation (14), the differential dx′  and the differential dt′  
are 

2

2 2

2 2

d dd dd , d ,

1 1

ct xx c t ux t
c c
u u

−−′ ′= =

− −

               (30) 

while the velocity represents their ratio 

2

d
d .

d1
d

x

x c
tw
c x

tu

−
′ =

−
 

Since 
d ,
dx
xw
t

=  x component of velocity relative to S, we have 
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2

.
1

x
x

x

w c
w

w c
u

−′ =
−

                          (31) 

Correspondingly, starting from 
d
dy
yw
t
′

′ =
′

 and 
d
dz
zw
t
′

′ =
′

, for the remaining 

two components of the velocity we get 
2 2

2 2

2 2

1 1
, .

1 1

y y

y z
x x

c cw w
u uw w

w c w c
u u

− −
′ ′= =

− −
                (32) 

In the border case xw u=  formula (31) becomes 

2

1
.

1 1
x

cu
u c uw u

uc c
uu

 − −  ′ = = =
− −

 

From this we can conclude that if a primary particle moves at a speed of u rel-
ative to an observer from the frame of reference S, then, regardless of the relative 
speed of the system, the primary particle possesses the same speed in relation to 
the observer from the frame of reference S’ as well. We introduced this within 
the third postulate. 

Formulas (31) and (32) allow us to determine the components of velocity in 
relation to S’ for known velocity components in relation to S. Vice versa, the 
following applies 

2

,
1

x
x

x

w c
w

w c
u

′ +
= ′

+
                        (33) 

2 2

2 2

2 2

1 1
, .

1 1

y z

y z
x x

c cw w
u uw w

w c w c
u u

′ ′− −
= =′ ′

+ +
             (34) 

7. Acceleration with Regard to the Primary Particle  
Hypothesis 

Descartes’ components of acceleration of the primary particle in inertial frame of 
reference S are defined as 

dd d
, , ,

d d d
yx z

x y z

ww wa a a
t t t

= = =               (35) 

and in S’ are 
dd d

, , .
d d d

yx z
x y z

ww wa a a
t t t

′′ ′
′ ′ ′= = =

′ ′ ′
                  (36) 

From (31) we obtain 
2

2 2

2

d
d 1 .

1

x
x

x

w cw
uw c

u

 
′ = − 

   − 
 

                    (37) 
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The rate of change of the x velocity component in S’ is given via relation (30) 
we have 

3
2 2

2

3

2

1
d

.
d

1

x
x x

x

c
uw

a a
t w c

u

 
− ′  ′ = =

′  − 
 

                      (38) 

For the remaining two acceleration components using (32), an analogous me-
thod produces 

22

22

2 3
2

2 2

11d
,

d
1 1

y
y

y y x
x x

cc w c
w uua a a
t w c w cu

u u

 
− −′  ′ = = +

′    − −   
   

 

22

22

2 3
2

2 2

11d
.

d
1 1

z
z

z z x
x x

cc w c
uw ua a a

t w c w cu
u u

 
− −′  ′ = = +

′    − −   
   

            (39) 

Based on these relations, which enable transformation of the acceleration 
components between the two inertial frames of reference, we can conclude that 
acceleration is not invariant, similar to that in the special theory of relativity. 
However, all inertial observers will agree that acceleration exists. Namely, if a 
primary particle observed from an inertial frame of reference is moving rapidly, 
then it is moving rapidly in all other inertial frames of reference as well. Similar-
ly, if the acceleration in one of those inertial frames of reference equals zero, 
then it equals zero in all other inertial frames of reference. 

8. Fundamentals of Primary Particle Dynamics 

While moving at maximum speeds pu c , energy pE  of these particles 
would match the fundamental rest energy in relativistic physics 

2 ,p pE m c=                          (40) 

where pm  represents the mass of the primary particle. 
Similar to the total energy of a relativistic particle noted via Lorentz γ  factor, 

we can use the ξ  factor for notation of the total energy of a primary particle 

tE  as 
2

2

2

2

.

1

p
t p

m c
E m c

c
u

ξ= =

−

                    (41) 

From (41) we can observe that the total energy of the primary particles be-
haves depending on their speed as in Figure 3. They possess the lowest energy 

2
t pE m c= . while moving at maximum speed pu c , and the highest when 

u c→ . 
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Figure 3. The dependence of total relativistic energy of the particle on speed v 
(red curve), the speed of light in a vacuum c (green line) and dependence total 
energy of the primary particle on speed u; according to the primary particles 
hypothesis (blue curve). 

 
We will introduce homeokinetic energy H. 
Conversely with kinetic energy increment that accompanies increase of the 

speed of particles possessing rest mass in classical and relativistic physics, 
homeokinetic energy of primary particles increases as they decelerate during 
mutual collisions, consequently increasing their total energy tE . 

.t pE E H= +                           (42) 

It is obvious that these particles would not interact with matter via four 
known interactions due to the speed of their motion u c> , so primary particles 
therefore exist in their flat spacetime, while the non-interaction of these particles 
with matter is the reason why they have not been detected so far. So, in order for 
these particles to mutually interact, a need for a new kind of interaction ex-
panding faster than the speed of light arises. 

For homeokinetic energy, from (40), (41) and (42) we get 

( )2 2

2

2

1 1 1 .

1
t p p pH E E m c m c

c
u

ξ

 
 
 = − = − = −
 
 − 
 

           (43) 

From the energy-momentum relation 2 2 2 2
0E E p c− = , which is fundamental, 

similarly, for primary particles we have 
2 2 2 2 ,t p pE E p c− =                        (44) 

where pp  is the momentum of a primary particle. Here, considering (40) and 
(41), we see 

2 2 6
2 4 2 4 2

2 2
2 4 2 2

2 2 2 2 2 2

2 2 2

1 1 ,
p p p

p p

u c cm c m c m
u um c p c

u c u c u c
u u u

  −
− 

 − = = =
− − − 

 
 
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from which we obtain the formula for the magnitude of the momentum a pri-
mary particle, differently defined compared to classical and relativistic physics 
(Figure 4) 

2

2

2

,

1

p
p

m c
p

cu
u

=

−

                         (45) 

so that: 

.t
p

E
p

u
=                             (46) 

Also, the formula for the magnitude of the momentum a primary particle (46) 
can be obtained in a different, more intuitive way. In relativistic physics, the  

magnitude of the momentum a photon is 
Ep
c

= , where the speed of light in a  

vacuum c is independent of the choice of inertial frame of reference from which 
observations are being made. Similarly, the speeds of the primary particles u are 
also independent of the choice of inertial frame of reference from which obser-
vations are being made, hence the formula for the magnitude of the momentum  

a primary particle is t
p

E
p

u
= . 

For u c  the following applies: 0pp → . 
We will further show that the basic dynamic laws of physics apply to this form 

of total energy of primary particles. 
We will now determine the work W performed by the force F, directed along 

the x-axis, during deceleration of the primary particle relocating from a certain 
location determined by the parameters ( )1 1, , px t u , to the second location de-
termined by the parameters ( )2 2, ,x t u . pu  is the maximum speed of the pri-
mary particle ( pu c ). Using the definition of work and Newton’s second law, 
which applies in the same form to primary particles as well, in accordance with 
the first postulate 
 

 
Figure 4. Dependence of relativistic momentum of the particle on speed v (red 
curve), the speed of light in a vacuum c (green line) and dependence of mo-
mentum of the primary particle on speed u; according to the primary particles 
hypothesis (blue curve). 
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2 2

1 1

d
d d

d
x x p

x x

p
W F x x

t
= =∫ ∫  

and considering it is: d dx u t= , and that the rate of change of the momentum of 
the primary particle is 

( )
( )

22 3
2 2 2

3
2 2 2

d
d d d2
d 2 d

pp p

um c up m c u tu c u
t t

u c

−
= − − = −

−
 

( ) ( )

( ) ( )

( )

2

1

2
2

2
3 3

2 2 2 22 2

2 2
1 3

2 2 2 22 2

2 2 2

2 2

d
dd d

d d

ln ,

p

p p

p

pt u
pt u

u u
p u u

u

p

u

um c u u utW u t m c
u c u c

u um c c
u c u c

um c u u c
u c

= − = −
− −

 
 

= − + 
 − − 

 
= − + −  − 

∫ ∫

∫ ∫  

we get the following value for work 

2 2
2

2 2 2 2 2 2
ln .p

p

p p p

uu u u cW m c
u c u c u u c

 + − = − −
 − − + − 

 

For a slight decrease of the primary particle speed we see that 
2 2 2 2

2 2 2 2 2 2
1, . . ln 0; and 1,p

p p p p p

uu u c u u ci e
u u c u u c u c
+ − + −

→ → →
+ − + − −

 

because it is pu c . 
Finally, for work, we get the following 

( )2 2 2

2 2 2

2

11 1 1 .

1
p p p

uW m c m c m c
u c c

u

ξ

 
    = − = − = −    −   − 
 

     (47) 

Work demonstrates how much the energy of the primary particle has changed, 
i.e. corresponds to its homeokinetic energy, as in Equation (43). 

The relation between pp  and H is obtained by replacing (42) with (44) as 

( )1 2 .p pp H H E
c

= +                   (48) 

Also, from (40) and (44) we get 

2 2 2 4 ,t p pE p c m c= +                   (49) 

which for u c , i.e. 2 2 2
p pp m c  shows that 2

t p pE E m c= = . 
However, in the case of u c→ , i.e. 2 2 2

p pp m c , we get that t pE p c= , or 
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,t
p

E
p

c
=                           (50) 

as we get from (46). The Equation (50) is valid for a certain high energy state of 
the primary particles and corresponds precisely to the relation between the mo-
mentum and the electromagnetic radiation energy which is obtained in the ul-
trarelativistic case for the Einstein equation 2 2 2 4E p c m c= + . 

9. The Possibility of Interpreting the Creation of the Big 
Bang and Other Universes through the Collision of  
Primary Particles 

The Big Bang represents the very event of creating of our spacetime, containing 
our matter and energy. The very moment in which this event took place, as well 
as the short period preceding Planck time, following the occurrence of this event, 
are still beyond the reach of science. Namely, Einstein’s general theory of relativ-
ity does not work for systems smaller than Planck length, nor for the events 
lasting shorter than Planck time. By expectations of modern physics, this limit 
should be dismantled by the quantum theory of gravity, hence, this initial period 
of our Universe is referred to as “the quantum gravity era”. We expect this pe-
riod of the Universe to be explained by the primary particle hypothesis. 

According to hypothesis, primary particles moving at speeds u c  are in 
their flat spacetime. Simultaneously, their total energy (41) and momentum (45) 
are small. However, possibility exists that during collision of such particles, 
which would cause the speed of some primary particle to u c→ , an enormous 
amount energy is released from the point of collision according to the relation 
(41), i.e. the Big Bang would ensue. Because of the lower border speed of the 
primary particle at the Big Bang thus attained, the speed of energy-mass transfer 
in our Universe would have the value c, which is the same from the moment of 
the initial singularity. The energy thus released would be the very energy gener-
ated in the Big Bang in accordance with the conservation laws in physics, result-
ing in creation of our spacetime, containing our matter and energy. 

Due to the huge number of possible lower border speeds k, to which the pri-
mary particles would slow down when creating other universes, their limitation 
of maximum speed of energy-mass transfer would be equal to instead of c, to 
some different k. It is clear that this would differentiate the values of other fun-
damental physical constants in different universes, as well. All relations stated in 
the paper would be valid in other universes as well, provided c is replaced with k 
from another universe. 

10. Result 

We assumed the existence of primary particles moving within their flat space-
time at a speed u, greater than the maximum speed of energy-mass transfer k in 
various universes, which, at the same time, represents their lower border speed. 
In addition to two postulates of the special theory of relativity, we introduced the 
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third postulate as well, according to which the values of the speeds of these par-
ticles are independent of the choice of inertial frames of reference from which 
they are being observed. In a thought experiment, we realize that dilation of time 
is the greatest while these particles are moving at speeds close to lower border 
speed, i.e. the speed of light c within our Universe, and get a ξ  factor that cor-
responds to Lorentz γ  factor. The same value of ξ  factor was obtained via 
transformations of space-time coordinates for primary particles. We have shown 
that these transformations are Lorentz transformations. Based on the ξ  factor, 
we have developed the dynamics of particles moving faster than light. We have 
proved that the assumed properties of these particles satisfy the fundamental 
laws of physics, which we have postulated. We recognized that the explanation 
of the Big Bang could be made from the standpoint of primary particles speed 
reduction during their mutual collision, during which the energy of the Big Bang 
would be released, simultaneously limiting the maximum speed of energy-mass 
transfer in our Universe to speed reached in that collision, c. The creation of 
other universes could be explained in a similar manner. Hence, the limitation to 
maximum speed of energy-mass transfer within them, as well as reached speed 
reduction of primary particles during big bangs in which those universes were 
created, would instead of c have various values k. 

11. The Need for Development of a Primary Particle  
Hypothesis and Their Experimental Proof 

It is clear that in this paper we have only made a logical assumption about some 
properties of primary particles. Thus, we believe their further study may lead to 
a major shift in physics, as well as our philosophical view of the world. 

Based on the described properties of primary particles, we expect their indi-
rect experimental proof to be possible through successful explanation of the Big 
Bang, via further scientific work on the hypothesis of primary particles. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Morris, D. (2016) The Special Theory of Relativity An Introduction: Essentials of 

Physics, Dulles, Virginia.  

[2] Petkov, V. (2010) Minkowski Spacetime: A Hundred Years Later. Springer, New 
York. https://doi.org/10.1007/978-90-481-3475-5 

 
 

https://doi.org/10.4236/jmp.2019.1013102
https://doi.org/10.1007/978-90-481-3475-5


Journal of Modern Physics, 2019, 10, 1548-1565 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2019.1013103  Nov. 20, 2019 1548 Journal of Modern Physics 
 

 
 
 

5D Model Theory for the Creating of Life Forms 

K. W. Wong1, Peter C. W. Fung2, W. K. Chow3 

1Department of Physics and Astronomy, University of Kansas, Lawrence, USA 
2Department of Physics, Department of Medicine, and Centre on Behavioral Health, University of Hong Kong, Hong Kong, China 
3Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China 

 
 
 

Abstract 
Based on the Fermat’s Last Theorem and the Po, P1 projections from the 4th 
space coordinate to the time variable for Po and to the remaining 3D space 
variables for P1, the carbon 12 nucleus is shown explicitly as given by the 
hard-sphere dense packing model that also satisfies the Gell-Mann standard 
model. It is through these that C12 is a vital element in all biomaterials, and 
all proteins as well as the Nitrogenous bases in DNAs, are of hexagon geome-
tric structures. Furthermore, the unique presence of a 3D × 1D space void 
within the C12 nucleus provides for the monopole Boson field tunneling to 
occur, giving rise to the enormous variety spectra in the DNA of life forms. In 
addition, on the surface of the bio cells, the carbon valence band p electron 
excitation into the empty conduction band separated by a bandgap G, can 
result in HTC Excitonic induced superconductivity binding gaps from the 
Excitonic spectra, which match part of those of the DNA and thus produce 
the self-grow mechanism of numerous different cells in a life form. 
 

Keywords 
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1. Introduction 
We had forwarded a suggestion that “Life” can be modeled by the topological 
mappings from the 5D homogeneous manifold [1]. It was however only a hypo-
thesis as in that reference neither the Perelman mappings [2] and the explicit 
Maxwell monopole potentials [3] were derived and incorporated into the 5D 
theory until recently [4]. The mappings of the homogeneous 5D manifold onto 
the 4D Lorentz manifold together with the imposing of the uncertainty principle 
with gauge invariance not only produce the Gell-Mann standard model because 
of the 4D space reduction projections giving rise to the Semi-simple Compact 
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Lie groups, SU(3) and SU(2) [5] giving the weak lepton model [6]. Furthermore, 
it also was successful in producing the models for the creation of galaxies with 
an extremely hot circular core, that would result in the presence of two gamma 
ray bubbles on each side of the core, while within the galactic plane there are the 
stars and planets together with their properties of self-rotation and the present of 
dipolar magnetic field [7] [8]. In these processes charges and masses are created 
by splitting the energy value of the Diagonal Long Range Order monopole Bo-
sons along the Fermat’s radial, which are originally in the Bose-Einstein con-
densed state, and hence giving rise to the concept of Temperature via the intro-
duction of the grand canonical ensemble, yet retaining the Lie group symmetry 
as a fractal hexagon geometry of the mass structures, which are created by the 
space dimension reduction projections. It is therefore obvious that there remains 
the fractal representation on the extended low energy range or longer wave-
length domain of the monopoles not responsible for the initial conversion into 
integer charges and masses should also exist for the 5D manifold monopoles. 
But since such Bose states must still be projected into geometrical symmetries 
that are technically the same as that given by the Lie groups. A simple illustra-
tion is the hard-sphere dense packing model for the carbon 12 nucleus [9]. 
Therefore, we see after applying the gauge constrain on the protons and neu-
trons in the nucleus that the topological symmetry is the formation of 3 hex-
agons and 6 equilateral triangles [1]. Hence in order that the projection action 
can be applied also to the very long wavelength region of the monopoles, a 
breaking of the 3D spherical space symmetry given for the carbon nucleus into 
2D × 1D must be imposed. It is this further space symmetry breaking that leads 
us to the basic formation of the 2D biological Nitrogenous bases, that is realized 
in a correspondingly lower temperature domain from the canonical ensemble. 
However, due to our need to maintain the gauge invariance on the DLRO mo-
nopole Boson by completing it into a closed loop, such 2D hexagon-shaped Ni-
trogenous bases must be linked along the 1D via quantum tunneling. This results 
in the creation of RNAs and with the implications of an endpoint reflection into 
a parallel RNA and therefore completing a DNA [1], the most essential compo-
nent to the building of “Life”. The diversity of such DNAs formed is infinite, as 
the thermal parameters are varied, not to mention the infinite possible variations 
of the gap magnitudes between the different base layers, hence the infinite diver-
sity of life forms. It is this most complex geometrical projected results, which we 
proposed as responsible for “Life” that we like to present in the current paper as 
the physics of “Life”. In the present paper, we shall utilize these mathematical 
results and separate our discussion into the following separate sections linking 
DNAs to genome and the creation of proteins and cells, etc., and thus life forms 
including us humans. 

2. The Mapping of the Magnetic Monopole Field within an 
Enclosing Time Frozen Matter Poincare Sphere 

The Maxwell monopole fields are the quantum field result of the 5D homoge-
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neous quadratic space-time operator. It is a Diagonal Long Range Order DLRO 
product of two opposite “e” charge massless spinors, that is along the Fermat’s 
amplitude “r” [10]. Thus its magnitude is given by “2ec”. Since it is 
non-dependent on the eigenenergy value of the monopole Boson it must be 
represented in the grand canonical ensemble and thereby in the Bose-Einstein 
condensed state as we mentioned in the introduction. Such a state implies that 
the magnetic monopoles give raise to a vacuum in 4D space-time that is filled 
with this zero net charge Boson field, a quantum picture that is consistent with 
the Higg’s vacuum [11]. We refer our readers to ref. [11] for details. Hence, 
should the 5D manifold be time frozen, the net 0 charge magnetic monopole 2ec 
along “r” must be mapped onto the inner surface of the spherical void instead of 
being broken into 2 separate 0 and 2e Boson fields circulating within the 3D 
spherical void core through Po, the space to time projection that resulted in 
SU(2) for the -e leptons and the SU(3) via the space to space conformal projec-
tion P1, as discussed in detail in ref. [1], giving us the Gell-Mann standard mod-
el, which are resulted from the monopole energy, and thereby resulting in the 
rotation angular momentum state <2hvt(0)> along z, where <> represents the 
canonical ensemble averaged, and a separate magnetic dipole B’z, as proportion 
to M.r = <2ec2.t(0)>. Both such results were discussed at length by us as 
illustration on the self rotation and dipolar magnetic fields in stars and planets 
[7] [8]. We again refer our readers to these two earlier publications. What we 
need to emphasize is matter created via Po and P1 are from monopole energies 
exceeding the rest mass energy of the electron and the bare quarks by the 
choosing of a different chemical potential value m(e) the electron rest mass for 
the separated negative e charge, and m(q), the quark rest mass for that of the 
positive e charge. The detail obtained through force balancing due to the Perel-
man mappings and the masses from Po and P1 are also recently published [12]. 
Again we refer our readers to that paper. However, the lowest quantum Poincare 
sphere resulted from P1, gives us the carbon 12 nucleus [13] was not carefully 
analyzed. In fact it was suggested in ref. [1] by making sure that the 6 protons 
and 6 neutrons on the C12 nucleus shell form 3 hexagons and 6 equilateral tri-
angles, with each point triple degenerates, hence making them in the lowest 
Standard model that of either a proton or a neutron and makes the nucleus C12 
the lowest symmetric Poincare sphere, with a spherical time frozen void core 
[Figure 1], absence of the monopole field. However within the low energy fre-
quency region this DLRO field must remain intact, but it remains in DLRO 
when time is frozen, unless it can quantum tunnel from C to C and completes a 
closed loop, as required by gauge invariance. It is this realizable gauge state that 
introduces the fractal representation with the replacement of the proton and 
neutron in the C12 nucleus with a C12 and a Nitrogen atom sphere without a 
void core, such that we may generate 3 pairs of cancelling + and −Bz’ along “r”. 
With 60 degree in between each z’(j). Because of charge equipotential Theorem, 
such quantum Bz’ states will always cancel each other under perfect symmetry,  
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Figure 1. C12 hardsphere dense packing model 
(Wong et al. 2014, ref. [1]). 

 
unless we can divide them and map the 3 hexagons produced by P1 onto a flat 
2D plane. It is this topological surgery that creates 3 totally independent Nitro-
genous bases, with 3 neighboring C’s, and 2 N’s sandwich a C [see Figure 2]. 
Because the 4th C between the 2Ns only serves to create a bone structure linking 
stacks of such Nitrogenous bases, forming RNA structure, it cannot be consi-
dered as also a fractal representation of the proton by C12. Hence by recognizing 
the M DLRO state must remain perpendicular to the hexagon, this monopole 
Boson field must tunnel from one layer of the Nitrogenous base to the next, pro-
vided by wave-lengths exceeding the space gap between the two neighboring 
layers, which could also contain non-Nitrogenous C layers, so that at the ends it 
must be able to be reflected onto a parallel RNA stack, thus completing a ma-
thematically required closed loop and thus preserves the gauge invariance. For 
the two RNAs within the DNA end points reflection an extra reflective boundary 
condition hence a 4th Nitrogenous base representing the fractal of Po mapping 
must be introduced to make the basic set in all DNAs, 4 bases instead of 3 as de-
picted by fractal geometry. With such rather long wave-length spectra, because 
of the large number of non repeated choices = 8! Of stacking of the parity pair 
Nitrogenous bases layers in the DNA, the equivalent temperature energy is then 
in the so call life suitable temperature range. In order that the stacking can com-
plete a close loop by requiring that the two ends of the double RNA, that makes 
up the DNA be always those of the Thymine base, the number of non repeat 
stacking is given by the 4 bases with their mirror representation, as they are not 
necessarily parity invariant. While the gene frequency is dictated by a closed 
loop of the M, the DLRO Boson that quantum tunnels from the 3 adjoining C’s 
in a base to the next 3 C’s in the next nearest neighbors bases layers. Hence the 
genome number must be given by 3 × 8! × 2/7 = 34,560. The number 3 comes 
from the 3 adjoining C’s within each base. Since each quantum closed loop of M 
must pass through all 8 bases states, the number of different possible path or  
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Figure 2. Images of DNA and RNA [Wong et al. 2014]. 

 
dering is 8! However the 2 end cap Thymine bases are parity invariant, and must 
be separated by 6 non Thymine bases in between within the closed loop, thus 
the number of distinct choices is multiplied by 2/7. The 2 comes from the two 
Thymine bases within. The 1/7 is due to the fact that once one Thymine cap is 
chosen then the remaining Thymine must be fixed and hence is only 1/7 com-
ing from the 7 bases locations left to choose. It is interesting to observe that 
this genome number appears to be universal to life forms, it’s monopole M 
eigen-frequencies depend on the loop circumference, which must depend on the 
base to base separation gaps, as well as the DNA twisting, and thereby depend on 
the physical length of the DNA, that is vital to the creation as well as serves as a 
signature of an individual life form. Hence comparing the DNA spectra is then 
applicable as a verification of the ancestry of a life, because the quantum fre-
quency spectra on the DNA loop is quite unique, with infinite possible separat-
ing gaps variations, hence no two individuals are 100% exactly identical. The key 
we emphasize is the quantum frequency spectra range is dictated by the stacking 
geometry, which not only included the multi-non-Nitrogenous in-between lay-
ers. Thus as averaged over a thermal canonical ensemble has a temperature T 
spread. It is such a T spread that dictates whether the DNA generated life can 
exist in its thermal environment. For example, sea lives due to water freezing at 0 
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C. would have a narrower T distribution for its DNA then human that can sur-
vive a much wider temperature range. The wider the T distribution for the DNA 
spectra, the more complex of a life form it tends to produce. 

Only roughly 30,000 genome is found in human. 

3. The Role Played by the DNA Spectra and the Natural 
Growth of Biological Cells 

All biological tissues contain proteins. All proteins are basically 2D structures of 
molecular hexagons containing carbons. It according to 5D theory are the result 
of Perelmann entropy mapping, combined with the chemical binding of other 
elements within the thermal environment, similar to the formation of galaxies, 
except it has no center void core, due to the dimensions of the macro-hexagons 
formed, hence it also does not contain self rotation and a magnetic field. Since 
they are fundamentally 2D, they are very flexible and hence the elements within 
do not form a rigid point group symmetry. That is the electron orbitals within 
these protein structures do not result in a band structure. The forms of proteins 
are thereby purely dependent on the availability of elements within its thermal 
environment. Because of the fractal picture as we mentioned earlier derived 
from the P1 mapping of homogeneous 5D manifold, which gives us the C12 
nucleus, and the basic hexagon structure, all tissues are formed in strings as can 
be visible from the topology of the next order Poincare sphere symmetry; name-
ly the Bucky ball, where the hexagons are linked with isolated pentagons in be-
tween [see Figure 3]. Making biological tissues into string structure fibers. Like 
crystals it can be broken by temperature changes. Yet these proteins are vital to 
the formation of cells. Cells on the other hand are basically spherical, with dan-
gling bounds attached to the surface, and always contain DNAs within it. Be-
cause of the spherical nature, the electron orbitals on the surface of the cell, nec-
essarily obey periodicity and thereby form a band structure. When proteins are 
rapped around a DNA, the spectra of the DNA affects the transition of the cell’s 
surface electronic states into an ODLRO, such that its binding energy matches 
precisely of the eigenvalues in the DNA’s DLRO gauge invariant monopole Bo-
son state. The details of this mechanism will be discussed in the next section. 
Since there are a large number of DNA spectra eigenvalues, there are correspon-
dingly a large number of different cells possible. The introduction of an abnor-
mal protein into the bio environment, can have a detrimental effect on the life 
itself, as it creates abnormal cells, or inhibits the normal cell formation. Hence a 
normal protein belonging to a specific life form, like a plant that is absent in 
animals can be toxic, which includes us human. On the other hand the reverse 
are beneficial to the animal when consumed. In fact it is the principle behind the 
benefits in herbal medicines. 

4. The Key Role Play by Carbon 12 in Bio Cells 

There are numerous studies and publications on many different areas in cell bi-
ology. Its functions, compositions and reproduction: Including genome and  

https://doi.org/10.4236/jmp.2019.1013103


K. W. Wong et al. 
 

 

DOI: 10.4236/jmp.2019.1013103 1554 Journal of Modern Physics 
 

 
Figure 3. The 20 hexagons are in white, while the 12 isolated 
pentagons are in black. 

 
chromosomes. To ignore these progresses is a huge mistake. However, there has 
never been any study on the creation of life from basic principles of space-time 
mapping and fundamental quantum fields. It is this note’s intension to initiate 
such a study based on the fact that all known life forms are of carbon composi-
tion. 

Carbon 12 is a very unique element based on the 5D theory [1]. Its nucleus 
has 6 protons and 6 neutrons, forming in terms of a hard sphere model [10] into 
3 hexagons and 6 equilateral triangles on a shell, enclosing a spherical void core. 
From the 6 triangles, it is obvious they must contain either 2 protons with 1 
neutron or 2 neutrons with one proton at the corners. Thereby the charge dis-
tribution cannot be uniform in alternate proton to neutron throughout. In fact if 
we consider the probability distribution on the shell of finding a charge it would 
be either 2/3 or 1/3. These fractions are actually in agreement with the P1 space 
to space projection model from 5D homogeneous space-time with uncertainty 
principle, where only e and −e opposite momentum pairs of massless spinors 
along the Fermat’s amplitude can exist, such that the +e of the massless spinor is 
broken into fractional charges and gain a mass becoming quarks in the 4D Lo-
rentz space time L, so that the 5D is mapped into SU(3) × L × 1D [6]. From the 
Fermat’s Last Theorem, the homogeneous space-time N dimensional manifold 
are expressed as the amplitude r, with angle 0 < φ < 2π for 2D space, 0 < θ <π, 0 
< φ < 2π for 3D space, and 0 < θ < π, 0 <φ< 2π, 0 < ε < 4π for 4D space. Thus 
under the P1 projection from 4D space to 2D space, in terms of hard spheres, the 
3 hexagons due to ε and 6 equilateral triangles geometry resulted on the spheri-
cal surface. But because of the equipotential charge distribution Theorem, the 
superposition of the 2 equilateral triangle charge representations choices must be 
imposed, such that the +e charge is broken into the set of SU(3) generators: 
+2/3e, +2/3e and −1/3e, which is equivalent to the realization of gauge inva-
riance preserving unit +e. And at the vertex points of each of the 3 hexagons 
representing the ε phase, which has a total of 4π internal net angle, thus it is a 
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geometric realization that represents the 4th space dimension as according to the 
Fermat’s amplitude and phase angle representation. 

While C12 nucleus is composed of 18 up and down quarks each, divided into 
3 hexagons, and making every vertex point containing 3 quarks that satisfy 
gauge invariance, such that the C12 nucleus is actually a quantum quark soup. 
Thus on the C12 shell, we have exactly 6 protons and 6 neutrons in agreement to 
the nuclear shell model. So that leaving only within the C12 void, the radial 
outward net 0 charge and massless Bose magnetic monopole fields M = +,−2ec 
can remain to exist [3]. While the projection Po from the 4th space coordinate 
onto time must produce the 6 SU(2) −e electrons so as to maintain charge neu-
trality of the 5D manifold from which C12 is created by space dimension reduc-
tion projection. Hence in the atom C12 gives the 6 electrons revolving around 
the nucleus. It should be mentioned that if a spherical 3D × 1D time frozen void 
exists within the earth crest, and if fractal representation is valid, not considering 
charge, a very unexpected rock formation of hexagonal shaped columns com-
posing of mainly 2 elements within the mass of granite rock due to P1 and Po 
due to 4th space dimension reduction mapping [4] could be formed even from 
volcanic eruptions after the molten lava cools. This was of course found 
throughout the earth’s surface [see geological data in south China, HK history 
museum]. In yet another unrelated natural compound, is the Lithium carbonate, 
LiCO, a key ingredient for the Lithium battery is based on the relatively low 
photon energy ionization of Lithium, and it is easily recharged, because of the 
storage of magnetic monopole tunneling energy within the carbon on top of the 
carbon hexagon loop structure due to the carbonate structural composition, that 
can also readily converts back to the ionization photon to restore the battery 
charge. Such Lithium carbonate is found natural in the Brien salt field, which re-
views on the surface the hexagonal structure, a fractal representation of the So-
dium carbonate [see National Geographic, Feb. 2019]. Implying the topological 
importance of the hexagon structure due to the conformal space to space projec-
tion is valid in all energy range, and not just for the standard model of hadrons. 

The Carbon element is a covalent atom, in fact the most important covalent 
element in nature. To understand how, let’s go back to the basic Bohr atomic 
model. The eigen values of these 6 atomic electrons are according to Bohr’s 
model, given by - ZR/n^2, where n is a positive integer number, R is the Ryd-
berg constant and Z the n level effective charge number. Thus for n = 1, level Z = 
6, and for n = 2, Z = 4, as it is reduced by the 2 n = 1 inner s orbital level elec-
trons shielding. Therefore for C with 6 electrons, its 4 outermost orbital level 
must be given by n = 2, with 2 s states and 2 p states. Since the p orbitals are 
given by 2j + 1, where j = l + s, it is 1/2 full, while s is filled. This means carbon’s 
atomic outermost p and s orbital electrons can be shared with its molecular 
neighbors in binding provided from its valence states by either filling the re-
mainder 2 unoccupied quantum p angular momentum states or by giving its 2 p 
or 2 s to the binding neighbors as energetically allowed. This 1/2 filled p or 
empty s after binding is reflected as an example by the photo absorption ob-
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served in graphite, because of the continuous frequency spectrum allowed in a 
half filled VB, making graphite appears as black. Since the graphite structure is a 
stacking of weakly bond 2D C square lattice, which means it obeys space sym-
metry of 1D × 1D geometry. And since 1D does not allow for angular eigenva-
lues, hence in graphite the unoccupied VB band must be the s states. 

Because basically the s hole state is flat, it has very large effective mass, thus 
making graphite a very poor hole conductor. However, K inoculated graphite is 
a superconductor with a very low Tc temperature. This LTC superconductivity 
mechanism of K inoculated graphite has never been properly explained in the li-
terature. It is actually easy to explain the mechanism, as that inserted K+ ion 
must give away its s electron to the C atoms in the inoculated graphite filling a s 
hole between the layers as given in the VB band, making it 2D × 1D like, thus 
slightly changes the hole density composition, by exchanging s and creating a 
small fraction of p density in the residual VB hole density. But because this den-
sity of the p hole created due to inoculation is so small, the 2D like Exciton that 
can exist in the band gap G by the electric dipolar exciting from VB an electron 
into the empty CB, caused by the VB p hole coupling is also weak, thereby ac-
cording to the EEM [Excitonic Enhancement Mechanism] mechanism, [14] 
produces [the EEM theory was introduced for the ceramic HTC materials, and 
has been extensively investigated both theoretically and experimentally [15]-[21] 
An example list of such works is given in our references. Readers in particular 
from the bio sciences, interested are advised to read them] a quantitatively low 
Tc. Hence such a K inoculate dgraphite superconductor, despite the low Tc val-
ue, actually is due to the same EEM mechanism that produced the ceramic HTC, 
and not that of phonon induced BCS mechanism in superconducting metals 
[22]. 

In fact since in general molecular bio structures of C, the C p orbital electrons 
with lattice geometry consisted of hexagons it can equally share either as a nega-
tive valency state in molecular binding, or a positive valency and accept an extra 
electron to fill its p angular momentum shell irrespective to the rest of the near-
est neighbors geometry. In such more general molecular bio chemical rigid 
structure, the C’s in the structure would naturally produce a partially filled p VB 
structure, when the bio carbon forms a solid structure with translational unit cell 
symmetry. But unlike that in graphite, because of the VB half filled p states will 
not have large effective masses. In fact because by changing the 2D C net from 
square to hexagon, changes the number of nearest neighbors from 4 in square 
net to 3 in hexagon net, leaving the VB with at least one p hole, which can have 
relatively low effective mass. All proteins that make up bio cells have natural 
hexagon C structures, except free proteins are not rigid. 

Therefore in free proteins, the electron periodic boundary condition needed 
for band theory is not met, and hence in free proteins we cannot produce de-
fined band structures. On the other hand, all bio cells are basically 3D spheres 
and contain carbons from the proteins coating in its molecular surface structure, 
which can be made rigid and enclosing a DNA within it. And in a fractal way, by 
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taking C as replacing the proton in the C12 structural form, because of the M 
state within DNA core, and the P1 that broke the 3D × 1D space symmetry, 
producing the hexagon structure shell for the cell, giving us the band structure 
for such cells, which are in a macro scale in the geometric shape of a sphere ex-
cept also normally with different 1D like spike attachments. The effect of such 
attachments does not break the spherical surface periodicity on the electronic 
states from the C12 atoms, but like K inoculated graphite it would modify the 
VB p wave density and give a perturbative correction to the exciton spectrum 
formed within the band gap G [23]. Such minor spectrum changes are vital to 
the perfect matching to the DNA in the core spectra, and thus able to induce 
the electrons ODLRO [Off-Diagonal Long Range Order] in the specific cell, 
and with it the Tc value. It is such spikes that can also give the cells different 
functions as according to the DNA and its ability to be linked and build an or-
gan structure. A change in Tc upward can result in inducing a cancerous 
growth of such a cell. The specific organ forming requires specific boundary 
conditions imposed not just from the DNA spectrum. Such complex boundary 
usually includes the chromosomes, etc. Are beyond the scope of this simple 
note. An example is the form of the free white blood immune defensive cell. It 
does not come from the VB p holes, very likely such memory comes from the 
semi-conductor portion on the attaching surface, similar to the LCD screen of a 
TV? Thus such surface semiconductor circuit memory works like a computer 
chip, and produces the life form’s memories. It is all throughout the body of the 
life form, not just in the brain. The body chromosomes are examples. Although 
the brain cells are unique, in that its circuit accepts external programming 
commands, and not just play the role of the organ and shape formation. Its 
purpose is mainly to act as a conducting net for the stored commends in the 
brain provided by programmed storage key. Thereby the brain cells are generally 
dense packed, such that super currents can propagate on its surface similar to 
the granular dense pack HTC [24]. It is this physical structure that makes neuro 
cells rejuvenation rather rare, and its death enhanced by usage, thus increases 
with aging [25]. Most other bio cells, are free floating in body fluids, and it is re-
placed frequently, as the DNA responsible is enclosed by the specific protein that 
forms it. While the dead cell, breaks apart, and the protein cover is oxidized and 
removed from the body as CO2 and other gases emission. Because, there are few 
blood vessels throughout the brain, the REST protein released from death brain 
cells usually will accumulate and covers the brain structure, thus blocking the 
super current flow. It is this current blockage that leads to human neuro deceas-
es such as Alzheimer and Parkinson. If our explanation of the cause of such de-
ceases is valid, then we can suggest a method of control, but not a cure, if we can 
somehow increase the oxidation of the REST protein? Since we have no way to 
increasing the number of blood vessels around the brain, the only way to in-
crease oxygen then is to enhance the blood flow. As is well known, that con-
suming alcohol leads to intoxication due to alcohol tends to flow to the brain. 
Hence, if the alcohol contains a strong oxidation agent, such as red grape wine, 

https://doi.org/10.4236/jmp.2019.1013103


K. W. Wong et al. 
 

 

DOI: 10.4236/jmp.2019.1013103 1558 Journal of Modern Physics 
 

then perhaps by controlled wine drinking might keep the REST protein quantity 
in check? Of course such method must be tested, and success might be very li-
mited! Thus the brain cells are susceptible to blockages due to surface coating of 
extra proteins, not necessarily becoming cancerous and yet leading to memory 
loss. Nonetheless all the cells surfaces are fundamentally spherical, and all the 
electronic states on its surface can be periodic as the basic chemical molecules on 
it always satisfy 2D periodic boundary, even if it is only a single unit of a cell, like 
for example, a Bucky ball with just certain fixed points on the surface being that 
of C. In short, the electron structure from them would satisfy the boundary re-
quired for band structure calculation. As such, and with the covariant character 
of the carbon orbitals in such spherical chemical molecules, would necessarily 
give rise to a partially filled p state VB, together with an empty CB, which will 
have from n = 3 atomic level d orbitals, very much like in the HTC cuprates. 
Since the bio cell normally will not combine with a free foreign atom, unless the 
free atom attachment can bring down the binding energy in excess of the band 
gap G between the cell’s CB and VB, otherwise such a cell will not be stable when 
submerged in a fluid containing free ions, in bio terms, known as free radicals, 
when there is no positive band gap energy G, separating CB with VB of the cell 
band structure. Such a band structure with positive G resembles that of HTC 
cuprates, both band structures consisted of partially VB, with 2D like p hole 
conductivity in the normal phase, except in HTC the anisotropic conductivity is 
the result of layers of CuO planes stacking, while in bio-cells it is mainly due to 
C’s on the spherical surface [23]. The molecular orbital for CuO in the bands 
gives a partial filled p and d alternating states, where p comes from the oxygen 
ion, unlike in graphite, thus with relatively small effective masses [14]. In fact the 
experimental result on Tc dependence on oxygen deficiency in YBCO supports 
our EEM theory interpretation for HTC mechanism. 

Since the excitation of an electron from VB to the empty CB would form an 
exciton state, within the positive bandgap G, because such atomic like 2D exci-
ton due to the cell’s periodic boundary, if formed is equally periodic on the 
structural surface which as required for formation of band structure, it can ac-
tually couple to any moving phole by the electrical dipole induced by the Photon 
transition excitation of the orbital states caused by the hole charge motion. It is 
this electrical dipole coupling between the periodic exciton and the mobile holes 
that will produce EEM and thereby creating the superconducting phase transi-
tion for temperature below its superconductivity critical Tc [15]. Since Tcde-
pends on the Excitonic dipolar coupling, it therefore is indirectly dependent on 
the exciton’s quantum orbital states. That is the set of reduced charge quantum 
orbital excitation transitions. Hence when such photonics spectrum photons are 
made available from the enclosed DNA, the cell would naturally form when the 
protein molecules that it is made up of are available within the thermal bath, so 
that the bio structure can minimize its carrier ground state binding gap energy 
matching part of the DNA spectra according to that of the enclosed DNA. 

The lower the set of photo energy transitions, the easier it will be for the p 
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holes in the cell ODLRO condensation to occur, leading to the natural growth of 
the cell. In fact, the closer the exciton level is to CB, the higher would be the spe-
cific cell’s Tc [23]. Meaning, the higher Tc value as compared to the thermal 
bath temperature T, and the more stable it is for the cell. None the less the EEM 
induced Tc has an upper limit, due to the optimum half filled VB p state, and its 
effective lowest possible mass, as due to the unit cell’s size. Hence all life forms 
can only exist within this limited upper Tc range, normally below the boiling 
point of water. While the lower temperature limit is bounded by water freezing 
point, as water provides the fluid for moving the free proteins around the bio 
structure. Heat generation within a bio system, usually caused by Oxygen and 
other chemical reactions between the body fluid ions, such as free ions from 
proteins, which are C hexagon structures, but flexible without fixed bond lengths 
and can be transformed by wrapping onto a spherical structure cell, thus 
changes it, plus sugars which are just C, silicate, and amino acid etc. that can 
make it rigid, and could also destroy the original cell structure thus breaking the 
p holes ODLRO phase, hence leading to the natural cell death. In fact, such stif-
fening of the shell of the specific protein is vital to the cell normal growth and 
death. To that water plays as a facilitator, an indispensable role in the chemistry. 
Chinese traditional medicines rely on identifying the specific protein associated 
with the Heath of the specific cells that is responsible for the specific organ op-
eration, thus hoping by such direct supply of the needed protein can restore the 
organ’s proper function. Although overabundance of such free radicals within 
the body fluids, will cause change in the normal cell regrowth cycle, and will 
cause health problems, like diabetes, Alzheimer and Parkinson’s decease when 
the protein wraps over a brain cell is improbably stiffened with excessive silicate, 
causing memory loss and abnormal aging. However, the replenishment of the 
body fluid, with proteins coming from food intake is an essential component to 
the regrow of the shell of a cell around the DNA, and is equally also important to 
the body organs that must come from the build-up of many different cells via 
also providing the inter linkages, including the rigid silicate bone structures pre-
cisely maintained within such complex thermal cycles that operates in the bio 
system to create a healthy life. 

Should the thermal bath temperature rise beyond the cell’s superconducting 
Tc, due to inflammation, normal cell growth would be prohibited, and only ab-
normal cancerous ones survive. Hence when the body suffers from sickness, it is 
usually accompanied with at least a localized rise in temperature, the occurrence 
of inflammation there inside the body. Actually, the thermal condition and the 
availability of the proteins and chemicals drives the species evolution, or the 
minor topological mapping of cells, etc. towards its adaptation to survival. In 
order to apply our Tc model principle to the cause and potential cures of the 
body, all the exact normal cell structure and thereby its band structures must be 
obtained, so that the proper Excitonic spectra that can be formed within the 
corresponding band gap must be derived and matched to the body’s DNA spec-
tra. RNAs and DNAs of bio systems are made from 4 basic Nitrogenous bases, 
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stacked and formed by back bones into rigid structures. These bases are all 
composed of hexagons with 3 C carbons, with 1 C carbon isolated from the oth-
ers with an N nitrogen in between [see figures]. Since in our 5D model, it is the 
Po and P1 projection operations that lead to converting the massless charged 
spinors into SU(2) gauge conserved leptons and SU(3) with fractional charged 
quarks that create matter, thereby through the Perelman-entropy mapping giv-
ing us the Nitrogenous base structures, are divided into 3 + 1 distinct attach-
ments as shown in the figures. The 1 represents the end base cap, responsible for 
reflecting the M field from one RNA branch into the parallel one, while the 3 
together with its opposite sides represent the 6 SU(3) generators, since each C 
contain a time frozen 3D × 1D void, where the magnetic monopole Boson State 
M = 2ec can exist if it can tunnel from C to C and completes a closed loop, con-
serving gauge invariance by the stacking of two parallel chains of RNAs, with an 
end cap base to satisfy the formation of a DNA. 

5. Summary on the 5D Projection Processes 

Because the creation of ‘Life’ is the most challenging question, yet we believe it 
can be explained based on the assumption that the universe started with the cre-
ation of a single homogeneous 5D space-time manifold, which satisfies the Fer-
mat’s Last Theorem [10], together with the uncertainty principle on measure-
ment, thus leading to the Big Bang theory, it is best to give a summary to the 
steps that leads to all creations: 1) The quantum field solutions of the 5D homo-
geneous manifold are those of the Electro-magnetic 4 vector potentials, plus the 
extra magnetic monopole potential as suggested by Maxwell. This Maxwell mo-
nopole magnitude is a Bose field of 2ec from the product of e and −e massless 
spinors, where e is the coupling between the Electro-magnetic potentials and the 
massless spinor, thus must obey the gauge transformation. 2) Since the Fermat’s 
sum is only valid for positively increasing time, these vector potentials are not 
time reversal invariant. And it also means, parity symmetry need not be rigo-
rously obeyed. 3) The magnetic monopole Boson is energy independent, and is 
of Diagonal Long Range Order, therefore, it must be in the Bose-Einstein con-
densed state. But to become that it must be in a Grand Canonical Ensemble, thus 
making up a chemical potential value in exact cancellation to the Boson’s energy. 
4) The fixing and choosing of a discrete set of chemical potentials break the Bo-
son ground state, similar to the Higg’s vacuum theory [11] [26] by breaking the 
continuous chemical potential of the Grand Canonical Ensemble into a discrete 
set. 5) The creation of mass matter, is then identified with this chemical poten-
tial set, and is an irreversible process, equivalent to the space reduction projec-
tion, and the Perelman mappings. Hence one ties the irreversible mapping for 
the creation of mass to the creating of Lorentz 4D manifolds out of the original 
single homogeneous 5D manifold. As well as identifying the breaking of the net 
charge 0, monopole Boson into separate +e and −e massive spinors [1]. Detail on 
the symmetry breaking had been discussed in earlier publications and will not be 
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repeated here. Nonetheless it clearly divided the energy range of the monopole 
Bosons, into a range when its energy is greater than the rest mass of the electron, 
the lightest massive particle due to the projection to the lower energies. 6) Due 
to the rest mass differences between the +e and −e massive spinors generated by 
the Boson ground state excitation, the resulting atomic elements, which com-
posed of protons, neutrons and electrons no longer maintain charge and parity 
symmetry [27]. 7) Since the breaking of the continuous energy range for the 
monopoles due to uncertainty principle also implies a breaking of the conti-
nuous 4D homogeneous space, thus would result in the separate formation of 
doughnut disc like Lorentz manifolds, which in turn divided the universe into 
disjoint Lorentz manifolds, with multiple energy source composed of the distri-
bution of monopole Bosons, from which both +e and −e masses can be created. 
Below the rest electron masse region of the Monopole Bosons, it is obviously of 
longer wave-lengths. Thus under the Perelman entropy mapping [3], Poincare 
spheres can be obtained, with a resulting time frozen void core, and the forming 
of masses into three hexagons shape due to SU(3). While the void core dimen-
sion restricts the existence of the monopole Boson field. 8) The breaking of the 
spherical masses on the shell further splits these 3 symmetric hexagons into 3 2D 
separate hexagons, separated along the vertical axis of the 2D plane. 9) In life 
forms, we are interested in the monopole state presence due to the void of car-
bon 12 nucleus, as all life forms are basically carbon compounds. Since the car-
bon 12 void is of nucleus dimension, the monopole Boson would have to have a 
short wave-length and does not exist normally, unless it can quantum tunnel 
from one C in one hexagon onto another C in the adjacent hexagon layer, thus 
creating the RNA, except with fixed end points, as represented by the Nitrogen-
ous bases set: Cytosine, which comes from the fractal representation of the hex-
agon on the C12 nucleus surface [Figure 2], while Guanine, Adenine are from 
those on the Bucky Ball surface [Figure 3], due to the 2:1 ratio between numbers 
of pentagons in the Bucky ball to the equilateral triangles in C12, and the 1D end 
cap Uracil, such that the monopole Boson is a standing wave [Figure 1]. Hence 
this Boson state violates gauge invariance. 10. In order to retain gauge invariance 
for the Boson wave, we need to change the end cap hexagon into a reflecting cap, 
Thymine, such that the Boson state from one RNA reflects onto a parallel RNA, 
and becomes a closed loop forming a DNA 11. The non-repeat stacking of the 
bases then gives us the genome, with its unique spectra for each life form. 12. 
This unique quantized gauge solution set of the genome spectra for the mono-
pole Bosons allows the computation on the thermal temperature T by using 1D 
bose distribution averaging within the life form’s body, [note that 0 frequency 
state is always excluded, such the genome spectra does not B. E. condense] and 
in order that cells can be generated by the EEM mechanism for the partially VB 
p holes from the carbons in the protein shell the superconducting critical Tc 
must exceed T. Yet not too far as to affect the normal cell replacement cycle 
caused by oxidation, and other chemical reactions. This balancing of T criteria in 
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facts dictates the well being of the life. 

6. Conclusions 

Under the homogeneous 5D space-time quantum theory, the creation of matter 
from the orthogonal 4th space Bose-Einstein condensed magnetic monopole 
Boson fields, in the Grand Canonical Ensemble, due to space dimension reduc-
tion into Matter filled Lorentz 4D, with 5D voids, can be divided into different 
energy regions, and with high energies above electron rest mass, splitting the 
equal energy values of + and −e massless spinors with the different chemical po-
tential values according to the electron rest mass and the quark rest mass for the 
different charges in the monopole field amplitude in the Grand Canonical en-
sembles leading to the realization of the Gell-Mann Quark model as well as the 
electro-weak lepton model, which we had previously published. It also can be 
compared to the breaking of the Higg’s vacuum. Thereby, there remains the 
energy region below the electron rest mass, which can be shown to further split 
into 2D space matter geometry of hexagon structure when the remaining 3D 
homogeneous space is broken into 2D × 1D representation. This 2D space in-
cludes that of a spherical surface, and that of a cylindrical cross section repre-
sentation which would result the lowest symmetry geometries, that of the nuc-
leus C12 shell, that consisted of protons and neutrons in 3 hexagons and 6 equi-
lateral triangles and for the cylindrical geometry 4 basic Nitrogenous bases, 
formed by carbons and nitrogens also in hexagon form as the result of fractal 
where the nucleons on C12 shell are replaced by the carbon and nitrogen atoms 
that are spaced along the 1D, thus creating both RNAs and DNAs. It is through 
these results and gauge invariance genome and chromosomes of life forms can 
be obtained. The distinct discrete set of such spectra coming from the 
Bose-Einstein condensed DLRO of the monopole Boson field would then induce 
the enclosing matter surface elements’ CB electrons, or holes of unfilled VB to 
become superconducting ODLRO. Hence from the 5D quantum model, the 
Quantum Long Range Order continuity causes the DNA spectrum energy to 
match the ODLRO electron or hole pairing energy thus creats cell growth, and 
thereby “Life”. In fact this space symmetry reduction is equivalent to the topo-
logical projections of Po and P1, discussed in the 5D unified field theory book 
[1]. 

As such the P1 created M tunneling states made C into the fractal representa-
tion as given by the 3 adjoining Cʼs in the Nitrogenous bases of the SU(3) quark 
generators, while the Po was represented by the isolated C. Since Pogives raise to 
the SU(2) electron generator, that would be in the atomic orbital and responsible 
to the molecular binding, so this isolated C acts to hold the Nitrogenous bases 
stacking together, creating the back bone and hence must be responsible for the 
RNA/DNA twisting back bone required to make them rigid, and hence fixes the 
allowed M eigen spectrum. Due to the many possible Nitrogenous bases stacking 
order possible, together with the twisting as well as various layers to layer sepa-
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ration gaps, the eigen spectra of M is extremely large, enabling it to match that 
required to form the exciton induced ODLRO gap in the cells. Hence, using 
suitable RNAi technology it is possible to correct and cure all unnatural can-
cerous growth, and cell inflammation caused by mismatching of the DNA 
spectrum with the cell ODLRO gap formation. Although this is a very tedious 
computational problem, as there are numerous different cells, which serves to 
maintain the proper functioning of different organs and senses in the life forms. 
Nonetheless it is an achievable task with our current 5G computer computation-
al power. It is to this objective end, that we hope if our 5D model theory for life 
is correct, can help bring about a quantifiable medical revolution method in cure 
for many yet incurable illnesses? Should our model be correct, this enormous 
work would make it the greatest technological revolution in human history. The 
quantitative spectra matching between DNA and the bio exciton states would 
identify all the life forms functioning and its senses, including the brain’s memo-
ries. As a result, there are numerous patents to be filed, and will involve collabo-
rations between cell biologists, band structure computational physicists, com-
puter engineers, programmers and RNAi medical and bio technicians. The re-
sults would produce advances in new technology from agriculture to human 
health. We, as pure scientists should lead this revolution, bringing it uncondi-
tionally to the world, instead of letting selfish politicians gain control, which 
could lead to human annihilating world war just so they can use the technology 
to satisfy their ambition in gaining power for world dominance! 
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Abstract 
The first purpose of this striking but difficult paper is to revisit the mathe-
matical foundations of Elasticity (EL) and Electromagnetism (EM) by com-
paring the structure of these two theories and examining with details their 
known couplings, in particular piezoelectricity and photoelasticity. Despite 
the strange Helmholtz and Mach-Lippmann analogies existing between them, 
no classical technique may provide a common setting. However, unexpected 
arguments discovered independently by the brothers E. and F. Cosserat in 
1909 for EL and by H. Weyl in 1918 for EM are leading to construct a new 
differential sequence called Spencer sequence in the framework of the formal 
theory of Lie pseudo groups and to introduce it for the conformal group of 
space-time with 15 parameters. Then, all the previous explicit couplings can 
be deduced abstractly and one must just go to a laboratory in order to know 
about the coupling constants on which they are depending, like in the Hooke 
or Minkowski constitutive relations existing respectively and separately in EL 
or EM. We finally provide a new combined experimental and theoretical 
proof of the fact that any 1-form with value in the second order jets (elations) 
of the conformal group of space-time can be uniquely decomposed into the 
direct sum of the Ricci tensor and the electromagnetic field. This result ques-
tions the mathematical foundations of both General Relativity (GR) and 
Gauge Theory (GT). In particular, the Einstein operator (6 terms) must be 
thus replaced by the adjoint of the Ricci operator (4 terms only) in the study 
of gravitational waves. 
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1. Introduction 

At the beginning of the last century G. Lippmann and H. von Helmholtz, who 
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knew each other, were both looking for the possibility to interpret thermostatic 
and electric phenomena by exhibiting a common macroscopic mechanical origin 
through a kind of variational calculus similar to the one used in analytical me-
chanics for getting Euler-Lagrange equations. As a byproduct, it is not possible 
to separate the Mach-Lippmann analogy from the Helmholtz analogy that we 
now recall. 

In analytical mechanics, if ( ), ,L t q q  is the Lagrangian of a mechanical  

system, one easily gets the Hamiltonian 
LH q L
q
∂

= −
∂




 where t is time, q  

represents a certain number of dependent variables or generalized position, al-
lowing to define the position of the various rigid bodies constituting the system 
(coordinates of center of gravity, relative angles, ...) and q  is the derivative 
with respect to time or generalized speed. There are two ideas behind such a 
construction. The first is to introduce the energy as in the movement of a point 
of mass m with Cartesian coordinates ( , ,x y z  vertical) or ( 1 2 3, ,x x x  vertical) in  

the gravitational field g  where ( )2 2 21
2

L m x y z mgz= + + −  
 and thus 

( )2 2 21
2

H m x y z mgz= + + +  
. The second is to take into account the well known 

Euler-Lagrange equations d 0
d

L L
t q q
 ∂ ∂

− = ∂ ∂ 
 implied by the variational condi-

tion ( ), , d 0L t q q tδ =∫   and to obtain therefore: 

d d
d d
H L L L Lq
t t q q t t

  ∂ ∂ ∂ ∂
= − − = −  ∂ ∂ ∂ ∂  




 

that is the conservation of energy along the trajectories whenever L does not 
contain t explicitly. 

Similarly, in thermostatics, if F is the free energy of a system at absolute tem-
perature T, we may obtain, in general, the internal energy U by the formula  

FU F T
T
∂

= −
∂

. We explain the underlying difficulty in the case of a perfect gas  

with pressure P, volume V and entropy S for one mole. The first principle of 
thermostatics says that the sum of the exchange of work dW P Vδ = −  and the 
exchange of heat Qδ  between the system and its surrounding is a total diffe-
rential dU W Qδ δ= + . Now, the second principle of thermostatics says that  

dQ T Sδ =  or equivalently that dQ S
T
δ

=  is a total differential with absolute 

temperature as integrating factor. Accordingly, we have d d dU P V T S= − + , a 
result giving U as a function of V and S. As V has a geometric meaning that S 
does not possess, engineers use to do a Legendre transformation by introducing 
F U TS= −  in order to have d d dF P V S T= − −  where F is now a function of  

V and T that can be measured. It follows that FS
T
∂

= −
∂

 in this situation  

because dW P Vδ = −  does not contain dT . Of course, contrary to S, T can be 
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measured though it does not seem to have a geometric meaning like V. In gener-
al, the 1-form Wδ  depends linearly on the differentials of all the state variables  

( dV  and dT  in our case) and there is no reason at all to have again FS
T
∂

= −
∂

. 

To avoid such a situation, Helmholtz postulated the possibility for any system to 
choose “normal” state variables such that dT  should not appear in Wδ . 
Therefore, if one could introduce V and T on an equal geometric footing, then 
d d dF P V S T= − −  should already contain, in a built-in manner, not only the 
first and second principle but also the well defined possibility to recover U from 
F as before. In the case of continuum mechanics that we shall study later on, V 
must be replaced by the deformation tensor, as we shall see later on, which is a 
function of the first order derivatives of the actual (Euler) position x at time t 
with respect to the initial (Lagrange) position 0x  at time 0t . Accordingly, the 
idea of Helmholtz has been to compare the relations L H→  and F U→  
and to notice that they should become indeed similar if one could set L F= −  
and q T=  for a certain q. However, despite many attempts [1], nobody knows 
any variable q such that its derivative with respect to time should be the absolute 
temperature T of the system considered. 

We now present the work done by Lippmann in a modern setting. The basic 
idea is to compare two kinds of conceptual experiments, namely a Carnot cycle 
for a steam engine working between the absolute temperatures 1T  and 2T  with 

2 1T T>  on one side, and a cycle of charge and discharge of a spherical condenser 
(say a soap buble) of radius r, moving in between two plates at constant electric 
potentials 1V  and 2V  with 2 1V V>  on the other side ([2] [3] [4] [5]). 

In the first case, let the system receive the heat 2 0Q >  from the hot source 
and the heat 1 0Q <  from the cold source through corresponding isothermal 
evolutions, while receiving the work 0W <  from the surroundings in a cycle 
completed by two adiabatic evolutions. 

The vanishing of the cycle integral: 

( ) d 0W Q Uδ δ+ = =∫ ∫ 

 

coming from the first principle of thermostatics leads to the relation 

1 2 0W Q Q+ + = . 
Then, the vanishing of the cycle integral coming from the second principle of 

thermostatics: 

d 0Q S
T
δ

= =∫ ∫ 

 

leads to the Clausius formula and the computation of the efficiency ν : 

1 2 1 2 2 1

1 2 2 2 2

0 0
Q Q Q Q T TW
T T Q Q T

ν
+ −−

+ = ⇒ = = = >  

Now, in the second case, things are quite more subtle. Recalling the formula 
q CV=  relating the charge q to the potential V of a condenser with 

04C r= π  for a sphere of radius r, the electric energy should be: 

https://doi.org/10.4236/jmp.2019.1013104


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1013104 1569 Journal of Modern Physics 
 

2
21 1 1

2 2 2
qE CV qV
C

= = =  

Whenever C remains constant, the exchange of work done by the sources 
should be dW V qδ ′ =  because, by definition, sources are at constant potential, 
and we have d d dE q V V q Wδ ′= = = . However, the situation is completely dif-
ferent whenever C depends on r and we do not believe that Lippmann was very 
conscious about this fact. Let us suppose that the bubble receives the work 

2 0W ′ >  from the source at potential 2V  for having its charge changing at con-
stant potential 2V  and similarly the work 1 0W <  from the source at constant 
potential 1V  for having its charge changing at constant potential 1V , while re-
ceiving the (mechanical) work 0W <  from the surroundings for changing C in 
a cycle where the geometry of the system may vary (change of radius or dis-
tance). The problem is now to construct the cycle in order to be able to copy the 
procedure used for thermostatics. In the evolution at constant potential we have 

dW V qδ ′ = , as already said, and therefore, comparing with dQ T Sδ = , the re-
maining evolution must be at constant charge, a situation happily realized in the 
experiment proposed by Lippmann, during the transport of the bubble from one 
plate to the other. 

Now, taking into account the expression dW V qδ ′ =  already introduced and 
allowing C to vary (through r in our case), we have the formula: 

21d d d
2

E V C V q W Wδ δ ′= − + = +  

if we express E as a function of C and q. In our case 2
02 dW V rδ π= −   and the 

relation q CV=  plays the role of the relation PV RT=  existing for a perfect 
gas. 

Copying the use of the first principle of thermostatics, the vanishing of the 
cycle integral provides: 

( ) 1 2d 0 0W W E W W Wδ δ ′ ′ ′+ = = ⇒ + + =∫ ∫ 

 

Lippmann then notices that the conservation of entropy now becomes the 
conservation of charge and the vanishing of the cycle integral provides: 

1 2 2 1

1 2 2 2

d 0 0 0
W W V VW Wq

V V V W V
δ ν

′ ′′ −−
= = ⇒ + = ⇔ = = >

′∫ ∫ 

 

analogous to the Clausius formula with similar efficiency ν , a result he called 
“Principe de conservation de l’électricité “ or “Second principe de la théorie des 
phénomènes électriques”. 

One must notice the formula: 

21d d d
2

E V C q V= +  

if we express E as a function of C and V. Also the analogue of the free energy 
should be E qV E− = −  expressed as a function of C and V. Hence it is not 
evident, at first sight, to know whether the more “geometric” quantity is q or V. 

Finally, the analogy between T and V in the corresponding “second principles” 
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is clear and constitutes the Mach-Lippmann analogy. However, the reader may 
find strange that T, which is just defined up to a change of scale because of the 
existence of a reference absolute zero, should be put in correspondence with V 
which is defined up to an additive constant. In fact, the formula for the spherical 
condenser (Gauss theorem) is only true if the potential at infinity is chosen to be 
zero, as a zero charge on the sphere is perfectly detectable by counting the num-
ber of electrons on the surface. Accordingly, the two previous dimensionless ra-
tios are perfectly well defined, independently of any unit chosen for T or V. 
However, such an analogy is perfectly coherent with the existence of thermo-
couples where the gradient of T is proportional to the gradient of V, that is we 
have for the electric field ( )T Tη=E ∇  and the latter difficulty entirely disap-
pears. 

We recall that the thermoelectric effect, that is the existence of an electric cur-
rent circulating in two different metal threads A and B with soldered ends at dif-
ferent temperatures 1T  and 2 1T T> , has been discovered in 1821 by the physic-
ist Seebeck from the Netherlands. Also cutting one of the threads to set a con-
denser and integrating along the circuit, the difference of potential becomes: 

( ) ( )( )2

1
d d

T
A BT

V T T Tη η= ⋅ = −∫ ∫E


  

Hence a thermocouple only works if A B≠ , 1 2T T≠  and tables of coeffi-
cients can be found in the literature. It is the French physicist Becquerel who got 
the idea in 1830 to use such a property for measuring temperature and Le Cha-
telier in 1905 who set up the platine thermocouple still used today. Meanwhile, J. 
Peltier proved that, when an electric current is passing in a thermocouple circuit 
with soldered joints at the same temperature, then one of the joints absorbs heat 
while the other produces heat. Also W. Thomson proved that an electric current 
passing in a piece of homogeneous conductor in thermal equilibrium gives a 
difference of potential at the ends whenever they are not at the same tempera-
ture. 

We end this presentation of the Mach-Lippmann analogy with the main 
problem that it raises. From the special relativity of A. Einstein in 1905 [6] it is 
known that space cannot be separated from time and that one of the best exam-
ples is given by the relativistic formulation of EM. Indeed, instead of writing 
down separately the first set of Maxwell equations for the electric field E  and 
the magnetic field B  under their classical form, ne may introduce local coor-
dinates ( )1 2 3 4, , ,x x x x ct=  where c is the speed of light and consider the 2-form 

( ) 2 *
ijF F T= ∈∧  with standard notations: 

2 3 3 1 1 2 1 4
1 2 3 1

2 4 3 4
2 3

1

1 1

F B dx dx B dx dx B dx dx E dx dx
c

E dx dx E dx dx
c c

= ∧ + ∧ + ∧ + ∧

+ ∧ + ∧
 

in order to obtain: 

0, 0 0 0i jk j ki k ijdF F F F
t

∂
⋅ = ∧ + = ⇔ = ⇔ ∂ + ∂ + ∂ =

∂
BB E∇ ∇  
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where 2 * 3 *:d T T∧ → ∧  is the exterior derivative. 
Similarly, introducing the electromagnetic potential A  and the electric po-

tential V in the 1-form 1 2 3 4
1 2 3 4

i
iA A dx A dx A dx A dx A dx= = + + +  where  

4A V c= −  is the time component, we obtain: 

, V dA F
t

∂
= ∧ = − − ⇔ =

∂
AB A E∇ ∇  

though, surprisingly, V has been introduced in thermostatics. Hence, even if we 
may accept and understand an analogy between T and V, we cannot separate V 
from A  in the 4-potential A and a good conceptual analogy should be between 
T and ( )1 2 3 4, , ,A A A A A= . 

The surprising fact is that almost nobody knows about the Mach-Lippmann 
analogy today but many persons are using it through finite element computa-
tions and thus any engineer working with finite elements knows that elasticity, 
heat and electromagnetism, though being quite different theories at first sight, 
are organized along the same scheme and cannot be separated because of the ex-
istence of the following couplings that we shall study with more details in the 
next Section. 
 THERMOELASTICITY (Elasticity/Heat): 

When a bar of metal is heated, its length is increasing and, conversely, its 
length is decreasing when it is cooled down. It is a perfectly reversible pheno-
menon. 
 PIEZOELECTRICITY, PHOTOELASTICITY (Elasticity/Electromagnetism): 

When a crystal is pinched between the two plates of a condenser, it produces a 
difference of potential between the plates and conversely, in a purely reversible 
way. Piezoelectric lighters are of common use in industry. Similarly, when a 
transparent homogeneous isotropic dielectric is deformed, piezoelectricity can-
not appear but the index of refraction becomes different along the three ortho-
gonal proper directions common to both the strain and stress tensors. Here we 
recall that a material is called “homogeneous” if a property does not depend on 
the point in the material and it is called “isotropic” if a property does not depend 
on the direction in the material. Accordingly, a light ray propagating along one 
of these directions may have its electric field decomposed along the two others 
and the two components propagate with different speeds. Hence, after crossing 
the material, they recompose with production of an interference pattern, a fact 
leading to optical birefringence. Such a property has been used in order to get 
information on the stress inside the material, say a bridge or a building, by using 
reduced transparent plastic models. This phenomenon was discovered by Brew-
ster in 1815 but the phenomenological law that we shall prove in the next section, 
was proposed independently by F.E. Neumann and J.C. Maxwell in 1830. Until 
recently one used to rely on the mathematical formulation proposed by Pöckels 
in 1889 but modern versions can easily be found today in the engineering litera-
ture. 
 THERMOELECTRICITY (Heat/Electromagnetism): 
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We have already spoken about this coupling which, nevertheless, can only be 
understood today within the framework of the phenomenological Onsager rela-
tions for irreversible phenomena. If we want to make the Fourier law Tχ=q ∇  
between heat flux and gradient of temperature more precise, we may suppose 
that the heat conductivity χ  also depends on the magnetic field and we may 
obtain “a priori” the additional term i ijkl

kl jq C F T= ∂ . In a homogeneous me-
dium, one has ijkl ij kl ik jl il jkC a b cω ω ω ω ω ω= + +  when ω  is the space Eucli-
dean metric and we have ( )1

3 2q b c B T= − ∂ , ( )2
3 1q b c B T= − − ∂  with 

( )30,0, B=B , that is ( )c b T= − ∧q B ∇ . We have thus been able to recover the 
Righi-Leduc effect in a purely macroscopic way. 

Hence, as a very restrictive conclusion, we discover that the Mach-Lippmann 
analogy must be at least set up in a clear picture of the analogy existing between 
elasticity, heat and electromagnetism that must also be coherent with the above 
couplings. 

2. Elasticity versus Electromagnetism 

The rough idea is to make the constitutive law of an homogeneous isotropic di-
electric =D E  where D  is the electric induction and ( )0 1 χ= +  , 0  
being the vacuum value (universal constant) of the dielectric constant, such that 
the dielectric susceptibility χ  now depends on the deformation (or stress) 
tensor in each direction. Keeping the constitutive relation 1

µ
=H B  where H  

is the magnetic induction and 0µ µ=  the vacuum value (universal constant) of 
the magnetic constant, as we have no magnetic polarization in the medium, it is 
well known that 2

0 0 1cµ =  and thus 2 2c nµ =  where n is the index of re-
fraction such that ( )2 1n χ= + , a result leading to the Maxwell-Neumann for-
mula 1 2 k eCσ σ λ− =  that we shall demonstrate and apply to the study of a 
specific beam. In this formula 1 2,σ σ  are the two eigenvalues of the symmetric 
stress tensor along directions orthogonal to the ray, k is a relative integer fixing 
the lines of interference, λ  is the wave length, e is the thickness of the transpa-
rent beam and C is the photoelastic constant of the material. 

With more details, the infinitesimal deformation tensor of elasticity theory is 
equal to half of the Lie derivative ( ) ( )ij ji ξ ωΩ = Ω = Ω =   of the euclidean 
metric ω  with respect to the displacement vector ξ . Hence, a general qua-
dratic lagrangian may contain, apart from its standard purely elastic or electrical 
parts well known by engineers in finite element computations, a coupling part 

ijk
ij kc EΩ  where ( )kE E=  is the electric field. The corresponding induction 

( )kD D=  becomes: 

0 0
k k k k ijk

ijD E D D c= → = + Ω  

and is therefore modified by an electric polarization k ijk
ijP c= Ω , brought by the 

deformation of the medium. In all these formulas and in the forthcoming ones 
the indices are raised or lowered by means of the euclidean metric. If this me-
dium is homogeneous, the components of the 3-tensor c are constants and the 
corresponding coupling, called piezoelectricity, is only existing if the medium is 
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non-isoptropic (like a crystal), because an isotropic 3-tensor vanishes identically. 
In the case of an homogeneous isotropic medium (like a transparent plastic),  

one must push the coupling part to become cubic by adding 1
2

ijkl
ij k ld E EΩ  with  

ijkl ij kl ik jl il jkd αω ω βω ω γω ω= + +  from Curie’s law. The corresponding coupl-
ing, called photoelasticity, has been discovered by T. J. Seebeck in 1813 and D. 
Brewster in 1815. With δ β γ= + , the new electric induction is: 

( )( )0 0
k k k k kr ik jr

ij rD E D D tr Eα ω δω ω= → = + Ω + Ω  

As Ω  is a symmetric tensor, we may choose an orthogonal frame at each 
point of the medium in such a way that the deformation tensor becomes diagon-
al with ( )1 2 3, ,Ω = Ω Ω Ω  where the third direction is orthogonal to the elastic 
plate. We get: 

( )( )0
i i i

iD D tr Eα δ= + Ω + Ω  

for 1,2i =  without implicit summation and there is a change of the dielectric 
constant ( ) itrα δ→ + Ω + Ω   along each proper direction in the medium, 
corresponding to a change in n→  of the refraction index. As there is no mag-
netic property of the medium and 1Ω , we obtain in first approximation: 

( ) ( )2 2 2 2 2
0 1 2 1 2 0 1 2 1 2 1 22c n n n n n n c n nµ µ δ= ⇒ − − = Ω −Ω ⇒ − Ω −Ω    

where 0µ  is the magnetic constant of vacuum, c is the speed of light in vacuum 
and n is the refraction index. The speed of light in the medium becomes ic n  
and therefore depends on the polarization of the beam. As the light is crossing 
the plate of thickness e put between two polarized filters at right angle, the en-
tering monochromatic beam of light may be decomposed along the two proper 
directions into two separate beams recovering together after crossing with a time 
delay equal to: 

( ) ( ) ( )( )1 2 1 2e c n e c n e c n n− = −  

providing interferences and we find back the Maxwell phenomenological law of 
1850: 

1 2 1 2
k
eC
λσ σΩ −Ω − =

 

where σ  is the stress tensor, k is an integer, λ  is the wave length of the 
light used and C is the photoelastic constant of the medium ivolved in the ex-
perience. 

Looking at the picture, let F be the vertical downwards force acting on the 
upper left side of the beam like on the picture, at a distance D from the center of 
the vertical beam on the right. We may consider this vertical beam as a dense 
sheaf of juxtaposed thin beams with young modulus E. Choosing orthogonal 
axes (Oxyz) such that Ox is horizontal towards the right with origin O in the 
geometric center of the vertical beam on the right which has a thickness 2e a=  
and a width of 2b with the vertical axis Oy passing in the center of the beam. If 
F should be applied along Oy, according to Hooke’s law there should be a ver-
tical compression of the beam providing a deformation roughly equal to 
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( )4F abE′ = −  and a (negative because compression) stress  
4E F abσ ′ ′= = − . However, F is applied at a distance D of the axis Oy and 

gives a couple M FD=  which should be, by itself, bringing the half right part of 
the beam ( 0x ≥ ) in extension while the half left part ( 0x ≤ ) is in compression. 
Using a classical assumption usually done on beams we may suppose that the 
horizontal plane sections orthogonal to the central axis Oy of the beam stay 
plane surfaces turning counterclockwise by a small angle θ  that we shall de-
termine by integration on all the small thin beams of the bunch. The stress σ ′′  
acting on the surface d d 2 dS e x a x= =  is producing a small force  
d d 2 dF S a xσ σ′′ ′′= = . However, a fiber at distance x  from the axis has a 
length increased by xθ  and there is a resulting deformation Kx′′ =  such 
that Eσ ′′ ′′=   on each thin constitutive fiber. The resulting (direct sense) 
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couple produced is equal to ( )d 2 dM x aKEx x=  in such a way that we have the 
equilibrium equation for couples: 

( ) ( ) ( )2 3 342 d 3 4
3

b

b
M FD aKEx x ab KE K FD ab E

+

−
= = = ⇒ =∫  

We obtain therefore ( ) ( )33 4EKx FDx abσ ′′ = =  with 0σ ′′ ≥  whenever 
0x ≥  (extension). Using the correct negative sign for the stress σ ′ , we finally 

obtain ( ) ( ) ( )33 4 4yy FDx ab F abσ σ σ σ′ ′′= = + = −  in such a way that 0σ ≤  
when 0D =  and 0σ =  when 2 3 0x b D= > , a result not evident at first 
sight. In addition, it is clear by symmetry that , ,x y z  are proper directions and 
that 0xx zzσ σ= =  because no force is acting on the faces of the beam. We ob-
tain therefore the very simple Maxwell law k eCσ λ= . Accordingly, the (al-
most!) central black line corresponds to 0σ =  and has abcissa 2 3 0x b D= > . 
Finally, the distance d between two lines is such that k is modified by 1, that is 

( ) ( )32 3d b FDCλ= , allows to determine the photoelastic constant of the ma-
terial. 

The study of the upper horizontal part of the beam is more delicate. With axis 
Oy in the middle section, starting under the force F and axix Ox upward, we 
have ( ) ( )33 2yy Fxy ebσ =  to compensate the couple Fy but now we have a 
shear stress ( )2xy F ebσ =  upward to compensate F which is downward. The 
characteristic polynomial is  

( ) ( ) ( )( )22 1 2 0yy xydet σ λω λ σ λ σ λ σ λ σ− = − − = − − =  and thus  

( ) ( ) ( ) ( )2 2 2 21 2 1 2 1 24 4 0yy xyσ σ σ σ σ σ σ σ− = + − = + >  cannot vanish. There-
fore the line “ 0k = ” cannot exist. As for the lines “ 1k = ± ”, we must have after 
substitution ( )( ) ( ) ( )

2 2 233 2Fxy eb F eb eCλ+ =  and we need to have thus 
( )F b Cλ<  or equivalently 22 3d b D> , a result simply leading to the hyper-

bola xy cst= , a property that can be checked on the picture but cannot be even 
imagined. 

We have thus explained, in a perfectly coherent way with the picture, why the 
interference lines are parallel and equidistant from each other in the right vertic-
al part of the beam, on both sides of an (almost) central line which, surprisingly, 
stops at the upper and lower corner, even though, by continuity, we could im-
agine that it could be followed in the upper and lower horizontal parts of the 
beam. Also, we understand now the reason for which the lines in these parts of 
the beam look like symmetric hyperbolas. 

This result proves, without any doubt for anybody doing this experiment, that 
the deformation ( )ξ ωΩ =   and the electromagnetic field F dA= , using 
standard notations in the space-time formulation of electromagnetism, must be 
on equal footing in a lagrangian formalism. However, as *

2S TΩ∈  is in the Ja-
net sequence based on the work of E. Vessiot in 1903 (Compare [7] to [8] [9] [10] 
[11]) and 2 *F T∈∧  cannot appear at this level as we shall see, the main pur-
pose of this paper is to prove that another differential sequence must be used, 
namely the Spencer sequence. The idea has been found totally independently, by 
the brothers E. and F. Cosserat in 1909 ([12]) for revisting elasticity theory and 
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by H. Weyl in 1916 ([13]) for revisiting electromagnetism by using the confor-
mal group of space time, but the first ones were only dealing with the transla-
tions and rotations while the second was only dealing with the dilatation and the 
non-linear elations of this group, with no real progress during the last hundred 
years. 

Extending the space ( )1 2 3, ,x x x  or ( ), ,x y z  to space-time  
( )1 2 3 4, , ,x x x x ct=  as before, the speed is now extended from ( )1 2 3, ,v v v  to 
( )1 2 3, , ,v v v c  along the derivative with respect to time, with 1v c , while the 
motion ( )0 0 ,x x x tξ= +  is extended to 0t t cst= +  in order to compare “slices” 
of space at the same “time”. Accordingly, the deformation tensor  , which is 

dimensionless, is extended by ( )
1 2 3

4 4
1 , , ,0
2i i

v v v
c c c

 
= =  

 
   while the symmetric  

stress tensor ij jiσ σ=  becomes ij i jv vσ ρ−  (Euler theorem) and is extended 
by setting 4

4
i i

i v cσ σ ρ= − = , 44 2
44 cσ σ ρ= = −  where ρ  is the mass per unit 

volume. Dealing with the rest-frame and using the (small) dilatation relation 
( )0 1 trρ ρ= −   in which 0ρ  is the value of ρ  in the initial position where the 

body is supposed to be homogeneous, isotropic and unstressed, that is, 0ρ  is 
supposed to be a constant. The Hooke law is now extended by setting: 

2 2 2
4 0 4 44 0 02 ,i ic c c trσ ρ σ ρ ρ= + =   

in a way compatible with the conservation of mass and we suddenly discover 
that there is no conceptual difference between the Lamé constants ( ),α β  (do 
not confuse the notations) of elasticity and the magnetic constant µ  on one 
side (space) or the mass per unit volume ρ  and the dielectric constant   
(time) on the other side, all these coupling constants being measured in the ref-
erence state in which the body (like vacuum) is homogeneous and isotropic (the 
index “zero” is omitted for simplicity). This result is perfectly coherent “a post-
eriori” with the analogy existing between the well known formulas for the speed 

Tv  of transverse elastic waves, the speed Lv  of longitudinal elastic waves or the 
speed v of light waves propagating in a homogeneous isotropic medium, as we 
have indeed ([14]): 

2 1 1, ,T L
cv v v
n

β α β µ
ρ ρ µ

+
= = = = =

 
 

We now understand that couplings are in fact more general constitutive laws 
taking into account the tensorial nature of the various terms involved through 
the Curie principle. 

3. General Relativity versus Gauge Theory 

Let A be a unitary ring, that is 1, , , ,1 1a b A a b ab A a a a∈ ⇒ + ∈ = =  and even 
an integral domain ( 0 0ab a= ⇒ =  or 0b = ) with field of fractions 

( )K Q A= . However, we shall not always assume that A is commutative, that is 
ab may be different from ba in general for ,a b A∈ . We say that AM M=  is a 
left module over A if , , ,x y M ax x y M a A∈ ⇒ + ∈ ∀ ∈  or a right module BM  
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over B if the operation of B on M is ( ), ,x b xb b B→ ∀ ∈ . If M is a left module 
over A and a right module over B with ( ) ( ) , , ,ax b a xb a A b B x M= ∀ ∈ ∀ ∈ ∀ ∈ , 
then we shall say that A BM M=  is a bimodule. Of course, A AA A=  is a bi-
module over itself. We define the torsion submodule  
( ) { }| 0 , 0t M x M a A ax M= ∈ ∃ ≠ ∈ = ⊆  and M is a torsion module if 
( )t M M=  or a torsion-free module if ( ) 0t M = . We denote by ( ),Ahom M A  

the set of morphisms :f M N→  such that ( ) ( )f ax af x=  and set 
( )* ,AM hom M A= . We shall only consider finitely generated modules, recal-

ling that a sequence of modules and maps is exact if the kernel of any map is 
equal to the image of the map preceding it ([15]-[20] are good references for 
homological algebra). 

When A is commutative, ( ),hom M N  is again an A-module for the law 
( )( ) ( )bf x f bx=  as we have  
( )( ) ( ) ( ) ( ) ( )( )bf ax f bax f abx af bx a bf x= = = = . In the non-commutative 
case, things are more complicate and, given A M  and A BN , then  

( ),Ahom M A  becomes a right module over B for the law ( )( ) ( )fb x f x b= . 
DEFINITION 3.1: A module F is said to be free if it is isomorphic to a (finite) 

power of A called the rank of F over A and denoted by ( )Ark F  while the rank 
( )Ark M  of a module M is the rank of a maximum free submodule F M⊂ . It 

follows from this definition that M/F is a torsion module. In the sequel we shall 
only consider finitely presented modules, namely finitely generated modules de-
fined by exact sequences of the type 1

1 0 0d pF F M→ → →  where 0F  and 

1F  are free modules of finite ranks 0m  and 1m  often denoted by m and p in 
examples. A module P is called projective if there exists a free module F and 
another (projective) module Q such that P Q F⊕  . 

PROPOSITION 3.2: For any short exact sequence  
0 0f gM M M′ ′′→ → → → , we have the important relation  

( ) ( ) ( )A A Ark M rk M rk M′ ′′= + , even in the non-commutative case. As a bypro-
duct, if M admits a finite length free resolution  

2 1
1 0 0d d pF F M→ → → →

, we may define the Euler-Poincaré characte-
ristic ( ) ( ) ( ) ( )1 r

A A r ArM rk F rk Mχ = − =∑ . 
We now turn to the operator framework with modules over the ring 

[ ] [ ]1, , nD K d d K d= =
 of differential operators with coefficients in a diffe-

rential field K with n commuting derivations ( )1, , n∂ ∂
, also called D-modules. 

Then D is a differential bimodule over itself ([18] [19] [21] [22] [23] [24] are 
good references for differential homological algebra while [8] [9] [10] [11] [18] 
[19] [25] are good references for the formal theory of systems of partial differen-
tial equations). 

DEFINITION 3.3: If a differential operator ξ η→  is given, a direct 
problem is to find generating compatibility conditions (CC) as an operator 

1η ζ→  such that 1 0ξ η η= ⇒ =  . Conversely, given 1η ζ→ , the 
inverse problem will be to look for ξ η→  such that 1  generates the CC 
of   and we shall say that 1  is parametrized by   if such an operator   
is existing. 
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Introducing the morphism **: M M→  such that  
( )( ) ( ) *, ,m f f m m M f M= ∀ ∈ ∀ ∈  and defining the differential module N 

from ( )1ad   exactly like we defined the differential module M from  , we 
finally notice that any operator is the adjoint of a certain operator because 

( )( ) ,ad ad P P P D= ∀ ∈  and we get ([18] [19] [26] [27] [28] [29]): 
THEOREM 3.4: (double differential duality test) In order to check whether M 

is torsion-free or not, that is to find out a parametrization if ( ) 0t M = , the test 
has 5 steps which are drawn in the following diagram where ( )ad   generates 
the CC of ( )1ad   and 1′  generates the CC of ( )( )ad ad=  : 

( ) ( )

1

1

1

5

4 1

3 2
ad ad

ζ

ξ η ζ

ν µ λ

′

′

→ →

← ←





 



 

( )1 1 1parametrized by injective 0t M′⇔ ⇔ ⇔ =    

 

COROLLARY 3.5: In the differential module framework, if  
1

1 0 0pF F M→ → →  is a finite free presentation of ( )1M coker=   with 
( ) 0t M = , then we may obtain an exact sequence 1

1 0F F E→ →   of free 
differential modules where   is the parametrizing operator. However, there 
may exist other parametrizations 1

1 0F F E′ ′→ →   called minimal para-
metrizations such that ( )coker ′  is a torsion module and we have thus 

( ) ( )D Drk M rk E′= . 
These results have been used in control theory and it is now known that a 

control system is controllable if and only if it is parametrizable (See [18] [19] [30] 
[31] for more details). As a byproduct, and though it is still not acknowledged by 
engineers, controllability is a “built in” property that does not depend at all on 
the choice of the inputs and outputs among the control variables. 

Keeping the same “operational” notations for simplicity, we may state ([18], p 
638-650): 

DEFINITION 3.6: We say that :ξ η→  admits a (generalized) lift 
:P η ξ→  if =     . The differential module determined by   is pro-

jective if and only if   admits a lift. 
The following results have never been used for applications: 
LEMMA 3.7: If   admits a lift, then ( )ad   also admits a lift. 
PROPOSITION 3.8: If   parametrizes 1  and admits a lift  , then 1  

admits a lift 1  and we have the striking Bezout identity 1 1 idη+ =     . 
Accordingly, the corresponding differential sequence, which is formally exact by 
definition, is also locally exact. 

COROLLARY 3.9: If 1  generates the CC of   and both operators admit 
lifts, then ( )ad   generates the CC of ( )1ad  . 

EXAMPLE 3.10: With 2n = , 2m = , 1q = , ( )1 2,a K x x∈ =  ,  
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[ ]1 2,D K d d= , 1 2D D Dη η η= +  and 1 2 1
1 2d d aη η ηΦ ≡ + −  we shall prove 

that 1M D Dη= Φ  is torsion-free but not projective when 2 0a∂ =  and pro-
jective but not free when 2 0a∂ ≠ , for example when 2a x= . Multiplying Φ  
by a test function λ  and integrating by parts formally the equation 1η ζ= , 
we get the operator ( )1ad   in the form: 

( )1 2 2 1 2
1 2 2 1 2,d a d a d d aλ λ µ λ µ λ µ µ µ− − = − = ⇒ ∂ = − +  

 2 0a∂ = : We get the only generating CC 2 1 2
1 2 0d d aµ µ µ− + =  and 

( )1ad   is not injective. There is therefore no lift and thus no splitting. 
Multilying by a test function φ  and integrating by parts, we obtain the pa-
rametrization :φ ξ→  in the form 1 2

2 1,d y d a yφ φ φ= − + =  which is not 
injective. The corresponding sequence 1 2D D D→ →   with differen-
tial modules and its formal adjoint are both formally exact. 

 2 0a∂ ≠ : The situation is now totally different. In order to prove this, if we 
suppose that 2a x= , we get the lift 2 1 2 2

1 2d d xλ µ µ µ= − +  with adjoint 
1 2 2

2 1,d d xζ η ζ ζ η= − + =  providing a lift 1  for 1 . Substituting, we ob-
tain two second-order CC 1ν  and 2ν  satisfying the only CC 

2 1 2 2
1 2 0d d xν ν ν− + = . Multiplying these two CC by the test functions 1ξ  

and 2ξ  and integrating by parts, we finally obtain the involutive parame-
trizing operator   in the form: 

( )

1 2 2 1 1 1
12 22 2

21 2 2 1 2 2 2 1 2 2
11 12 1 2

2 ,

2

d d x d

d d x d x d x

ξ ξ ξ ξ η

ξ ξ ξ ξ ξ ξ η

+ − − =

− − + + − − =
 

and “a” minimum involutive parametrization (but there can be others!): 
1 2 2

22 12 2,d d x dξ η ξ ξ ξ η= − + − =  

We get the long formally and locally exact differential sequence  
1 12 20 0D D D D−→ → → → →   and invite the reader to find a lift for 

the central operator as an exercise. 
EXAMPLE 3.11: When 3n = , the div operator can be parametrized by the 

curl operator which can be itself parametrized by the grad operator. However, 
using ( )1 2 3, , 0ξ ξ ξ = , we may obtain the new minimal parametrization 

2 1
3ξ η−∂ = , 1 2

3ξ η∂ = , 2 1 3 1 2 3
1 2 1 2 3 0ξ ξ η η η η∂ − ∂ = ⇒ ∂ + ∂ + ∂ =  which can-

not be again parametrized ([29] [32]). 
EXAMPLE 3.12: Parametrization of the Cauchy stress equations. 
We shall consider the cases 2,3,4n =  but the case n arbitrary could be 

treated as well. 
 2n = : The stress equations become 11 12

1 2 0σ σ∂ + ∂ = , 21 22
1 2 0σ σ∂ + ∂ = . 

Their second order parametrization 11
22σ φ= ∂ , 12 21

12σ σ φ= = −∂ , 
22

11σ φ= ∂  has been provided by George Biddell Airy in 1863 ([33]) and we 
shall thus denote by :Airy φ σ→  the corresponding operator. We get the 
linear second order system with formal notations: 

11
22

12
12

22
11

0 1 2
0 1

10

d
d

d

σ φ
σ φ

σ φ

 ≡ =
− ≡ = •
 •≡ =
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which is involutive with one equation of class 2, 2 equations of class 1 and it is 
easy to check that the 2 corresponding first order CC is just the stress equations. 
Now, multiplying the Cauchy stress equations respectively by test functions 1ξ  
and 2ξ , then integrating by parts, we discover that (up to sign and a factor 2) 
the Cauchy operator is the formal adjoint of the Killing operator defined by 

( ) *
2S Tξ ξ ω= = Ω∈  , introducing the standard Lie derivative of the 

(non-degenerate) euclidean metric ω  with respect to ξ  and using the fact 
that we have 11 12 22

11 12 222ij
ijσ σ σ σΩ = Ω + Ω + Ω  because we have supposed that 

12 21σ σ=  and we shall say, with a slight abuse of language, that  
( )Cauchy ad Killing= . In order to apply the above parametrization test, we have 

to look for the CC 1  of  . In arbitrary dimension n, we may introduce the 
Riemann tensor ,

k
l ijρ  with ( )2 2 1 12n n −  components of a general metric ω  

such that ( ) 0det ω ≠  and linearize it over a given non-degenerate constant me-
tric or, more generally, over a metric with constant Riemaniann curvature, in 
order to obtain the second order Riemann operator ( ) ( ),

k
ij l ijRΩ → . When 

2n =  and ω  is the euclidean metric, we get a single component that can be 
chosen to be the scalar curvature 11 22 22 11 12 122R d d d= Ω + Ω − Ω . Multiplying by a 
test function φ  and integrating by parts, we obtain ( )Airy ad Riemann=  and 
notice that: 

There is no relation at all between the Airy stress function φ  and the defor-
mation Ω  of the metric ω . 
 3n = : Things become quite more delicate when we try to parametrize the 3 

PD equations: 
11 12 13

1 2 3
21 22 23

1 2 3
31 32 33

1 2 3

0,

0,

0

σ σ σ

σ σ σ

σ σ σ

∂ + ∂ + ∂ =

∂ + ∂ + ∂ =

∂ + ∂ + ∂ =

 

A direct computational approach has been provided by Eugenio Beltrami in 
1892 ([34]), James Clerk Maxwell in 1870 ([35]) and Giacinto Morera in 1892 
([36]) by introducing 6 stress functions ij jiφ φ=  in the Beltrami parametriza-
tion described by the following Beltrami operator: 

11
1133 23 22

12
1233 23 13 12

13
1323 22 13 12

22
2233 13 11

23
2323 13 12 11

33
3322 12 11

0 0 0 2
0 0
0 0

0 2 0 0
0 0

2 0 0 0

d d d
d d d d

d d d d
d d d
d d d d

d d d

σ
σ
σ
σ
σ
σ

Φ−    
     Φ− −    
     Φ− −

=    
Φ−    

     Φ− −
        Φ−   

 

It is involutive with 3 equations of class 3, 3 equations of class 2 and no equa-
tion of class 1. The 3 CC is describing the stress equations which admit therefore 
a parametrization, but without any geometric framework, in particular without 
any possibility to imagine that the above second order operator is nothing else 
but the formal adjoint of the Riemann operator, namely the (linearized) Rie-
mann tensor with ( )2 2 1 12 6n n − =  independent components when 3n =  [8] 
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[9] [10] [11]. We may rewrite the Beltrami parametrization of the Cauchy stress 
equations as follows, after exchanging the third row with the fourth row and us-
ing formal notations: 

33 23 22

33 23 13 12
1 2 3

23 22 13 12
1 2 3

33 13 11
1 2 3

23 13 12 11

22 12 11

0 0 0 2
0 0

0 0 0
0 0

0 0 0 0
0 2 0 0

0 0 0
0 0

2 0 0 0

d d d
d d d d

d d d
d d d d

d d d
d d d

d d d
d d d d

d d d

− 
 − −   − −  ≡   −  

  − −
  − 

 

as an identity where 0 on the right denotes the zero operator. However, the 
standard implicit summation used in continuum mechanics (See [36] for more 
details) is, when 3n = : 

11 12 13 22 23 33
11 12 13 22 23 332 2 2ij

ijσ σ σ σ σ σ σΩ = Ω + Ω + Ω + Ω + Ω + Ω  

because the stress tensor density σ  is supposed to be symmetric in continuum 
mechanics. Integrating by parts in order to construct the adjoint operator, we get 
the striking identification: 

( ) ( )Riemann ad Beltrami Beltrami ad Riemann= ⇔ =  

between the (linearized ) Riemann tensor and the Beltrami parametrization. 
As we already said, the brothers E. and F. Cosserat proved in 1909 that the 

assumption ij jiσ σ=  may be too strong because it only takes into account den-
sity of forces and ignores density of couples, and the Cauchy stress equations 
must be replaced by the so-called Cosserat couple-stress equations ([9] [10] [12] 
[37] [38]). In any case, taking into account the factor 2 involved by multiplying 
the second, third and fifth row by 2, we get the new 6 6×  matrix with rank 3: 

33 23 22

33 23 13 12

23 22 13 12

33 13 11

23 13 12 11

22 12 11

0 0 0 2
0 2 2 0 2 2
0 2 2 2 2 0

0 2 0 0
2 2 2 0 2 0

2 0 0 0

d d d
d d d d

d d d d
d d d

d d d d
d d d

− 
 − − 
 − −
 

− 
 − −
  − 

 

This is a symmetric matrix and the corresponding second order operator with 
constant coefficients is thus self-adjoint. 

Surprisingly, the Maxwell parametrization is obtained by keeping only 

11 Aφ = , 22 Bφ = , 33 Cφ =  while setting 12 23 31 0φ φ φ= = =  and using only 
the columns 1 4 6+ +  as follows: 

11
33 22

12
12

13
13

22
33 11

23
23

33
22 11

0
0 0
0 0

0
0 0

0

d d
d

A
d

B
d d

C
d

d

σ
σ
σ
σ
σ
σ

   
   −       −  =        

    −
      ∂  
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and we let the reader check the corresponding Cauchy equations. 
4n = : It is only now that we are able to explain the relation of this striking 

result with Einstein equations but the reader must already understand that, if we 
need to revisit in such a deep way the mathematical foundations of elasticity 
theory, we also need to revisit in a similar way the mathematical foundations of 
EM and GR as in ([28] [32] [36] [39] [40] [41] [42]). To begin with, let us intro-
duce the Ricci operator ( ) ( )ij ijRΩ →  with 4 terms and the Einstein operator 
( ) ( )1

2ij ij ij ijE R tr Rω Ω → = − 
 

 with 6 terms where the trace of ( )ijR  is just 
( ) ij

ijtr R Rω= . Surprisingly, the Einstein operator is self adjoint while the Ricci 
operator is not and “Einstein equations are just a way to parametrize the Cauchy 
stress equations” because of the well known contraction of the Bianchi identities 
([29] [31] [32] [44]). Now, Theorem 3.4 proves that the Einstein operator cannot 
be parametrized ([31] [40]) and that each component of the Weyl tensor is a 
torsion element killed by the Dalembertian ([18] [32] [44]). We now prove that 
only the use of differential homological algebra, a mixture of differential geome-
try (differential sequences, formal adjoint) and homological algebra (module 
theory, double duality, extension modules) totally unknown by physicists, is able 
to explain why the Einstein operator (with 6 terms) defined above is useless as it 
can be replaced by the Ricci operator (with 4 terms) in the search for gravita-
tional waves equations. Indeed, denoting by *

2S TΩ∈  a perturbation of the 
non-degenerate metric ω , it is well known (See [8] [10] and [47] for more de-
tails) that the linearization of the Ricci tensor ( ) *

2ijR R S T= ∈  over the Min-
kowski metric, considered as a second order operator RΩ→ , may be written 
with four terms as ([32] [43]): 

( )2 2rs
ij ij rs rs ij ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =  

Multiplying by test functions ( ) 4 *
2

ij T S Tλ ∈∧ ⊗  and integrating by parts 
on space-time, we obtain the following four terms describing the so-called gra-
vitational waves equations: 

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω  

where   is the standard Dalembertian. Accordingly, we have: 

0rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − − =  

The basic idea used in GR has been to simplify these equations by adding the 
differential constraints 0rs

rd λ =  in order to find only rs rsλ σ= , exactly like 
in the Lorenz condition for EM. It follows that the Cauchy = ad(Killing) opera-
tor is parametrized by ( )ad Ricci  and, not only the Einstein operator is useless 
as it must be replaced by ( )ad Ricci  but also this result shows that the Cauchy 
operator has nothing to do with the Bianchi operator. Finally, as our comment 
on the Airy operator when 2n =  is still valid, λ  has nothing to do with Ω  
and we may say ([32]): 

These purely mathematical results question the origin and existence of gravi-
tational waves. 
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It remains to prove that, in this new framework, the Ricci tensor only depends 
on the symbol * *

2 2ĝ T S T T⊂ ⊗
 of the first prolongation ( )2 2R̂ J T⊂  of 

the conformal Killing system ( )1 1R̂ J T⊂  with symbol *
1ĝ T T⊂ ⊗  defined  

by the equations 2 0r r r
rj i ir j ij rn

ω ξ ω ξ ω ξ+ − =  not depending on any conformal  

factor. In the next general commutative diagram covering both situations while 
taking into account that the PD equations of both the classical and conformal 
Killing systems are homogeneous, the Spencer map δ  is induced by minus the 
Spencer operator and all the sequences are exact but perhaps the left column 
with δ -cohomology ( )2

1 0H g ≠  at 2 *
1T g∧ ⊗  (See [8] [9] [10] [11] or [25] 

for more details): 

* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

δ δ δ

δ δ δ

δ δ

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

We have the following fiber dimensions for the classical Killing case and arbi-
trary dimension n: 

( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )( ) ( )( )

22 2 2 2

3 3

22 3 2 2

2 2

0 0

0 1 2 6 1 4 1 12 0

0 1 2 1 2 0

0 1 4 1 2 1 4 0

0 1 2 6 1 2 6 0

0 0

n n n n n n n

n n n n

n n n n n n

n n n n n n

δ δ

δ δ

δ δ

↓ ↓

→ + + → + → − →

↓ ↓
→ + → + →

↓ ↓ ↓

→ − → − → − →

↓ ↓ ↓
→ − − = − − →

↓ ↓

 

allowing to recover the number of components of the Riemann tensor... without 
indices ! with ( ) ( ) ( ) ( )22 2 2 21 4 1 2 6= 1 12n n n n n n n− − − − −  too.  

We obtain at once from a snake-type chase the isomorphism ( )2
1 1F H g  

and provide a new simple proof of the following important result (Compare to 
[10] [11] [32] [40] [41] and the Remark below): 

THEOREM 3.13: Introducing the δ -cohomologies ( )2
1H g  at 2 *

1T g∧ ⊗  
and ( )2

1ˆH g  at 2 *
1ˆT g∧ ⊗  while taking into account that 1 1ˆg g⊂ , we have 
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the short exact sequences: 

( ) ( )* 2 2 *
2 1 1 2 1 1̂ˆ0 0 0 0S T H g H g S T F F→ → → → ⇔ → → → →  

Proof: The first result can be deduced from a delicate unusual chase in the 
following commutative diagram where only the rows and the right column are 
short exact sequences. The first step is made by a diagonal snake-type chase for 
defining the left morphism and we let the reader check that it is a monomor-
phism. The right morphism is described by the inclusion  

2 * 2 *
1 1ˆT g T g∧ ⊗ ⊂ ∧ ⊗  induced by the inclusion 1 1ˆg g⊂  by showing that 

any element of 2 *
1ˆT g∧ ⊗  is a sum of an element in 2 *

1T g∧ ⊗  plus the im-
age by δ  of an element in *

2ˆT g⊗  for the right epimorphism (exercise). 

*
2

* * *
2

2 * 2 * 2 *
1 1

3 * 3 *

0

0

ˆ0 0

ˆ0 0

0 0

0 0

S T

T g T T

T g T g T

T T T T

δ

δ δ

δ δ

↓

↓ ↓
→ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ → ∧ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

with fiber dimensions when 4n ≥ : 

( )

( ) ( )( ) ( )

( )( ) ( )( )

2 2

22 2

2 2

0

0 1 2

0 0

0 1 4 1 2 4 1 2 0

0 1 2 6 1 2 6 0

0 0

n n

n n

n n n n n n n n

n n n n n n

δ

δ δ

δ δ

↓
+

↓ ↓
→ → →

↓ ↓ ↓

→ − → − − + → − →

↓ ↓ ↓
→ − − = − − →

↓ ↓

 

Using the previous diagram, we obtain the isomorphisms ( )2
1 1F H g  and 

( )2
1 1
ˆ ˆF H g . We have thus the splitting sequence *

2 1 1̂0 0S T F F→ → → →  
providing a totally unusual interpretation of the successive Ricci, Riemann and 
Weyl tensors. It follows that ( ) ( )( )( )1̂ 1 2 3 12dim F n n n n= + + −  whenever 

4n ≥  and the Weyl-type operator is of order 3 when 3n =  but of order 2 for 
4n ≥ . Similar results could be obtained for the Bianchi-type operator ... with 

much more work! 
Q.E.D 

https://doi.org/10.4236/jmp.2019.1013104


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2019.1013104 1585 Journal of Modern Physics 
 

REMARK 3.14: Using the contraction * 0 * 0T T T⊗ → ∧ → , namely 
k r
i rξ ξ→ , in order to describe the cokernel of the left vertical monomorphism, 

we obtain the following commutative and exact diagram which is only depend-
ing on the first order jets of T: 

*
1 0

*
1 0

0 0

0 0

ˆˆ0 0

0 0

g T T F

g T T F

↓ ↓
→ → ⊗ → →

↓ ↓ ↓

→ → ⊗ → →
↓ ↓

 

Prolonging twice to the jets of order 3 of T, we obtain the commutative and 
exact diagram: 

* *
2 2

* *
3 2 0 1

* *
3 2 0 1

0 0

0 0

0 0

ˆ ˆ0 0

0 0 0

S T S T

S T T S T F F

S T T S T F F

↓ ↓
→ = →

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓

→ ⊗ → ⊗ → →
↓ ↓ ↓



 

providing the same short exact sequence as in the Theorem but without any pos-
sibility to establish a link between *

2S T  and a 1-form with value in the bundle 

2ĝ  of elations. 
EXAMPLE 3.15: Electromagnetism. 
Passing now to electromagnetism and the original Gauge Theory (GT) which 

is still, up to now, the only known way to establish a link between EM and group 
theory, the first idea is to introduce the nonlinear gauge sequence: 

[ ]
* 2 *

1 ,

MC
X G T T

a a da A dA A A F−

× → ⊗ → ∧ ⊗
→ = → − =

   

where X is a manifold, G is a Lie group with identity e not acting on X, 
:a X G→  a map identified with a section of the trivial bundle X G×  over X 

and 1a da A− =  is the pull-back over X by the tangent mapping ( )T a  of a basis 
of left invariant 1-forms on G. Also, ( ) ( ), , ,A A Tξ η ξ η∈ ∀ ∈     by introduc-
ing the bracket on the Lie algebra ( )eT G=  and the pull-back of the Maur-
er-Cartan (MC) equations on G is the so-called Cartan curvature 2-form with 
value in  . Choosing a close to e, that is ( ) ( )a x e t xλ= + +  with 1t   
and linearizing as usual, we obtain the linear operator  

( )( ) ( )( )0 * 1 *: : id T T x xτ τλ λ∧ ⊗ → ∧ ⊗ → ∂   leading to the linear gauge 
sequence: 
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0 * 1 * 2 * * 0d d d d nT T T T∧ ⊗ →∧ ⊗ →∧ ⊗ → →∧ ⊗ →     

which is the tensor product by   of the Poincaré sequence for the exterior de-
rivative d. In 1954, at the birth of GT, the above notations were coming from 
electromagnetism with EM potential *A T∈  and EM field 2 *dA F T= ∈∧  in 
the relativistic Maxwell theory. Accordingly, ( )1G U=  (unit circle in the com-
plex plane) ( ) 1dim→ =  was the only possibility existing before 1970 to get a 
pure 1-form A (EM potential) and a pure 2-form F (EM field) when G is abelian. 
However, this result is not coherent at all with elasticity theory as we saw and, a 
fortiori, with the analytical mechanics of rigid bodies where the Lagrangian is a 
quadratic expression of such 1-forms when 3n =  and ( )0 3G S=  (Compare 
to [45] and [46]). 

Before going ahead, let us prove that there may be mainly two types of diffe-
rential sequences, the Janet sequence introduced by M. Janet in 1970 ([8] [11] 
[47]) for the dealing with successive compatibility conditions (CC), and a quite 
different sequence called Spencer sequence introduced by D. C. Spencer in 1970 
([8] [25] for the linear framework, [9] [48] for the non-linear framework) with 
totally different operators. For this, if E is a vector bundle over the base X, we 
shall introduce the q-jet bundle ( )qJ E  over X with (local) sections  

( ) ( ) ( ) ( )( ): , , ,k k k
q i ijx x x xξ ξ ξ ξ→   transforming like the (local) sections  
( ) ( ) ( ) ( ) ( )( ): , , ,k k k

q i ijj x x x xξ ξ ξ ξ→ ∂ ∂  . When ( )T T X=  is the tangent 
bundle of X, the Spencer operator ( ) ( )*

1: q qD J E T J T+ → ⊗  and its extension 
( ) ( )* 1 *

1: r r
q qD T J E T J E+
+∧ ⊗ → ∧ ⊗  defined by  

( ) ( )1 11 r
q q qD d Dα ξ α ξ α ξ+ +⊗ = ⊗ + − ∧  with ( )1 1 1q q qD jξ ξ ξ+ += −  as we saw 

for the inverse system, allow comparing these sections by considering the dif-
ferences ( ) ( ) ( ) ( )( ), ,k k k k

i i i j ijx x x xξ ξ ξ ξ∂ − ∂ −   and so on. When ω  is a 
nondegenerate metric with Christoffel symbols γ  and Levi-Civita isomor-
phism ( ) ( )1 ,j ω ω γ

, we consider the second order involutive system 

( )2 2R J T⊂  defined by considering the first order Killing system ( ) 0ξ ω = , 
adding its first prolongation ( ) 0ξ γ =  and using 2ξ  instead of ( )2j ξ . 
Looking for the first order generating compatibility conditions (CC) 1  of the 
corresponding second order operator   just described, we may then look for 
the generating CC 2  of 1  and so on, exactly like in the differential se-
quence made successively by the Killing, Riemann, Bianchi, ... operators. We 
may proceed similarly for the injective operator ( ) ( )2

0 2
jT C T J T→ = , find-

ing successively ( ) ( )1
0 1

DC T C T→  and ( ) ( )2
1 2

DC T C T→  induced by D. 
When 2n =  and ω  is the Euclide metric, we have a Lie group of isometries 
with the 3 infinitesimal generators { }1 2

1 2 2 1, , x x∂ ∂ ∂ − ∂ . If we now consider the 
Weyl group defined by ( ) Aξ ω ω=  with A cst=  and ( ) 0ξ γ = , we have 
to add the only dilatation 1 2

1 2x x∂ + ∂ . Collecting the results and exhibiting the 
induced kernel upper differential sequence, we get the following commutative 
fundamental diagram I where the upper down arrows are monomorphisms 
while the lower down arrows are epimorphisms 0 1 2, ,Φ Φ Φ : 
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2 1 2

2 1 2

2 1 2

1 2

1 2

0 1 2

0 4 8 4 0

0 3 6 3 0

0 2 12 16 6 0

0 2 9 10 3 0

0 2 8 8 2 0

j D D

j D D

j D D

Spencer

Janet

→ Θ → → → →

→ Θ → → → →
↓ ↓ ↓

→ → → → →
↓Φ ↓ Φ ↓ Φ

→ Θ → → → → →

→ Θ → → → → →





 

 



 

It follows that “Spencer and Janet play at see-saw”, the dimension of each Ja-
net bundle being decreased by the same amount as the dimension of the corres-
ponding Spencer bundle is increased, this number being the number of addi-
tional parameters multiplied by ( )*rdim T∧  because: 

The linear Spencer Sequence is locally isomorphic to the linear gauge se-
quence for Lie groups, with the main difference that the group is now acting on 
the manifold, contrary to the previous situation. 

More generally, whenever ( )q qR J E⊆  is an involutive system of order q on 
E, we may define the Janet bundles rF  for 0,1, ,r n= 

 by the short exact se-
quences ([8]): 

( ) ( )* 1 * * *
10 0r r r

q q q rT R T S T E T J E Fδ −
+→ ∧ ⊗ + ∧ ⊗ ⊗ → ∧ ⊗ → →  

We may pick up a section of rF , lift it up to a section of ( )*r
qT J E∧ ⊗  that 

we may lift up to a section of ( )*
1

r
qT J E+∧ ⊗  and apply D in order to get a 

section of ( )1 *r
qT J E+∧ ⊗  that we may project onto a section of 1rF +  in order 

to construct an operator 1 1:r r rF F+ +→  generating the CC of r  in the ca-
nonical linear Janet sequence: 

1 2
0 10 0n

nE F F F→Θ→ → → → → →

   

If we have two involutive systems ( )ˆ
q q qR R J E⊂ ⊂ , the Janet sequence for 

qR  projects onto the Janet sequence for ˆ
qR  and we may define inductively ca-

nonical epimorphisms ˆ 0r rF F→ →  for 0,1, ,r n= 

 by comparing the pre-
vious sequences for qR  and ˆ

qR , as we already saw. 
We can also define the Spencer bundles rC  for 0,1, ,r n= 

 by the short 
exact sequences ([8]): 

( )1 * *
10 0r r

q q rT g T R Cδ −
+→ ∧ ⊗ → ∧ ⊗ → →  

We may pick up a section of rC , lift it to a section of *r
qT R∧ ⊗ , lift it up to 

a section of *
1

r
qT R +∧ ⊗  and apply D in order to construct a section of 

1r
qR+∧ ⊗  that we may project to 1rC +  in order to construct an operator 

1 1:r r rD C C+ +→  generating the CC of rD  in the canonical linear Spencer se-
quence which is another completely different resolution of the set Θ  of (formal) 
solutions of qR : 

1 2 2
0 1 20 0q nj DD D D

nC C C C→Θ→ → → → → →  
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However, if we have two systems as above, the Spencer sequence for qR  is 
now contained into the Spencer sequence for ˆ

qR  and we may construct induc-
tively canonical monomorphisms ˆ0 r rC C→ →  for 0,1, ,r n= 

 by compar-
ing the previous sequences for qR  and ˆ

qR . 
When dealing with applications, we have set E T=  and considered systems 

of finite type Lie equations determined by Lie groups of transformations. In this 
specific case, it can be proved that the Janet and Spencer sequences are formally 
exact, both with their respective adjoint sequences ([11] [28] [32] [36] [38]), 
namely ( )rad   generates the CC of ( )1rad +  while ( )rad D  generates the 
CC of ( )1rad D + . We have obtained in particular  

* * ˆˆr r
r q q rC T R T R C= ∧ ⊗ ⊂ ∧ ⊗ =  when comparing the classical and conformal 

Killing systems, but these bundles have never been used in physics. Therefore, 
instead of the classical Killing system ( )2 2R J T⊂  defined by ( ) 0ξ ωΩ ≡ =  
and ( ) 0ξ γΓ ≡ =  or the conformal Killing system ( )2 2R̂ J T⊂  defined by 

( ) ( )A xξ ω ωΩ ≡ =  and  
( ) ( ) ( ) ( )( ) *

2
k k ks
i j j i ij sA x A x A x S T Tξ γ δ δ ω ωΓ ≡ = + − ∈ ⊗ , we may introduce 

the intermediate differential system ( )2 2R J T⊂  defined by ( ) Aξ ω ω=  
with A cst=  and ( ) 0ξ γΓ ≡ = , for the Weyl group obtained by adding the 
only dilatation with infinitesimal generator i

ix ∂  to the Poincaré group, exactly 
like we already did when 2n = . We have 1 1 1

ˆR R R⊂ =  but the strict inclusions 

2 2 2
ˆR R R⊂ ⊂  and we discover exactly the group scheme used through this pa-

per, both with the need to shift by one step to the left the physical interpretation 
of the various differential sequences used. Indeed, as *

2ĝ T  because 
( ) ( )r

ri ix nA xξ = , the first Spencer operator 1 *
2 2

ˆ ˆDR T R→ ⊗  is induced by the 
usual Spencer operator  

( ) ( )*
3 2

ˆ ˆ : 0,0, , 0 0, 0 , 0D r r r r
rj rij i ri i rjR T R ξ ξ ξ ξ→ ⊗ = → ∂ − ∂ −  and thus projects by 

cokernel onto the induced operator * * *T T T→ ⊗ . Composing with δ , it 
projects therefore onto * 2 * :dT T A dA F→∧ → =  as in EM and so on by us-
ing the fact that 1D  and d are both involutive, or the composition of epimor-
phisms: 

( )* * * * 1 *
2 2 2

ˆ ˆ ˆ ˆr r r r
r r rC C C T R R T g T T Tδ +→ ∧ ⊗ ∧ ⊗ ∧ ⊗ →∧ 

  
 

The main result we have obtained is thus to be able to increase the order and 
dimension of the underlying jet bundles and groups, proving therefore that any 
1-form with value in the second order jets 2ĝ  (elations) of the conformal Kill-
ing system (conformal group) can be decomposed uniquely into the direct sum 

( ),R F  where R is a section of the Ricci bundle *
2S T  and the EM field F is a 

section of 2 *T∧  (Compare to [49]). 
Lippmann got the Nobel prize in 1908 for the discovery of color photography. 

Only one year later, in 1909, the brothers E. and F. Cosserat wrote their “Théorie 
des corps déformables” ([12]) and it is in this book that the previous analogies 
are quoted for the first time. Between 1895 and 1910, the two brothers published 
together a series of Notes in the “Comptes Rendus de l’Académie des Sciences de 
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Paris’’ and long Notes in famous textbooks or treatises on the mathematical 
foundations of elasticity theory (Compare to [50]). In particular, they proved 
that one can exhibit all the concepts and formulas to be found in elasticity theory 
(deformation/strain, compatibility conditions, stress, stress equations, constitu-
tive relations, ...) just by knowing the group of rigid motions of ordinary 
3-dimensional space with 3 translations and 3 rotations [10] [51]. 

It is rather astonishing that all the formulas that can be found in the book 
written by E. and F. Cosserat in 1909 are nothing else but the formal adjoint of 
the Spencer operator for the Killing equations. More precisely, a section 2ξ  of 
the first prolongation ( )2 2R J T⊂  of the system ( )1 1R J T⊂  of Killing equa-
tions is a section of the 2-jet bundle ( )2J T  of the tangent bundle ( )T T X= , 
namely a set of functions ( ) ( ) ( ), ,k k k

i ijx x xξ ξ ξ , transforming like the deriva-
tives ( ) ( ) ( ), ,k k k

i ijx x xξ ξ ξ∂ ∂  of a vector field ξ  but also satisfying the linear 
equations: 

( ) ( ) ( ) ( )0, 0r r r k
rj i ir j r ij ijx x x xω ξ ω ξ ξ ω ξ+ + ∂ = =  

where ω  is the euclidean metric. Multiplying by test fuctions σ  and µ  re-
spectively the zero and first order components of the image 2Dξ  of the cor-
responding Spencer operator D, then integrating by part while moving up and 
down the dumb indices by means of the metric, we successively obtain: 

( ) ( )

( ) ( )

,

,
, <

,

i k k j i k k
k i i k i j ij

ir ij ij r
r i i j r i j

ir ij r ij ji
r i r i j divergence

σ ξ ξ µ ξ ξ

σ ξ σ ξ µ ξ

σ ξ µ σ σ ξ <

∂ − + ∂ −

= ∂ − + ∂

 = − ∂ + ∂ + − + 

 

,,ir i ij r ij ji ij
r rf mσ µ σ σ⇒ ∂ = ∂ + − =  

with evident notations for the Einstein summations involved (Compare to [12] p 
137 and 167). 

Keeping in mind that, in space-time, there are 4 translations ( )kξ  and 6 ro-
tations ( )k

iξ  (3 space rotations + 3 Lorentz transformations), we recover all the 
4 6 1 4 15+ + + =  variations that can be found in the engineering calculus lead-
ing to finite element computations (MODULEF library for example). In addi-
tion, we have proved in many books ([10] [11] [18] [28]) and papers ([39] [41] 
[42]) that the conformal group of space-time is the biggest group of invariance 
of the Minkowski constitutive laws of EM in vacuum while both sets of Max-
well equations are invariant by any diffeomorphism (care!). In particular, con-
sidering the space-time dilatation i ix ax→  for 1, 2,3, 4i =  with infinite-
simal generator i

ix ∂ , a transformation which has no intuitive meaning, and 
gauging the connected compoment [ [0,+∞  of the identity with the distin-
guished identity 1, that is to say transforming the group parameters into func-
tions, just explains why there must be a zero lower bound in the measure of 
absolute temperature, both with a distinguished value and invariance under 

1T T→ . 
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This result clarifies the Helmholtz analogy within jet theory. Indeed, if T is 
identified with the inverse of a first jet of dilatation, then T behaves like the de-
rivative of a function without being such a proper derivative, and we find again 
exactly the definition of a jet coordinate. Such a result should lead in the future 
to revisit the foundations of thermostatics and thermodynamics ([42]). 

The additional 4 transformations, called elations, are highly nonlinear and 
we understand that, contrary to E. and F. Cosserat who succeeded in dealing 
with the linear transformations, H. Weyl did not succeed in relating electro-
magnetism with the second order jets of the conformal group in ([13]), though 
the idea was a genious one, simply because he could not use in 1920 a mathe-
matical tool created in 1970 ([25] [47]) but only effective in 1983 ([9] [10] [11] 
[41] [42]). 

The reader may now understand that such a geometric unification was indeed 
the dream of the brothers E. and F. Cosserat who refer many times explicitly to 
the work of Mach and Lippmann ([12], p 147, 211). More precisely, using now 
the conformal Killing equations, we have: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,r r r
rj i ir j r ij ij

k k k kr
ij i j j i ij r

x x x A x

x A x A x A x

ω ξ ω ξ ξ ω ω

ξ δ δ ω ω

+ + ∂ =

= + −
 

where ( )A x  is an arbitrary function and ( ) i
iA x dx  is an arbitrary 1-form, we 

get ( ) ( )r
ri ix nA xξ =  and ( ) 0k

ijr xξ =  for 3n ≥  [8] [9] [10] [11]. Accordingly, 
the zero, first and second order components (field) of the image 3Dξ  of the 
Spencer operator D are: 

, ,k k k k k k k r r r
i i i j ij r ij ijr r ij i rj rij i rjξ ξ ξ ξ ξ ξ ξ ξ ξ ξ∂ − ∂ − ∂ − = ∂ ⇒ ∂ − = ∂  

and we can recover ( ) ( ), ,
1
2ij i j i j j i j iξ ξ ξ ξ = ∂ − + ∂ −  . Identifying the speed  

with a (gauged) Lorentz rotation, that is to say setting 4 4 0k kξ ξ∂ − =  as a con-
straint ([12]), we can therefore measure both ( )2

4 4 44 1k k k kr
rc Aξ ξ γ ω∂ − = −  for 

1,2,3k =  (care to the sign!) and ( )( )1r r
i r ri i in T T Aξ ξ∂ − = − ∂ + , thus 

( ) ( )21 1T T c+∇ γ  by substraction, where γ  is the acceleration, and thus 
( )1 T T∇  in first approximation ([52], p. 922). Also, the formula  

( )r r
i rj j ri i j j i ijn A A nFξ ξ∂ − ∂ = ∂ − ∂ =  exactly describes the results of [13] by 

means of the Spencer operator and explains why the EM field is on equal footing 
with deformation and gradient of temperature, contrary to its status in gauge 
theory. 

Roughly speaking, E. and F. Cosserat were only using the zero and first order 
components of the image of the Spencer operator while H. Weyl was only using 
the first and second order components (See [38] for more comments and [9] [10] 
[11] [39] [42] for a nonlinear version). 

4. Conclusions 

Recapitulating all the results previously obtained, we may finally say (See the end 
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of [39]): 
 “Beyond the mirror” of the classical approach to apparently well known and 

established theories, there is a totally new interpretation of these theories and 
the corresponding field/matter couplings by means of the Spencer sequence 
for the conformal Killing operator. 

 The purely mathematical results of Section 3 perfectly agree with the origin 
and existence of elastic and electromagnetic waves but question the origin 
and existence of gravitational waves because the parametrization of the 
Cauchy operator can be simply done by the adjoint of the Ricci operator 
without any reference to the Einstein or even Bianchi operators. We believe 
that such a confusion mainly came from the fact that it had never been no-
ticed that the Einstein operator was self-adjoint. 

 They prove that the concept of “field” in a physical theory must not be re-
lated with the concept of “curvature” because it is a 1-form with value in a 
Lie algebroid (first Spencer bundle) and not a 2 form with value in a Lie al-
gebra (second Spencer bundle). The “shift by one step” in the physical 
interpretation of a differential sequence is thus the main feature of this new 
mathematical framework. 

 They also prove that gravitation and electromagnetism have a common con-
formal origin. In particular, electromagnetism has only to do with the con-
formal group of space-time and not with ( )1U  as it is still believed today in 
Gauge Theory. 
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Main Mathematical Notations 

X manifold with tangent, cotangent, symmetric, skewsymmetric bundles 
* * *, , , r

qT T S T T∧  
( )qJ E  q-jet bundle of the vector bundle E over X with ( )dim X n=  

( )q qR J E⊂  involutive system of order q on E with symbol  
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q q qg R S T E= ⊗  
( ) ( )( )* * 1 * *
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r q qC E T J E T S T Eδ −

+= ∧ ⊗ ∧ ⊗ ⊗  generic Spencer bundles 
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r r

r q q rC T R T g C Eδ −
+= ∧ ⊗ ∧ ⊗ ⊂  Spencer bundles 

( )0 0r
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1 2

0 1 0nDD D
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Abstract 
The minority carrier’s recombination velocity at the junction and at the back 
surface is used for the modeling and determination of the optimum thickness 
of the base of a silicon solar cell in the static regime, under magnetic field and 
temperature influence. This study takes into account the Umklapp process 
and the Lorentz effect on the minority carriers photogenerated in the base. 
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Silicon Solar Cell, Diffusion Coefficient, Surface Recombination Velocity, 
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1. Introduction 

The parameters of the electric equivalent model of the solar cell, under darkness 
or illumination lead to its characterization, through the measurement of elec-
trical current and voltage (I-V) [1]. 

These measurements are made by maintaining the solar cell under static [2] 
[3] or dynamic (transient [4] [5] [6] or frequency [7] [8] [9]) regimes and thus 
defining the different characterization technics. 

From these technics, the series (Rs) [10] [11] [12] and shunt (Rsh) [13] [14] 
[15] resistances are deduced, which allow appreciating the quality of the solar 
cell, as well as the capacitance of transition. 
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However, these parameters are not expressed as function of solar cell geome-
trical parameters, especially the thicknesses of emitter, space charge region, base, 
and grain size [16]. 

In this work, the phenomenological parameters, such as minority carrier re-
combination velocity [17] [18] in the bulk (τ) [19], at the emitter-base junction 
(Sf) and at the back surface (Sb) [20] [21] of the base with thickness (H), are stu-
died to extract the optimum thickness H, of the base of the silicon solar cell, 
placed under magnetic field B and with variation of the temperature T. This op-
timum thickness is obtained from the curves of the back surface recombination 
velocity, expressed as dependent of both the diffusion coefficient D(T, B) [22] 
[23] revealing the Umklapp process [24] and the base thickness. 

2. Theory 

Figure 1 represents a n+-p-p+ silicon solar cell under polychromatic illumina-
tion, by the emitter (n+), through the collected grids. The space charge region 
(SCR), in x = 0, constitutes the junction (n+-p), allowing the separation of pho-
togenerated electron-hole pairs. The rear face (p+), in x = H, is a zone where an 
electric field exists (Back surface Field), which allows the return of the minority 
charge carriers towards the junction [25] [26]. 

When the solar cell is under illumination, the density δ(x, T, B) of photoge-
nerated carriers in the base under magnetic field B at temperature T, is governed 
by the following magneto transport equation. 

( ) ( ) ( ) ( )
2

2

, , , ,
,

x T B x T B
D T B G x

x
δ δ

τ
∂

− = −
∂

               (1) 

τ  et D(T, B) are, respectively, the lifetime and the diffusion coefficient of the 
excess minority carriers in the base, under magnetic field and under tempera-
ture. 

Under magnetic field, the diffusion coefficient is given by the following rela-
tion [27]: 
 

 
Figure 1. The solar cell structure to the n+-p-p+ type, under both magnetic field and tem-
perature. 
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( ) ( )
( )2,

1

D T
D T B

Bµ
=

+
                         (2) 

With 

( ) ( ) bK T
D T T

q
µ

⋅
= ⋅                         (3) 

And the mobility coefficient is given as [28]: 

( ) 9 2.421.43 10T Tµ −= ∗ ⋅                         (4) 

( ) ( )2 , , .L T B D T B=  L represents the diffusion length of minority carriers in 
excess. Plot of expression (2) allows to extract maximum diffusion coefficient 
which is related to optimum temperature by following relation [23]: 

( ) ( )max , opD B T T B
β

α
′

′  = ⋅                       (5) 

With 
21.51 c m s Kα′ = − ⋅                         (6) 

and 

11.87β ′ =                              (7) 

( ), ,x T Bδ  the density of photogenerated carriers in the base, is produced by 
the generation rate, expressed by [29]: 

( )
3

1
e ib x

i
i

G x n a −

=

= ∑                          (8) 

where n is the number of sun or level of illumination. 
The parameters ai et bi stem from the modeling of the incident illumination as 

defined under A.M1.5. 
The expression of the excess minority carrier density in the base is given by 

the resolution of the continuity equation and is written as: 

( ) ( ) ( )

( ) ( )
( )3

1

, , , , , , , , , cosh
,

                                 , , , , sinh
,

                                 , , e ib
i

x

xx Sf n H T B A Sf n H T B
L T B

xE Sf n H T B
L T B

K n T B

δ

−
=

 
= ⋅   

 
 

+ ⋅   
 

+ ⋅∑

        (9) 

where 

( ) ( )
( ) ( )( )

2

2

,
, ,

, 1 ,
i

i

na L T B
K n T B

D T B L T B b

⋅
=

 − ⋅  

             (10) 

( ), , , ,A Sf n H T B  and ( ), , , ,E Sf n H T B  are coefficients determined from the 
boundary conditions which respectively introduce the surface recombination 
velocity at the junction (Sf) and at the rear face (Sb). 

1) At the junction x = 0 (SCR) 
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( ) ( ) ( )
0

, , , , ,
, 0, , , , ,

x

x Sf n H T B
D T B Sf Sf n H T B

x
δ

δ
=

∂
= ∗

∂
      (11) 

Sf indicates the velocity of passage of the charge carriers across the junction, 
to the emitter. This velocity of passage of the minority carriers is governed by 
the external charge resistance conncted to the solar cell which imposes the oper-
ating point [19] [20] [21]. Thus, the carriers that have crossed through the junc-
tion and are not collected, constitute the losses through the shunt resistance, as-
sociated with the intrinsic minority carriers velocity Sf0, at the junction [4] [9] 
[20]. 

2) At the back surface ( )x H BSF=  

( ) ( ) ( )
, , , , ,

, , , , ,
x H

x Sf n H T B
D T B Sb Sf n H T B

x
δ

δ
=

∂
⋅ = − ∗

∂
      (12) 

H is the thickness of the base of the solar cell. 
Sb is the back surface recombination velocity of the excess minority carrier 

[20] [21] [25] [30], at coordinate x = H, where exists a rear electric field (p/p+, 
low-high junction), which returns the carriers toward the junction (SCR), to be 
collected. 

3. Results and Discussions 
3.1. Photocurrent Density 

Fick’s law allows us to obtain the expression of the photocurrent density. This 
expression is given by the following equation: 

( ) ( ) ( )

( ) ( )
0

, , , , ,
, , , , , ,

, 0, , , , ,
x

x Sf n H T B
Jph x Sf n H T B qD T B

x
qD T B Sf Sf n H T B

δ

δ
=

∂
= ⋅

∂

⋅ ⋅=

       (13) 

Figure 2 gives the profile of the photocurrent density versus minority carrier 
recombination velocity at the junction for different values of both, temperature 
and magnetic field according to Equation (5). 

For values of Sf < 102 cm/s, the photocurrent is practically nil (whatever the 
temperature and magnetic field), which corresponds to an open circuit operating 
point of the solar cell. Between 104 cm/s and 105 cm/s, the photocurrent is in-
creasing. 

For Sf beyond 105 cm/s, the photocurrent is constant with Sf and corresponds 
to the short-circuit current density Jphsc, which is a plateau that increases with 
the temperature and decreases with magnetic field (Lorentz’s law). 

3.2. Back Surface Recombination Velocity Sb (T, B) 

Figure 2 indicates a plateau regardless of Sf, so the derivative of the expression 
of the photocurrent density with respect to the recombination velocity, is zero. 
[17] [20] [21] and is written 
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Figure 2. Photocurrent density calibration curves versus minority carrier recombination 
velocity at the junction under temperature and magnetic field. 

 
( ), , , ,

0
Jph Sf n H T B

Sf
∂

=
∂

                    (16) 

The resolution of this equation leads to following expressions of back surface 
recombination velocity Sb1 (H, D) and Sb2 (H, D): 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

3
1

1, cosh e sinh
, , ,

1 , ,
cosh e , sinh

, ,

i

i

b H
i

i
b H

i

H HD T B b
L T B L T B L T B

Sb H T B
H HL T B b

L T B L T B

−

=
−

     
∗ − −               =

   
− −      

   

∑  

(17) 

where in Sb1 expression, appears the effect of light absorption (bi coefficient) in 
the material and leads to a generation rate ( ( )i * ,b D B T , for L >> H) [20] [21], 
[23]. Given Fick’s law on the back surface, the Sb2 (<0) expression is the intrin-
sic minority carriers recombination velocity at the back surface [22]. 

( ) ( )
( ) ( )

,
2 , , * tanh

, ,
D T B HSb H T B
L T B L T B

 
= −   

 
              (18) 

Sb1 and Sb2 lead asymptotically to the quotient D/L, which is the diffusion 
velocity (for L << H) [20], [21]. 

Figure 3 gives the profile of the two expressions of minority carrier recombi-
nation velocity at the rear face versus the solar cell base thickness, for different 
diffusion coefficient Dmax(B, T) values of the minority carriers in the base un-
dergoing the Umklapp (thermal agitation) and Lorent processes(defection) [23] 
[24]. 
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Figure 3. Back surface recombination velocity curves versus solar cell base thickness. 

 
The intersection of the curves Sb1 and Sb2, has for abscissa, the optimum 

thickness of the base of the solar cell for each diffusion coefficient Dmax(B, Topt) 
[23]. 

Table 1 summarizes the variation of the solar cell base thickness for each dif-
fusion coefficient (Dmax(B, Topt)) and the respective short-circuit currents Jsc1 
and Jsc2 which remain maximum and constant. 

Figure 4 and Figure 5, give the representation of the thickness of the base of 
the solar cell necessary for each case of the diffusion coefficient. The correlation 
between the diffusion coefficient Dmax(T, B) and the optimum base thickness is 
established. 

The current-voltage characteristics, under constant illumination of the solar 
cell having different base thicknesses, are simulated and the efficiency is ob-
tained according to the thickness and under the influence of the surface recom-
bination velocity [31]. The influence of thickness is highlighted in dynamic re-
gime [16] [30] [32] through the constant decay time, as well as in studies of the 
solar cell in 3D model [24] [33] [34] where the electrical (D, Sf, Sb) [35] [36] and 
geometry (grain size) [37] parameters are involved. 

Thus the results we propose in this work, constitute a contribution for the 
modelling and manufacturing of the solar cell thickness, for optimum efficiency 
under specific operating conditions [36]. 

4. Conclusion 

The proposed study on determining the optimum thickness of the base of a sili-
con solar cell under temperature and magnetic field, takes into account the 
behaviour of minority carriers in physical processes of thermal agitation (Um-
klapp) and deflection (Lorentz). These physical mechanisms are quantified 
through the diffusion coefficient and recombination velocity of minority carriers  
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Table 1. Base optimum thickness Value (H) for different diffusion coefficients Dmax(B, 
Topt). 

(T(K), B(Tesla)) (261; 10−3.5) (315; 10−3.3) (381; 10−3.1) (461; 10−2.9) 

Dmax (cm2/s) 32.348 24.689 18.843 14.381 

H (cm) 0.00821 0.00721 0.00633 0.00551 

Jsc1 (A/cm2) 0.027 0.026 0.026 0.025 

Jsc2 (A/cm2) 0.028 0.027 0.027 0.026 

Sb1 (cm/s) 18584 16186 14261 12435 

Sb2 (cm/s) 3097.3 2679.7 2376.9 2072.5 

 

 
Figure 4. Base depth H as function of logarithm of diffusion coefficient. 

 

 
Figure 5. Base depth H as function of diffusion coefficient. 

 
at the back surface. Thus, the study of the photocurrent obtained from the solar 
cell in short-circuit operation, allows extracting the theoretical expressions of the 
recombination velocity at the back surface of the base. The optimum thickness is 
then deduced through the analysis of the profile of these two expressions of mi-
nority carrier recombination velocity versus thickness, represented by the inter-
cept points. The optimum thickness required for the manufacturing of the base 
is then established. Thus, solar cell can operate under (T, B) conditions and yield 
optimum efficiency. 
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Abstract 
The resonance absorption of a multilayered bi-grating which consists of 
thin-film corrugated periodically in two directions is investigated. The ab-
sorption in a multilayered thin-film bi-grating has been of considerable in-
terest since we can expect more complex behaviors in the absorption pheno-
men by virtue of the presence of double periodicity and multilayer structure. In 
solving the problem, we employed a computational technique based on modal 
expansion. Taking a sandwiched structure /Ag/SiO2/Ag/ for an example, we 
observed: 1) excitation of a single-interface surface plasmon mode at the lit 
surface of the 1st Ag layer with strong field enhancement for thick enough Ag 
layer case; 2) excitation of coupled short-range or long-range surface plasmon 
modes at each surface between vacuum and Ag layers with strong field en-
hancements for thin enough Ag layer cases no matter with the thickness of 
SiO2 layers; 3) enhancements of field at surfaces between Ag and SiO2 layers 
in some cases related with the thickness of SiO2 layers. The coupled plasmon 
modes were resulted by the resonance waves on four surfaces in these cases. 
 

Keywords 
Multilayered Thin-Film, Surface Plasmon, Resonance Absorption, Bi-Grating 

 

1. Introduction 

Periodically corrugated thin metal films have an interesting property such as the 
partial or total absorption of incident light energy. The absorption is associated with 
the excitation of the surface plasmons and is then termed the resonance absorption 
[1] [2] [3]. Most of studies on the resonance absorption have mainly dealt with a 
thin metal film grating whose surfaces are periodic in one direction [4] [5] [6]. 

In our previous study, we examined the excitation of coupled plasmon modes 
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in a thin-film grating made of a metal [7]. When the metal is thick, e.g., more 
than ten times the skin depth, the plasmon can be excited on the lit surface 
alone. This is termed a single-interface surface plasmon (SISP). When the thick-
ness is decreased, the plasmon can be seen also on the other surface of the film. 
The two plasmon waves interact with each other to form two coupled plasmon 
modes called short-range and long-range surface plasmon (SRSP and LRSP) [8]. 

In the present research, we consider a sandwiched structure:  
metal/dielectric/metal, which is interesting for the application in development of 
optical equipment, for example improving sensitivity of clinical sensing [9], 
surface enhanced phenomena such as Ramman scattering, and solar cells. 

2. Formulation and Method of Solution 

In this section we first formulate the problem of diffraction by multilayered 
thin-film bi-grating shown in Figure 1(a). After formulating the problem, we 
state a method of solution based on a modal-expansion approach. 

2.1. Incident Wave 

The electric and magnetic field of an incident light is given by 

( ) ( )
i i

i
i iP exp i

   
= ⋅   

   

E e k P
H h

                      (1) 

where ie  and ih  are the electric- and magnetic-field amplitude;  
[ ]i , ,α β γ= −k  is the incident wave vector with i

0 sin cosn kα θ ϕ= ,  
i

0 sin sinn kβ θ ϕ= , i
0 cosn kγ θ= , i 2k λ= π  and 0n  is the relative refractive 

index of region V0; P = (X, Y, Z) is an observation point; λ  is the wavelength of 
the incident wave; θ  is the incident angle between the Z-axis and the incident 
wave-vector; ϕ  is the azimuth angle between the X-axis and the plane of inci-
dence. 

The amplitude of the incident electric field can be decomposed into TE- 
(TM-) component, which means the electric (or magnetic) field is perpendicular 
to the plane of incidence. To do this, we define two unit vectors TEe  and TMe  
that span a plane orthogonal to ik . Hence, the amplitude ie  in (1) is decom-
posed as  

i TE TMcos sinδ δ= +e e e                     (2) 

where the symbol δ  is the polarization angle between ie  and TEe  shown in 
Figure 1(b). 

2.2. Diffracted Wave 

We seek for the diffracted fields El (P) and Hl (P) in each region. These should 
satisfy the following requirements. 

(C1) The Helmholtz equations in each region; 
(C2) Radiation conditions: The diffracted waves in V0 (or VL) should propa-

gate or attenuate in the positive (or negative) Z-direction; 
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(a)                                      (b) 

Figure 1. (a) Schematic representation of multilayered thin-film bi-grating with an inci-

dent light ( ){ } ( ){ }( )0 1 LV : P | S , ,V : P | S ,LZ X Y Z X Y> < ; (b) Definition of a polariza-

tion angle. 

 
(C3) Periodicity conditions: Each component of the diffracted electric and 

magnetic field should satisfy 

( ) ( ) ( ), , exp , ,f X d Y Z i d f X Y Zα+ = ,                 (3) 

( ) ( ) ( )  , , exp , ,f X Y d Z i d f X Y Zβ+ =                  (4) 

where, α  and β  are the phase constants in X and Y. 
(C4) Boundary conditions: The tangential components of electric and mag-

netic fields are continuous across the boundaries Sl. 

2.3. Geometry of the Multilayered Thin-Film Bi-Grating 

The multilayered thin-film bi-grating which is laminating L − 1 grating layers has 
period d in both X- and Y-directions shown in Figure 1(a). The semi-infinite re-
gion over the multilayered bi-grating and the substrate are denoted by V0 and 
VL, respectively. Moreover, each region inside the multilayered bi-grating, 
which is numbered starting from the incident side, is denoted by 

( )V 1,2, , 1 .L= −


   The regions ( )V 0,1, , L=


   are filled with isotropic 
and homogeneous media with refractive indices n



, and a permeability of 
each region is equal with that of the vacuum 0µ . The interface between V



 
and 1V +  is denoted by S



 ( )1,2, , L=  . The profile of S


 is sinusoidal 
and given by 

( )
1

1

2 2, cos cos
2

l
i

ix y

H x yz x y
d d

η ω
−

=

   π π = = + −         
∑




           (5) 

where ω


 denotes an average distance between S


 and 1Sl+ . The value H


 
is regarded as a groove depth of the boundary S



 

dXdY

V0

V1
V2…

…
…

…
…
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Z

Incident light

the ℓ th thin-film layer
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SLVL

Ei

Hi
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2.4. Method of Solution 

We solve the problem above using Yasuura’s method of modal expansion [10]. To 
do this, we first define the set of modal functions; next we construct approximate 
solutions in terms of finite modal expansions with unknown coefficients; and, 
finally we determine the coefficients applying the boundary conditions. 

Modal functions: Because the diffracted waves have both TE- and 
TM-components, we need TE and TM vector modal functions in constructing 
the solutions. Here we employ the functions derived from the Floquet modes 
(separated solutions of the Helmholtz equations satisfying the periodicity (C3) 
and the radiation conditions (C2) if necessary). The modal functions for electric 
fields for each region are given by 

( ) ( )TE,TM TE,TM iP expmn mn i± ±= ⋅e k P
 

ϕ                   (6) 

where, , 0, 1, 2,m n = ± ±   and 0,1,2, ,l L=  , and wave vectors in (6) are de-
fined by 

TE
TE TM

TE
,mn Z mn mn

mn mn
mn Z mn mn

± ± ±
± ±

± ± ±

× ×
= =

× ×

k i e k
e e

k i e k
  

 

  

                (7) 

and 

[ ]

( )1 22 2 2 2

2 2, , , , ,mn m n mn m n
x y

mn m n

m n
d d

n k

α β γ α α β β

γ α β

± π π
= ± = + = +

= − −

k
 

 

       (8) 

where ( )Re 0mnγ ≥


 and ( )Im 0mnγ ≥


. We use the modal functions defined in 
equations from (6) to (8) to construct approximations of diffracted electric 
fields. For the accompanying magnetic fields, we employ 

( )TE,TM TE,TM

0

1Pmn mn mnωµ
± ± ±= ×k

  

ψ ϕ                      (9) 

Approximate solutions: To satisfy the radiation condition (C2), the ap-
proximate solution in V0 should have a form of finite linear combination of 
up-going modal functions with unknown coefficients. Likewise, the solution in 
VL must be a linear combination of down-going modal functions. The solution 
in Vl, however, must have both up- and down-going waves. To show the 
traveling direction of a modal function, we use superscripts + and − representing 
up- and down-going waves. Here, we form approximate solutions for the dif-
fracted electric and magnetic fields in Vl: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d TE TM
TE TM

d TE TM
, ,

TE TM
TE TM

TE TM
, ,

P P P

P P , 1,2, ,

N N
N mn mn

mn mn
m n N m n NN mn mn

N N
mn mn

mn mn
m n N m n Nmn mn

A N A N

A N A N L

φ φ
ψ ψ

φ φ
ψ ψ

+ +
+ +

+ +
=− =−

− −
− −

− −
=− =−

     
= +     

     
   

+ + =   
   

∑ ∑

∑ ∑

E
H
  

 

  

 

 

 

 

 (10) 

where N denotes the truncation number. 
Boundary matching: Because the approximate solutions satisfy the require-
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ments (C1), (C2), and (C3) by definition, the unknown coefficients ( )TE
mnA N±


 
and ( )TM

mnA N±


 are determined such that the solutions satisfy the boundary con-
ditions (C4) in an approximate sense. In the Yasuura’s method, the least-squares 
method is employed to fit the solution to the boundary conditions [10] [11]. That 
is, we find the coefficients that minimize the weighted mean-square error by 

( ) ( )

( ){ ( ) }
1 1

2 22d i d d i d
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v E E E v H H H

v E E v H H
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where 1S′  denotes one-period cells of the interface S


, Γ


 is the intrinsic im-
pedance of the medium in V



 and v  is a unit normal vector of each boundary. 
To solve the least-squares problem on a computer, we need a discretized form 

of the problem. We first discretize the weighted mean-square error IN by apply-
ing a two-dimensional trapezoidal rule where the number of sampling points is 
chosen as 2(2N + 1) [9]. We then employ orthogonal decomposition methods 
[singular-value decomposition (SVD) and QR decomposition (QRD)] in solving 
the discretized problem [12] [13]. 

It is known that the solutions obtained by Yasuura’s method have proof of 
convergence [13] [14]. We, therefore, can employ the coefficients ( )TE

mnA N±


 
and ( )TM

mnA N±


 with sufficiently large N for which the coefficients are stable in 
evaluating diffracted fields. The power reflection and transmission coefficient of 
the (m, n) order propagating mode in V0 and VL are given by 

( )
2 2TE TM0 0

1 1 0,Re 0,mn mn
mn mn mn mnR A A

γ γ
γ

γ γ
+ += + ≥            (12) 

( )
2 2TE TM , Re 0.Lmn Lmn

mn Lmn Lmn LmnT A Aγ γ γ
γ γ

− −= + ≥            (13) 

The coefficient defined above is the power carried away by propagating dif-
fraction orders normalized by the incident power. 

3. Numerical Results 

The multilayered bi-grating is made by 3 layers: /Ag/SiO2/Ag/. The incident light 
is a TM-polarized plane wave with a 650 nm wavelength. The relative refractive 
index of Vacuum = 1, nAg = 0.07+4.2i and 

2SiOn  = 1.5. The periods of two direc-
tions dx = dy = 556 nm. We consider 3 types of gratings with different thickness 
pairs of each region: (A) eAg = 

2SiOe  = 27.8 nm; (B) eAg = 27.8 nm, 
2SiOe  = 278 

nm; and (C) eAg = 278 nm, 
2SiOe  = 27.8 nm. We will then calculate the diffrac-

tion efficiencies and field distributions of these gratings. 
Figure 2 shows the (0, 0)-th order reflection and transmission coefficient as 

functions of the incident angle θ for 3 types of gratings with the azimuth angle 
φ  = 45˚. Five dips are observed on reflection curves throughout Figures 
2(a)-(c), the field distributions of the total electric fields in the vicinity of the 
SiO2 layer for these dips are shown in Figures 3(a)-(e). Distances in the Z direc-
tion are normalized by the wavelength. 
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(a) Type a 

 
(b) Type b                                                (c) Type c 

Figure 2. The (0, 0)-th order reflection and transmission coefficient for 3-layers doubly periodic gratings with 3 types of thickness 
pairs. 
 

For type A shown in Figure 2(a), two dips (dip 1 at θ = 106˚ and dip 2 at θ = 
12.5˚) are observed on reflection curve and the transmission coefficient also in-
creases at the same time. Figures 3(a) and Figures 3(b) show the field distribu-
tions for dips1 and 2. Strong field enhancements are observed at each surface 
between Vacuum and Ag layers for either of the two dips. The interaction of 
SPRs excited on these surfaces result in the coupled plasmon modes (SRSP or 
LRSP). 

For type B shown in Figure 2(b), two dips (dip 3 at θ = 11.0˚ and dip 4 at θ = 
13.5˚) are observed on reflection curve and the transmission coefficient increases 
at the same time. Reflection at dip 4 is much lower than that of dips 1 and 2 ac-
companying change of the thickness of SiO2. Figure 3(c) and Figure 3(d) show 
the field distributions for dips 3 and 4. Strong field enhancements are observed 
at each surface between Vacuum and Ag layers, similar to that of type A. In ad-
dition, fields enhance strongly at two surfaces between Ag and SiO2 for dip 4 at 
the same time. This means coupled plasmon modes are resulted by resonance 
waves excited at four surfaces. 
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(a) Dip 1 

 
(b) Dip 2                                                      (c) Dip 3 

 
(d) Dip 4                                                      (e) Dip 5 

Figure 3. Field distributions correspond to five dips. 

 
For type C shown in Figure 2(c), one dip (dip 5 at θ = 12.0˚) is observed on 

reflection curve and the transmission coefficient keeps to zero. Figure 3(e) 
shows the field distribution for dip 5. Field enhanced only on the lit surface and 
quickly attenuates through the 1st Ag layer as shown in Figure 3(e). Because the 
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1st Ag layer is enough thick, the oscillation near the upper surface does not reach 
the lower surface and, hence, the field below the 1st Ag layer is zero. This indi-
cates the excitation of SISP. 

4. Conclusion 

We solved the problems for 3 thin-films bi-grating. By calculating the diffraction 
efficiency and field distributions, we showed that the SPR phenomenon excited 
and we observed: 1) excitation of a SISP mode at the lit surface of the 1st Ag layer 
with strong field enhancement for thick enough layer case; 2) excitation of 
coupled SPR modes (SRSP or LRSP) at each surface between vacuum and Ag 
layers with strong field enhancements for thin enough Ag layer cases no matter 
with the thickness of SiO2 layers; 3) enhancements of field at surfaces between 
Ag and SiO2 layers in some cases related with the thickness of SiO2 layers. The 
coupled plasmon modes were resulted by the resonance waves excited on four 
surfaces in these cases. In future, we plan to study applications for multilayered 
bi-grating such as improving the sensitivity of a bio-sensor by determining 
changes of SPRs excited at different layers’ surfaces. 
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